The present invention relates to protective covers for mechanical assemblies, and more specifically, to a thermoplastic cover for bearing assemblies, and the method of making this cover.
Industrial operations such as manufacturing lines often come to a screeching halt when mechanisms in the infrastructure malfunction or stop working. These failures are costly, potentially dangerous, and frustrating. Mechanical problems in an industrial operation are particularly troublesome insofar as it isn't usually possible to “swap out” a bad part, so repairs often require shutting down the entire operation.
Corrosion and contamination are leading causes of premature failure in rotating systems such as bearing assemblies. In an effort to prevent these issues, Corrosion Inhibiting Sprayable Thermoplastics (“CISTs”) are used in the industry to protect both stored and operational bearing assemblies.
The conventional delivery method for CISTs is mobilizing spraying equipment and applying the thermoplastic product directly onto the bearing assembly as a hot liquid. Said another way, the spraying equipment is brought to the bearing assembly, and the CIST is applied in situ. This is considered the best procedure because it isn't practical to remove bearing assemblies from industrial operations, treat them, and return them to the underlying structure.
Once the liquefied thermoplastic is cool, it becomes a flexible solid covering over the bearing, creating a barrier to corrosion and contamination entry. The thermoplastic does not bond to the bearing housing or shaft surface, thereby allowing both to function freely underneath the coating. This method is very effective, and the life of protected equipment is increased exponentially. Unfortunately, however, this system has shortcomings.
One problem of applying CIST via mobilized spraying is that installed bearing assemblies are often difficult to access with the application equipment due to length of spray hose, size of application equipment, and/or limited access to surfaces with the spray gun. Another issue is the cost of application equipment. Yet another shortcoming is the significant time that is necessary for application equipment to melt the thermoplastic, which adds to equipment downtime.
As can be seen, there is a need for a protective thermoplastic cover for bearing assemblies that doesn't require mobilized spraying equipment in situ. It is desirable that this cover can be fit onto bearing assemblies that are hard to access. It is also desirable that this cover is relatively inexpensive, easy to use, and easy to transport. It is also desirable that the cover can be fixed relatively quickly, and with standard tools and equipment.
The following detailed description is of the best currently contemplated modes of carrying out exemplary embodiments of the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
The following structure numbers shall apply to the following structures among the various FIGS.:
Broadly, the present invention is a thermoplastic cover that is formed on a mold, removed from the mold using a series of cuts, positioned on a mechanical part whose shape is significantly identical to the mold, and reformed as a cover by fusing the cuts using heat.
Referring to the figures,
Cover 10 of the present invention is formed by creating a mold, applying CIST through spray application or injection molding, allow thermoplastic to cool, and removing thermoplastic cover from mold by cutting. The preferred CIST is Enviropeel E170 from Alocit & Enviropeel USA, of Indianapolis, Ind., although other similar thermoplastics, especially having characteristics of a melting and hardening point of 130° C. to 180° C., and the ability to melt and harden multiple times, could also be employed.
As shown in
Specifications of certain structures and components of the present invention have been established in the process of developing and perfecting prototypes and working models. These specifications are set forth for purposes of describing an embodiment, and setting forth the best mode, but should not be construed as teaching the only possible embodiment. Ranges of values set forth inherently include those values, as well as all increments between. Also, it should be understood that all values are “approximately”, and “approximately” and the like, unless otherwise stated or contrary to common sense, are +/−10%.
Number | Date | Country | |
---|---|---|---|
62321341 | Apr 2016 | US |