Claims
- 1. A method of cross-correlating two detected noise signals representative of respective random variations in a moving medium and having a net time delay between similar characteristics thereof, the method including the steps of deriving a pair of noise signals in the form of pulse trains representative of respective random variations, imposing a time delay on the noise signal derived from a leading one of the random variations, effecting a relative phase shift substantially equal to an odd number multiple of 90.degree. between the pair of noise signals, obtaining the product of the noise signal derived from a trailing one of the random variations and the delayed signal derived from the leading one of the random variations, after effecting the said phase shift, and adjusting the time delay imposed on the noise signal derived from the leading one of the random variations to reduce the said product to zero.
- 2. A method as claimed in claim 1, and transmitting radiant energy beams across a flowing fluid at positions spaced apart in the direction of flow, said noise signals being derived from said beams, whereby the adjustment of the imposed time delay is a measure of the fluid flow velocity.
- 3. A method as claimed in claim 2, and digitizing the noise signals, imposing the delay by transmission of the noise signal derived from the leading random variation through a shift register, and adjusting the shift register switching frequency in accordance with the signal product, whereby the switching frequency is proportional to the fluid flow velocity.
- 4. A method of cross-correlating two detected noise signals representative of respective random variations in a moving medium and having a net time delay between similar characteristics thereof, the method including the steps of deriving a pair of noise signals in the form of pulse trains representative of respective random variations, imposing on the signal derived from a leading one of the random variations at least three successive delays, thereby to obtain at least three progressively delayed noise signals, obtaining at least three products each being the product of the noise signal derived from a trailing one of the random variations and a respective one of the first, second and third delayed signals, producing at least two combined noise signals each being produced by combining one of the said products with another of the said products, mixing together the combined noise signals to produce a mixed signal, and adjusting the delays imposed on the leading noise signal to reduce the mixed signal to zero.
- 5. A method as claimed in claim 4, wherein an even number of delays are imposed on the noise signal derived from the leading random variation thereby to obtain an even number of delayed signals, and the two products from which each combined signal is formed are products of the noise signal derived from the trailing random variation and respective delay signals which are symmetrically disposed about a mean of all of the delays.
- 6. A method as claimed in claim 5, wherein four delays are imposed on the noise signal derived from the leading random variation, one combined signal being formed from products which contain respective first and fourth delayed signals and the other combined signal being formed from products which contain respective second and third delayed signals.
- 7. A method as claimed in claim 4, wherein the combined signals are each formed by combining the products of the noise signal derived from the trailing random variation and a predetermined one of the delayed signals and the product of the said noise signal derived from the trailing random variation and a respective one of the delayed signals.
- 8. A method as claimed in claim 4, wherein the combined signals are mixed linearly to produce the mixed signal.
- 9. Apparatus for cross-correlating two detected noise signals representative of respective random variations in a moving medium and having a net time delay between similar characteristics thereof, the apparatus including circuits for deriving a pair of noise signals in the form of pulse trains representative of respective random variations, delay means for imposing a time delay on the signal derived from a leading one of said random variations, means for effecting a relative phase shift substantially equal to an odd number multiple of 90.degree. between the pair of noise signals, means for obtaining the product of the signal derived from a trailing one of the random variations and the delayed signal derived from the leading one of the random variations, after effecting the said phase shift, and means for adjusting the time delay imposed on the noise signal derived from the leading one of the random variations to reduce the said product to zero.
- 10. Apparatus as claimed in claim 9, in which the circuits include digitizers and the delay means is a shift register.
- 11. Apparatus for cross-correlating two detected noise signals representative of respective random variations in a moving medium and having a net time delay between similar characteristics thereof, the apparatus including circuits for deriving a pair of noise signals in the form of pulse trains representative of respective random variations, delay means for imposing on the signal derived from a leading one of said random variations at least three successive delays, thereby to obtain at least three progressively delayed noise signals, means for obtaining at least three products each being the product of the noise signal derived from a trailing one of the random variations and a respective one of the first, second and third delayed signals, means for producing at least two combined noise signals each being produced by combining one of the said products with another of the said products, means for mixing together the combined noise signals to produce a mixed signal, and means for adjusting the delays imposed on the leading noise signal to reduce the mixed signal to zero.
Priority Claims (2)
Number |
Date |
Country |
Kind |
27366/71 |
Jun 1971 |
UK |
|
5184/72 |
Feb 1972 |
UK |
|
Parent Case Info
This is a continuation, of application Ser. No. 261,327, filed June 9, 1972, and now abandoned.
US Referenced Citations (8)
Foreign Referenced Citations (1)
Number |
Date |
Country |
964,581 |
Jul 1964 |
UK |
Non-Patent Literature Citations (1)
Entry |
Hayes et al., Correlator Design for Flow-Measurement Radio and Electronic Eng., vol. 43, No. 6, pp. 363-368, June 1973, effective date 11/1971. |
Continuations (1)
|
Number |
Date |
Country |
Parent |
261327 |
Jun 1972 |
|