Coupling electromagnetic wave through microcircuit

Information

  • Patent Grant
  • 7359589
  • Patent Number
    7,359,589
  • Date Filed
    Friday, May 5, 2006
    18 years ago
  • Date Issued
    Tuesday, April 15, 2008
    16 years ago
Abstract
A device includes a waveguide layer formed on a substrate. An ultra-small resonant structure emits electromagnetic radiation (EMR) in the waveguide layer. One or more circuits are formed on the waveguide layer and each operatively connected thereto to receive the EMR emitted by the ultra-small resonant structure. The waveguide layer may be transparent at wavelengths corresponding to wavelengths of the EMR emitted by the ultra-small resonant structure. The EMR may be visible light and may encode a data signal such as a clock signal.
Description
COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright or mask work protection. The copyright or mask work owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright or mask work rights whatsoever.


RELATED APPLICATIONS

The present invention is related to the following co-pending U.S. patent applications, each which is commonly owned with the present application at the time of filing, and the entire contents of each of which are incorporated herein by reference:

    • 1. application Ser. No. 10/917,511, filed on Aug. 13, 2004, entitled “Patterning Thin Metal Film by Dry Reactive Ion Etching”;
    • 2. application Ser. No. 11/203,407, filed Aug. 15, 2005, entitled “Method of Patterning Ultra-Small Structures,”
    • 3. application Ser. No. 11/243,476, filed Oct. 5, 2005, entitled, “Structures and Methods for Coupling Energy from an Electromagnetic Wave”;
    • 4. application Ser. No. 11/243,477, filed Oct. 5, 2005, entitled, “Electron Beam Induced Resonance”;
    • 5. application Ser. No. 11/238,991, filed Sep. 30, 2005, entitled, “Ultra-small resonating charged particle beam modulator”;
    • 6. application Ser. No. 11/302,471, filed Dec. 14, 2005, entitled, “Coupled Nano-Resonating Energy Emitting Structures”;
    • 7. application Ser. No. 11/325,432, filed Jan. 5, 2006, entitled, “Resonant Structure-Based Display”;
    • 8. application Ser. No. 11/325,448, filed Jan. 5, 2006, entitled, “Selectable Frequency Light Emitter”;
    • 9. application Ser. No. 11/325,571, filed Jan. 5, 2006, entitled, “Switching Micro-Resonant Structures by Modulating a Beam of Charged Particles”; and
    • 10. application Ser. No. 11/325,534, filed Jan. 5, 2006, entitled, “Switching Micro-Resonant Structures Using at Least One Director”;
    • 11. application Ser. No. 11/400,280, filed Apr. 10, 2006, entitled “Resonant Detector For Optical Signals”.


FIELD OF THE INVENTION

This relates in general to semiconductor components and, more particularly, to coupling signals throughout semiconductor components.


BACKGROUND & INTRODUCTION

Semiconductor manufacturers are constantly striving to keep up with applications that require faster speeds for their microprocessors or microcircuits. For example, at clock speeds greater than three gigahertz, a microcircuit can be required to couple signals to billions of transistors. Further, microcircuits are continuing to be used over a variety of applications requiring faster speed including modeling and simulation, games, and internet video processing. It is anticipated that microcircuits having faster speeds will continue to be designed for a broad range of systems such as highly parallel supercomputers, back-end servers, desktop systems, and a number of embedded applications.


The industry has made tremendous strides in reducing the gate delays within individual devices of a semiconductor component or microcircuit. This improvement in device speed is generally limited by the conductors between the devices. The conductors can include heavily doped semiconductor materials or conductive metal strips and are commonly referred to as metallization. Generally, the microcircuit includes a plurality of alternating layers of conductors and insulators or dielectric layers. The velocity of propagation of a signal through the conductor is a function of conductor delay. The delay typically depends on a number of factors including the type of conductor material, operating frequency, length of the conductor, spacing between conductors and the permittivity of the dielectric layers adjacent to the conductor. In one example, the conductors of a synchronous digital circuit are required to carry the clock pulses to thousands of locations on the microcircuit at precisely the same time. As the clock speeds increase, the conductor delays can result in a loss in synchronization such that the microcircuit cannot function correctly. By changing the conductor material from aluminum to copper, manufacturers have been able to reduce the delay of signals through their microcircuits. Further, manufacturers have reduced the permittivity or dielectric constant of the dielectric layers, thereby reducing the capacitance between the conductor and the dielectric layer. For example, materials such as hydrogen silsesquioxane (HSQ), methyl silsesquioxane (MSQ), fluorinated glass, or NANOGLASS™ can aid in lowering the dielectric constant.


As clock speeds further increase, the signal or clock pulse is not completely contained on the conductor. Instead, a portion of the signal travels through the dielectric layer adjacent to the conductor. This exposes the clock pulse to an inhomogeneous media. The clock pulse generally includes a square wave shape and contains various frequency components. Hence, the clock pulse spreads out, smears or becomes dispersed in time, because the various frequency components travel at different speeds through the inhomogeneous media. As the requirements for speed further increase, any improvement in reducing delays by changing the conductor and dielectric layer materials are limited. Further gains in reducing the delay can include a combination of reducing the conductor's length and increasing the cross-sectional area of the conductor. The costs for changing the geometry of the conductor can include more processing steps and push the limits of the statistical capability of the process.


We describe a structure for coupling a signal through a microcircuit. In an example of such a structure, a portion of an interconnect or metallization includes a microstructure for generating an electromagnetic wave. The electromagnetic wave carries a signal and is coupled from the microstructure and throughout the microcircuit using a dielectric layer of the microcircuit.





BRIEF DESCRIPTION OF THE DRAWINGS

The following description, given with respect to the attached drawings, may be better understood with reference to the non-limiting examples of the drawings, wherein:



FIGS. 1-3 show side views of devices/structures for coupling signals through a microcircuit.





DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EXEMPLARY EMBODIMENTS


FIG. 1 is a side view of a device 100 in which an ultra-small resonant structure 102 is formed within a non-conductive waveguide layer 104 on a substrate 106.


In general, the ultra-small resonant structure is one which emits electro-magnetic radiation (EMR) when exposed to a beam of charged particles. The structure 102 may be, e.g., one or more of the resonant structures described in one or more of the related applications, each of which is described in greater detail above: U.S. application Ser. Nos. 11/243,476; 11/243,477; 11/238,991; 11/302,471; 11/325,432; 11/325,448; 11/325,571; and 11/325,534. In particular, the structure 102 may be one which emits light at a particular wavelength, e.g., visible light. Thus, the ultra-small resonant structure 102 emits an EMR wave (denoted W) in the waveguide layer 104. The wave W may be modulated or otherwise manipulated to carry a data signal such as, e.g., a clock signal.


The waveguide layer 104 is preferably transparent at the wavelength of the EMR (light) emitted by the structure 102. So, e.g., in the case of visible light, the waveguide layer 104 may comprise silica (silicon dioxide, SiO2). Thus the wave W emitted by the structure 102 (and therefore the data signal in the wave) is carried throughout the waveguide layer 104.


Various electronic circuits 108-1, 108-2 (generally 108) are formed on the transparent waveguide layer 104. The various circuits 108 may each perform a different function and may be formed using known techniques. The invention is not limited by the nature of function of the circuits 108. Each circuit 108 is operatively connected to the waveguide layer 104 so as to receive the wave W being carried in the layer (and thereby to receive any data signal—e.g., a clock signal—carried in the wave).


A circuit 108 may couple to the waveguide layer 104, e.g., by forming a small defect in the layer in order to direct some of the light in the layer to the circuit 108. Thus, e.g., as shown in the drawing, circuit 108-1 connects operatively to the waveguide layer 104 via defect 110-1. A light detector (e.g., a CMOS detector) 112-1 couples light from the defect 110-1 to the circuit 108-1. A similar structure may be used for the other circuit 108-2.


As an alternative mode of connection, some or all of the circuits 108 may connect to the waveguide layer 104 using a detector such as, e.g., described, in related application Ser. No. 11/400,280, described in greater detail above and incorporated herein by reference.


Those skilled in the art will realize and understand, upon reading this description, that the substrate may be (or be formed on) a printed circuit board (PCB) or the like. Further, although only two circuits 108 are shown in the drawings, those skilled in the art will realize and understand, upon reading this description, that any number of circuits may be connected to the transparent layer in order to receive the same data signal in the wave W generated by the ultra-small structure 102. The resonant structure 102 could be on top of or under the circuits and could be positioned anywhere in the waveguide.


As shown in FIG. 2, the resonant structure 202 may be coupled to another device/circuit (denoted C1 in the drawing) in order to provide a signal from that device to the other circuits 108.


As noted above, the wave W may carry an encoded signal such as a clock signal. Thus, anywhere a clock signal is required, it can be obtained via a connection (e.g., using a defect) to the waveguide layer.


Those skilled in the art will realize and understand, upon reading this description, that the waveguide layer covers a sufficient portion of the substrate to allow connection to all circuits formed thereon. In some cases, the waveguide layer may cover substantially all of the substrate.


Those skilled in the art will further realize and understand, upon reading this description, that more than one waveguide layer may be formed on a substrate, thereby allowing more than one data (e.g., clock) signal to be provided to different ones of the circuits formed thereon. Thus, as shown for example in FIG. 3, a circuit 308 is operatively connected to each of two waveguide layers 304-A, 304-B. Ultra-small resonant device 302-A emits EMR (e.g., visible light) at a wavelength WA in waveguide layer 304-A. Similarly, ultra-small resonant device 302-B emits EMR (e.g., visible light) at a wavelength WB in waveguide layer 304-B. Each of the waveguide layers 304-A, 304-B is preferably transparent at the wavelength of the EMR (light) emitted by the corresponding structure 302A, 302-B, respectively. If the two waveguide layers 304-A, 304-B have contact locations (i.e., if they touch anywhere), then preferably the wavelengths emitted by the structures 302A, 302-B should be different.


The circuit 308 may connect to each waveguide layer in the manner described above. For example, as shown in FIG. 3, the circuit 308 may connect to waveguide layer 304-A via connection 310-A and corresponding detector 312-A, and similarly to waveguide layer 304-B via connection 310-B and corresponding detector 312-B.


Although the various circuits are shown formed on the waveguide layer(s), those skilled in the art will realize and understand, upon reading this description, that only portions of the circuits need be formed on the waveguide layer(s) in order for the circuits to obtain data from the waveguide layer.


Methods of making a device for detecting an electromagnetic wave as can be employed herein may use the techniques described in related U.S. application Ser. Nos. 10/917,511 and/or 11/203,407, filed Aug. 15, 2005, entitled “Method of Patterning Ultra-Small Structures,” each of which is described in greater detail above.


The devices described herein may also employ various similar or different example resonant structures to those described in one or more of the related applications, each of which is described in greater detail above: U.S. application Ser. Nos. 11/243,476; 11/243,477; 11/238,991; 11/302,471; 11/325,432; 11/325,448; 11/325,571; 11/325,534; and 11/400,280.


Although certain preferred embodiments and methods have been disclosed herein, it will be apparent from the foregoing disclosure to those skilled in the art that variations and modifications of such embodiments and methods may be made without departing from the spirit and scope of the invention. It is intended that the invention shall be limited only to the extent required by the appended claims and the rules and principles of applicable law.


GLOSSARY

As used throughout this document:


The phrase “ultra-small resonant structure” shall mean any structure of any material, type or microscopic size that by its characteristics causes electrons to resonate at a frequency in excess of the microwave frequency.


The term “ultra-small” within the phrase “ultra-small resonant structure” shall mean microscopic structural dimensions and shall include so-called “micro” structures, “nano” structures, or any other very small structures that will produce resonance at frequencies in excess of microwave frequencies.


As the term is used herein, the structures are considered ultra-small when they embody at least one dimension that is smaller than the wavelength of visible light. The ultra-small structures are employed in a vacuum environment.

Claims
  • 1. A device comprising: a waveguide layer formed on a substrate;an ultra-small resonant structure constructed and adapted to emit electromagnetic radiation (EMR) in said waveguide layer;one or more circuits formed on said waveguide layer and each operatively connected thereto to receive the EMR emitted by the ultra-small resonant structure.
  • 2. A device as in claim 1 wherein the waveguide layer is transparent at wavelengths corresponding to wavelengths of the EMR emitted by the ultra-small resonant structure.
  • 3. A device as in claim 2 wherein the EMR is visible light.
  • 4. A device as in claim 1 wherein the ultra-small resonant structure emits EMR which encodes a data signal.
  • 5. A device as in claim 4 wherein the data signal comprises a clock signal.
  • 6. A device as in claim 1 wherein the ultra-small resonant structure is constructed and adapted to emit electromagnetic radiation (EMR) in response to excitation by a beam of charged particles.
  • 7. A device as in claim 6 wherein the charged particle beam comprises particles selected from the group comprising: electrons, positive ions, negative ions, positrons and protons.
  • 8. A device as in claim 6 further comprising: a source providing a charged particle beam.
  • 9. A device as in claim 8 wherein said source of charged particles is selected from the group comprising: an ion gun, a tungsten filament, a cathode, a planar vacuum triode, an electron-impact ionizer, a laser ionizer, a chemical ionizer, a thermal ionizer, and an ion-impact ionizer.
  • 10. A device as in claim 1 wherein the ultra-small resonant structure is constructed and adapted to emit at least one of visible light, infrared light, and ultraviolet light.
  • 11. A method comprising: providing a plurality of circuits operatively connected to a waveguide layer; andemitting, by an ultra-small resonant structure, an electromagnetic signal into said waveguide layer, whereby said signal may be obtained by each of said plurality of circuits.
  • 12. A method as in claim 11 wherein said signal encodes a clock signal.
  • 13. A method as in claim 11 wherein said signal is encoded in visible light.
  • 14. A method as in claim 11 wherein the ultra-small resonant structure is constructed and adapted to emit electromagnetic radiation (EMR) in response to excitation by a beam of charged particles.
  • 15. A method as in claim 14 wherein the charged particle beam comprises particles selected from the group comprising: electrons, positive ions, negative ions, positrons and protons.
  • 16. A method as in claim 14 wherein a source of said beam of charged particles is selected from the group comprising: an ion gun, a tungsten filament, a cathode, a planar vacuum triode, an electron-impact ionizer, a laser ionizer, a chemical ionizer, a thermal ionizer, and an ion-impact ionizer.
  • 17. A method as in claim 14 wherein the ultra-small resonant structure is constructed and adapted to emit at least one of visible light, infrared light, and ultraviolet light.
  • 18. A method of providing a clock signal to a plurality of circuits, the method comprising: providing a waveguide layer and operatively connecting each of the circuits to the waveguide layer; andusing an ultra-small resonant structure to emit an electromagnetic signal into said waveguide layer, whereby said signal may be obtained by each of said plurality of circuits, wherein said signal encodes a clock signal.
  • 19. A method as in claim 18 wherein said signal is encoded in visible light.
  • 20. A method as in claim 18 wherein the ultra-small resonant structure is constructed and adapted to emit electromagnetic radiation (EMR) in response to excitation by a beam of charged particles.
  • 21. A method as in claim 20 wherein the charged particle beam comprises particles selected from the group comprising: electrons, positive ions, negative ions, positrons and protons.
  • 22. A method as in claim 20 wherein a source of said beam of charged particles is selected from the group comprising: an ion gun, a tungsten filament, a cathode, a planar vacuum triode, an electron-impact ionizer, a laser ionizer, a chemical ionizer, a thermal ionizer, and an ion-impact ionizer.
  • 23. A method as in claim 20 wherein the ultra-small resonant structure is constructed and adapted to emit at least one of visible light, infrared light, and ultraviolet light.
US Referenced Citations (135)
Number Name Date Kind
1948384 Lawrence Feb 1934 A
2307086 Varian et al. Jan 1943 A
2431396 Hansell Nov 1947 A
2473477 Smith Jun 1949 A
2634372 Salisbury Apr 1953 A
2932798 Kerst et al. Apr 1960 A
3571642 Westcott Mar 1971 A
3761828 Pollard et al. Sep 1973 A
3923568 Bersin Dec 1975 A
3989347 Eschler Nov 1976 A
4282436 Kapetanakos Aug 1981 A
4482779 Anderson Nov 1984 A
4727550 Chang et al. Feb 1988 A
4740973 Madey Apr 1988 A
4746201 Gould May 1988 A
4829527 Wortman et al. May 1989 A
4838021 Beattie Jun 1989 A
5023563 Harvey et al. Jun 1991 A
5157000 Elkind et al. Oct 1992 A
5163118 Lorenzo et al. Nov 1992 A
5185073 Bindra Feb 1993 A
5199918 Kumar Apr 1993 A
5262656 Blondeau et al. Nov 1993 A
5263043 Walsh Nov 1993 A
5268693 Walsh Dec 1993 A
5268788 Fox et al. Dec 1993 A
5302240 Hori et al. Apr 1994 A
5354709 Lorenzo et al. Oct 1994 A
5446814 Kuo et al. Aug 1995 A
5608263 Drayton et al. Mar 1997 A
5668368 Sakai et al. Sep 1997 A
5705443 Stauf et al. Jan 1998 A
5737458 Wojnarowski et al. Apr 1998 A
5744919 Mishin et al. Apr 1998 A
5757009 Walstrom May 1998 A
5767013 Park Jun 1998 A
5790585 Walsh Aug 1998 A
5811943 Mishin et al. Sep 1998 A
5821836 Katehi et al. Oct 1998 A
5821902 Keen Oct 1998 A
5831270 Nakasuji Nov 1998 A
5847745 Shimizu et al. Dec 1998 A
5889449 Fiedziuszko Mar 1999 A
5902489 Yasuda et al. May 1999 A
6008496 Winefordner et al. Dec 1999 A
6040625 Ip Mar 2000 A
6060833 Velazco May 2000 A
6080529 Ye et al. Jun 2000 A
6195199 Yamada Feb 2001 B1
6222866 Seko Apr 2001 B1
6281769 Fiedziuszko Aug 2001 B1
6297511 Syllaios et al. Oct 2001 B1
6338968 Hefti Jan 2002 B1
6370306 Sato et al. Apr 2002 B1
6373194 Small Apr 2002 B1
6376258 Hefti Apr 2002 B2
6407516 Victor Jun 2002 B1
6441298 Thio Aug 2002 B1
6504303 Small Jan 2003 B2
6545425 Victor Apr 2003 B2
6577040 Nguyen Jun 2003 B2
6603915 Glebov et al. Aug 2003 B2
6624916 Green et al. Sep 2003 B1
6636653 Miracky et al. Oct 2003 B2
6642907 Hamada et al. Nov 2003 B2
6738176 Rabinowitz et al. May 2004 B2
6741781 Furuyama May 2004 B2
6782205 Trisnadi et al. Aug 2004 B2
6791438 Takahashi et al. Sep 2004 B2
6829286 Guilfoyle et al. Dec 2004 B1
6834152 Gunn et al. Dec 2004 B2
6870438 Shino et al. Mar 2005 B1
6885262 Nishimura et al. Apr 2005 B2
6909092 Nagahama Jun 2005 B2
6909104 Koops et al. Jun 2005 B1
6944369 Deliwala Sep 2005 B2
6953291 Liu Oct 2005 B2
6965625 Mross et al. Nov 2005 B2
6995406 Tojo et al. Feb 2006 B2
7010183 Estes et al. Mar 2006 B2
7092588 Kondo Aug 2006 B2
7092603 Glebov et al. Aug 2006 B2
7122978 Nakanishi et al. Oct 2006 B2
7177515 Estes et al. Feb 2007 B2
20010025925 Abe et al. Oct 2001 A1
20020009723 Hefti Jan 2002 A1
20020027481 Fiedziuszko Mar 2002 A1
20020053638 Winkler et al. May 2002 A1
20020135665 Gardner Sep 2002 A1
20030012925 Gorrell Jan 2003 A1
20030016412 Small Jan 2003 A1
20030016421 Small Jan 2003 A1
20030034535 Barenburu et al. Feb 2003 A1
20030155521 Feuerbaum Aug 2003 A1
20030164947 Vaupel Sep 2003 A1
20030179974 Estes et al. Sep 2003 A1
20030206708 Estes et al. Nov 2003 A1
20040061053 Taniguchi et al. Apr 2004 A1
20040108473 Melnychuk et al. Jun 2004 A1
20040136715 Kondo Jul 2004 A1
20040150991 Ouderkirk et al. Aug 2004 A1
20040171272 Jin et al. Sep 2004 A1
20040180244 Tour et al. Sep 2004 A1
20040213375 Bjorkholm et al. Oct 2004 A1
20040217297 Moses et al. Nov 2004 A1
20040231996 Webb Nov 2004 A1
20040264867 Kondo Dec 2004 A1
20050023145 Cohen et al. Feb 2005 A1
20050054151 Lowther et al. Mar 2005 A1
20050067286 Ahn et al. Mar 2005 A1
20050082469 Carlo Apr 2005 A1
20050092929 Schneiker May 2005 A1
20050105690 Pau et al. May 2005 A1
20050145882 Taylor et al. Jul 2005 A1
20050162104 Victor et al. Jul 2005 A1
20050190637 Ichimura et al. Sep 2005 A1
20050194258 Cohen et al. Sep 2005 A1
20050201707 Glebov et al. Sep 2005 A1
20050201717 Matsumura et al. Sep 2005 A1
20050212503 Deibele Sep 2005 A1
20050249451 Baehr-Jones et al. Nov 2005 A1
20060007730 Nakamura et al. Jan 2006 A1
20060018619 Helffrich et al. Jan 2006 A1
20060035173 Davidson et al. Feb 2006 A1
20060045418 Cho et al. Mar 2006 A1
20060060782 Khursheed Mar 2006 A1
20060062258 Brau et al. Mar 2006 A1
20060159131 Liu et al. Jul 2006 A1
20060164496 Tokutake et al. Jul 2006 A1
20060216940 Gorrell et al. Sep 2006 A1
20070003781 de Rochemont Jan 2007 A1
20070013765 Hudson et al. Jan 2007 A1
20070075264 Gorrell et al. Apr 2007 A1
20070086915 LeBoeuf et al. Apr 2007 A1
20070116420 Estes et al. May 2007 A1
Foreign Referenced Citations (13)
Number Date Country
0237559 Dec 1991 EP
2004-32323 Jan 2004 JP
WO 8701873 Mar 1987 WO
WO 9321663 Oct 1993 WO
WO 0072413 Nov 2000 WO
WO 02025785 Mar 2002 WO
WO 02077607 Oct 2002 WO
WO 2004086560 Oct 2004 WO
WO 2005015143 Feb 2005 WO
WO 2006042239 Apr 2006 WO
WO 2007018389 Jul 2007 WO
WO 2007081390 Jul 2007 WO
WO 2007081391 Jul 2007 WO
Related Publications (1)
Number Date Country
20070258689 A1 Nov 2007 US