The presently claimed invention was made by or on behalf of the below listed parties to a joint research agreement. The joint research agreement was in effect on or before the date the claimed invention was made and the claimed invention was made as a result of activities undertaken within the scope of the joint research agreement. The parties to the joint research agreement are 1) Cotton Incorporated and 2) The United States Department of Agriculture.
The present disclosure relates generally to processing cottonseeds or other seeds, and more particularly, but not by way of limitation, to cottonseed delinters and methods.
Cotton is said to have been in use since prehistoric times and remains an important product in the world today for many purposes. Cotton grows in a cotton boll, which is a protective capsule, around the seeds of the cotton plant. With the Industrial Revolution, cotton began to be separated from the cottonseed with a cotton gin. Yet, after ginning the cottonseed, cotton linters (or cotton wool) remain on the cottonseed. Linters are fine, silky fibers that are typically less than ¼ of an inch (6.3 mm) or less than ⅛ of an inch (3 mm) long. Linters have a unique lumen and have many uses and potential uses. Linters are different than the longer staple lint and are not simply short pieces of residual staple lint. At times, other seeds also need removal of an exterior portion.
According to an illustrative embodiment of the disclosure, a system for removing linters from ginned cottonseeds includes a rotatable drum having an exterior surface and an interior surface, wherein the interior surface defines, at least in part, a drum cavity, wherein the drum cavity has a first longitudinal-end opening and a second longitudinal-end opening; a plurality of flexible abrasive members coupled to and substantially covering the interior surface of the rotatable drum; one or more frames coupled to the rotatable drum for rotatably supporting the rotatable drum; a first end plate substantially covering the first longitudinal-end opening of the cavity; a second end plate substantially covering the second longitudinal-end opening; a plurality of longitudinal brushes, each longitudinal brush of the plurality of longitudinal brushes is coupled to the first end plate and the second end plate and each longitudinal brush has brush elements that are configured to bias the cottonseeds having linters against the flexible abrasive member on the interior surface of the rotatable drum; at least one linter-removal aperture formed on the first or second end plate and fluidly coupled to the cavity and to a first reduced-pressure source for removing linters from the drum cavity; and at least one seed-removal conduit fluidly coupled to the cavity for removing the cottonseeds after delinting.
The system also includes a pre-conditioner seed feed subsystem for removing a portion of the linters from the ginned cottonseeds prior to introduction into the rotatable drum. The pre-conditioner seed feed subsystem includes a longitudinal auger trough member having a first longitudinal end and a second longitudinal end and formed with a first side wall, second side wall, and a third side wall, and wherein the first side wall, the second side wall, and the third side wall form an interior auger cavity having a longitudinal opening; a longitudinal lid member sized and configured to cover the longitudinal opening in the longitudinal auger trough; a seed introduction port formed at one end of the longitudinal auger trough member; a seed exit port formed at another end of the longitudinal auger trough member and spaced from the seed introduction port; a rotatable auger disposed within the interior auger cavity of the longitudinal auger trough member; an auger rotation assembly coupled to the rotatable auger for rotating the rotatable auger; a plurality of brush members coupled to at least one of the first side wall, second side wall, and third side wall of the longitudinal auger trough; a plurality of lid brush members coupled to an interior surface of the longitudinal lid member; and a pre-conditioner linter removal subsystem fluidly coupled to the interior auger cavity and having a second reduced-pressure source.
According to an illustrative embodiment of the disclosure, a method for removing linters from ginned cottonseeds includes preconditioning a plurality of ginned cotton seeds with a pre-conditioner seed feed subsystem to remove at least 5% of remaining linters, wherein the pre-conditioner seed feed subsystem comprises a longitudinal auger trough member having a plurality of brush members lining an interior surface, an auger disposed in the longitudinal auger trough, and having a longitudinal lid member having a plurality of lid brush members that form a plurality of brush zones; removing remaining linters from the ginned cotton seeds after preconditioning the ginned cotton seeds using a rotating drum member lined with abrasive members and a plurality of longitudinal rollers disposed proximate the abrasive members, and at least one rotation device for rotating the drum; removing the ginned cotton seeds from the rotatable drum through a seed removal port after the remaining linters have been removed from the ginned cottonseeds; and removing linters from the rotating drum using a linter off-take chute fluidly coupled to a drum cavity of the rotating drum member.
Other features and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.
In the following detailed description of the illustrative embodiments, reference is made to the accompanying drawings that form a part hereof. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.
Referring primarily to
The rotatable drum 102 has an exterior surface 110, the interior surface 108, and an interior diameter, D1. The rotatable drum 102 also has a longitudinal length that extends from a first longitudinal end 112 to a second longitudinal end 114. The rotatable drum 102 may have an aspect ratio (long dimension/diameter) in the range of 1 to 8. In one embodiment tested, the aspect ratio was approximately 2.6, but any number in the range given may be used and even outside the range in some embodiments. The rotatable drum 102 may be formed in any fashion to present a drum structure. In one embodiment, the rotatable drum 102 is formed as a rolled steel tube.
The interior surface 108 of the rotatable drum 102 is substantially covered by the flexible abrasive member 106, which may be a wire bristle brush or may be a card wire brush. The flexible abrasive member 106 may be coupled to the interior surface 108 of the rotatable drum 102 using an adhesive, epoxy, weld, UV weld, IR weld or any other attachment technique. The flexible abrasive member 106 and interior of the rotatable drum 102 could have mating slots to secure the flexible abrasive member 106 in the rotatable drum 102 and to facilitate removal and replacement. The flexible abrasive member 106 may be a card wire brush 190 having brush teeth 192 or filaments, which have an angled portion 194. The angled portion 194 may angle in the same direction as the first direction 182 of rotation as shown in
The system 100 includes a frame 116. The frame 116 may comprise a first frame 118 and a second frame 120. The frame 116 may have a first longitudinal end 122 and a second longitudinal end 124. A pivot connection 126 may be used to pivotally couple the first frame 118 and second frame 120 at second longitudinal end 124. A driving device 128, such as a jack or hydraulic lift, may be associated with the first frame 118 and second frame 120 at the first longitudinal end 122 of the frame 116 in order to create an angle between the first frame 118 and the second frame 120 about the pivot connection 126. The angle between the first frame 118 and the second frame 120 may be −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more degrees.
The driving device 128 may include a first platform 130 that is coupled to the second frame 120 and a second platform 132 associated with the first frame 118 whereby when a hand crank 134 or other activating device is used to cause the platforms 130 and 132 to move apart, it causes a greater space to develop between the first longitudinal end of each of the frames 118 and 120. The driving device 128 thus causes relative movement between the first longitudinal end of the first and second frames 118, 120. The frame 116 is shown on wheels or casters 136. The frame 116 also includes a plurality of rotatable supports 138. Typically, at least two rotatable supports 138 per side are included, one set near the first longitudinal end 112 and one set near the second longitudinal end 114. The plurality of rotatable supports 138 may be displaced from one another and positioned to interface with one or more tracks 140 on the exterior 110 of the rotatable drum 102. The plurality of rotatable supports 138 may be mounted on lateral frame elements 139.
The frame 116 may further include a first longitudinal end frame 142. A first end plate 144 may be coupled to the first longitudinal end frame 142. The frame 116 may further include a second longitudinal end frame 146. A second end plate 145 is coupled to the second longitudinal end frame 146. As referenced below, bearing assembly and motors may be attached to the longitudinal end frames 142, 146. A control compartment 196 (
The control compartment 196 may include components for controlling the rotation devices 148, 162, 164, and 168. The control compartment 196 controls the rotation device 148 for the drum, which is run by a variable speed frequency drive, but in other embodiments need not be a variable speed. Also, rotation devices 164 and 162 may be consolidated into one motor that runs all the cleaning brushes. The rotation device 168, which turns the doffer brush 170, is also controlled by the control compartment 196. The driving device 128, if electrical, is also controlled at the control compartment 196.
An electrical motor or combustion engine, or other drive device, may function as a first rotation device 148. In the embodiment shown in
The rotatable drum 102 rotates adequately to create a centrifugal force that urges the cottonseeds 101 with linters in the rotatable drum 102 against the flexible abrasive member 106. In one illustrative, embodiment, the first rotation device 148 is operable to rotate the rotatable drum 102 at a rotational speed greater than or equal to 170 revolutions per minute (RPM). In another example, the first rotation device 148 may rotate the drum at 250 RPM, 180 RPM, 170 RPM, 160 RPM, 150 RPM, 140 RPM, or another rotational speed. Whatever speed is selected should typically provide a centrifugal force to the cottonseed that urges the cottonseed against an interior 108 of the drum 102 and thereby against the flexible abrasive member 106. Other means of rotating the rotatable drum 102 may be implemented. The greater the rotational speed of the drum 102, the greater number of counter-rotating cleaning brushes 166.
In addition to securing the first end plate 144, the first longitudinal end frame 142 may also secure one or more rotation devices for rotating other components. For example, a second rotation device 162 and a third rotation device 164 may be coupled to the first longitudinal end frame 142. The second rotation device 162 and the third rotation device 164 may be used to rotate one or more of a plurality of longitudinal brushes 166 within the cavity 104. A fourth rotation device 168 may also be coupled to the first longitudinal end frame 142. The fourth rotation device 168 is operably coupled to rotate a doffer brush 170. Each longitudinal brush 166 may have a motor and could have a variable frequency drive to vary the speeds of each. The doffer brush 170 has a different drive device because the doffer brush 170 runs a different direction. Each drive device may have components associated with it to turn multiple longitudinal brushes 166.
The first end plate 144 substantially covers a first longitudinal-end opening 172 (
A cottonseed-introduction aperture 174 is fluidly coupled to the cavity 104 for introducing ginned cottonseeds, which have linters, into the cavity 104. For example, the cottonseed-introduction aperture 174 may be formed on the first end plate 144. A seed funnel or hopper 176 may be operably coupled to the cottonseed-introduction aperture 174 to help deliver the ginned cottonseeds into the cavity 104. Alternatively, any suitable conveying device, such as a screw conveyor, could be used to introduce cottonseed into the cavity 104.
Referring now primarily to
While the doffer brush 170 may be located at other locations, the doffer brush 170 is shown at or near the most vertical position with respect to the gravity field, i.e., twelve o'clock in the cavity 104. The doffer brush 170 may also be at one o'clock or two o'clock or another location near an upper portion of the cavity 104. The longitudinal doffer brush 170 may be positioned approximately 0.5 centimeters beyond the tip of the flexible abrasive member 106. That is, for example, the tips of the doffer brush 170 may protrude into the card wire brush 106 past the tips so as to clean the card wire brush 106 and remove linters. The doffer brush 170 is operable to remove linters and other debris that may be caught within the flexible abrasive member 106. The fourth rotation device 168 may rotate the doffer brush 170 in the first direction 182, which is the same direction as the rotatable drum 102. Typically, the doffer brush 170 is rotated at a speed greater than the rotatable drum 102, e.g., at least two times or at least three times the angular speed of the rotatable drum 102. In some embodiments, the doffer brush 170 may be omitted.
In another embodiment, the doffer brush 170 may be coupled at a top portion (e.g., 11, 12, or 1 o'clock) in the cavity 104 and may be substantially enclosed by a trough (not shown). The trough prevents seeds from going against the doffer brush 170 but allows the flexible abrasive member 106 to enter the trough and come into contact with the doffer brush 170. The doffer brush 170 removes the linters from the flexible abrasive member 106. The extended conduit 187 for removing linters may be in the cavity 104 proximate to the trough and may remove linters pulled from the flexible abrasive member 106.
Each of the plurality of longitudinal brushes 166, as well as the doffer brush 170, is rotatably coupled to the first end plate 144 and the second end plate 145 with the bearings 147. One or more of the rotation devices 162, 164 are operable to rotate the plurality of longitudinal brushes 166 in a first or second direction, e.g., counter-clockwise. As shown in
The plurality of longitudinal brushes 166 may substantially cover the entire interior of the drum 102 except for the location of the doffer brush 170. Alternatively, the plurality of brushes 166 may cover only a portion of the interior of the drum 102. For example, the plurality of longitudinal brushes 166 may cover at least 90 degrees of the inside of the drum or the interior surface of the rotatable drum 102 beginning at a lowest point within the cavity 104 relative to a gravity field and spaced along the interior of the drum 102 in the direction of rotation of the rotatable drum 102. The plurality of longitudinal brushes 166 may all have the same inside diameter, D2, or may have varying diameters, e.g., D3, D4, D5, etc. In many embodiments, D2<¼ D1, or D2<⅛ D1.
The second end plate 145 is formed with a linter-removal aperture 186 that is operably coupled to the cavity 104. The linter removal aperture 186 may receive reduced pressure from a vacuum source for removing linters from within the cavity 104. While not shown, the first end plate 144 may include a second linter-removal aperture to which a reduced-pressure source may be fluidly coupled. Thus, in some embodiment, linters may be removed at both ends. A conduit 187 is coupled to the linter removal aperture 186 and to the reduced-pressure source. The conduit 187 may extend into the cavity 104 and may run the length of the cavity 104 or some portion and may have apertures in the portion in the cavity. In this way, linters may be drawn into the conduit 187 from multiple locations within the cavity 104.
The second end plate 145 is also formed with a seed-removal conduit or aperture 188 fluidly coupled to the cavity 104 for removing the cottonseeds after delinting. The aperture 188 may have a valve or be configured to be opened only at discrete times. The seed-removal aperture 188 may optionally have a gate or valve (not explicitly shown) for controlling the removal of cottonseeds from the cavity 104. In this way, the cottonseeds 101 may be batched processed before the gate is opened to remove the cottonseeds. The cottonseed-introduction aperture 174 may be sized such that under reduced pressure delivered through the linter removal aperture 186, a reduced pressure is maintained within the cavity 104 that is greater than a minus 100 millimeters of mercury. In any event, an air flow is established from within the cavity and the seed-removal conduit 188 that is adequate to carry (suspend) the linters and slow enough not to carry the cottonseed. For example, without limitation, the airflow established may be −400 CFM to −1000 CFM.
Referring now generally to
When operating, the cottonseeds bounce around—looking somewhat like popcorn—as the seeds continue to climb the drum wall but then fall again to repeat the process. Cottonseeds fly out of longitudinal brushes 166 or come out the top near the duffer/dolpher/doffer brush 170. The cottonseeds go in one end, e.g., first end 112, and out the other in a main embodiment. The centrifugal force holds or helps hold the cottonseeds with linters against the inside of the rotatable drum 102 so that the work can be accomplished that removes the linters. The work is accomplished by an abrasive surface of the flexible abrasive member 106 as the centrifugal force and the longitudinal brushes 166 urge the cottonseed against the flexible abrasive member 106. The cottonseed is moved against the gravity field by the rotation of the rotatable drum 102. The heat generated by this process is relatively less than many mechanical approaches and is easily maintained at less than 150° Fahrenheit and more typically less than 140° Fahrenheit. If the seed is to be used for purposes other than planting, the temperature may be allowed to go higher than 140° F.
When finished, the ginned cottonseeds may have all the linters removed and look as if the cottonseeds have been acid-delinted, i.e., smooth and black. But, because the cottonseeds have not been acid delinted, the processed cottonseeds may be stored relatively longer than acid-delinted cottonseeds. The processed cottonseeds may also be useful for food applications.
Referring now primarily to
Many alternatives and additions to system 100 of
In another alternative embodiment, a positive air stream impinges on the cottonseeds such that “naked” or processed cottonseeds (no linters) can go by the air stream but the cottonseeds with linters cannot. The air stream is set such that the air stream develops a force on the cottonseeds having linters that removes them from the exit path. The cottonseeds without linters continue along the exit path. This allows for a continuous feed and a continuous removal from the system 100.
In another illustrative embodiment, the entry of cottonseeds into the cavity 104 through the hopper 176 is regulated, but continuous. The angle of the rotatable drum 102 with respect to the frame 116 may be varied to control the general rate of movement of the cottonseeds through the cavity 104. The exit to the seed-removal conduit or aperture 188 may be regulated to only receive cottonseeds that have been delinted by using an air stream as previously described. After passing the regulated exit, the processed cottonseeds may still contain waste, e.g., pieces of stem, leaf, carpel, boll and other non-cottonseed material that remains with the seed after ginning. A second separator (air steam device) may be used to remove such waste.
In still another embodiment, the rotatable drum 102 has a longitudinal hinge (not shown) and a fastened portion to form a clam-like structure that is moveable between a closed position and open position. When one desires to gain access to the cavity 104 to replace the flexible abrasive member 106, the fastened portion is released, i.e., one or more fasteners are released, and the rotatable drum 102 opens about the longitudinal hinge to the opened position. In this way, the flexible abrasive member 106 may be replaced or cleaned. This embodiment may be particularly attractive in a small table-top embodiment of the system 100 for use with seeds for planting since a cleaning or replacement of the flexible abrasive member 106 would typically be required between every batch. It should be noted that the systems 100 herein may be scaled for a table-top size to a large industrial gin size.
In another embodiment, one of the end plates 144, 145 may be hinged or removed to gain access to the cavity 104. This may require removing the bearings 147 associated with the longitudinal brushes 166 and the doffer brush 170. In another embodiment, an access door (not shown) may be on at least one of end plates 144, 145 and the flexible abrasive member 106 may have channels and the rotatable drum 102 grooves (or vice versa) that interface and allow the flexible abrasive member 106 to be slid out of the rotatable drum 102 for replacement.
In one particular embodiment that was tested in part, the rotatable drum 102 had a longitudinal length of approximately 93 inches and an inside diameter of approximately 36 inches. Thus, the aspect ration was approximately 2.58. The doffer brush 170 had an outside diameter of approximately 4.8 inches. The longitudinal brushes 166 were uniform and had an outside diameter of approximately 4.7 inches. The first rotation device 148 was a five horsepower electric motor used to turn the rotatable drum 102 in a first direction (e.g., clockwise). The second rotation device 162 was a three horsepower electric motor that had belts and pulleys associated with it to turn the plurality of longitudinal brushes 166 in a second direction (counter-clockwise). The fourth rotation device 168 was a three horsepower electric motor used to turn the doffer brush 170 in the first direction (e.g., clockwise). This system 100 was operable to fully process ginned cottonseeds in batches in ten minutes with typically 20 pounds of seeds being processed. The system 100 was able to process between 100 and 150 pounds of ginned cottonseeds an hour. In another embodiment, the dimensions were the same, but ¾ horsepower motors were associated as the driving devices with each longitudinal brush 166. The listed power of the motors is for illustrative purposes in one embodiment and could be any size for the given purpose. For example, in another analogous embodiment, the first rotation device 148 in the same system may have a 30 horsepower motor. Other power ratings are contemplated.
In one embodiment, the seed-removal conduit 188 has a gate or valve for controlling or regulating the removal of cottonseeds 101 from the cavity 104 and the cottonseed-introduction aperture 174 is sized such that under reduced-pressure from the linter-removal aperture 186, a reduced-pressure is maintained in the cavity 104 that is greater than −100 mm Hg.
Referring now primarily to
The system 300 includes a rotatable drum 302 having an exterior surface 310 and an interior surface 308. The interior surface 308 defines, at least in part, a cavity 304. The cavity 304 has a first longitudinal end 312 with an opening and a second longitudinal end 314 with an opening. The interior surface 308 is formed with a raised, longitudinal ridge member 303, or key, that extends longitudinally on the interior surface 308 of the rotatable drum 302. The raised, longitudinal ridge member 303 is used to help hold a brush insert 306 in position as described elsewhere. The rotatable drum 302 may be formed with flanges 305 on each end 312, 314. The rotatable drum flanges 312, 305 may mate, nestle, or abut with flanges 377 on the end plates 344, 345.
The rotatable drum 302 is rotatably supported by a frame 316. The frame 316 may include a first frame 318 and a second frame 320. The frame 316 has a first longitudinal end 322 and a second longitudinal end 324. The first and second frames 318 and 320 are rotatably coupled by a pivot connection 326, or hinge, proximate the second longitudinal end 324. A driving device 328 may be used to move the frames 318, 320 about the pivot connection 326 relative to each other. This allows an angle to be assumed between the frames 318,320. Thus, the rotatable drum 302 may assume many angles since the rotatable drum 302 is coupled to the frame 316. The driving device 328 may be a hand crank 334 like a jack, a motorized life, hydraulic lift, or other device. The frame 316 may be on casters or wheels. Additional, support members 335 that include pivots 337 may be applied to provide additional supports for the frames 318, 320. The support members 335 are extendable and retractable to accommodate the angle formed between the frames 318, 320. Once the support members 335 are positioned, the support members 335 extend from the support surface to the frame 316.
A plurality of rotatable supports 338 may be used to support the rotatable drum 302 while allowing the rotatable drum 302 to rotate. The rotatable supports 338 may be passive or may provide a rotational drive force to actively rotate the rotatable drum 302. In the present illustrative embodiment, the rotatable supports 338 are passive and a separate rotation device 348 is used to rotate the rotatable drum 302. In one embodiment, the rotatable supports 338 are wheels. The rotatable supports 338 may be coordinated with one or more tracks 340 on the exterior 310 of the rotatable drum 302.
The rotatable drum 302 may be rotated in many ways. For example, the rotatable supports 338 may be directly driven, a gear may be applied from a motor to a mating portion of the exterior surface 102, a drive belt may be used, or other motive force applied. The drive belt approach is shown in the present illustrative embodiment. Thus, the rotation device 348 is coupled by linkage or drive assembly 350 to a drive wheel 400 and a drive belt 359 is in tension against the drive wheel 400 and rotatable drum 302. Other intermediate wheels or rollers 354 may be included.
A first end plate 344 substantially covers the first longitudinal end 312 opening of the cavity 304. A bushing may be applied between the first end plate 344 where the first end plate 344 would otherwise contact the rotatable drum 302 at the first longitudinal end 312. The bushing may be desirable since there is relative rotation between the first end plate 344 and the rotatable drum 302 that causes friction but needs to be sufficiently sealed. The bushing may comprise one or more of the following: a TEFLON material, ceramic material, PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxy), or FEP (Fluorinated ethylene propylene) or other material that can endure the friction-created heat. The first end plate 344 may be formed wholly or partially from a see-through material such as a LEXAN material, PLEXIGLAS material, or acrylic material, clear PVC, etc. The material allows an operator to view the work being accomplished in the rotating drum 304.
As shown most clearly in
As shown in
The first end plate 344 is pivotably coupled by a hinge or pivot 404 to the frame 316. A first fastener 406, such a clasp or a turnbuckle 409 or other device, is used to releasably secure the first end plate 344 in a closed position. In one embodiment, after any items in front of the first end plate 344 are removed, the first fastener 406 may be removed and the first end plate 344 pivoted about pivot 404 to gain access to the cavity 304. Thus, the first end plate 344 has a closed position proximate to the rotatable drum 302 and an open position that allows access to the cavity 304.
The second end plate 345 is analogous to the first end plate 344 in most respects. As shown primarily in
As shown clearly in the cross-sectional view of
A lip 432 may be formed proximate the first longitudinal seam edge 428 that abuts and extends over the raised, longitudinal ridge member 303. The lip 432 facilitates removal of the brush insert 306 from the cavity 304 during replacement. The lip 432 may be moved away from the raised, longitudinal ridge to cause at least one of the longitudinal edges 428, 430 to no longer abut the raised, longitudinal member 303.
The brush unit 422 has a proximal base end 434, or surface, and a filament end 436 having a plurality of flexible filaments or teeth. The proximal base end 434 is coupled to the first surface 424 of the spring frame 420. The proximal base end 434 may be coupled to the first surface 424 using bonding, adhesives, cements, stitching, staples, hook-and-loop fasteners, or other coupling devices.
The brush insert 306 is disposed in the cavity 304 with the second surface 426 of the spring frame 420 proximate the interior surface 308 of the rotatable drum 304. The first longitudinal seam edge 428 and the second longitudinal seam edge 430 are configured to abut a portion of the raised, longitudinal ridge member 303 on the interior surface 308 of the rotatable drum 302. In another embodiment, the first longitudinal seam edge 428 and the second longitudinal seam edge 430 may abut each other. As previously mentioned, the lip 432 may be included to help remove dislodge the abutment of the first longitudinal seam edge 428 and the second longitudinal seam edge 430 with the raised, longitudinal ridge member 303. The lip 432 thereby facilitates removal of the brush insert 306 from the cavity 304.
The brush insert 306 may be formed with a plurality of segments or as a single integral unit. The plurality of segments may be desirable if different filament rigidities are desired for different segments. For example, the first segment (most upstream) may include a more rigid brush and the final (downstream) segment may have the least rigidity for polishing. Numerous permutations are possible for the segments.
The brush unit 422 may be formed from many different types of brush designs. The filaments of the brush insert 306 will, however, typically be in the range of 0.5 to 2.5 inches in length for cottonseeds. Other seeds may have a different range. Moreover, the filaments may have abrasive grit applied along their length. A few non-limiting, illustrative examples include the following: 3M BRUSHLON 420B, grade 46×⅞; 3M BRUSHLON 420B, grade 120×⅞; 3M BRUSHLON 420B, grade 180×1.5; abrasive nylon brushes/brush pads; silicon carbide brushes; polystyrene brushes; polyester brushes; PEEK material brushes, or brushes formed from polyethelene, polypropylene, polystyrene, PTFE, Thunderon® material, or Tynex. The brushes and brush types listed are merely for illustrative purposes, and clearly other brushes are contemplated that function to remove an exterior portion of the seeds.
The rotatable drum 302 is rotated by the first rotation device 348 relative to the frame 316 in a first direction such that a centrifugal force urges the seeds in the rotatable drum 302 against the brush insert 306. The rotatable drum 302 is typically rotated at a speed in the range of 100 to 300 RPM. In addition, a plurality of longitudinal brushes 366 is used to further urge the seeds against the brush insert 306.
Each longitudinal brush of the plurality of longitudinal brushes 366 is rotatably coupled to the first end plate 344 and the second end plate 345. The longitudinal brushes 366 may be coupled with rotatable couplings on a bracket, a super-structure or at the end, or may be coupled using any another approach. As noted elsewhere, the shafts of the longitudinal brushes 366 may extend to through brush segments of the end plates 344, 345 to facilitate adjustment of the positions of the longitudinal brushes 366. Each longitudinal brush 366 has brush elements or filaments that are configured to bias the seeds against the brush insert 306 on the interior surface 308 of the rotatable drum 302. The filaments or teeth of the longitudinal brushes 366 may engage or overlap the filaments of the brush unit 422.
A second rotation device 362 is operably coupled to the plurality of longitudinal brushes 366 for rotating the longitudinal brushes 366 in a second direction. One or more control devices 396 are associated with the second rotation device 362. The second rotation device 362 may be a single unit operably linked (e.g., belts and pulleys, gears, or other linkage) to each of the longitudinal brushes 366 or each longitudinal brush may have its own rotation device, e.g., motor. One or more second rotation devices 362 may be mounted to either end plate 344, 345, or as shown in
In order to clean any debris, linters, or other material that may lodge in the filaments of the brush unit 422, a longitudinal rod 438 may be disposed within the cavity 304 with an interference with a plurality of filaments of the brush unit 422. The interference may be 10-90% of the filament length. The longitudinal rod 438 is shown after the last downstream longitudinal brush 366 in the direction of rotation of the rotatable drum 302. Alternatively, a doffer brush (see 170 in
In operation according to one embodiment of the system 300, seeds, e.g., ginned cottonseeds or other seeds are introduced into the cavity 304. The angle between the frames 318, 320 may be adjusted to modify performance of the system 300. The first rotation device 348 and second rotation device 362 are activated. The rotatable drum 302 is rotated between 100 and 300 RPM and the centrifugal force urges the seeds against the brush insert 306. In addition, the plurality of longitudinal brushes 366 turn in a direction opposite the rotation of the interior of the rotatable drum 302 and are positioned to further urge the seeds against the brush insert 306. The seeds migrate along the rotatable drum 302 as they are processed and are eventually removed at the seed off take, or seed removal conduit 414. Material, or a portion of each of the exterior of the seeds, e.g., linters, is removed from the seeds and then removed from the cavity 304 through the seed-material off take 418. The system 300 may operate as a batch process or may run continuously using the feed mechanism 371.
Once a run is complete, it may be desirable to completely clean the cavity 304 and change the brush insert 306 before running a next batch of seeds. This allows for seed processing of multiple runs with no contamination. To clean and change the brush insert 306, either the first end plate 344 or second end plate 345 (or both) is moved from the closed position to the open position. For example, the second rotation device 362 may be uncoupled from the plurality of longitudinal brushes 366, the fasteners 406 released, and the first end plate 344 rotated about pivot 404 to the open position. Then, the portion of the spring frame 420 of the brush insert 306 is caused to come off the raised, longitudinal ridge member 303 and this frees the brush insert 306 to be removed. The interior surface 308 may be cleaned and a new brush insert 306 installed. In doing so, the longitudinal seam edges 428, 430 are placed against or abutting the raised, longitudinal ridge member 303 and released. The tension of the spring frame 420 against the raised, longitudinal ridge member 303 holds the brush insert 306 in place for use. Such a change and cleaning may allow seed processing of different batches with no contamination.
Referring primarily to
The system 500 removes linters and produces processed (or delinted) cottonseeds. The system 500 could also be used to remove other material from other types of seeds. As with the other illustrative systems 100, 300, the system 500 utilizes a rotatable drum 502 that receives the ginned cottonseeds into a cavity (see, e.g., 104,
A flexible abrasive member (see, e.g., 106,
As before, the rotatable drum 502 is supported using a first or primary frame 518 that may be hinged to a secondary frame 520 by hinge 526. In the system 100, the drive belt 159 (
In one embodiment, the plurality of drive wheels 603 (and optionally 607) provide the rotational force to the drum 502 using friction therebetween, but in another embodiment a geared system may be used. The driving wheels 603, 607 may allow for less slippage than the belt drive of
Again, as with other embodiments, the drum 502 includes a first end plate (see e.g., 144,
The cavity may have one or more apertures for ingress and egress of seeds to be treated and removal of linters. For example, a linter-removal aperture is fluidly coupled to the cavity and optionally to a reduced-pressure source for removing linters from the cavity as previously described. Likewise, the cavity may have a seed-removal conduit fluidly coupled to the cavity for removing the cottonseeds after delinting. In addition, a cottonseed-introduction aperture (e.g., 174,
As in other embodiments, a first longitudinal end frame 542 and a second longitudinal end frame 546 may hold the first end plate and second end plate in position relative to the drum 502. In the illustrative embodiment of
The stabilizing wheels 625, 629 may provide for increased safety in keeping the drum 502 securely in position and by reducing vibration and provide more control. The stabilizing wheels 625, 629 are typically on opposing sides to the drive wheels 603, 607. The stabilizing wheels 625, 629 may minimize bounce of the rotatable drum 502.
The support frames 619, 627 may hold the drum 502 in position even at various angles. As such less force between the endplates and the drum 502 may be required. This in turn makes removal of the endplates easier as the endplates may simply be positioned without requiring them to resist relatively greater loads. In other embodiments presented earlier, a wear surface was typically used between the endplate and the drum because the endplate and associated structure often needed to carry the loads to keep the drum in position, but in this embodiment the stabilizing wheels 625, 629 and support frames 619, 627 do that. The endplates may be slid over laterally to gain access to the cavity in some embodiments. For example, gusset 614 and supports 616 may be unbolted or unfastened in some embodiments and the endplate slid laterally away from the drum 502. In another embodiment, the stabilizing wheels 625, 629 may also be driven or any of the drive wheels may be free spinning.
In one illustrative embodiment, a longitudinal drum having a cavity may be placed substantially horizontal (or at some acute angle) to the gravitational field and rotated. The interior of the drum is lined with a flexible abrasive member. Brush elements, spinning or not, may be included in the cavity to urge the seeds introduced against the brush elements to remove a portion of the seeds—namely the linters. A reduced pressure may be applied to the cavity to remove the freed linters from the cavity. The cleaned seeds may be removed from a bottom portion. Untreated seeds are typically introduced from a top portion. The drum may be rotated using a belt system, a drive shaft with drive wheels, by a geared system, or other system. The drum may be kept in place by a belt around the drum or by a plurality of support frames that surround the drum and allow rotation because the inside portion of the support frames includes stabilizing wheels.
The systems and methods for removing linters from ginned cottonseeds presented herein may be used for batch operations or in some instances continuous operation may be desired. At least one illustrative embodiment of the same is presented further below.
Referring now primarily to
The pre-conditioner seed feed subsystem 700 prepares the ginned cottonseeds and delivers them through a seed exit port 702 to the seed funnel or hopper 176 (
The seed exit port 702 is formed on a longitudinal auger trough member 704. The longitudinal auger trough member 704 has a first longitudinal end 706 and a second longitudinal end 708. The flow in the auger trough member is in a direction from the second longitudinal end 708 to the first longitudinal end 706. The longitudinal auger trough member 704 has a longitudinal length, L, extending from the first longitudinal end 706 to the second longitudinal end 708. The length, L, may take various dimensions. In one illustrative embodiment, L is in the range of 8 to 18 feet, but other dimensions are possible. In one illustrative embodiment, L is about eight feet. The distance between the exit port 702 and the introduction port 724 may be at least 0.5L to 0.95L or 0.99L. In one embodiment, the distance between the seed introduction port 724 and the seed exit port 702 is at least ¾L, and in another at least ½L, and still in another 0.75L. Other examples exist. The longitudinal auger trough member 704 may be supported by support members 705.
As seen clearly in
A longitudinal lid member 722 is sized and configured to cover the longitudinal opening 718. The longitudinal lid member 722 may be a unitary whole or may be formed in segments. The unitary whole or segments may be coupled with fasteners to allow all or portions of the longitudinal lid member 722 to be removed for accessing the auger cavity 716 for servicing or repair. For example, without limitation, the longitudinal lid member 722 may be formed with panel segments or lid portions 740, 742, and 744 (
As shown clearly in
The rotatable auger 720 is disposed within the interior auger cavity 716 of the longitudinal auger trough 704. As seen clearly in
The auger rotation assembly 730 may include various devices for causing the shaft 726 to rotate. In one embodiment, the auger rotation assembly 730 includes a motor 732 on a mounting bracket 734. The motor 732 may be coupled by a belt 736, gear, or other energy transfer device to a wheel 738 or gear that is coupled to the shaft 726. Those skilled in the art will understand that the shaft 726 could be rotated using numerous techniques and that various bearings and supports may be included.
Referring now primarily to
The plurality of brush members 752 may have a backing portion 766 from which a plurality of bristles 768 extend toward the shaft 726. In some embodiments, the backing portion 766 may be coupled by an adhesive or fastener to the interior surface 754. In some embodiments, coupling devices or spacers 770 couple the backing portion 766 to the interior surface 754. The coupling devices or spacers 770 may form a ventilation gap 772 formed between each brush member 752 the interior surface 754. In one illustrative embodiment, the ventilation gap 772 is formed between the backing portion 766 and the interior surface 754 of the first side wall 710, the second side wall 712, or the third side wall 714 to provide a path for positive ventilation through the brush member 752. In this regard, the backing portion 766 may be formed of a gas-permeable material or may have ventilation apertures formed through it. A positive pressure source may be fluidly coupled to the ventilation gap 772. By providing positive airflow into the ventilation gap 772 that goes through the backing portion 766, the brush member 752 may be at least partially cleaned of linters. That is, linters that have been removed from the ginned cottonseeds and may have become lodged in the brush members 752 may be dislodged from the brush member 752 by the positive airstream. The positive airstream may be continuous or pulsed.
The plurality of lid brush members 756 on the interior surface of the longitudinal lid member 722 may be formed with analogous brush members to brush member 752 with a backing and bristles. Alternatively, as shown, the plurality of lid brush members 756 (and by analogy bush member 752 as well) may be formed with discrete coupling bases 774 that secure and hold bristles 776. For both of the plurality of brush members 752, 756, the bristles may be formed from any sufficiently flexible and durable material to provide an abrasive effect on the ginned cottonseeds. In one illustrative embodiment, the bristles are formed from wires and in another from nylon or plastic members. In one embodiment, the bristles are a combination of wire and plastic, such as one with between 35% and 65% wire and the remainder plastic, such as nylon. In each instance, the plurality of brush members 752, 756 have distal ends that extend toward the auger shaft 726 sufficiently to mesh or overlap at least partially with the auger blade 728. The drawings show a gap between the distal ends of the brushes and the auger blade 728 for clarity, but the brushes 752, 756 would not typically have any clearance. While calling out brush members in various embodiments, it should be understood that the members may be any abrasive surface that removes linters from cottonseeds.
The brush zones or restriction zones 750 remove at least a portion of the linters remaining on the ginned cottonseeds, and so the removed linters are then separate from the cottonseeds within the interior auger cavity 716 and need to be removed. Referring again primarily to
Referring now primarily to
The longitudinal auger trough member 704 has a longitudinal axis that is parallel or coaxial with the auger shaft 726. The longitudinal axis of the longitudinal auger trough member 704 may be placed with an acute angle between it and the gravitational field (see angle 912 in
With reference primarily to
Referring now initially to the previously-presented systems 100, 300, 500 for removing linters from ginned cottonseeds 101 (
Referring now primarily to
At the other end of the rotatable drum 902 from the seed funnel or hopper 906 is a linter off-take chute 908. The linter off-take chute 908 is fluidly coupled to the at least one linter-removal aperture in the rotatable drum 902. The linter off-take chute 908 has an axis 910 that forms an acute angle 912 relative to a longitudinal axis 914 of the rotatable drum 902. At least one positive pressure port 916 is formed on the linter off-take chute 908 and is configured to provide a positive airstream 918 that resists seeds going along the linter off-take chute 908 away from the rotatable drum 902. So while reduced pressure is generally applied to the linter off-take chute 908 to pull linters from the drum cavity, any entrained cottonseeds that enters the linter off-take chute 908 will be urged back toward the rotatable drum 902 by the angle 912 and by the positive airstream 918 along one or more surfaces of the interior of the linter off-take chute 908—typically a lower surface vis-à-vis elevation.
In the illustrative embodiment of the system 900 of
Referring now primarily to
The linter off-take chute 908 in this illustrative embodiment is formed with a receiving chamber proximate the lower surface 926 and leading up toward a hood portion 928 and then to a conduit 930. A first reduced pressure source is applied to the conduit 930 to pull linters from the drum cavity of the drum 902.
Referring now primarily to
The rotatable drum 1002 has an exterior surface 1004 and an interior surface 1006 and has a drum cavity 1007. The interior surface 1006 of the rotatable drum 1002 is substantially covered by a flexible abrasive member 1008, which may be a wire bristle brush or may be a card wire brush or any other such material mentioned herein. The rotatable drum 1002 rotates adequately to create a centrifugal force on the cottonseeds that urges the cottonseeds with linters in the rotatable drum 1002 against the flexible abrasive member 1008. The rotatable drum 1002 rotates in a first direction 1010.
A variety of brushes are disposed within the cavity 1007 and as before extend longitudinally between end plates typically with a bearing on one side and rotation device on the other. In this illustrative embodiment, a first delinting brush 1012 is covered with abrasive members or brush elements 1014 on an exterior. The first delinting brush 1012 is shown rotating in direction 1016, which is the same as first direction 1010. A second delinting brush 1018 is covered with abrasive members or brush elements 1014 on an exterior. The second delinting brush 1018 is shown rotating in direction 1020, which is the opposite or counter the first direction 1010. While only two such delinting brushes are shown three or four or more might be included.
In addition, to the delinting brushes 1012, 1018, two cleaning or duffer/dolpher/doffer brushers 1022, 1024 are disposed within the cavity. The first and second dolpher brushes 1022, 1024 are covered with an abrasive members or brush elements 1014 on an exterior. The first dolpher brush 1022 rotates in a direction 1026, which is the same as the first direction 1010. The second dolpher brush 1024 rotates in a direction 1028, which is opposite or counter to the first direction 1010. The dolpher brushes 1022, 1024 rotate at speeds different from the drum 1002 rotation so to create relative movement between the brushes and the interior of the drum to clean linters from the abrasive member 1008 of the drum 1002. In one embodiment, each of the dolpher brushes 1022, 1024 rotates twice as fast as the drum 1002 or half as fast as the drum 1002 to create a 2:1 ration or 1:2 ratio. Other ratios may be used provided the difference is adequate to clean linters from the abrasive member 1008.
A control brush 1030 may be positioned in the drum cavity of the drum 1002 proximate a center position. The control brush 1030 may or may not be covered with abrasive members or brush elements 1014 on an exterior. In some embodiments, the control brush member 1030 may actually be a plate shaped like a triangle or “A”—with the apex toward the top—that helps to redirect seeds towards the sides. Brushes 1022, 1024, and 1030 are for cleaning and for reducing linters in the airstream. The control brush 1030 may turn in direction 1032 and helps throw seeds from the middle towards a side. The cottonseeds hit the control brush 1030 and are thrown to the right for the orientation shown. The seeds then come down and hit a first work zone proximate brush 1012.
In operation, the system 1000 operates analogously to the systems previously presented with some modifications. The cottonseeds are introduced into the drum cavity 1007 and because of the rotation of the drum 1002 are urged against the flexible abrasive member 1008 on the interior surface of the rotatable drum as the rotatable drum moves in the direction 1010. This urging, along with the tumbling, removes linters from the cottonseeds. The linters may be pulled out of the drum cavity 1007 by the linter off-take chute 908 (
The delinter brushes 1012, 1018 urge the cottonseeds against the flexible abrasive member 1008. The rotation of the drum 1002 causes the cottonseeds to go up the wall of the drum of the left-hand portion for the orientation of
Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the appended claims. It will be appreciated that any feature that is described in connection to any one embodiment may also be applicable to any other embodiment. For example, features shown in the embodiments of
It will be understood that the above description of preferred embodiments is given by way of example only and that various modifications may be made by those skilled in the art. The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments of the invention. Although various embodiments of the invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the scope of the claims.
The present application is a continuation-in-part of U.S. patent application Ser. No. 14/802,882 filed on Jul. 17, 2015, which is a continuation-in-part of U.S. patent application Ser. No. 14/259,349 (now U.S. Pat. No. 9,115,446) filed on Apr. 23, 2014, which is a continuation of U.S. patent application Ser. No. 13/673,743 (now U.S. Pat. No. 8,752,250), filed on Nov. 9, 2012, which is a continuation-in-part of U.S. patent application Ser. No. 13/117,697 (now U.S. Pat. No. 8,336,170), filed on May 27, 2011, entitled “Cottonseed Delinters and Methods,” all of which are incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 13673743 | Nov 2012 | US |
Child | 14259349 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14802882 | Jul 2015 | US |
Child | 15933351 | US | |
Parent | 14259349 | Apr 2014 | US |
Child | 14802882 | US | |
Parent | 13117697 | May 2011 | US |
Child | 13673743 | US |