This application is the national phase of International Application No. PCT/CN2015/085184, titled “CORRECTION DEVICE AND AUTOMATED TELLER MACHINE”, filed on Jul. 27, 2015 which claims the benefit of priority to Chinese patent application No. 201410476293.0 titled “CORRECTION DEVICE AND AUTOMATED TELLER MACHINE”, filed with the Chinese State Intellectual Property Office on Sep. 17, 2014, the entire disclosures of which applications are incorporated herein by reference.
The present application relates to the technical field of automatic teller machines, and in particular to a deflection correcting device and an automatic teller machine.
In the process of depositing banknotes into an ATM (Automated Teller Machine), the banknotes are apt to deflect when being put into a banknote depositing port of the ATM by a customer. When the deflected banknotes enter a banknote depositing core or a banknote box of the ATM, errors such as being unidentifiable or a jamming may occur and thus a normal operation of the machine is adversely affected. Therefore, the entered banknotes are required to be performed with the deflection correcting.
In a conventional deflection correcting device, multiple deflection correcting wheels are provided in a banknote running passage, and these deflection correcting wheels move banknotes in the banknote running passage towards one side (a reference wall) of the passage. When the banknotes hit the reference wall, because of an interception action from the reference wall to the banknotes and a forward transmission action from a transmission wheel in the passage, a deflection correction to the banknotes are realized when the banknotes leave the passage.
However, when the banknotes hit the reference wall and the reference wall intercepts the banknotes, if the banknotes are required to fit with the reference wall and keep moving, the banknotes should have sufficient rigidity. In a case that the banknotes are old banknotes, a phenomenon that the banknotes are jammed in the reference walls and the passage during the deflection correcting process, is apt to occur.
A deflection correcting device and an automatic teller machine are provided according to the embodiments of the present application, which can realize a deflection correcting for banknotes and prevent the banknotes from jamming at a reference wall and a passage during a process of deflection correcting.
The deflection correcting device according to the embodiments of the present application includes a banknote running passage defined by a first passage plate and a second passage plate, deflection correcting wheels are arranged in the banknote running passage and a deflection correcting direction of the deflection correcting wheels is deflected from a reference side of the banknote running passage, a plurality of the deflection correcting wheels are dispersedly arranged in a transmission direction of the banknote running passage and are gradually close to the reference side, wherein
a lateral guiding mechanism is provided at the reference side, and configured to drive a banknote that reaches the reference side to move in the transmission direction of the banknote running passage; and
a deflection correcting adjusting wheel is provided at a tail end in a deflection direction of the plurality of the deflection correcting wheels and is close to the reference side, and a deflection correcting direction of the deflection correcting adjusting wheel is deflected from the reference side.
Optionally, the lateral guiding mechanism includes a power shaft, two conical wheels and a turning belt; the turning belt is installed between the two conical wheels; the power shaft fixedly passes through one of the two conical wheels and is configured to drive the conical wheel to rotate; and the turning belt is arranged on the reference side and has a running direction coincident with the transmission direction.
Optionally, the lateral guiding mechanism further includes a plurality of pinch rollers and a plurality of tensioning wheels;
the pinch roller are in a press fit with the conical wheels respectively; and
the tensioning wheels are installed at inner sides of the turning belt and is configured to assist the turning belt to transmit
Optionally, a surface moving speed of the turning belt is coincident with a speed of the banknote moving forward.
Optionally, the lateral guiding mechanism includes a turntable transmission shaft and a guiding turntable; the turntable transmission shaft fixedly passes through the guiding turntable and is configured to drive the guiding turntable to rotate; and a surface of the guiding turntable is arranged on the reference side and a running direction of the surface of the guiding turntable is coincident with the transmission direction.
Optionally, the lateral guiding mechanism includes a driving wheel, a plurality of driven wheels and a synchronous belt; the synchronous belt is installed on the driving wheel and the plurality of driven wheels; the driving wheel is configured to drive the synchronous belt and the plurality of driven wheels; and a lateral side of the synchronous belt is arranged on the reference side and a running direction of the synchronous belt is coincident with the transmission direction.
Optionally, the deflection correcting adjusting wheel is a polygonal adjusting wheel.
Optionally, a linear velocity of a maximum diameter of the deflection correcting adjusting wheel is coincident with a linear velocity of the deflection correcting wheels.
Optionally, the deflection correcting wheels are arranged in a middle portion of the banknote running passage and include three rows of deflection correcting wheels, and deflection correcting directions of the three rows of deflection correcting wheels are the same;
the three rows of deflection correcting wheels are respectively a first row of deflection correcting wheel, a second row of deflection correcting wheel and a third row of deflection correcting wheel in the transmission direction, deflection correcting floating wheels are arranged on the banknote running passage and in a press fit with the deflection correcting wheels respectively;
pressures applied on the three rows of deflection correcting wheels by the deflection correcting floating wheels are a first row pressure, a second row pressure and a third row pressure respectively; and
the second row pressure is larger than the third row pressure, and the third row pressure is larger than the first row pressure.
Optionally, an automatic banknote depositing device is provided with the above-mentioned deflection correcting device.
According to the above technical solutions, the embodiments of the present application have the following advantages.
In the embodiments of the present application, a deflection correcting device includes a banknote running passage defined by a first passage plate and a second passage plate, deflection correcting wheels are arranged in the banknote running passage and a deflection correcting direction of the deflection correcting wheels is deflected from a reference side of the banknote running passage, a plurality of the deflection correcting wheels are dispersedly arranged in a transmission direction of the banknote running passage and are gradually close to the reference side, a lateral guiding mechanism is provided at the reference side, and configured to drive a banknote that reaches the reference side to move in the transmission direction of the banknote running passage; and a deflection correcting adjusting wheel is provided at a tail end in a deflection direction of the plurality of the deflection correcting wheels and is close to the reference side, and a deflection correcting direction of the deflection correcting adjusting wheel is deflected from the reference side.
In the embodiments of the present application, the banknote first gradually gets close to the reference side under the action of the deflection correcting wheels, and after the banknote reaches the reference side, the banknote is driven to move forward by the lateral guiding mechanism and in this case a phenomenon that the head portion of the banknote deflects from the reference side may occur. In a case that the head portion of the banknote deflects, the head portion of the banknote is adjusted to be close to the reference side again by the deflection correcting adjusting wheel arranged at the tail end, and the banknote is re-adjusted and a deflection correction is realized, therefore even the rigidity of the banknote is insufficient, the banknote can be driven by the lateral guiding mechanism to fit with the reference side and thus is prevented from jamming at the reference side and the passage during the deflection correcting process.
For more clearly illustrating embodiments of the present application or the technical solution in the prior art, drawings are briefly introduced below to describe the embodiments or the prior art. Apparently, the drawings are used to illustrate some embodiments of the present application, and those skilled in the art may achieve other drawings, based on these drawings, without any creative efforts.
A deflection correcting device and an automatic teller machine are provided according to the embodiments of the present application, and are configured to realize a deflection correcting of banknotes and prevent the banknotes from jamming in reference walls and a passage during a process of deflection correcting.
For the purposes, features and advantages of the present application to be obvious and better understood, the technical solutions in the embodiments of the present application will be described clearly and completely hereinafter in conjunction with the drawings in the embodiments of the present application. Apparently, the described embodiments are only a part of the embodiments of the present application, rather than all embodiments. Based on the embodiments in the present application, all of other embodiments, made by the person skilled in the art without any creative efforts, fall into the scope of the present application.
Reference is made to
As shown in
In a case that the lateral guiding mechanism 009 is embodied as the turning belt guiding mechanism, the structure of the deflection correcting device is described as follows.
Generally, a banknote running passage, which allows the banknotes to pass, is formed by the first passage plate 001 and the second passage plate 002. The banknote running passage is a passage having a cross section with a variable width along a banknote running direction. As shown in
Generally, a plurality of transmission wheels with a large frictional coefficient (for example rubber) are provided on the transmission shaft 003, each transmission shaft floating wheel 011 is in a press fit with each transmission wheel on the transmission shaft 003 and is in a one-to-one correspondence with the transmission wheel. A spring or other elastic part acts on the transmission shaft floating wheel 011, thus an object of clamping and conveying the banknotes can be realized, and power of the transmission wheel is transferred from the area a by the first gear 006.
As shown in
As shown in the
Preferably, the deflection correcting adjusting wheel 010 may be a pentagonal wheel, a gap of 0.1 mm should be provided between an outer diameter of the deflection correcting adjusting wheel 010 and the first passage plate 001, and an arrangement angle of the deflection correcting adjusting wheel 010 should be coincident with an arrangement angle of the deflection correcting wheel 004. The power of the deflection correcting adjusting wheel 010 is also provided by the electric motor 005 and has a maximum diameter, a linear velocity of the maximum diameter is coincident with a linear velocity of the deflection correcting wheel 004.
It should be noted that, the lateral guiding mechanism 009 is not limited to the turning belt guiding mechanism, and any mechanism that can rotate and generate a forward friction force to the banknotes is feasible, for example a turntable and a synchronous belt, and the lateral guiding mechanism 009 is not limited herein.
A working process of the deflection correcting device in this embodiment will be described hereafter in detail, and reference is made to
After being separated from the banknote separating mechanism at the area a, the banknote is clamped and conveyed forward by the transmission shaft 003. When the banknote reaches the first group of deflection correcting wheel 004, the deflection correcting wheel 004 generates a lateral force towards the reference side to the banknote. However, because a clamping force generated by the transmission shaft floating wheel 011 and the transmission shaft 003 is larger than a clamping force generated by the deflection correcting wheel 004 and the deflection correcting floating wheel 012, and the deflection correcting wheel 004 is close to the transmission shaft 003, the lateral force generated by first group of deflection correcting wheel 004 cannot drive the banknote toward the reference side yet.
When the banknote continue to move forward to reach the second group of deflection correcting wheel 004, a lateral force generated by the second group of deflection correcting wheel 004 is larger than the lateral force of the first group, and a large part of the banknote has been conveyed to a deflection correcting area (banknote running passage) at this time, if the banknote is a short banknote, the banknote may already completely leave the transmission shaft 003, at this moment, the banknote moves toward the reference side under the lateral force generated by the first and the second groups of deflection correcting wheels 004. When the banknote continues to move forward and reaches the third group of deflection correcting wheel 004, the banknote is subjected to a larger lateral force and is closer to the reference side. When the action of deflection correcting continues, one corner of the banknote firstly reaches the reference side firstly because the banknote gets close to the reference side obliquely. At this moment, since the turning belt 017 has been rotated already, a forward friction force is generated, by the turning belt 017, to the corner of the banknote that reaches the reference side, and thus the banknote is driven to move forward and is unlikely to be bent here to cause a jamming.
When the banknote continues moving forward and the action of deflection correcting goes on, a head portion of banknote has already been corrected in place. However, because it is possible that the action of deflection correcting is still performed on a tail portion of the banknote, and furthermore because of the action of the friction force of the passage, a phenomenon occurs that the head portion of the banknote generates a certain deflection relative to the reference side. For solving the phenomenon, a group of deflection correcting adjusting wheel 010 is required to be provided. The deflection correcting adjusting wheel 010 may be a pentagonal wheel, and a lateral force is intermittently generated during a rotating process, therefore the head portion of the banknote which deflects from the reference side is allowed to get close to the reference side again. When the banknote keeps moving forward, the head portion of the banknote may enter the area b and is clamped and conveyed forward by a driving wheel of a conveying mechanism. When the tail portion of the banknote leaves the deflection correcting adjusting wheel 010, the entire action of deflection correcting is finished.
It should be noted that in a case that the lateral guiding mechanism 009 is the guiding turntable or the guiding synchronous belt, the working process of the deflection correcting device is almost the same as that described above, and thus will not be described herein. The working principle of the guiding turntable and the guiding synchronous belt will be briefly described hereinafter.
As shown in
As shown in
In the embodiments of the present application, a deflection correcting device includes a banknote running passage defined by a first passage plate 001 and a second passage plate 002, and deflection correcting wheels 004 are arranged in the banknote running passage and a deflection correcting direction of the deflection correcting wheels 004 is deflected from a reference side of the banknote running passage. A plurality of the deflection correcting wheels 004 are dispersedly arranged in a transmission direction of the banknote running passage and are gradually close to the reference side. The reference side is provided with a lateral guiding mechanism 009 configured to drive the banknote that reaches the reference side to move in the transmission direction of the banknote running passage. A deflection correcting adjusting wheel 010 is provided at a tail end in a deflection direction of a plurality of the deflection correcting wheels 004 and is close to the reference side, and a deflection direction of the deflection correcting adjusting wheel 010 is deflected from the reference side. In the embodiments of the present application, the banknote first gradually gets close to the reference side under the action of the deflection correcting wheels 004, and after the banknote reaches the reference side, the banknote is driven to move forward by the lateral guiding mechanism 009 and in this case a phenomenon that the head portion of the banknote deflects from the reference side may occur. In a case that the head portion of the banknote deflects, the head portion of the banknote is adjusted to be close to the reference side again by the deflection correcting adjusting wheel 010 arranged at the tail end, and the banknote is re-adjusted and a deflection correction is realized, therefore even the rigidity of the banknote is insufficient, the banknote can be driven by the lateral guiding mechanism 009 to fit with the reference side and thus is prevented from jamming at the reference side and the passage during the deflection correcting process.
Based on the deflection correcting device according to the above embodiments, an automatic teller machine is further provided by the present application, which is provided with an automatic banknote depositing device and a deflection correcting device is provided in the automatic banknote depositing device, the deflection correcting device is the deflection correcting device according to the above embodiments.
Since the automatic teller machine adopts the deflection correcting device in the above embodiments, beneficial effects of the automatic teller machine brought by the deflection correcting device can be referred to the above embodiments.
It will be apparent to those skilled in the art that the specific operations of the systems, apparatuses and units described above may be referred to the corresponding processes described in the foregoing method embodiments for the sake of convenience and conciseness of the description and will not be described here.
The above embodiments are merely intended to illustrate and not limit the technical solution of the present application; even though the present application has been described in detail with reference to the foregoing embodiments, it will be understood by those skilled in the art that modifications to the technical solutions described in the foregoing embodiments or equivalent substitutions of a part of the technical features can still be made; the modifications and substitutions do not make the essence of the corresponding technical solutions to depart from the spirit and scope of the technical solutions of the embodiments of the present application.
Number | Date | Country | Kind |
---|---|---|---|
2014 1 0476293 | Sep 2014 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2015/085184 | 7/27/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/041414 | 3/24/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5048817 | Roller | Sep 1991 | A |
5564544 | Takemoto et al. | Oct 1996 | A |
8113511 | Kallin | Feb 2012 | B2 |
8469358 | Wen | Jun 2013 | B1 |
8789828 | Wang | Jul 2014 | B2 |
8915497 | Machamer | Dec 2014 | B2 |
9540199 | Wang | Jan 2017 | B2 |
20110042887 | Kallin | Feb 2011 | A1 |
20140083815 | Chang et al. | Mar 2014 | A1 |
20140183816 | Wang et al. | Jul 2014 | A1 |
20160055700 | Wang et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
1990367 | Jul 2007 | CN |
201122303 | Sep 2008 | CN |
102324154 | Jan 2012 | CN |
103236120 | Aug 2013 | CN |
103679913 | Mar 2014 | CN |
104200581 | Dec 2014 | CN |
H0930687 | Feb 1997 | JP |
3927290 | Jun 2007 | JP |
20140084742 | Jul 2014 | KR |
2012110556 | Aug 2012 | WO |
Entry |
---|
International Search Report for PCT/CN2015/085184, dated Nov. 6, 2015, ISA/CN. |
Number | Date | Country | |
---|---|---|---|
20170260016 A1 | Sep 2017 | US |