Cost effective automated preparation and coating methodology for large surfaces

Abstract
An apparatus and method of preparing and coating a large structure such as a ship's hull while in a dry dock wherein a plurality of spray guns disposed in an array are positioned by a robotic arm in a spaced relationship along the surface to be treated so that their spray patterns overlap. The array of spray guns is traversed downwardly a thus painting a strip whereupon the spray guns are secured, move horizontally and then activated to be moved upwardly until another strip adjacent to and overlapping the first strip is painted. These steps are repeated until the surface area is substantially entirely painted. A shroud is provided for collecting paint oversprays and other excess paint is mounted in the array assemblage. An auxiliary spray gun may be positioned and its spray pattern adjusted to apply paint to areas which were missed by the original spray pattern emanating from the array of spray guns. Travel of the system along the work surface is accomplished by a reference track, which may be virtual or actual along which an unmanned platform travels. An articulated computer controlled arm is carried by the unmanned platform which in turn carries the assemblage. Other tools may be selectively operatively connected to the arm for cleaning the hull before a coating is applied thereto.
Description
FIELD OF THE INVENTION

This invention relates generally to an environmentally friendly, waste minimizing and cost-effective preparation and coating methodology and apparatus utilizing automated systems for preparing and coating large surfaces.


BACKGROUND OF THE INVENTION

Large surfaces, such as ship's hulls, which may be supported in dry docks, are disclosed in U.S. Pat. No. 3,611,849 to Hammelmann and U.S. Pat. No. 3,915,092 to Van den Broek. Both patents describe the preparation of a hull for surface-treating and subsequently spray painting the hulls. In the Hammelmann patent a carriage is disclosed having horizontal and vertical support structures which are movable along the top and vertical surfaces of the dry dock's sidewalls. A surface-treating device in or on a gondola can be disposed at least to the central longitudinal plane of the dry dock. This enables the device to treat the surface of the ship's hull from bow to stern. In other words, the gondola can be moved from the deck of the ship in dry dock along the surface of the hull to the ship's keel. The orientation of the device can be automatically changed in response to changes in the inclination or curvature or both of the adjacent surface being treated. The gondola can support one or more attendants or one or more surface-treating devices such as for the discharge of highly pressurized water against the surface of the hull to remove existing paint and prepare the hull for spray painting. He also teaches an apparatus intended for grit blasting of ship's hulls. The object is to treat large surfaces having contours relatively quickly. Unlike the apparatus of Hammelmann described above, Van den Broek discloses a support for carrying a two-arm device for supporting equipment on rails mounted along a vertical side of the dry dock. The treating apparatus may be sand or grit blasting nozzles, rotary cleaning equipment or paint spray nozzles which are arranged to have slightly overlapping areas.


Attention is also invited to U.S. Pat. Nos. 4,285,469 and 4,445,541, also to Hammelmann and Van den Broek respectively. In the latter Van den Broek patent, the processing member for treating ships' hulls comprises horizontal guide wheels and vertical guide wheels for horizontal movement and vertical movement, respectively, along the hull. The orientation of these wheels can be automatically changed so that the processing member moves horizontally or vertically, as desired.


Numerous patents have been issued which relate to the painting of automobile bodies, such as, for example, U.S. Pat. No. 4,721,630 to Takeo et al, wherein painting robots are arranged to be moveable on rails on each side of the automobile. The same is true in respect of aircraft, for example, U.S. Pat. Nos. 3,460,177 and 5,248,341 to Rhinehart, et al and Berry, Jr. et al, respectively.


Where the surfaces to be treated are not enclosed, such as ships' hulls, silo walls, oil storage tanks, and the like, compliance with environmental laws and regulations are required. The problems associated with environmental compliance are set forth in U.S. Pat. No. 5,398,632 to Goldbach, et al wherein the need for confined work areas for the clean blasting and the recoating of vessels at dry docks is met, at least in part, by covering the areas of the clean blasting and coating operations as they take place.


The Naval Surface Warfare Center, Carderock Division, developed an automated painting system for hulls that could be used in Navy and commercial dry docks. Attention is invited to the article: APACTS Represents Apex an Environmentally Friendly Painting, page 52 of CURRENTS, the Navy's Environmental Magazine, Winter 2003. APACTS is also described in iMAST, a quarterly of the Institute for Manufacturing and Sustainement Technologies 1999 No. 4, in which the feature article is: Automated Paint Application, Containment, and Treatment System (APACTS) for Dry Dock Hull Coating Operations by Robert E. Keay, Ph.D. The iMAST article states that an automated paint application containment and treating system (APACTS) was born in early 1997 and wherein the concept was to develop a mobile, semi-automated, robotics-control (but with real-time operator input) platform that can simultaneously apply paint and capture overspray during dry-dock ship hull coating operations. Surveys indicated that there were no patented or commercially available mobile and “at-the-nozzle” overspray collection means then in existence. The captured overspray is directed to an appropriate physical, possibly chemical, treatment system which also must be mobile in design. The envisioned advantages were that faster and more uniform rates of paint application would reduce manpower and improve compliance with growing regulations for control of air and water pollutants. With airless paint spray systems, it had been observed that paint overspray was caused when small paint particles having insufficient mass to reach the target were carried away by the entrained airflow. It was estimated that paint particles of fifty microns or less were most likely responsible for the overspray. A shroud-like enclosure surrounding the paint spray gun was recommended. Its principle was to take advantage of the natural velocity generated by the impingement of the spray to separate the overspray containing wall jet from the wall and direct it to a suction outlet. The paint applicator and capture shroud control concept envisioned employ two serially linked manipulators under some common supervisory control. This approach provided five degrees of freedom when the large manipulator is stationary.


The Carderock Division of the Naval Surface Warfare Center's automated paint application, containment and treatment system, (APACTS) to apply anti-corroding and anti-fouling paints in an environmentally sound manner has been developed and tested. The APACTS System utilizes a self-propelled mobile base which supports a long reach macro-manipulator which in turn carries a quick response micro-manipulator to maneuver a paint spray gun and containment device along the hull of the ship. Although APACTS was designed to apply a uniform thickness of paint, it has not been successful in doing so. It applies paint within pre-designated rectangular areas. Based on the paint patterns shown in the CURRENTS article, it is surmised that paint spray gun moves substantially vertically in a zigzag manner or the like to cover a horizontal strip between one and two meters wide and roughly a meter measured vertically, which may correspond roughly to the shield or shroud under which the paint spray gun is mounted. After this horizontal strip has been painted, the paint spray gun assemblage moves downwardly and by traveling in the opposite horizontal direction again with an up and down zigzag motion or the like, another strip is provided which abuts or somewhat overlaps the just painted strip immediately above. This is repeated until the lowest strip is painted whereby the device moves laterally and continues to paint at a distance, either forward or aft along the ship's hull, whereafter a further area is painted by upward movement which is contiguous with the first painted area (in the longitudinal sense) or it can be moved outwardly to paint a series of horizontal strips, as before with up and down motion of the paint spray gun and moving the device upwardly by painting contiguous horizontal strips to create a vertical area parallel to the first vertical area, but which is spaced away from it. Further up and down vertical areas can then be painted whereby the entire hull is eventually covered. To summarize, based on the pictures in the CURRENTS article, it would appear that the paint spray gun is manipulated under a shroud to paint by up and down zigzag motions a series of horizontal strips which are contiguous with one above or below the last painted whereby, joined together, they form a long vertical area and a series of such long vertical areas are produced which, and when contiguous, cover a large area of a ship's hull being painted. In order to avoid unpainted areas between two adjacent, elongated vertical areas a slight paint overlap of a few inches is, or is intended to be, provided between the elongated vertical areas. During the side to side spray painting process, feathering of the paint is employed so that each horizontal strip overlaps the adjacent just painted strip by a relatively small distance for the purpose of obtaining a uniform thickness of the paint coating. If the initial motion of the paint spray gun of APACTS is not as inferred from the CURRENTS article, then it may be horizontal, side to side in practice. But, regardless, the painting methodology utilized in APACTS has failed to achieve a uniform paint thickness on the ship's hull surface. It is understood that funding for APACTS was terminated over a year ago. Thus, irrespective of the precise movement of the paint gun under the shroud, APACTS is a failed effort to achieve the advantages to which the instant invention is directed.


Although the APACTS design goal since its beginnings in 1997 has been to apply a uniform thickness of paint, it has failed to be adopted by any Navy program or shipyard contractor insofar as known as of this date. The Office of Naval Research at the Navy Surface Warfare Center ManTech Program, which has provided multi-million dollar funding throughout the development of APACTS, ceased its continued funding in early 2004 based on a concern that, even after shipyard demonstrations, the design had not drawn sufficient interest in any public or private shipyards. Questions were raised concerning its commercial viability as well as its affordability.


When the functionality of the APACTS design is examined closely, certain limitations in terms of demonstrating “best practice” coating methods are seen. It is also pertinent insofar as the instant invention is concerned that the APACTS design is strictly for coatings application and requires direct operator control. The system does not perform other processes such as surface preparation or monitoring or diagnostic functions.


In view of the foregoing it should be appreciated that a recognized need exists for the automated preparation and painting in outdoors environments as well as in some indoors environments, without waste and environmental contamination, large substantially vertical surfaces, particularly hulls of ships while in dry dock, but also fuel storage tanks, grain elevators and other large structures, substantially automatically with minimal human effort other than for programming and monitoring the process.


SUMMARY OF THE INVENTION

The invention is a computer-controlled, mobile robotic system that by interchangeable tools and being guided by sophisticated interrelated computer programs, automatically performs surface preparation, coating application and surface measurement, and diagnostic operations for the treatment of large surfaces. An example of such a surface is a large ship's hull, but the invention may also be used for the automated surface preparation and coating of many different large surfaces requiring same.


The first step of the methodology is to acquire surface measurement data that defines the targeted work surface. This may include any variety or combination of technical means available, such as, but not limited to, the use of designer CAD file input, digital imaging and laser mapping. This data is used in an existing process to program robotically controlled arms for treatment operations. Attention is invited to U.S. Pat. Nos. 6,365,221 and 6,562,139 which, in part, describe a data measurement acquisition method. Acquisition of surface data is also useful in the calculation and estimation of the amount of materials or cycle times required to treat the surface involved which, in turn, allows for increased accuracy in the planning of such project along with reduced environmental impact.


Industry is increasingly being automated. Automotive manufacturers have, for many years, painted automobile bodies by automated means. Robots with articulated arms, outfitted with any one of a variety of types of spray equipment are programmed automatically to paint automobile bodies of varying configurations. Typically these robots are affixed in a stationary position and perform their operations as programmed while an assembly line moves automobile bodies through the paint booth. Paint is uniformly applied in a repeated fashion while material waste is minimized in the process.


In contrast to what is described above and taught by the prior art wherein articulated arms are mounted on the sides of a dry dock to perform their task, the instant invention comprises a computer-controlled mobile system which moves along, as an example, the deck of a dry dock or along the side of any variety of large work surfaces while the attached, automated, articulated robot arm, its tools and materials, efficiently provide a specified coating system. The mobile system is programmed to move along a line which may be a virtual line such as determined by a global positioning satellite system, laser guided positioning system, or digital video imaging system or an actual line which is in one way or another either temporarily or permanently positioned and fixed to the deck of the dry dock adjacent the ship's hull. By use of appropriate sensors, the mobile system acquires positioning or guidance data from the line, virtual or actual, which is then processed by the mobile system to enable its movement alongside and relative to the work surface. This is accomplished in coordination with the surface measurement data previously acquired and processed.


After surface measurement data is acquired, processing and the mobile system guidance instructions are programmed, the system selects the appropriate tool for the next task to be performed. The computer processes data received to determine the optimum tool path for the process step to be performed. The upper end of an articulated arm is designed to carry a variety of tools connected by means of an interchangeable wrist. A single mobile system can be used to perform mobile process steps, one step at a time, by tool exchange or a plurality of mobile systems can individually hold various tools and act in tandem performing service preparation followed directly by coating application.


With the area to be painted having been appropriately evaluated, service preparation and recovery is employed which includes a cleaning and surface preparation apparatus, preferably Ultra High Pressure (UHP) water jets and a vacuum shroud for recovery, and a means for filtration of spent water and removed material.


The coatings application which is disclosed herein encompasses a plurality of spray heads and sensors in a vacuum shroud configuration designed to control and optimize the uniform application of coatings while addressing environmental concerns.


Prior to the application of coatings, typically the surface of the targeted work is cleaned and prepared for application of the coatings. This step typically requires removal of oxides, chlorides, rust and other contaminants as well as the removal of existing coatings. A preferred surface preparation tool incorporates UHP water blasting methods and also provides a means of debris capture, water filtration and recycling by utilizing a vacuum shroud which is sufficient to meet environmental compliance concerns. The tool is physically attached to the end of the articulated robot arm and functions as an in effector while being connected to various supply lines requisite for its operation. Appropriate sensors are positioned on the tools to acquire real time data to position the tool and assist in carrying out the process.


The physical attachment may be accomplished automatically by robot programming and utilizing an interchangeable wrist, or in part, it may be assisted by a technician monitoring the system's operation. Once attached, the required UHP water pressure lines, vacuum conduits, filtration and recycle lines, if provided, may be connected by a technician or connected by automatic means. Utilizing the previously acquired surface measuring data, the system engages a work surface and is directed by a computer in a prescribed manner to accomplish the surface preparation process. The surface preparation tool is properly positioned relative to the work surface in a fashion required by the method used. Speed of movement, both vertically and horizontally, is determined by the extent of surface preparation required as assessed automatically through real time digital image processing, or through manual inspection means, or both. Inasmuch as each work surface may be different and provide a unique challenge, the system is thus capable of operating in both automated and manual modes. The actual service preparation process may, at times, require intervention by a technician for direct operator control. This may be necessary for particular problem areas or for sections that automated means and tooling may find it hard to reach and consequently may be impractical. The requisite equipment associated with the surface preparation, power pumps, vacuum filtration and recycling system, etc. may be simply located in the work area to facilitate the service preparation procedure. Alternatively, the equipment may be positioned on an adjacent mobile supply platform which moves in concert with the mobile system. Once the surface preparation step has been completed and properly verified, the coatings application problem can then commence. In a like fashion as described above, the coating application tool is also physically attached to the wrist at the end of the robot arm and functions as an end effector. Fluid, air and electrical supply lines, if required, are all properly attached thereto. This may be, again, accomplished by automatic means through robot programming and utilizing the interchangeable wrist, or it may be assisted as necessary by a technician monitoring the system's operation. Appropriate sensors are positioned on the coating tool to acquire real time data for positioning and to assist in carrying out the process as well as to ensure maximum uniformity and accuracy in application of the coatings. Requisite supply equipment associated with the coating application process is preferably centrally located to facilitate the surface preparation procedure. Alternatively, the supply equipment may be positioned on an adjacent mobile supply platform which moves in concert with the supply system. Included in the application equipment for the coatings is a means by which automated material re-supply is accomplished without stopping the coating process. To accomplish automated re-supply, appropriate monitoring devices are incorporated in the system.


The equipment comprising the mobile system is not a permanent installation in or at a dry dock or other facility, but rather may be lowered into the work area or removed by cranes as needed.


The system essentially requires the integration and coordination of two major software programs. The first controls movements of the mobile system alongside the work piece, for example, along a ship's hull from bow to stern. The second program has the primary task of maintaining the tool position relative to the surface being coated. The proximity, stand-off angle and speed with which the tool is positioned and moved in relation to the work surface is determined by the function being performed and the data necessary to be collected to enable automatic operations. A sensor for measuring the thickness of coatings is integrated into the automated coating process to report the thickness of the coatings in real time, thus permitting enhanced control and uniformity of the coatings application process. The software program may also include the surface data acquisition routines or may be a stand-alone element. All programs are interrelated and as such have the necessary interfaces with each other to enable the desired operations of the invention. Care is taken to implement methods of process, checking, and error avoidance.


Other objects, adaptabilities and capabilities of the invention will appear as the description progresses, reference being had to the accompanying drawings, in which:




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic plan view of an array of paint spray guns as used at the bow of a ship's hull which is being painted;



FIG. 2 is a schematic plan view of the array of paint spray guns as shown in FIG. 1 which illustrates the spray patterns used for the upward run adjacent to that illustrated in FIG. 1 as well as further runs which apply paint to the ship's hull until reaching the stern of the ship;



FIG. 3 is a further schematic view of the spray paint array shown in FIGS. 1 and 2 which illustrates the use of one of the paint spray guns for touchup operations; and



FIG. 4 is a schematic view which illustrates the other component parts of the invention including the mobile platform, the wagon trailer, the automated articulated arm assembly and the treatment stage for cleaning or painting a ship's hull mounted on the end of the articulated arm assembly.




DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION

The invention eliminates or minimizes paint wastage for the painting of ships' hulls and other large outdoor structures and, at the same time, provides a uniform thickness in the application. The painting system of the invention is essentially fully automated whereby there is no need for an operator to be provided on the self-energized and self-propelled mobile platform for controlling the motion of the platform along a side of the ship's hull or other large structure to be painted while performing the painting function.


As seen in the figures, the mobile support platform 20 follows a line 16 which as described above may be actual or virtual. As shown in FIG. 1, for painting the exterior surface of a ship's hull 21, an assemblage unit or array 22 a paint spray guns is provided. Along the array there are five paint spray guns 10, 11, 12, 13 and 17, each of which can provide adjustable spray fan patterns. Thus to provide a forty-five inch width spray pattern using the four spray guns, each provides an eighteen inch in width spray fan pattern. This is accomplished by paint spray gun, 10, 11, 12, and 13 which are aligned horizontally. The auxiliary spray gun 17 is adjusted to provide a nine inch width spray fan pattern. Accordingly, the paint spray pattern emanating from the four spray guns 10, 11, 12, and 13, and the auxiliary spray gun 17, as illustrated in FIG. 1 provide a forty-five inch wide spray pattern commencing on the left as seen in FIG. 1 at the stem 24 of the ship that has the hull which is being painted. Each spray gun, 10, 11, 12, 13, and 17 is positioned perpendicular to the working surface. The spray guns spray patterns which are offset sufficiently to avoid paint collisions whereby the patterns may be in a shallow echelon or alternate.


Assuming, for example that a uniform thickness of ten mil. is desired to be applied to the ships hull 21, initially a left end sensor 14 of the robotic system locates the top left corner point of hull 21. As a robot faces the ship's side to be painted using position sensors mounted at either side of the paint spray system, the robot positions the array 22 so that, commencing at the top forward edge of the ship's hull 21, array 22 is parallel to and the spray guns are pointed at hull 21. The spray paint gun array 22 is supplied with paint so that when the paint impacts the surface, each spray gun pattern leaves a five mil. thickness of paint. Each of the four spray guns, 10, 11, 12, and 13 sprays an eighteen inch wide fan pattern and the auxiliary gun 17 sprays a nine inch wide fan pattern depicted in FIG. 1. As the paint is being applied, array 22 is moved vertically downwardly at a uniform rate relative to hull 21, maintaining a uniform distance from hull 21 until an entire forty-five inch wide strip on hull 21 is painted to the ship's waterline 25. After reaching the end of the vertical travel to waterline 25 of the ship, spray paint gun array 22 is secured and moved thirty-six inches to the right at waterline level 25 of hull 21, the paint supply to auxiliary gun 17 is secured, and with the other spray guns being activated, painting is resumed by moving the paint gun array 22 vertically upwardly adjacent along hull 21 with a nine inch overlap on the strip just painted as shown in FIG. 2 until the next strip is painted by array 22 again moving to the ship's waterline 25. After reaching the end of the vertical travel to waterline 25 of the ship, the spray paint gun array 22 is again moved thirty-six inches to the right at the waterline of hull 21 while the paint supply to the spray guns is secured and painting is resumed by moving the paint gun array 22 vertically upwardly adjacent to the just painted strip along the hull 21 with a nine inch overlap on the strip just painted until the next strip is painted in a downwardly manner to waterline 25 whereupon the process is continued until the stern of the ship has been reached as signaled by sensor 15. If portions of the stern are above the waterline then the downward limits of each such strip coincide with the longitudinal center line of a ship's hull 21. In painting the last strip, paint spray guns in the left portion of array 22 are secured or adjusted as necessary to prevent overspray. If desired, painting of the last strip on the right hand side of hull 21 may be deferred for subsequent touch up by paint spray gun 17.


When the painting of the ship's hull 21 is completed between its upper edges and down to the waterline 25 another paint appropriate for underwater use is spray painted between the waterline and the keel of the ship in the same manner described above which may require the temporary removal of selected keel blocks to ensure that the coating of the underside of hull 21 is complete or the program may provide that the keel portion be painted by paint spray gun 17 in a separate operation.


As indicated above, certain areas to be painted may be reserved for the touch-up spray paint gun 17 as illustrated in FIG. 3. But this does not necessarily mean that the touch-up areas are not automatically painted as a part of the original programming for the ship involved. Usually these areas will be at or close to the stern and stern of the vessel being painted and also around openings in hull 21 such as the condenser cooling water outlet. In each case, the desired thickness of the coating such as ten mil. will be used unless in certain areas, a thicker coating may be specified.


It is emphasized that the travel of the robotic painting system along the length of the ship's hull 21 is accomplished without a person being positioned in mobile platform 20. A guidance system using ultrasonic, infrared, laser or other means is mounted on the chassis of mobile platform 30 which reads a reference track 16 that may be a painted line, laser line, tape line, or may be virtual such as is possible with GPS, LGPS or other means. In this manner automated movement of mobile platform 20 in relation to the ship's hull 21 or any other large structure to be painted may be automated. As mobile platform 20 moves along reference line 16, the positioning of array 22 or equipment used for cleaning the hull of the ship in preparation for painting is controlled in relation to the ship's hull 21 by data from sensors 14 and 15, or any other structure being painted, by sensors operatively connected to array 22 or other equipment via control of the articulated arm 27.



FIG. 4 is schematic drawing which illustrates the combined components of the invention. An important aspect of the invention is its capacity to provide the automated treatment of large structures such as, in particular, the exterior of ships' hulls. Before said structures are painted it is, as previously indicated, usually necessary to remove existing paint and clean the surface of the structure in preparation for the painting operation. Many systems exist for cleaning various structures for the purpose of coating same. For example, sand, fiber blasting media impregnated with alumina, steel grit and other types of grit may be propelled against the surface to be painted whereby existing paint, corrosion and adhering sea flora and fauna are removed. In such case, the sand or grit or other blasting media, and the removed material need to be collected and disposed of or filtered out and re-circulated. For ships' hulls, I prefer the use of ultra high pressure jets. For an effective system, the jets need to be shrouded and the excess water, together with the removed paint and corrosive matter, is filtered. The water, once filtered, can be re-circulated or disposed of. The material which has been filtered from the water is disposed of in an appropriate manner, but may also be, in some cases, reclaimed for use as a fuel or otherwise.


In FIG. 4, as an assemblage unit, array 22, may be considered in an extensive sense for illustrative purposes, as a means for removing paint and cleaning the surface to be painted in which case the material which has functioned for removal, that may be water or spent grit together with removed paint, corrosion, etc. is transferred from assemblage unit 22 which is shown in FIG. 4 and may be accomplished via a conduit 37 to container 35 and the filtered water is re-circulated. This may be accomplished through piping of 36. As discussed previously, container 35 may be carried in a wagon 31 which is towed by the mobile platform 20. Assemblage unit 22 invariably incorporates a shroud and other means for collecting material removed from the surface being cleaned. It should be appreciated that unit 22 can be controlled for movement in the same manner as discussed for the automated painted process except that normally the cleaning operation is the same whether above or below waterline 25. In the painting operation, container 35 may, again in an extensive sense for illustrative purposes, contain the paint to be applied to the ship's hull. Normally this would be accomplished by a plurality of fifty-five gallon drums of paint being carried by wagon 31. However, any adequate type of container or containers may be employed for this purpose. If a plurality of the barrels or other containers are used then an arrangement is required for the containers to deliver the paint therein in series. For the cleaning or painting purposes, wagon 20 automatically follows line 16 whether marked or virtual. For the cleaning operation, the articulated arm 27 is programmed to move over substantially the entire surface of hull 21 from stern 24 to stern. In the painting operation, any paint which may escape adherence to hull 21 such as overspray is removed by vacuum via vacuum source 32 through conduit 34 whereupon it may be conveyed to a container 35 carried by wagon 31. In FIG. 4, keel blocks 40 are shown. Normally the keel blocks are constructed of wood, but, if movable and automated their removal and replacement may be arranged as part of the automated system of the invention. Openings such as for an anchor or for condenser cooling water are not shown in FIG. 4 even though they are likely to be present on one side or both sides of the vessel. However, with automated cleaning equipment and touch-up spray painting guns 17, both automated cleaning and automated painting around these openings and to some extent within such openings, if desired, may be provided.


Provisional Application Ser. No. 60/540,623 and prior patents and publications referred to herein and in such Provisional Application are incorporated by reference. The computer programming and the designs of the articulated arms are well within the expertise of those skilled in such arts. Although UHP water jets are preferred means for the initial step of preparing a surface for coatings, other known processes may be employed such as abrasive cleaning with sand or grip, including steel grit. Also various known means for applying coatings may be utilized including airless, air assisted airless, air, a spinning disc, triangular or fan-shaped spray, round, oval or elliptical spray patterns, and conical shapes spray patterns may be utilized. The coatings may be primer, anti-fouling, anti-corrosive, powder, metallic such as nickel flame coatings similar to those prescribed by the Corps of Engineers for painting bridges, polyurethanes, polymers, epoxies and other coating materials known to the art may be used. The coatings may be applied with electrostatic charges usually in ranges to 50,000 to 100,000 volts whereupon their adherence to a grounded steel hull is enhanced. For coatings which are heated to provide fusion or melting, heating means of an appropriate source may be employed such as a laser as part of the coating tool. The invention thus not only applies to conventional coating material, but also to processes for applying unconventional materials by unconventional means. It will be further understood that although I have disclosed the preferred embodiments of my invention, it is capable of other adaptations and modifications within the scope of the following claims:

Claims
  • 1. An apparatus for the automated treatment of the surface of a large structure which comprises: an unmanned computer controlled mobile platform adapted to move along a line adjacent to said structure; an articulated computer controlled arm mounted on said platform with the extremity of said arm terminating in a wrist mechanism onto which different surface treatment or measurement tools may be selectively mounted; and sensors operatively associated with each said tool so that the relationship of each said tool's disposition with to said surface is computer controlled.
  • 2. An apparatus in accordance with claim 1, wherein said tool comprises an application device for applying a coating to said surface.
  • 3. An apparatus in accordance with claim 2, wherein said application device comprises an array of a plurality of coating application guns.
  • 4. An apparatus in accordance with claim 3, comprising at least two coating application guns in said array, each of said guns applying paint to be received by said surface in overlapping patterns.
  • 5. An apparatus in accordance with claim 4, wherein said patterns overlap by about 50%.
  • 6. An apparatus in accordance with claim 4, wherein the configuration of sprayed paint from each said gun is triangular as seen in a direction parallel to said surface.
  • 7. An apparatus in accordance with claim 5, wherein each said configuration is fan shaped.
  • 8. An apparatus in accordance with claim 4, wherein one of said guns is controlled independently of the other said guns to perform a touch-up function.
  • 9. An apparatus in accordance with claim 4, wherein one of said guns is independently controllable relative to the other of said guns to perform an auxiliary function.
  • 10. An apparatus in accordance with claim 1, wherein said line comprises a computer recognizable virtual line derived from GPS.
  • 11. An apparatus in accordance with claim 1, wherein said line is a computer recognizable virtual line derived from CAD file information.
  • 12. An apparatus in accordance with claim 1, wherein said line is a computer recognizable virtual line derived from digital imaging.
  • 13. An apparatus in accordance with claim 1, wherein said line is a computer recognizable temporary line on the surface over which said mobile platform moves.
  • 14. An apparatus in accordance with claim 1, wherein said line is a computer recognizable line on the surface over which said mobile platform moves.
  • 15. An apparatus in accordance with claim 4, wherein at least one of said tools comprises a plurality of coating application guns which have spray patterns that are contained in substantially the same horizontal plane with deviation therefrom only as necessary to avoid collisions of sprayed paint.
  • 16. An apparatus in accordance with claim 3, wherein at least one of said guns is a coating application gun which produces a round shape where it is received by said surface.
  • 17. An apparatus in accordance with claim 1, wherein at least one of said tools comprises an array of coating application guns which produce spray patterns that overlap for about 50% of their widths.
  • 18. An apparatus in accordance with claim 1, wherein at least one of said tools comprises an array of coating application guns, said array being computer controlled to move relative to said surface at substantially a uniform speed and to remain at substantially the same distance from said surface so that paint received on said surface from said array of guns has a substantially uniform thickness.
  • 19. An apparatus in accordance with claim 1, wherein at least one of the tools comprises a surface cleaning tool which removes existing coatings, corrosion and rust and other materials adhering to said surface from said surface, such said tool comprising a shroud which substantially prevents said materials adhering to said surface and substances used in the cleaning process from escaping into the nearby atmosphere.
  • 20. An apparatus in accordance with claim 1, wherein at least one of said tools comprises a plurality of coating application guns that spray coating material to said surface, and a shroud for said guns which is maintained in a spaced relationship from said surface and substantially prevents coating material from escaping from said shroud into the surrounding atmosphere, vacuum producing means operatively connected to said shroud for removing coating material which does not adhere to said surface to a location away from said shroud.
  • 21. An apparatus in accordance with claim 1, which comprises at least one tool having further sensors operatively associated therewith for measuring the thickness of a coating in real time as it is being applied to said surface and paint thickness adjustment means which, on the basis of data received from said further sensors, controls in real time the thickness of coating material being applied to said surface.
  • 22. An apparatus in accordance with claim 1, wherein at least one of said tools which applies a coating to said surface includes another sensor which recognizes the wet edge of a previously applied coating by said tool and provides data to a computer system which controls the apparatus so that the further application of coating by such tool overlaps said previous coating to maximize the uniformity of the application of coating to said surface by computer controlling such tool's motion so that the overlap between said previously applied coating and said coating being applied thereafter by said tool overlap an amount that maximizes the uniformity of thickness of said coating applied to said surface.
  • 23. An apparatus in accordance with claim 1, wherein at least one of said tools for cleaning said surface and preparation to receive coating material is provided with a vacuum shroud which prevents the cleaning material and material cleaned thereby from escaping into the nearby atmosphere.
  • 24. An apparatus in accordance with claim 23, wherein said cleaning material comprises ultra-high water jets blasted against said surface.
  • 25. An apparatus in accordance with claim 23, wherein said cleaning material comprises the combination of water and an abrasive media.
  • 26. An apparatus in accordance with claim 23, wherein said cleaning material comprises an abrasive material which is blasted against said surface.
  • 27. An apparatus in accordance with claim 23, wherein said cleaning material comprises sponge jet blasting.
  • 28. An apparatus in accordance with claim 23, wherein said cleaning is accomplished with laser coating ablation.
  • 29. An apparatus in accordance with claim 1, wherein at least one of said tools is a surface cleaning tool, said surface preparation tool being operatively associated with another sensor that measures the profile of said surface and the cleanliness of said surface.
  • 30. An apparatus in accordance with claim 1, comprising surface measurement devices which measure the integrity of said surface by means consisting of an audio gauge measurement or a digital camera or laser mapping means or ultrasonic coating thickness measurement means or any combination thereof.
  • 31. An apparatus in accordance with claim 1, which comprises a surface measurement device which measures the integrity of said surface.
  • 32. An apparatus for the automated treatment of the exterior of large outdoor structures which comprises: an unmanned mobile platform adapted to move along a line which is provided adjacent to said structure; an articulated computer controlled arm mounted on said platform; a shrouded assemblage unit carried by said arm, said unit operatively associated with sensors for controlling the distance and orientation of said unit from said surface via control of said articulated arm; and a surface treatment member in said unit for cleaning or coating said surface, said unit being computer controlled for automated movement so that said articulated arm retains said surface treatment member parallel to and spaced away from said surface.
  • 33. An apparatus in accordance with claim 32, wherein said assemblage unit comprises an array of a plurality of paint spray guns.
  • 34. An apparatus in accordance with claim 33, wherein at least two paint spray guns in said array deliver a fan shaped paint spray and at least one of said guns performs a touch-up function.
  • 35. An apparatus in accordance with claim 1, wherein said line is a computer recognizable virtual line derived from GPS.
  • 36. An apparatus in accordance with claim 32, wherein said array comprises a plurality of paint spray guns wherein their spray patterns are disposed in substantially the same horizontal plane.
  • 37. An apparatus in accordance with claim 32, wherein said spray patterns of adjacent spray guns in said array are fan shaped and overlapped for about 50% of their widths.
  • 38. An apparatus in accordance with claim 37, wherein said array of paint spray guns is moved relative to said surface at a substantially uniform speed whereby the paint received on said surface has substantially uniform thickness.
  • 39. A method of automated spraying of paint on the exterior of a large outdoor structure to paint overlapping substantially vertical strips on the exterior surface of said structure which comprises the steps of moving an array of spray paint guns spaced a uniform distance from said surface and spraying fan-shaped paint patterns towards that surface so that adjacent of said patterns overlap with each other about 50%, whereby a coating of substantially uniform thickness is provided across said strip on said surface, maintaining said array entirely spaced away from said surface while applying the method and moving said array at a substantially uniform speed relative to said surface, the array being operatively associated with sensors that sense the distance of the array from said surface thereunder, said distance being maintained substantially uniform during application of the method by an articulated arm supporting said array, said arm being mounted on an unmanned mobile platform which moves adjacent said structure as required for applying adjacent said strips painted by said array to overlap the same distance that adjacent patterns of adjacent paint guns do.
  • 40. A method in accordance with claim 39 wherein adjacent of said patterns from adjacent corresponding spray paint guns are slightly offset to avoid substantial collisions occurring in the coating material sprayed by said corresponding paint spray guns.
  • 41. A method in accordance with claim 40, wherein said patterns are offset one from the other in a shallow echelon arrangement.
  • 42. A method in accordance with claim 39, wherein said structure is a ship in a dry dock wherein there is a mobile platform which is guided in its movement by a line substantially parallel to the longitudinal axis of the ship, said mobile platform carrying an articulated computer controlled arm, said array being supported at the end of said arm, said arm substantially controlling movement of said array between the keel and upper deck edge of the ship, said mobile platform moving along said line to position said array to paint adjacent of said strips.
  • 43. A method in accordance with claim 39, wherein the painting of the hull of said ship by spray paint guns mounted on said array is accomplished in separate operations for the part of said hull above the ship's waterline and the part of said hull below said ship's waterline.
  • 44. A method in accordance with claim 39, wherein a shroud is provided over said array of paint spray guns, said shroud being connected to vacuum means and removing by said vacuum means substantially all overspray and other paint sprayed from said spray paint guns which does not adhere to said structure while applying the method.
  • 45. An apparatus for the automated selected treatment of the surface of large structures which comprises a computer control system, an unmanned computer controlled mobile platform adapted to move along a line which is provided adjacent to a said structure, an articulated computer controlled arm mounted on said platform with the further extremity of said arm terminating in a wrist mechanism onto which selected surface treatment and measurement tools are adapted to be mounted, a plurality of sensors operatively associated with said computer control system whereby said sensors collect data utilized by said surface treatment and measurement tools for said computer control system to interchange and operate said tools to perform functions related to the automated treatment of large structures including the cleaning of said structure and the coating of same after it has been cleaned.
  • 46. An apparatus in accordance with claim 45, wherein said surface treatment tools include a coatings application apparatus comprising an array of a plurality of coatings application guns.
  • 47. An apparatus in accordance with claim 46, wherein at least two of said coatings application guns in said array deliver a round shaped coating pattern on the surface of said structure.
  • 48. An apparatus in accordance with claim 46, wherein at least two of said coatings applications formed provide a spray which is fan shaped.
  • 49. An apparatus in accordance with claim 46, wherein at least one of said guns functions to perform an auxiliary or touch-up function.
  • 50. An apparatus in accordance with claim 45, wherein said line is a computer recognizable virtual line derived from GPS.
  • 51. An apparatus in accordance with claim 45, wherein said line is a computer recognizable virtual line derived from CAD file information.
  • 52. An apparatus in accordance with claim 45, wherein said line is a computer recognizable virtual line derived from digital imaging.
  • 53. An apparatus in accordance with claim 45, wherein said line is a computer recognizable non-permanent line affixed to the surface over which said mobile platform moves.
  • 54. An apparatus in accordance with claim 45, wherein said line is a computer recognizable permanent line affixed to the surface over which said mobile platform moves.
  • 55. An apparatus in accordance with claim 45, wherein said line is a computer recognizable line consisting of a virtual line derived from GPS or a virtual line derived from CAD file information or a computer recognizable virtual line derived from digital imaging or a temporary line on the surface to which said mobile platform moves or a permanent line on said surface over which said mobile platform moves or any combination thereof.
  • 56. An apparatus in accordance with claim 45, wherein said array comprises a plurality of coating application guns wherein their spray patterns are close together and substantially the same horizontal plane without substantial colliding of the coating materials being sprayed by said guns.
  • 57. An apparatus in accordance with claim 56, wherein the spray patterns of said coatings application guns overlap for about 50% of their widths.
  • 58. An apparatus in accordance with claim 46, wherein said array of coatings application guns are moved relative to said surface at a substantially uniform speed and at a distance from the surface of the structure being coated whereby the coating received by said surface has a substantially uniform thickness.
  • 59. An apparatus in accordance with claim 45, wherein one of said tools is a tool for cleaning the surface of said structure by ultra high pressure jet blasting.
  • 60. An apparatus in accordance with claim 57, wherein said tool for ultra high pressure blasting comprises a shroud for preventing material removed from said structure by said tool from polluting the nearby atmosphere and said material being filtered from said water and subjected to biological oxidation.
  • 61. An apparatus in accordance with claim 58, wherein said water after said filtration is recirculated for further use in said ultra high pressure cleaning system.
  • 62. An apparatus in accordance with claim 45, which includes a shroud connected to a vacuum system for substantially preventing the escape of overspray into the nearby atmosphere.
  • 63. An apparatus in accordance with claim 45, wherein said structure is a ship.
  • 64. An apparatus in accordance with claim 45, wherein said tools consist of an airless spray coating assemblage, an air assisted airless coating assemblage, an air spray coating assemblage, a dry particulate coating spray assemblage including means for heating and melting the coating in place, a metallic flame spray assemblage, an electrostatic coating assemblage or a tool combining the functions of the foregoing tools, and further said tool consists of an ultra high water spray, an abrasive blasting tool, a fiber blasting media tool impregnated with alumina or a tool which combines in one tool the aforesaid cleaning functions.
RELATED APPLICATION

Specific reference is made pursuant to 35 United States Code, Section 119(e) (1) to U.S. Provisional Application Ser. No. 60/540,623 filed in the U.S. Patent and Trademark Office on Feb. 2, 2004.

Provisional Applications (1)
Number Date Country
60540623 Feb 2004 US