Pathologists typically examine tissue specimens in a laboratory setting. For each tissue specimen an initial visual inspection is made. If different types of tissue are visible, for example healthy tissue and diseased tissue, a smaller tissue sample may be taken from one or more tissue types, to permit examination under a microscope. If no tissue differentiation is immediately apparent, the pathologist will typically cut into the specimen, in search of diseased tissue. This practice is destructive to the specimen and may result in the loss of some otherwise obtainable information. For example information about the size and shape of a tumor may be lost during this process. It may also be challenging to find the diseased tissue. For example a lymph node tumor metastasis may be so small that it could be easily missed, even if several cuts are taken through a tissue specimen that includes a lymph node. Depending on the purpose of the tissue specimen examination, each microscope slide prepared may be an investment of between 5 and 20 minutes of a technician's time. The decision on which portion of the specimen to take tissue for the preparation of microscope slides determines whether or not this investment is effective, and more importantly whether the examination of the tissue specimen yields a benefit to the patient. Accordingly, it would be desirable to have some device and method to help a pathologist examine the interior of a specimen for instances of abnormal tissue, without destroying the specimen by cutting into it repeatedly.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods which are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above-described problems have been reduced or eliminated, while other embodiments are directed to other improvements.
In a first separate aspect, the present invention takes the form of a tissue specimen imaging device, comprising: a container having an upwardly facing surface, adapted to receive a tissue specimen and a liquid, an ultrasound imaging assembly, adapted to automatically form a three dimensional image of the tissue specimen's interior.
In a second separate aspect, the present invention takes the form of a method of examining a tissue specimen, which uses an ultrasound device capable of automatically forming an interior image of the tissue specimen. The method starts with using the device to automatically form an interior image of the tissue specimen and then further studying sections of the tissue specimen in reliance on the interior image.
In a third separate aspect, the present invention takes the form of a method of communicating with a lab technician to indicate where on a tissue specimen to take tissue sections. The method includes displaying an electronic three-dimensional interior image of the tissue specimen and electronically marking on the three dimensional interior image of the tissue specimen to indicate desired location of tissue section.
In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the drawings and by study of the following detailed descriptions.
Exemplary embodiments are illustrated in referenced drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive.
A preferred embodiment of the present invention is an ultrasound imaging device 10 that can easily be supported by a flat surface, such as a laboratory countertop, and which can accept and image a tissue specimen. The device includes a base 12 supporting a container 14, in which a specimen 13 may be placed, and which may be filled with saline solution 16. A linear imaging array 18, having for example 256 piezoelectric elements is mounted on a rack system 20, that includes electric motors 22, for moving array 18 in three dimensions. In an alternative preferred embodiment a capacitive micro-machined ultrasonic transducer (CMUT) array is used. In an alternative preferred embodiment, array 18 is vertically moveable, to place it into the saline solution and is moveable in the horizontal direction that is orthogonal to the length of the array 18, with resolution in the dimension along the length of the array provided by electronic scanning.
In operation, the specimen 13 is placed into the bath of saline solution 16 and the array 18 is lowered, or partial enclosure 14 is raised, so that the lower portion of array 18 is immersed in the saline solution 16. This reduces boundary and low-transmission effects, as the boundary between saline solution and a tissue specimen is typically not as reflective as the boundary between air and a tissue specimen. In an alternative embodiment the partial enclosure is filled with a biocompatible gel, into which the tissue specimen 13 is placed. In yet another preferred embodiment the array is brought into contact with the specimen, either with the assistance of a human operator or automatically by a system that includes sufficient sensing and intelligence to bring the probe into contact with the tissue specimen, without harming or significantly distorting the tissue specimen. In one preferred embodiment, the array is covered by an ultrasound substantially transparent material, to protect it. The linear piezoelectric array is scanned past the specimen 13 in a first dimension 24 (
Although the electrical connections are not shown in the physical drawings provided herein, as is well known in the art the piezoelectric elements of array 18 are electrically driven to produce a sound signal having a wavelength in the 85-770 micron range (2-18 MHz). These sound waves travel through the specimen 13 until reflected by some change in tissue quality. Container 14 is made of a material that is highly absorptive to ultrasound waves and is as unreflective of ultrasound waves as possible. After transmitting, array 18 is switched to receive mode and the timing of the received ultrasound signals indicates the depth into tissue specimen 13 at which the ultrasound waves were reflected. Array 18 may be electrically focused to form a beam that is scanned in dimension 26 (
The embodiment of
As shown in
Referring to
In another preferred embodiment, the beam is electronically scanned in one dimension and mechanically scanned in the other, without the second scan shown in
In a preferred embodiment, a low frequency device 10 includes a low frequency head and a high frequency head. The low frequency head may be used to form an initial image, with the high frequency head being used to gain a higher resolution image of any areas of interest revealed by the scan with the low frequency head and/or to image the surfaces of the tissue specimen 13, as high frequency ultrasound does not penetrate as far into a tissue specimen as low frequency ultrasound of the same power.
Additionally, the device 10 provides or supports data and image storage. In one preferred embodiment, the device 10 is adapted to be connected to a computer where images can be stored. In another preferred embodiment device 10 includes its own data and image storage device. One great advantage of these embodiments is that before the pathologist cuts into a specimen, thereby partially destroying it, an image set of a specimen feature can be made and stored for future reference. In a preferred embodiment, it is possible to enter additional data into the image. For example, after the pathologist has determined tissue type for a feature apparent in the image formed by device 10, he can associate this tissue type with the feature. In one preferred embodiment, various tissue types can be assigned differing false colors or other indicating characteristics, so that a 3-dimensional map of the specimen can be created.
Referring to
In one method, a lab technician runs specimens through device 10 as they come into the laboratory and then a pathologist looks through a set of images marking them for section taking and slide fixing. The technician takes the sections and forms a microscopic image, which is then associated with the image of the specimen 13 with, for example, a line connecting the microscope image to the place on the specimen where the section was taken. The pathologist may then copy the image and mark places on the specimen where it appears to him that the same tissue type may exist.
In another preferred embodiment, software associated with device 10 creates a folder for storage of all information relating to the tissue sample, so that imaging samples and all other information, such as images of microscopic examination of further specimens taken from the tissue specimen, may be stored together and retrieved together. In a variant of this embodiment, a bar code is assigned to this electronic folder, so that a bar code sticker may be placed on a paper file or other physical item, so that a simple scan will retrieve the electronic folder. The identifying bar code (the term bar code is inclusive of any computer readable code, including an RFID chip) may be placed on the specimen container at the time the specimen is collected and associated at that time with the patient. In one preferred embodiment the health care professional collecting and/or handling the tissue sample, enters patient identifying data into a device which prints out a bar code indicating a particular patient, the date and time of specimen collection and any other relevant data concerning the specimen.
Additionally, differences in tissue reflectivity can be highlighted to indicate to an image viewer the location of potential areas of pathology in the tissue specimen. In particular, significant advances have been made recently in the use of ultrasound for tissue characterization. Thus, in many cases, the ultrasound itself can be used to identify regions of interest to the examiner that would not be possible by visual examination alone. This ability to use ultrasound as a unique probe of the characteristics of tissue could be particularly useful for finding very small tumors, for example in the examination of lymph nodes for tumor.
Device 10 may also be used in a surgical setting. During surgery it may be critically important to quickly gain an understanding of the ultrasonic characteristics of any excised lesion. For example, when a tumor is removed, it may be quite difficult to determine if any part of the tumor has been left in the body. By ultrasonically examining the resection (removed tissue), it may be possible to determine if the tumor extends to the surgical margin (the edge of the removed tissue). If it does, then it is likely that the tumor was cut through in the resection, indicating that a portion of the tumor may still be in the patient. Those skilled in the surgical arts are likely to recognize other applications for a penetrating imaging device, located near or in the surgical theater. A preferred embodiment is sized to image tissue specimens ranging from less than 1 square cm, to the size of an organ, such as the spleen or a kidney.
While a number of exemplary aspects and embodiments have been discussed above, those possessed of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope.
This application claims priority from provisional application Ser. No. 61/209,202, filed Mar. 4, 2009.
Number | Date | Country | |
---|---|---|---|
61209202 | Mar 2009 | US |