The protein folding is dictated by primary sequence and the secondary structure of beta strands or beta-sheet accommodating the loop structures, which assume conformations as an antigenic site, a pharmacophore, or enzymatic sites. The scaffold protein is defined as a candidate protein with such beta strands that can constrain a given loop of protein, or a beta (β) sheet that can accommodate multiple loops in adjacent orientations. Beta strands of
Due to selective pressure of CoV-2 facing the herd immunity, mutant CoV-2 ensued according to antibody-mediated immunity against attachment site to host cell receptors such as the cognate interactions between the spike protein and ACE2 receptor. The viral mutant can be predicted a prior by selective binding pressure using ribosome display. Ribosome display (RD) is illustrated as an example for selecting optimized Covid-19 sequences, based on the pre-existing sequences. Other protein displays such as phage display, yeast display are equally applied. RD is a straightforward in vitro phenotype-genotype linked selection.
Embodiment and Biochemical enablement: The biochemical mechanisms were built into the IgV/VHH, AR, and aforementioned protein scaffolds: (i) Cκ or any protein as a stuffer region rendering this a stalling interaction with the introduction of termination codon in the C-terminus, fused to the viral sequences containing CDRs along with cognate mRNA. (ii) To enable reiteration of phenotype-library linked selection, T7 promoter and the Kozak sequence of the eukaryotic system were built into 5′ terminal PCR primer. (iii) The cognate message amplified by RT-PCR and further follow through repeated rounds of selection, and the final product cloned and expressed, and protein purified.
Diagram of the spike protein and ACE2 interaction. The spike protein exhibits multiple functions: attachment to ACE2 via the RBD (RBM); and the opening up or conformational change of the spike protein to reveal the enzymatic furin site for maturation and finally exposure of the fusion peptides, constrained by the conformationally rearranged HR regions, that permit target cell membrane fusion that facilitate viral entry. The invention embodies eliciting neutralizing antibodies that block all three aspects of the viral life cycles. Moreover, the invention embodies elicitation of CTL against peptide fragment decorated on MHCI that lyse the infected targets. Such CTL targeted peptides are derived from all parts of the spike proteins.
Vessler's sequences reports full length of spike protein, and is presented herein. As described in
Amino acid sequence alignment of the S1 protein of the 2019-nCoV with SARS-CoV and selected bat SARSr-CoVs. The receptor-binding motifs of SARS-CoV and the homologous regions of other coronaviruses are indicated by the red box. The key amino acid residues involved in the interaction with human ACE2 are numbered on top of the aligned sequences. The short insertions in the N-terminal domain of the novel coronavirus are indicated by the blue boxes. Bat CoV RaTG13 was identified from R. affinis in Yunnan Province. Bat CoV ZC45 was identified from R. sinicus in Zhejiang Province.
Examples of scaffolding immunoglobulin heavy chain protein scaffold for presenting Cov19 Spike protein fragment: Three firewall precision vaccines constructed in CDRs of camelid VHH in pET45b.
Fragments of Cov19 were inserted into CDR2 or CDR3 domain of Camelid-VHH-GFP by using site-directed mutagenesis with primers, attaccaccaaccttagaatcaagattgttagaattgctcaccagttcac, tataattacctgtatagattggcaaattatgccggc for VHH-Cov1-3. attaccaccaaccttagaatcaagattgttagaatttgctgcgcaataataaac, tataattacctgtatagattgtggggccagggcacc for VHH-Cov2-3. tccatcattgcctacactatgtcacttggttggggccagggcacc, ttgactagctacactacgtgcccgccgaggagaattagtctgagtctgatatgctgcgcaataataaac for Camelid-Cov-3- 2. Aaagtgacacttgcagatgctggcttcatcaaatggggccagggcacc, gttgaaaagtagatcttcaataaatgacctcttgcttggttttgatggtgctgcgcaataataaac for Camelid-Cov-4-2. Aaaaccaccaaaatctttaattggtggtgttttgtaaatgctcaccagttcacattc, aatttttcacaaatattagcaaattatgccggc for Camelid-CoV-5-3. aaaaccaccaaaatctttaattggtggtgttttgtaaattgctgcgcaataataaac, aatttttcacaaatattatggggccagggcacc for Camelid-Cov 6-1. ccgccgaggagagctcaccagttcacattc, gcacgtagtgtagatggcagtgcaaattatgcc; and gttgaaaagtagatcttcaataaatgatgctgcgcaataataaacggc, aaagtgacacttgcagatgctggcttctggggccagggcacccaggttaccfor Camelid-Cov-S1-2. ttcagttgaaatatctctctcaaaaggtttgagattagacttcctaaagctcaccagttcaca, aatatctctctcaaaaggtttgagattagacttcctaaagctcaccagttcacattctttacc; and ttggaaaccatatgattgtaaaggaaagtaacaattaaaaccttcaacacctgctgcgcaataataaac, cccactaatggtgttggttaccaaccatacagagtatggggccagggcacccaggttacfor Camelid-Cov-469. attaaagattttggtggttttaatttttcacaaatattaccatggggccagggcacc, aaaatctttaattggtggtgttttgtaaatttgtttgacttgtgctgctgcgcaataataaac for Camelid-Cov-Fu-2
The Table consists replacing the above RBD regions into the immunoglobulin CDR1, 2, 3
Different Vaccine construct data. Although GFP as a fusion protein to the viral vaccine B cell epitope in VHH. The helper CD4 sequences can be any immunogenic carrier protein such as OVA, BSA, KLH, BGG or promiscuous helper T cell determinants PADRE and also promiscuous helper protein of infectious origins of measles viral protein, diphtheria toxin, and tetanus toxin for enhancing antibody responses to Covid-19 spike protein, and other proteins. For example, NSNNLDSKVGGNYNYLYRL, conformationally constrained to the native conformation of the RBD regions, embracing a large contact area of the ACE2 receptor in the spike protein. Since CoV-2 is lethal to patients elicited with CD4 helper T cell epitopes induced cytokine storm, the embodiment of the invention utilizes minimal IgE B cell epitope, which even if can be processed to a CD4 helper epitope, result in minimal CD4 T cell activation.
As discussed in the Vessler's sequences, a Table consists of B cell epitopes of a complete spike protein is made wherein; moreover, this Table consists of B cell epitopes from the RBD region of the Vessler's sequences distributed into the CDR1, 2, 3, of the immunoglobulin.
Severe acute respiratory syndrome (SARS) CoV-2, complete genome (NCBI Reference Sequence: NC_045512.2), including in the translation frame: ORF1a, ORF-1ab, leader protein, nsp-2, nsp-3, nsp-4, 3C-like proteinase, nsp-5, nsp-6, nsp-7, nsp-8, nsp-9, nsp-10, RNA-dependent RNA polymerase, helicase, 3->5′ exonuclease, endoRNAse, 2-O′ ribose methyltransferase, Surface Glycoprotein (S), ORF-3a, E, M, ORF-6, N, ORF-7a, ORF-7b, ORF-8, nucleocapsid (NC).
1) Name of the Sequence ASCII text file: CoV-2 Vaccine Sequences
2) Date of creation: July 2nd 2020
3) Size of the Sequence File: 295 KB
4) Note: The highlighted columns in yellow are the only ones included in the Sequence Listing CRF/Text File
Structure SARS-CoV-2 or Covid-19 is classified within the subgenus Sarbecovirus of the genus Betacoronavirus of a genome size of ˜29,000 ribonucleotides (+ssRNA), comprising six open reading frames with 5′-cap and 3′-poly-A. The first ORF (ORF 1 a/b) about two-thirds of the whole genome, encodes 16 non-structural proteins (NSP 1-16) (Gralinski, L. E., 2020. Viruses 12, 135; Forni, D., 2017. Trends Microbiol 25, 35-48). ORF near the 3′ end encode the four main structure proteins including spike (S) and membrane (M), envelope (E) and nucleocapsid (N) protein (+9 differentially spliced proteins), as well as nonstructural protease, RNA-dependent RNA polymerase complex (RdRp, 5 proteins), as the most complex antigenic (B and T cell epitopes, 34 proteins) viral universe know to date risking cytokine storm (Gralinski, L. E., 2020. Viruses 12, 135). The complete genome is shown in
Origin and phylogeny 3,713 complete genomic sequences have been deposited (up to Apr. 10, 2020; in NSAID: Zhang at Fudan deposited the first the full-length sequence (Jan. 10, 2020 in GenBank, Zhang, 2020 Nature). SARS CoV-2 maintains a relatively distant ˜80% nucleotide identity to the original SARS epidemic viruses. Shi showed that SARS-CoV-2 had 96.2% overall genome sequence (nt) identity to bat RaTG13 (Zhou, P., 2020. bioRxiv, 2020.2001.2022.914952; Wu, F., 2020. Nature 579, 265-269), a betacoronavirus, collected from horse-shoe bat, Rhinolophus affinis (Hu, B., 2017. PLoS path 13, e1006698-e1006698) upon a cave expedition by Shi at the Yunnan province, China (Zhou, P., 2020. Nature 579, 270-273). The S protein accounts for the host range. The subregion S1 contains the receptor-binding domain (RBD) for huACE2. Notably, Guan reported that receptor-binding domain (RBD) of pangolin-CoV of the Guangdong Province, China, exhibits 97.4% amino acid identity to that of human SARS CoV-2 (although ˜92.4% in nt identity to CoV-2) (Lam, T. T.-Y., 2020. Nature 583, 282-285), including identity of all five key amino acid contact residues to ACE2 as later shown the identical five amino acids in CoV-2 RBD all contact importantly to huACR2 cocrystal (Lam, T. T.-Y., 2020. Nature 583, 282-285; Yan, R., 2020. Science 367, 1444; Lan, J., 2020. Nature 581, 215-220).
The structural and genetic observations indicate that a niche ecology of genetic exchange among natural reservoirs of bats, and pangolins (or masked palm civets) in the Wuhan's exotic animal food market, substantiating zoonotic to human transmission. This transmission is also supported by two early clinical observations in that (i) the high proportion of earlier patents admitted in Wuhan hospitals (before Jan. 1, 2020) with history of market visits, tapered to human-to-human transmission exclusively afterwards (Li, Q., 2020. NEJM 382, 1199-1207); and in that (ii) 14 of the 41 patients (34%) has no contact with this marketplace (Huang, C., 2020. Lancet 395, 497-506). Thus, the clinical pattern suggests an alternative behavior contact with the intermediate hosts (pet companionship; lab environment and the patient zero) raising the possibility relating to accidental source of contamination with RaTG13 stock in the Wuhan's P4 laboratory. Therefore, modifying cultural behavior in the country indigenous with the intermediate hosts is central to future emergence and infectious disease control.
Epidemiology plays a central role to trace the origins and the modalities of the pandemic spread of the Covid-19 infectious disease. Epidemiological prevalence seroconversion data of Santa Clara County indicate up to 5.7% (2.58-5.7%), 85-fold more cases than current voluntary testing based on clinical urgency (Bendavid E., 2020. medRxiv, 2020.2004.2014.20062463). Therefore, an effective vaccine is in a dire need to break the transmission chain.
Recognition of the ACE2 receptor by the spike (S) membrane glycoprotein of SARS-CoV-2 is a major ligand for virus binding to host cells, infectivity, initiation of cytokine storm pathogenesis, and its mutations and adaptation to the various host range. S is a trimeric assembled protein, consisting of a central helical stalk, made of three interacting S2 portion, diverging at the surface using the S1 portion. Each S1 component consists of two large domains, the N-terminal domain (NTD) and receptor-binding domain (RBD), which contains highly immunogenic B cell epitopes. In virus membranes, Spike protein can exist in open and close form, regulating by the NTD, and the open form is accessible to ACE2 binding from cryoEM studies on the S of SARS-CoV.
Of the two RBDs per trimer that are not engaged with the receptor, either both are closed or one of the RBDs remains closed and one is in the open conformation. Trimers can bind two to three ACE2 receptors bound. ACE2 binding affects the bound RBD by a torqued forced, rigid-body rotation ˜5.5 Å away from the trimeric center, along with affected the NTD shift as well, and the rest two NTDs of all three S1 components move by ˜1.5-3.0 Å. Binding of more than one ACE2 remains the same altered configuration. Thus, the monomers are separated, make less contact with each other in the receptor-bound state. The stoichiometry is two RBD binding to three ACE receptors and leaving one RBD idling in the close conformation. Thus, one embodiment of the invention is to render vaccine induced-antibodies that lock the RBD open or close in a fixed state that do not permit the RBD binding to receptors, or do not permit rigid body torque force transmission and separation from the neighboring monomer for re-anchoring at the S2 moiety. ACE2-stabilised S1 opening therefore leads to opening up of S2 structure, exposing the S1′ and S1-S2 furin or proteolytic enzyme site, and the unleashing further conformation opening up of the fusion peptide for host cell fusion. Therefore, the embodiment of the invention is to have vaccine-elicited antibodies, anticipating the appearance of the aforementioned three sequences and arrest the viral infectivity due to torque force/rigid body induced conformational change.
Moreover, the torque also affects helix-loop-helix approximately, 980-990 within the HR1 region in CoV-1 studies: at the end of the S2 domain in that the torque creates 50×65 Å2 open cavity around the trimer axis that is for solvent exposed HR1, serving as additional target site for the vaccine-elicited antibodies in one embodiment of this invention. Noticeably, the embodiment of the invention focuses on the early and late stage of RBD phenomenology, namely, first neutralizing the open conformation of the monomer to prevent the ACE2 binding as a prerequisite; and second, focusing on maturation producing B cell epitopes, ignoring the cleaved or left over RBD-ACE since these are vestiges or left-over on the cell membrane without any protective significance. The left-over or hanging the S trimers permit this RBD in a more open ACE2-binding conformation of no more infectious disease significance, or passively, these vestiges can absorb neutralizing antibodies as a sink. In the process, the interaction of the closed form of S1 with a segment of the S2 chain that precedes the putative fusion peptide region is lost in the open form. Thus, the embodiment of the invention is to provide strong T cell help such as that from the herd immunity memory response to diphtheria or tetanus or viral measles CD4 helper T cells or Covid-19 viral CD4 helper T cells by using Covid-19 B cell epitopes integrated to a library of helper peptides. Successive trimeric RBD opening and ACE2 binding leads to a fully open and ACE2-bound form where the trimeric S1 ring remains bound to the core S2 trimer by limited contacts through the intermediate subdomains of S1. This structural and physiological arrangement leaves the top of the S2 helices fully exposed.
In recognition of the thermodynamic rule of folding as categorically governed by the primary amino acid sequence, the removal of the RBD due to cleavage, lead to the reconfiguration of the rest of the S2 polypeptide according to the remaining sequences, which are free from the torque force due to the RBD binding to the ACE2 receptors. The rest of the sequences can be under the constraint of the non-binding two free RBD or with one free and one bound RBD, which is yet to be cleaved and released. In the embodiment of the invention of using a series of protein scaffold such as beta-strands of lipocalin, fibronectin, CDR regions, equivalent to the “beta strand-loop-beta strand” motif of conventional immunoglobulins or CDR regions of an antibody light chain or heavy chain scaffolding, and N-, C-terminals of thermostable GFP for the primary furin site and fusion site sequences in the reformation of the natural folding of furin or fusion peptides similar to the devoid of RBD (de-RBDed) S2 using said protein scaffolds of
Another embodiment of the invention is to use the “alpha helix-loop-alpha helix” motif of ankyrin repeat (AR) motif as yet another protein scaffold for alpha helices B cell epitopes, and beta-hairpin loop or a large or long B cell loop epitope. The AR is a modular, protein-protein interaction motif in nature, by compiling a given AR protein containing multiple repeats, being monomeric, of high thermostability. The ankyrin scaffold is organized in a unit of five, consisting of 5′ and 3′ capped and central three ankyrin will be synthesized, and the library will be replaced with amino acids in random in the three alpha helical regions and at three the beta turns, The consensus amino acid sequence contains all information required to define the ankyrin repeat fold for engineering B cell epitopes of Covid-19, Covid-n. One main embodiment is the 33-residue sequence motif into a helix-loop-helix structure with a beta hairpin/loop region projecting outward from the helices at a 90° angle. The repeats stack together to form a concave L-shaped structure with the inserted B cell epitope accessible as a concave recognizable structure by antibodies as receptor or pharmacological receptor. Moreover, the beta-hairpin loop or a longer loop can also contain a B cell epitope or a pharmacophore. Thus, the AR scaffold is a bifunctional representation of B cell epitopic conformations of secondary a helical structures and loop structure. Another versatility of the AR is for scaffolding coiled coils distorting away from the alpha helix or 3-10 helix.
Additionally, the ankyrin scaffold is also adapted into the eukaryotic ribosome display system, and the prokaryotic transcription/translation sequences, replaced with the eukaryotic enabling sequences. This system will be compared among protein scaffolds by the ribosome display (RD). We will test whether anti-ANK antibodies are elicited by random aptamers on ANK vs VHH scaffolded constructs, and antibodies to human VHIII family of immunoglobulin. Humanization of non-human immunoglobulins if employed such as VHH, will be conducted to eliminate immunogenicity. It is prudent to establish an efficacious RD technology platform, which is also safe for discovery of IgE drug or others.
Herein we further illustrate the principle of the loop scaffolding by two adjacent alpha-helices. The beta hairpin/loop region and the short alpha helices comprising the concave face have been previously characterized as the recognition surface. Positions classified as nonconserved and semiconserved of different type are mainly present on the recognition surface, whereas the opposite face shows mostly semiconserved positions of the same type. The embodiment of the invention is to replace the loop and short alpha helices with the B cell epitopes, or insert B cell epitopes into the loop or extend the short alpha helices as protruding concave B cell epitope so that AR then exhibits the highest variability to accommodate a diverse group of potential B cell epitopes or pharmacophore. Because the resilience of AR backbone and the foreign AR equivalent (from 20 to 40) will be replacing the constituent repeat for B cell epitopic or pharmacophore display. Thus, the consensus sequence carries the necessary structural integrity in the presence of a foreign alpha-helix, which can be subject to molecular evolution and protein display for more effective B cell epitopes and pharmacophore as a blueprint for reshaping CoV-2 and CoV-n protein engineering or to create novel biological functions.
The precision vaccine to target viral host range and infectivity is based on the foundation work of Harrison/Farzan/Li who established huACE2 as the receptor; and later elucidated RBD/ACE2 cocrystal for SARS CoV-1 and offered the molecular biology pathways leading to a clinical infection (Li, W., 2003. Nature 426, 450-454; Li, F., 2005, Science 309, 1864). Similarly, this strategy is rapidly established for SARS Cov-2 infection in human ACE2+ cells (Lam, T. T.-Y., 2020. Nature 583, 282-285; Yan, R., 2020. Science 367, 1444; Lan, J., 2020. Nature 581, 215-220; V*app, D., 2020. Science 367, 1260). Coronavirus S glycoprotein exists as a metastable prefusion homotrimer, comprising two functional subunits, S1 and S2 (Wrapp, D., 2020. Science 367, 1260). S protein exhibits the most diversity among coronaviruses, accounting for its wide host range (Li, F., 2013. Antiviral Res 100, 246-254). Thus, its threefold infection strategy unfolds, culminating in a productive infection:
(i) S1 Binding to ACE2 receptor: RBD or its core RBM or RBE (Receptor Binding B cell Epitope, 438-506 aa) in S1 exhibits extensive contact with ACE2 receptor oriented, by the N-terminus domain, NTD (aa 1-332 aa) (Wrapp, D., 2020. Science 367, 1260; Song, W., 2018. PLoS path 14, e1007236).
(ii) S2 cleavage and global conformational change: Receptor binding triggers proteolytic processing by the host surface enzymes, promoting a global (tectonic) conformational change to permit exposure of proteolytic furin sites (Wrapp, D., 2020. Science 367, 1260; Song, W., 2018. PLoS path 14, e1007236; Harrison, S. C., 2015. Virology 479-480, 498-507);
(iii) Fusion: the remaining trimeric S2 subunit arranging around a central triple-helical bundle to juxtapose the fusion peptide (trimeric) to the host membrane lipid bilayer, culminating in the delivery of the viral genome into the host cells (Wrapp, D., 2020. Science 367, 1260; Song, W., 2018. PLoS path 14, e1007236; Harrison, S. C., 2015. Virology 479-480, 498-507). Notably, the three-fold sophisticate strategy adopted by SARS CoV-2 reveals its natural prowess as well as its triple Achilles' heels subject to protective immune attack. Herein we will make three firewall vaccines in the proposed NIH-NOSI application. (i) Firewall 1st The first neutralizing antibody firewall blocks, competes or dissociates viral S trimer to the ACE2 receptor; (ii) Firewall 2nd The second neutralizing antibody firewall blocks furin cleavage sites to prevent S trimer maturation; (iii) Firewall 3rd the third neutralizing antibody firewall blocks and dissociates fusion peptide docking onto the lipid bilayer or micelles. Next, we will describe the technology platforms to build the protective shell via the three aforementioned firewall vaccines.
The protein folding is dictated by primary sequence and the secondary structure of beta strands or beta-sheet, and the most thermostable beta barrel thereof, accommodating the loop structures, which assume conformations as an antigenic site, a pharmacophore, or enzymatic sites. The scaffold protein is defined as a candidate protein with such beta strands that can constrain a given loop of protein, or a beta sheets that can accommodate multiple loops in adjacent orientations. Beta strands of
Protein scaffolds, and Immunoglobulin heavy or light chain in humans or rodents as a constraining molecular clamp (chaperone), or a single heavy chain VHH antibody that is highly soluble due to the deletion of two hydrophobic residues in the hinge region mediating light chain pairing (Ewert, S., 2002. Biochem 41, 3628-3636). Human heavy chains and camelid heavy chains in particular CDR2 and CDR3 can accommodate longer, between 12 to 33 amino acids: the fact hypervariable regions can accommodate diverse amino acid sequences at will, are two-fold important in the embodiment of the invention (i) stably scaffolded within evolutionarily conserved thermostable framework regions as a highly thermostable β-barrel, acting as molecular scaffolds or chaperones; thus likewise (ii) the sequence space within the CDR1-CDR3 antibody binding loops can be replaced by antigenic B cell epitopes, or by conformation-delineated sequences acting as receptor agonists/antagonists, depending on the context of application.
The molecularly clamped, substituted CDR2 and/or CDR3 heavy or light chain, as antigenized constructs, can stabilize native configurations of the replaced foreign antigenic loop sequence to its native conformation on the parent protein. In this invention, the above three-firewall protective B cell epitopes will be clamped and constrained in the CDRs of heavy or light chain proven technology platform.
Furthermore, the embodiment of the invention expands the diversity of the constrained enclosed CoV-2 loop sequences via mutations and molecular evolution. the molecular clamped antigenized vaccine B cell epitopes constrained by the secondary structures, beta-strands and alpha-helices can in turn be displayed along with its mRNA on ribosomes, e.g., forming an Antigen/Ribosome/mRNA (ARM) ternary complexes, captured by huACE2 receptor-coated solid phase. Therefore phenotype-genotype linked selection can be subjected to molecular Darwinian evolution. And antigens can therefore be readily re-shaped for better fit antigens for eliciting neutralizing antibodies. The embodiment of the three firewall vaccines (including the Cov-2 S, NC, M, E compositions, and all the proteins indicated by
An important advantage of the precision vaccine is its avoidance of an inappropriate immune enhancement or viral antigen-induced cytokine storm. The two most immunogenic components conducted in SARS CoV-1 research, are attributed to S protein, and next to nucleocapsid (NC) protein, followed by M, E, and replicase and NSPs processed from the replicase/transcriptase complex (all together 34 viral protein epitopes universe!) (Janice Oh, H.-L., 2012. Emerg Microbes Infect 1, 1-6). Acute respiratory distress syndrome (ARDS) in both CoV-1 and CoV-2 infected patients is the cause of death due to viral antigen specific CD4 and CDB-mediated cytokine storm (Mehta, P., 2020. Lancet 395, 1033-1034; Ramos-Casals, M., 2014. Lancet 383, 1503-1516; Huang, C., 2020. Lancet 395, 497-506; Karakike, E., 2019. Front Immuno 10, 55-55). Inactivated or attenuated CoV-2 carries the antigenic universe for CD4 and CD8 T-cell epitopes; the complete S protein as vaccines carries the immunodominant CD4 helper T cell epitopes (Grifoni, A., 2020. Cell Host Microbe 27, 671-680.e672). Herein the three firewall CoV-2 precision vaccines made solely from critical and minimal protective B cell epitopes, can hit the three Achilles' heels for attachment, maturation and fusion of S protein life cycle without causing immune enhancement and cytokine storm detrimental to the host, henceforth increases vaccine safety margin (Chen, S.-S., 2020. USPTO 62,985,792; Chen, S.-S., 2020. USPTO Priority date: Feb. 11, 2020, 62/972,847) (Aim 1, Aim 3).
Two Concerns of Viral Adaption are in the Continuum:
(i) Emerging zoonosis: The five highly variable amino acid residues in RBE contacting ACE2, spanning among palm civets, bats, pangolins, and humans, exhibit a positive dN/dS trend for positive selection (Gralinski, L. E., 2020. Viruses 12, 13; Fomi, D., 2017. Trends Microbiol 25, 35-48; Zhang, T., 2020. Curr Biol 30, 1346-1351.e1342). Zoonotic migration of the fittest to humans poses a continual threat without human behavior modification.
(ii) Emerging new CoV-n or ‘seasonal flu’ evading herd immunity. The next waves of viral mutants are likely to re-emerge facing a sterile anti-RBD herd immunity for example as the most current FDA-approved vaccines are directed against a single protein or DNA sequence of a single viral strain to the SARS CoV-2 genomes of the year 2019 database. Cov-2 spike protein mutants such as B.1.526, E484K, S477N, within the region of RBD can be predicted by in vitro RD. Via ribosome display, we can the select molecular Darwinian antigenic variants of the entire S protein that bind ACE2 receptors under the three-firewall neutralizing antibody we made for the first generation of CoV-2 or herd immunity (Chen, S.-S., 2014. U.S. Pat. No. 8,865,179; Chen, S.-S., 2015. U.S. Pat. No. 9,187,553; Taussig, M., 2003. USPTO U.S. Pat. No. 6,620,587 B1).
In summary, the precision vaccines using said protein scaffolds raise three firewall neutralizing antibodies to abrogate productive CoV-2 pseudotype infection in human ACE2 cells and ACE2+Tg mice. The platform technology integrated with molecular evolution permits selection of S variants of emerging newer CoV-2, which can be used as future vaccines.
Any conception of cytotoxic T lymphocytes (CTL) to protect from a viral infected disease is based the observation of CTL in recognizing a processed viral protein constituent, restricted to major histocompatibility complex (MHC) I in killing virus infected cells (Zinkemagel and Doherty, 1974. Nature 248: 701-702). This original observation sheds the first light on the importance of processed protein constituents and its presentation by MHC I. The two critical pieces information is that nonameric cytotoxic peptides is generated in the ER via an unfold protein response or ER stress. The second piece information stems from the purification and sequencing of the nonameric peptides eluted platform the MHC I protein (Falk et al., 1991. Nature. 351, 290-6). In summary, this includes the totality of the prior knowledge across different species that CTL recognize viral protein nonameric to decameric peptides according to the MHC I polymorphisms. The embodiment of the invention is to compute nonameric peptide CoV-2 human 10 MHC I supertypes. The MHC I supertypes are: HLA-A01.01; HLA-A02.01; HLA-A03.01 (HLA-A11.01): HLA-A24.02; HLA-A26.01; HLA-B07.02; HLA-B08.01; HLA-B40.01; HLA-B58.01; HLA-B15.01 (Sidney, 2008. BMC Immunology. 9:1-15) Any high affinity supertype binding peptides from such as the spike protein or nucleocapsid protein and ORF1a of Cov-2 should yield the protective CTL vaccine epitopes that are used as CTL vaccines, and exclusively non-mutated and mutated sequences to ORF1a, ORF-1ab, leader protein, nsp-2, nsp-3, nsp-4, 3C-like proteinase, nsp-5, nsp-6, nsp-7, nsp-8, nsp-9, nsp-10, RNA-dependent RNA polymerase, helicase, 3→5′ exonuclease, endoRNAse, 2-O′ ribose methyltransferase, Surface Glycoprotein (S), ORF-3a, E, M, ORF-6, N, ORF-7a, ORF-7b, ORF-8. The embodiment of the invention will permit a use of a single or double or up to 12 such epitopes. The multiple epitopes can be arrayed in a linear head to tail format in a multimeric peptide assembly or a polypeptide produced as recombinant. Alternatively, the peptide in single or multimers can be inserted into the loop structure, or replace the loop structure of the protein scaffolds as described in the previous section. Because the loop of a protein scaffolded by exposed toward the surface and characterized by its hydrophilicity, and accessible to ER stress-mediated processing and degradation and assembly with the MHCI binding pocket. Therefore, the embodiment of the invention is to prolong the half-life of the peptide, or a contiguous peptide multimers or a polypeptide with contiguous peptides. In another embodiment of DNA/RNA immunization, the single peptide or contiguous peptide can be cloned into a eukaryotic expression vector that transcribed and translated in the modality of DNA/RNA immunization.
Antigenic variation due to molecular shift are frequent with the host range such as affinity of attachment increase or deviation away of attachment due to neutralization or protecting antibodies. CTL determinants are cryptic to immune evolutionary pressure, for the following reasons:
(i) Especially the multiple nonameric epitopes constellated upon a given MHCI haplotype or supertypes; thus, a mutation of a given nonamer does not affect the CTL protection to other nonamer of the given protein of interest;
(ii) The polymorphisms of a particular haplotype or supertype permit multiple different heterozygote combinations with respect to the diverse nonamers, and the redundancy or heterozygosity of the nonamer-presenting MHCI permit a robust defense repertoire. (iii) Even there is a mutation within the nonameric (+1/−1) sequences, the escape mutants have to be at the second and seven amino acid positions since these two are the anchor binding sites for the MHCI; and amino acids in non-anchored position will not affect the capacity of CTL induction. Therefore, the embodiment of the invention will ensure the CTL protection using the combination of nonameric or octameric or decameric peptides to defend against the CoV-2 or CoV-n infections and mutants.
The CoV-2 S exhibits 17 receptor binding amino acids (5 hypervariable+6 conserved+6 invariant amino acids in the RBE region of RBD) over ˜80 amino acid in one contiguous sequence contacting ACE2 receptor over 1750 A2 area (Lan, J., 2020. Nature 581, 215-220).
The embodiment of the invention is to claim the five hypervariable amino acids offering flexibility of change into any of the 20 amino acids selectable by RD or any kind of protein display platform to increase the mutant S binding to ACE2; and the six amino acids can suffer a conserved amino acid substitution for increasing binding affinity to ACE2. The embodiment of the invention includes mutants showing any or a combination of mutation of spike protein to gain advantage to high affinity binding to ACE2.
Therefore, the RBE will be used for replacement in CDR1 to CDR3 of camelid VHHcov-2 as a precision vaccine. CDRs as a molecular clamp also for Covid-19: (i) defining precision B cell vaccine epitopes, of the S protein, and RBE (RBD) of CoV-2; (ii) bifunctional T cell costimulation can be delivered using GFP helping the S B cell epitopes. Using the entire S protein as vaccine (1250 amino acids) may cause unfavorable immune enhancement (Gralinski, L. E., 2020. Viruses 12, 135; Fomi, D., 2017. Trends Microbiol 25, 35-48), currently a major focus of several key vaccine projects [DNA vaccine (Inovio), RNA vaccine (Moderna), CoV-2 S pseudotype flu (J&J), S protein on vaccinia virus (Oxford U), and recombinant S proteins)].
NTD Region within the Spike Protein:
Moreover, three additional sites on the NTD regions are considered. A vaccine neutralizing and blocking the entry of 2019_nCoV via human ACE2, constrained by VHH and optimized by mRNA and ribosome display coupled to molecular evolution.
The patent invention claims a vaccine representing a combination of four antigenic sites of 2019_nCoV onto a protein constraining scaffold.
Site 1: TNGTKR 71-79 of the spike protein of 2019_nCoV
Site 4: QTNSPRRA 676-684 (flanking RBD)
The patent invention uses the camelid nanobody as a scaffold to constrain or encompass said four sites (site1, site 2, site 3 and site 4) of the spike protein of CoV-2, 2019_new coronavirus that segregate and assemble together in a folding strategy on a protein scaffold as a vaccine. Said vaccine elicits neutralizing antibodies to destabilize the viral monomeric and/or the trimeric spike protein in order to block the contact of the amino acid region or the protein domain(s) of the spike protein of the CoV-2 to the angiotensin converting enzyme 2 (ACE2) as entry into susceptible lungs, kidney tissues and hearts.
Said four dis-contiguous sites, from regions distinct from the alpha-helix or 3-10 helix fusion domain, are chosen for inserting into, arranging in between, or replacing the native sequences of CDR of immunoglobulin or substitute native loop sequences of other protein scaffolds. Said platform can be optimized by mRNA and ribosome display, coupled to molecular evolution via solid phase ACE2.
Said four sites of the spike protein of CoV-2, 2019_nCoV in natural history, serve as anchors for the stabilizing the beta-pleated sheet and loops of the contact regions to the ACE2 receptor.
Said four sites of the spike protein of CoV-2, 2019_nCoV, in this patent invention hence assembled substituting the native loop sequences of the aforementioned said protein scaffolds, are claimed the prophylactic and/or therapeutic vaccine for eliciting neutralizing and/or blocking antibodies that inhibit entry of CoV-2, 2019_nCoV via contacting ACE2 of human susceptible lung and kidney tissues and hearts.
The precision vaccines can be further re-shaped for fitness as a more efficacious vaccine, using the inhouse antigen ribosome/mRNA display (RD) platform (Chen, S.-S., 2014. U.S. Pat. No. 8,865,179; Chen, S.-S., 2015. U.S. Pat. No. 9,187,553; Chen, S.-S., 2019. USPTO 62/885,110; Chen, S.-S., 2018. USPTO 62/917,408).
The evolving ARM Platform (for antigenslantagonists) by various protein scaffolds, including said protein scaffolds (
(i) The inserted CoV-2 loop sequences in said protein scaffolds can be enabled for transcription initiation with the T7 promoter, translation with the Kozak sequence that scans rRNA binding site of the eukaryotic 40S ribosomes, wherein the termination codon protein scaffold stuffer region (using GFP or using Cu) was deleted so that the transcribed-translated antigen-ribosome-mRNA (ARM) ternary complex was not released from the P site of the ribosomes (e.g., stalled on eukaryotic ribosomes as a ternary ARM complex) (Chen, S.-S., 2014. U.S. Pat. No. 8,865,179; Taussig, M., 2003. U.S. Pat. No. 6,620,587 B1; Taussig, M. J., 2003. U.S. Pat. No. 6,620,587; Yang, Y.-M., 2007. B.B.R.C. 359, 251-257) (left trinity).
(ii) Next, this bulky ARM is selectable and captured by huACE2 receptor, chemically coupled to beads or coated on a 96-well plate (let trinity).
(iii) Selectable mRNA can be dissociated from the 96-well plate (right trinity) and mutations can be introduced by base analogues and error-prone RT-PCR (upper trinity) (Chen, S.-S., 2014. U.S. Pat. No. 8,865,179; Chen, S.-S., 2008. Biochem BioPhys Res Comms 374, 409-414). After 3-5 reiterative rounds of selection, the clonal DNA can be prepared and undergo DNA shuffling recombination/inbreeding to generate a high-affinity product (upper trinity) upon Darwinian competition. The ARM finalists and mRNA throughputs selected in Aim 2 will be tested as the ultimate API or precision vaccines for cell-based assay and animal protection.
In the example: we focus on insertion of the RBD domain, which contact ACE2 into camelid CDR constructs as blocking or neutralizing antigenic epitopes using a linker sequence co-synthesized along with GFP as additional constrainer and also serve to activate CD4 helper T cells to generate an anti-RBD antibody response. In IgE and FceRI receptors system, we pioneer IgE B cell epitopic vaccine discovery using on X-ray of ligand/receptor cocrystal, and most antigenic loops are delineated by the secondary b-strand flanking structure, which coincide with the tertiary structure by X-ray. This methodology based on empirical data (other than biocomputing) has yielded productive means to define minimal B cell epitopes, including IgE receptor-binding loops of IgE as universal allergy vaccines in raising neutralizing antibodies. Recently, high resolution X ray of CoV-2 S protein is finally available, as elucidated by Veesler in
S-ACE2 induced twist can cause exposure and furin cleavage site on S protomer/homotrimer. The precision vaccine against RBD will be tested to not only block the initial attachment, but also tested for dissociation of S from huACE2. Importantly, dissociation will bring a ‘cure’ since stage 2 and 3 enzyme catalysis and membrane fusion are summarily blocked. All the sequence information is described by Veesler and Wang in their X ray crystal/cocrystals, as illustrated in the secondary structure enables an initial roadmap for B cell epitope discovery. The precision candidates are indicated in the flexible loops (hydrophilic, open accessible), flanked by the beta strands, or by alpha helix, or alpha-beta., As an example, Table 1 showed putative B cell epitopes of the loops flanked by the beta stands (RBE/RBD and NTD sequences), and B cell epitopes are over the entire spike protein, not limited to the example sequences, moreover, can include any sequences of the secondary structure α-helix, 3-10 helix, and beta strand itself for substituting the CDR loop (s). Table 2 (furin sites and fusion peptides), delineated by the secondary and tertiary structures of
The embodiment of the invention: Coronavirus Co-V2 or Covid_19, CoV-1, initiate human infection by the attachment of coronavirus spike protein (S protein) to the angiotensin converting enzyme II (ACE2) receptors in the lung, kidneys and hearts. We invent vaccines using sequences of the entire S protein: NTD, RBD (RBM), NTD partner, furin cleavage domain, HRN-HRC for fusion domain, and TM for transmembrane anchorage, as well as translated proteins of ORF1a, ORF-1ab, leader protein, nsp-2, nsp-3, nsp-4, 3C-like proteinase, nsp-5, nsp-6, nsp-7, nsp-8, nsp-9, nsp-10, RNA-dependent RNA polymerase, helicase, 3→5′ exonuclease, endoRNAse, 2-O′ ribose methyltransferase, ORF-3a, E, M, ORF-6, N, ORF-7a, ORF-7b, ORF-8, nucleocapsid (NC) the envelope protein (E). Protective B cell vaccine epitopes will be discovered around the loop regions of the entire S protein as a paradigm and aforementioned proteins scaffolded by the beta-strands or beta-sheet or alpha-helices, including also the N- and C-terminal loops as antigenic sites. Moreover, vaccines are made against envelope protein and RdRp to perturb viral life cycle. Vaccine against the variable regions such as RBD can be catered to the infectious endemic or pandemic strains. Vaccine against the universal protective epitopes such as nonvariant amino acids on S as well as canonical nonvariant sequences on RdRp and envelope proteins are universal vaccines. This patent invention also embodies the B cell epitopes from the nonstructural proteins.
Herein, the vaccine platform extended to CoV-1, and CoV-n, the evolving variants as the close relatives and kindreds to B.1.526, E484K, S477N. The constraining scaffold will include lipocalin, protein A, green fluorescent protein (GFP), fibronectin, immunoglobulin, super beta strand of FG of human IgE, shark antibodies, and VHH of the species of the Camelidae, including camels and llamas of
Wuhan's strain (WUHAN/WVIO4), shown in
1. The First Firewall:
Anti-RBE/RBD Neutralizing Antibodies. Furthermore, cryo-EM structures show that the RBD of a protomer exists in two states, the up or open state capable binding to the receptor, while the down or close position is cryptic, waiting for its kinetic moment opening up to bind to receptor next (Wapp, D., 2020. Science 367, 1260; Song, W., 2018. PLoS path 14, e1007236). Like a spinning wheel, with three sharp spikes there be in two states present in homotrimer. Noteworthily, an X ray study using the complete untruncated huACE2, chaperoned as a dimer by amino acid transporters (BoAT1) in the membrane that have the potential to form multiple cross-linking networks with multiple homotrimers (Lam, T. T.-Y., 2020. Nature 583, 282-285). Since each RBD fragment binds to truncated huACE2 (most done in this expedient way) in the Biacore assay scores at a high affinity of 4.5 nM (Wapp, D., 2020, Science 367, 1260), it is likely that homotrimeric to dimeric synergistic binding may approach picomolar affinity posing challenging situations for vaccine makers.
The advantage of the precision first firewall vaccine in Table 1A-1B rendering RBE/RBD an Achilles' heel, over the current vaccine ventures (whole S-mRNA, -DNA, -recombinant, and whole S pseudotype) is:
(i) Molecular clamp can capture the lowest free energy configuration and render immunogenic either the open or the close state depending on the replacement of the different demarcated RBE shown in
(ii) Molecular clamping using demarcated precision peptide subregions, like the clamped IgE vaccine, is highly efficient to elicit antibodies causing dissociation of the huACE2-bound CoV-2 S, despite at high affinity. Therefore, we will assay the dissociation of biotinylated RBE/RBD and S protein from huACE2 receptors on the solid phase.
(iii) Type-specific vs. broadly neutralizing or cross-reactive antibodies Despite its immunogenicity, we anticipate that the molecularly clamped RBE vaccine including the hypervariable receptor-binding amino acids as a precision antigen, may be CoV-2 type-specific (i.e., RBE between CoV-1 and CoV-2 shares only 33% homology) (Lan, J., 2020. Nature 581, 215-220) but not for neutralizing an emerging variant as a seasonal ‘flu’. Nevertheless, molecular clamped precision vaccine using RBD outside the RBE regions, exhibits greater conservation (77% homology) (Lan, J., 2020. Nature 581, 215-220), therefore precision vaccine, constructed accordingly offers an opportunity as a broad-spectrum vaccine.
Indeed, comparative X-ray of cocrystal of CoV-1 RBD vs CoV-2 RBD with huACE2 receptors, lends support for a highly homologous contour of the overall RBD region: six out of 17 receptor contact residues of RBD are identical, and the other six exhibit conserved amino acid change, while the α-carbon chain tracing the two respective receptor-bound RBD contour shows impressive side by side overlap (Lan, J., 2020. Nature 581, 215-220). This observation lends credence that a precision vaccine targeting the evolutionarily conserved configuration of RBD can then be broadly neutralizing (BN) or cross-reactive for both SARS CoV-1 and CoV-2, which will be tested by ELISAs: S protein, RBE/RBD capture by ACE2 receptor-coated plates were established for evaluating the titers of first firewall antibodies, and biological neutralizing activities will be ascertained by neutralizing infection of CoV-2 S pseudotype in huACE2+ cells (Aim 3).
2. The Second Firewall:
Type-specific and Universal vaccines aim at blocking the furin cleavage sites to prevent cleavage of S1-S2, posing S′2 cut as well as the S′2 site, cut at S′2 for S2 maturation, poising for the critical later membrane fusion event by fusion peptides. S′2 site being cryptic and evolutionarily conserved is exempt from immune surveillance, which is exposed only following global conformational change after S1 binding to ACE2 (Wapp, D., 2020. Science 367, 1260; Song, W., 2018. PLoS path 14, e1007236). Noticeably, whole S protein-based vaccines typically miss this important vaccine component due to their crypticity. Therefore, these epitopes molecularly clamped in VHH, are ideal candidates as universal vaccines to tackle the two more Achilles' heels once exposed.
(i) Anti-Furin Site-Specific Neutralizing Antibodies: Furin (a proprotein convertase, PC) enzymatic site exposure plays a critical role for generating S2 fragment for completing the stage 2 infectious cycle post RBD binding; noteworthily, NTD the adjacent N-terminal I domain (1 aa-333 aa) is also dramatically altered in conformation following the binding event of S/ACE2 (Song, W., 2018. PLoS path 14, e1007236), raising the importance of the ‘accessory NTD vaccine’ synergizing with the three firewall vaccines, attenuating S2 cleavage.
(ii) Antibody against the global conformational change of S1 in cooperativity with S2, essential for priming (opening up) the first furin site at S1-S2 junction (TNSPRAR/SA), which then boosts further conformational change in opening up the S2′ site (SKPSKR/SF) for cleavage by furin or serine protease (TMPRSS2), or cathepsin B/L (Coutard, B., 2020. Antiviral Res 176, 104742; Hoffmann, M., 2020. Cell 181, 271-280.e278) at the plasma membrane junction of host cells.
Therefore, anti-S1-S2 vaccines are prepared using: YQTQTNSPRRAR/SVASQSIIAY/TMSLG 676-700 furin cleavage site S1-S2; or anti-S2′ vaccine: PSKPSKR/SFIEDLLFNKVTLADAGFIK 810-828 S′2 furin cleavage site (Coutard, B., 2020. Antiviral Res 176, 104742) will be prepared into CDR2 or CDR3 domains in singles or a pair onto the camelid VHH.
ELISAs: 1-S2 and S′2 with C-terminal His tag are captured by plated coated with anti-His, and anti-second and firewall antibodies are assayed via binding to the S1-S2 and S′2 fragments respectively, whereby the neutralizing activities tested by neutralizing CoV-2 S pseudotype infection in huACE2+ cells.
Noticeably, S1-S2 cleavage site unique in CoV-2 provides enhanced infection capability (an additional virulence factor) as compared to CoV-1, due its ‘priming’ then opening up S′2 being universal to realize productive infection. These furin sites can only be attached with precision vaccines but the entire S injection as vaccine lacking exposure of these critical antigenic determinants. We anticipate that S1-S2 precision vaccine is unique for CoV-2 protection, while anti-S′ precision vaccine (commonly shared among CoV-2 and CoV-1 or -n) will be employed for broader spectrum CoV-2 protection or for CoV-n as the Universal Vaccine. And a combined bivalent second firewall vaccine offers a stronger protection for the pandemic SARS CoV-2.
3. The Third Firewall:
Universal vaccine is directed at blocking the conserved fusion peptide sequence, when CoV-2 escapes or leaks through the first and the second line of defense firewall. Anti-Fusion Peptide Neutralizing Antibodies: Should CoV-2 break through the second firewall, the mature homotrimers form the extended a-helix to present the triple bullets of fusion peptide, juxtaposing the membrane for fusion and genome entry. Hence, the exposed fusion presents yet another Achilles' heel, which the precision anti fusion peptide vaccine can instantly pull apart the injecting virion from the host cells: in particular, devoid now of S1, CoV-2 is nearly ‘dangling ‘in thin air’ with no more attachment to ACE2 (Harrison, S. C., 2008. Nature Struc Mol Bio 15, 690-698). Precision vaccine against the fusion peptide: YKTPPIKDFGGFNFSQILPDPSKPSKR (a-a) 770-778 (Wapp, D., 2020. Science 367, 1260; Cosset, F.-L., 2011. Adv Genet 73, 121-183) replaced into the CDR2 or CDR3 of camelid VHH (Table 1B), is intended for the third firewall specific neutralizing antibodies to block or dissociate the mature S2 from host cell membrane as a universal vaccine.
ELISAs His-tag fusion peptides are captured by anti-His on 96 wells, and added with anti-third firewall antibodies, detected by HRP-anti-IgA vs. IgG, wherein neutralizing evaluated by abrogating CoV-2 S pseudotype infection in huACE2+ cells.
4. The Fourth Firewall
Similarly, the vaccine is directed against CoV-2 membrane antigen, envelope antigen and nucleocapsid and RdRp to neutralize viral infectivity. CTL inhibition of viral replication and eliminate the CoV-2 infected foci and reservoir. This firewall is particularly effective against mutant virus.
Impact of Vaccination: Mucosal IgA, systemic IgG and CTL induction, and protection of CoV-2 S pseudotype infection The RBD is PCR-amplified fused to GFP, used as a positive control. Immunogenicity of the above precision vaccine constructs will be tested in BALB/c and B6 mice via SC and IM immunization for circulating IgG as well as peroral and intranasal (IN) immunization with cholera toxin (CT) for IgA production, in particular, IgA in bronchoalveolar fluid (BALF) will be evaluated for neutralizing IgA abrogating binding of S protein to the receptors by ELISA and blocking CoV-2 S viral pseudotype infection, which requires the entire S protein for initial attachment RBD/S1, priming of S1-S2 and boosting S′2 cleavage and the insertion of the boosted fusion peptides, wherein the three life cycles are subjected to the attack of each respective precision vaccines or a combination thereof.
(i) Glycan Shield: The landmark discovery of ACE2 receptor for CoV-1 by Harrison, Farzan and Li (Li, F., 2005. Science 309, 1864) and later elucidation of X ray cocrystal of RBD and ACE2 (2.5A2), entirely verified also in CoV-2 cocrystal (Lan, J., 2020. Nature 581, 215-220; Walls, A. C., 2020. Cell 181, 281-292.e286) provides a gateway for B cell vaccine discovery for coronavirus. The conserved feature of CoV-1 and CoV-2 S/ACE2 interaction indicate that vaccine designed using the conserved RBE clamped in B cell epitopes enveloping the ACE2 receptor, may be applicable across coronavirus variants. However, the above major vaccine RBD paradigm, wherein most investigators concentrate the effort, does not take into account the 18 N- and 4 O-glycan shields, which can mask the target B cell epitopes in S1 as well as S2;
(ii) Synergism for 1st Firewall by NTD1 (CTD1): Since the RBE/RBD conformation is influenced by the NTD domain of S1 (Song, W., 2018. PLoS path 14, e1007236), which is a 330-amino acid domain prior to RBD (sugar-binding in MERS) (Li, F., 2015. J Virol 89, 1954-1964). Therefore, we will test whether anti-NTD may alter a covert an up (open) position for ACE2 binding into a down (close) position incapable of receptor binding, which can also play a role in dissociating the initial RBD binding to human ACE2, subsequently negatively influence the opening up or priming of the furin site at S1-S2 junction. NTD exhibits an overall 50% homology between CoV-1 and CoV-2, however there are two tracts delineated by b-strands, exhibiting 90% homology as a choice for making precision broadly neutralizing vaccines.
The embodiment of the vaccine using GFP as help: GFP offers a strong CD4 T cell help for antibody response; and its extreme thermostability (Tm˜100° C.) indirectly enhances the camelid chaperone capacity as a molecular clamp (Chen, S.-S., 2014. U.S. Pat. No. 8,865,179; Tsien, R. Y., 1998. Annu Rev Biochem 67, 509-544). Although GFP is approved for clinical imaging, it is not conventionally thought as carrier protein for helper T cells. hence, the camelid VHH displaying vaccine B cell epitopes can be conjugated to tetanus toxoid or diphtheria toxoid to elicit long-term memory helper T cells, safely taking advantage of the herd immunity.
Recombinant human ACE2 is purchased. Complete S gene will be prepared by gene synthesis (Biomatik, Inc.), and prepared in full and in truncation for immune specificities. Primer sets designed and executed for PCR cloning for preparing the S1, truncated S1 (removing NTD), RBD, RBE, NTD; furin primed S2 (cleaved by S1-S2 site), furin-boosted S2′ (cleaved at S2′ site) into and produced in the SOP set up for periplasmic space purification of ST2 signal peptide engineered into pET11b (Chen, S.-S., 2014. U.S. Pat. No. 8,865,179; Chen, S.-S., 2015. U.S. Pat. No. 9,187,553). The proteins or polypeptides are properly tagged. The CoV-2 S protein epitopes from the N- as well as C-terminal S1/S2 were cloned into the CDR1, CDR2 and CDR3. The Company has extensive experience in recombinant protein constructs, protein purification in inclusion body purification; moreover, by concatenated expression with GFP on the C-terminus fusion, the destination of the IgV, is re-routed to cytosol, subject to expedient straightforward purification, sequenced ascertained by MS/MS. All procedures follow GLP set up, and rodents will be vaccinated IN and IM/SC routes for comparison.
a. Cytokine storm, immune deviation or tolerance: inappropriately prepared CoV-2 vaccine can lead to immune complexes (directed against harmful B-cell epitopes)-mediated T cell activation, viral CD4 T-cell epitope activation, resulting in immune dysregulation and cytokine storm, which is the cause of death of Covid-19 or SARS-Cov-2. In SARS CoV-1, nucleocapsid was found to induce a large repertoire of CD4 and CD8 epitopes contributing to CTL defense, and paradoxically also CD4-CD8 T-cell mediated cytokine storm and death (Blanco-Melo, D. a. t., 2020. Cell in press 181, 1036-1045.e9; Janice Oh, H.-L., 2012. Emg Microbes Infect 1, e23-e23). Therefore, it is of critical importance to appreciate the intricate web of the B-cell epitopes of the typically highly complex S protein (1,255 amino acids), in a recent biocomputing analysis stated that ˜80% repertoire of Covid-19 B cell epitopes as well as abundant CD4 helper T cell epitopes are on the S protein (Grifoni, A., 2020. Cell Host Microbe 27, 671-680.e672). The cytokine storm can be inhibited with suppressive RNA vaccines accommodating the above B and T cell epitopes. Several whole S protein vaccines in contrast to that of the precision firewall approach, are currently in progress, including the mRNA vaccine, DNA vaccine, recombinant vaccines and the S pseudotype adenoviral vaccine (J&J) in the phase 1 trial sponsored by CEPI/Gates Foundation and NIH. The precision vaccines lack viral CD4/CD8 T cell epitope, since GFP carrier-specific helper T cells contribute to activation of B cells specific for molecular clamped B cell epitopes.
b. Ribosome mRNA Display (RD) to further optimize four firewall vaccines: The thermodynamic law dictates the RBE peptide folding scaffolded by the molecular clamps assumes the lowest free energy state, which is accounted for by the lowest enthalpy with one degree of freedom for a fixed configuration for the native B cell epitope. Thus, the underlying thermodynamic force govern one unique folding of the peptide sequences given in the context of highly thermostable molecular chaperone providing the super-b flanking strands (Chen, S.-S., 2014. U.S. Pat. No. 8,865,179; Chen, S.-S., 2015. U.S. Pat. No. 9,187,553). As shown in the preliminary results, the four spatial dis-contiguous IgE B-cell epitopes folding within the CDR constrained by VHH exhibits binding comparably to FceRIa, therefore properly constrained RBE by camelid will exhibit binding to ACE2 receptor, and the antigenicity.
c. Re-shaped conformation for a better fit: As shown in the Preliminary results, we have in place a proprietary ribosome display technology, which can positively select conformation of the mutated molecular clamped RBE via error prone PCR for a best fit conformation with high affinity to huACE2 receptors. Therefore, mutated Antigenic RBE B cell epitopes-mRNA-Ribosome (ARM) ternary complexes, exhibiting a better fit to the receptors can be selected onto the Dynabeads covalently coupled with lower threshold of huACE2 or in the presence of excess first generation of RBE-immunoglobulin heavy chain for competitive selection, streamlined for potency antigenicity and immunogenicity.
Embodying Precision Vaccines that Predict and Protect Against Emerging Covid-19 Variants Using Ribosome Display and Darwinian Molecular Evolution
(i) sequence data L vs S type among 103 strains showed two signature SNP at ORF1ab and ORF8 related to replicase and ER stress ATF6 (Tang, X., 2020. Nat Sci Rev). A new observation showed that a number of stains exhibit SNP at the S protein, alarmingly varying even with one amino acid missense SNP at the spike protein causes conspicuous pathogenicity (Yao, H., 2020. medRxiv, 2020.2004.2014.20060160). Thus, given cumulatively (December/2019 to April/2020, GISAID) 3,123 viral genomes known to date, pertinent information and insight can be continually accumulated. Therefore, we hypothesize that critical and cumulative adaptive changes at the S1-ACE2 interface, S1-S2, and S2 crucial sites of mutants facing herd immunity has the likelihood of breakthrough in renewed endemic, epidemic or pandemic proportion as a ‘season’s flu. Alternatively, the source strains can continue unabated via cultural culinary habits and history repeated. Herein we proposed a safe method to predict new strains by ribosome display platform using the entire S protein/ACE2 forced Darwinian evolution applying selective pressure using herd immunity as well as three firewalls of neutralizing antibodies in Aim 2.
(ii) Host range adaptation-lesson learned There have been impressive comparative data (including 4× ray cocrystals) of the RBE binding sites of different hosts, bats, humans, palm civets, pangolins having different adaptive binding motifs to the respective host ACE2. Moreover, the overall binding motif between CoV-1 and CoV-2 S protein is highly conserved around ACE2 contour region beside the intimate contact amino acid five (CoV-2/Cov-1: L455/Y442; F486/L472; Q493/N479; N501/T487, K417/V404; hence conveying the prowess of plastic adaptive binding extraordinaire) (Lan, J., 2020. Nature 581, 215-220). The evolution force behind this molecular fact can be interpreted as follows, despite the variability at the key contact, the evolutionarily conserved 14 ‘shared’ amino acids, amongst eight identical invariable amino acids, and the rest of six conserved amino acid changes (can still make conserved amino acid changes to meet the free energy change of five hypervariable amino acids), can constrain the five highly variable amino acids into spatial arrangement such that the any evolutive combination of the 19 amino acids of S, which contact the 20 amino acids of huACE2, is at the lowest free energy state.
As a result, one anticipates that the versatility of the rule of 17: 12 (6+6): the invariant 6 amino acids accompanied by six ‘semi-variable conservative’ 6, along with the five hypervariable amino acids can derive a sizable SARS CoV-2 variants, and impressive repertoire of CoV-n ready for continual selection upon human ACE2 selection: (i) purposefully to evade existing neutralizing antibody-based herd immunity; (ii) purposefully in an intermediate host to maximize zoonotic ecological, niche expansion. The proposed Aim 2 focus on selecting the S breakthrough mutants, and the vaccines that can be preempted thereof.
A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional, and municipal. The shift occurred even in local epidemics where the original D614 form was well established prior to introduction of the G614 variant. The consistency of this pattern was highly statistically significant, suggesting that the G614 variant may have a fitness advantage. The G614 variant grows to a higher titer as pseudotyped virions. In infected individuals, G614 is associated with lower RT-PCR cycle thresholds, suggestive of higher upper respiratory tract viral loads, but not with increased disease severity. These findings indicate changes important for a mechanistic understanding of the virus and support continuing surveillance of Spike mutations to aid with development of immunological interventions (Korber et al., 2020, Cell 182, 812-827).
The natural selection must be based on the intact whole S gene, e.g., the prefusion S ectodomain aa 1-1208 (GenBank MN908947), piggyback on the stuff protein (deleted termination codon for ribosome attachment, forming ternary complexes) for re-iterative rounds of Darwinian selection (two US patents awarded the platform). The binding of the RBE (RBM)/RBD of the S protein (not using RBD or subunits) is influenced by NTD and S2 domain reflecting the natural binding/selection, for huACE2 receptor on the solid phase. The scenario is that re-emergence of the new CoV-2 strain or CoV-n in the presence of herd immunity to be accompanied expediently via mutating the RBE sufficiently in the total 18 amino acid residues, and since NTD (within CTD1) and S2 contribute to post-binding event, which need be included in order to bypass or evade the herd immunity.
This can be accomplished in three steps using ribosome display integrated with molecular evolution:
(i) First, selecting high affinity S-mRNA-ribosome ternary complexes (SMR) binding to the solid phase ACE2 in the presence of increasing amounts of competing ligands: S protein (non-mutated), RBD fragment, or the RBE clamped in the VHH constructs. Via RT-PCT, mRNA carried these selective mutations can be obtained as a mutated gene, which can in turn be subjected to re-iterative rounds of mutations if needed. (Aim 1, preliminary results) (Yang, Y.-M., 2007. B.B.R.C. 359, 251-257; Chen, S.-S., 2008. Biochem BioPhys Res Comms 374, 409-414; Chen, S.-S., 2008. BBRC 374, 409-414; Chen, S.-S., 2008. FASEB J 22, 1075.1011; Chen, S.-S., 2015. UPSTO Confirm #6722);
(ii) Second, by selecting high affinity SMR in plates coated with diminished levels of ACE2.
(iii) Third, and importantly, selection of SMR is performed in the presence of neutralizing antibodies (Aim 1) or convalescent sera showing sterile herd immunity. Fourth, it is inexplicable for origin of the four identical HIV sequences inserted around NTD: three identical stretches of gp120 sequences at N-terminus of NTD, and one identical Gag sequences post RBD. Selection of SMR will be performed in the presence of anti-HIV sequence antibody (made in Aim 1), which may affect orientation of open vs. close RBD, and the folding of S2, which diminish an overall RBD binding to huACE2. The escape mutants of these HIV sequences may exhibit synergy in ACE2 binding due to conformational changes at the NTD and S2 region due to negative selection by anti-HIV antibodies.
The above selection can be accomplished using the mutant library: Mutation is randomly introduced into the S protein by using error-prone, low fidelity Taq PCR under Mg2+/Mn2+ stress (0.1 U/μl in the presence of high Mg2+ at 7 mM and Mn2+ at 0.5 mM), or further aided by 6-oxo-guanidine (0.2-1 mM nucleotide), mutations will be introduced into RBE/RBD, and the supportive NTD and S2 region equally distributed and the four receptor binding IgE moieties of the DE-FG-VHH or other construct candidates. Several types of mutant libraries with mutation percentages ranging from 0.5% to 5% will be pooled (Drummond, D. A., 2005. JMB 350, 806-816). Selection of the better fit in reiterative Darwinian rounds of selection will be carried out by the capture of the ternary complexes to ACE2 receptor solid phase under negative selection pressure in the presence of (i) RBE/RBD ligands, (ii) diminishing levels of receptor on solid phase resulting in more efficient high affinity binders to gain super-infectivity, alternatively in the presence of firewall specific neutralizing antibodies against RBD, or the convalescent sera, resulting in mutants overcoming the herd immunity.
The affinity of binding (Kd) to ACE2 will be determined using plasmon resonance by Biacore in the laboratory. To further improve receptor-binding affinity, DNA shuffle, routinely performed in the laboratory will be used to mimic genetic recombination and reassortment after viral mutation and selection (Footnote: Dr. Stemmer, 1994 Nature first described Darwinian molecular evolution using error prone and DNA shuffle for evolving agriculture enzymes in his humble small business concern (Stemmer, W. P., 1995. Science 270, 1510; Stemmer, W. P., 1994. PNAS 91, 10747-10751; Stemmer, W. P., 1994. Nature 370, 389-391). Since he passed away, the Nobel 2018 Chemistry awarded to Dr. FH Arnold at CIT (Nobel citation along with two phage display scientists) for using this technique for agriculture enzyme molecular evolution). High binding DNA from the above higher binder S candidates will be digested with DNase I and 100 bp fragments will be purified, shuffled/recombined, amplified with high fidelity pfu PCR, and assembled using terminal primer-based PCR reactions (Chen, S.-S., 2014. U.S. Pat. No. 8,865,179). Hundreds of shuffled library-transformed colonies in pET11b will be selected screening for final candidates (Yang, Y.-M., 2007. B.B.R.C. 359, 251-257; Chen, S.-S., 2008. Biochem BioPhys Res Comms 374, 409-414; Chen, S.-S., 2008. BBRC 374, 409-414; Chen, S.-S., 2008. FASEB J 22, 1075.1011; Chen, S.-S., 2015. U.S. Pat. No. 9,187,553) exhibiting high-affinity binding to ACE2 coated 96 well plates. The pertinent mutated sequences for RBE/RBE, NTD, furin site sequences, will be ascertained, ready for molecular clamping in camelid preemptive for emerging viral escape mutants.
a. Advantage: X-ray cocrystals typically use RBD or CTD1 fragment and truncated ACE2 domain. In contrast, we employ the complete S protein and ACE2 protein in the modality of ‘natural selection’; the complete protein ligand/receptor set therefore takes advantage of a full fledge conformational changes, wherein the mechanical torque force (generated post-binding of multivalent trimer/rigid receptor dimers) propagates onto the covalent S2, exposing the furin sites at S1-S2, and S′, mimicking a natural selection for viral host interactions. Selection of RBD variant retaining S2, e.g, use the complete S gene in our display setting simulates the state of binding under natural infection circumstances prior to cleavage.
b. Disadvantage: One vs. three and dangling/noncleaved S2 However, the ARM complexes consisting of a ternary complex exhibiting only one protomer, not the natural homotrimer, which impose a higher avidity toward the natural dimeric huACE2 (Yan, R., 2020. Science 367, 1444); moreover, dimeric ACE2 receptor coating can be improved by using full length ACEs chaperoned by amino acid transporter as the coating reagent. Nevertheless, the weakness of the chemical display is not endowed the biological, proteolytic cleavage of S2 by host enzymes: furin, serine protease, cathepsin B/D at plasma membrane post the tectonic conformational S2-altered conformational landscape.
Embodying Precision Vaccines Against Covid-19 Pseudotype in huACE2+Cells as Well as Human ACE2+Tg Animals
Neutralizing antibodies elicited by the precision vaccine should abrogate infectivity of SARS CoV-2 in ACE2+ cells or Tg animal expressing huACE2. Viral pseudotypes using the rVSV delta G was widely investigated for complementing influenza, rabies, Ebola, Dengue, MERS (Garbutt, M., 2004. J Virol 78, 5458-5465; Millet, J. K., 2016. Bio Protoc 6, e2035), as well as SARS CoV-1 S (Kapadia, S. U., 2008. Virology 376, 165-172) for studying inhibition of vial entry by pseudotype-specific neutralizing antibodies. The rVSV delta G retaining only 16 amino acids (the stem) 5′ to the transmembrane domain of G protein gene is competent for viral budding, wherein the stem is fused to GFP for monitoring infectivity (Dr. Whitt) (Fredericksen, B. L., 1995. J Virol 69, 1435-1443). Herein we construct CoV-2 S rVSV delta G two component systems for infecting ACE2+cell lines, and Tg. And we will evaluate whether neutralizing antibodies elicited by the precision firewall vaccines can abort/abrogate CoV-2 pseudotype infection in huACE2+ cells in vitro, as well as in huACE2 Tg animals (one round) in vivo. These two criteria will serve as the in vitro and in vivo clinical correlates of vaccine efficacies, respectively. Thus,
1. Viral Pseudotype and ACE2+Cell Cultures:
Recently, using a two-component system for CoV-2 S pseudotype was reported (Ou, X., 2020. Nat Commun 11, 1620). Thus, we will clone CoV-2 S protein truncated of 19 amino acids (S delta 19) (Ou, X., 2020. Nat Commun 11, 1620) on the C-terminus into CMV-pCAGGS-G. CoV-2 S gene (synthesized by Biomatik, Inc. modified delta 19) will be cloned into pCAGGS vector with CMV promoter, with optimized Kozak sequences. huACE2+BHK-21 or HEK 293 transfected with truncated S will then be super-infected with the high titer viral stock of rVSV delta G_G* (rVSV genome with GFP cloned in MCS, deleting G protein ectodomain, and phenotypically transiently complemented with G protein (for entry into packaging cell only without being part of the pseudotype) (a generous gift from Dr. M A Whitt). Therefore, we will expediently produce the CoV-2 pseudotype using the two-component system, e.g., CoV-2 S delta 19 pseudotype packaged in rVSV delta G_G* in the transfected HEK 293 cells at the BSL-2 levels (Whitt, M. A., 2010. J Virol Methods 169, 365-374). Next, we will then evaluate whether the three firewall neutralizing antibodies abrogate the infectivity of CoV-2 S pseudotype in susceptible huACE2+BHK-21 or HeLa cell, and TCID50 and cytopathic effect will be examined by microscopy, and percentage of infected cells by GFP based immunofluorescence using Nikon laser-based epifluorescence, and by FACS analysis. We anticipate that the hyper-immune sera from type 1 precision anti-RBE/RBD vaccine(s) will diminish the above criteria up to 90%; and we anticipate up to 70% inhibition by neutralizing antibodies to second and third firewall. IgG in the serum (IM, subcut.) vs. IgA in the BALF (IN) by ELISA will be correlated to neutralizing titers using CoV-2 S pseudotype infection. Since viral entry relies on three successive pivotal events: ACE2 attachment, furin cleavage and fusion attachment, we anticipate pseudotype infection in the presence of all three firewall antibodies, can reach 95˜99% according to GFP fluorescence and TCID50.
Furthermore, pulse-chase metabolic labeling analysis will be conducted to monitor (the one round of) diminished viral replication (pseudotype being a defective particle, capable of only one round of replication) to corroborate viral neutralization by GFP and cytopathic effect, cells will be pulsed with S35 methionine, and de novo viral protein synthesis and replication in infected cells will be monitored, analyzed on denatured and native PAGE gel using cell lysates: native gel will reveal S homotrimer; moreover, CoV-2 S protein will be immunoprecipitated with anti-S prepared in the laboratory. By preventing entry, we anticipate that triple firewall antibodies will conspicuously also attenuate all the metabolically synthesized rVSV proteins.
Moreover, for large supplies, the rVSV (AG-P/M-MCS2-2.6) and packing vectors have been obtained from the Kerafast lab (prepared by and then supplied by Dr. M A Whitt), and helper plasmids for P, L, M, N, and G with T7, and T7 constitutive cell lines. Dr, Whitt will advise and assist in validating the preparation by the small concern with provided SOPs. As described, CMV-pCAGGS-CoV2 S delta 19 vector along long with helper plasmids will be transfected into HEK293 with CMV-pCAGGS-G, providing G* protein in trans and rVSV delta G culminating in the efficient assembly of the CoV-2 S pseudotype plaques, repeatedly handpicked for high titers, concentrated by centrifugation (˜109 per ml) for the following animal experiments.
2. Animal Model: Neutralization of CoV-2 S Pseudotype in the Lung of huACE2 Tg Mice
Human ACE2 transgenic animals B6.Cg-Tg (K18-S2)2Prlmn/J (Jackson lab) will be purchased for in vivo protection of rodent lung tissue with huACE2 transgene. Each group of three will be vaccinated with the respective layer of precision firewall vaccine or in four different combination (1st+2nd; 1st+3rd; 2nd+3rd; and 1st+2nd+3rd) vs VHH control three times via the IN for mucosal IgA pulmonary protection, and the SC or IM route for the IgG comparative purpose. Routes of vaccination is the pillar for the success of vaccines because the route is sentineled by the resident classical dendritic cells, subsequent chemokine-mediated migration of cDCs and resident and migratory CD4 helper and Treg to different compartments of lymphoid tissues, in particular the mucosal pulmonary tissues for Covid-19 protection. And 107 particle CoV-2 pseudotype will be introduced IN vs. IM/SC to normal vs. huACE2 Tg mice.
Cov-2 B Cell Vaccines Offering Protection:
One week later, mice will be sacrificed, and single cell suspension of lung cells will be examined for GFP by fluorescent microscopy, FACS analysis according to viral encoded GFP marker and biomarker for lung cell types: epithelial, endothelial, CD45+lymphocytes, type I and II alveolar epithelial cells, alveolar macrophages. Individual serum and BALF will be collected for different firewall-specific IgG and IgA antibodies. Residual surviving or the compromised viral pseudotype viral particles in the BALF fluid in vaccinated vs control mice will be assayed for reinfection in huACE2+BHK-21 and HeLa cells. The accelerated degradation of the infectivity of viral particles in vaccinated animals will be attributed to the neutralizing titers elicited by the above vaccination strategy with different precision vaccines, and with respect to the protective ratios of monomeric IgA vs IgG vs mixed IgA and IgG (in the serum), as well as the ratios of monomeric IgA vs secretory dimeric IgA in BALF. “The first pass” of pseudotype in animal protection in vaccinated vs. normal is therefore ascertained. Due to the affordability of normal mice, the role of antibody isotypes, and different routes-offered protection and mucosal immunity, can be comprehensively conducted. The comparison will provide relevant insight of the molecular clamped precision vaccines in this project over the entire S protein vaccines using DNA, mRNA (RNA-1273, Moderna), recombinant proteins, or CoV-2 pseudotype (J&J) via IM.
High titers and memory: Precision vaccines building the shell of three firewalls that elicit high titers neutralizing antibodies may offer sterile immunity to Covid-19. Completing Aim 1 to Aim 3 should provide powerful antibody-mediated vaccines that break the transmission of the pandemic Covid-19. However, a precaution should be in place that any antibodies not the neutralizing antibodies or low titers offer no comfort that the population at risk is averted, or the patients recovered with (any) antibodies may be re-infected. Therefore, optimizing protective mucosal IgA in high titers as well as recalling memory IgA or IgG are important to be validated in this Aim.
CoV-2 and CoV-n CTL vaccines offering protection: Furthermore, the cell-mediated mucosal and systemic immunity non-mutated or mutated sequences of ORF1a, ORF-1ab, leader protein, nsp-2, nsp-3, nsp-4, 3C-like proteinase, nsp-5, nsp-6, nsp-7, nsp-8, nsp-9, nsp-10, RNA-dependent RNA polymerase, helicase, 3-45′ exonuclease, endoRNAse, 2-O′ ribose methyltransferase, Surface Glycoprotein (S), ORF-3a, E, M, ORF-6, N, ORF-7a, ORF-7b, ORF-8, which also play a key role in eliciting “neutralizing” or ‘surgical’ CTL to sterilize and remove early infected foci, viral load with the precaution of not causing a concomitant cytokine storm.
The delivery can be via four forms: (i) Peptide in liposomes and ionizable liposomes: vaccine peptides plus promiscuous helper peptides in said liposomes; (ii) Peptide in protein scaffolds as DNA vaccines in said liposomes: vaccine peptides are inserted into the loop regions constrained by a pair of beta strands, a pair of alpha helices or a mixed of beta strand and alpha helix of the said protein scaffolds, and additional helper peptides sequences cloned in the scaffolded regions, or at the N- or C-terminus. Recombinant DNA can be used for DNA immunization.
(iii) Peptide in protein scaffolds as RNA vaccines in said liposomes: the constructs can be arranged in the following three manners for generating RNA as RNA vaccines. In modality one: candidate genes including but not limited to such as substituted vaccine peptides/scaffold, are followed the Mary Kozak translation sequence; GM-CSF, which can be substituted with another effector or suppressive cytokine or combinations of cytokines as CTL adjuvant is one example only including but not limited to microbial or viral protection and prevention of cytokine storms; and two different UTR are included followed by optimal length of poly(A), and cloned into a conventional vector. In second motif, one of the UTR is moved prior to the candidate peptide vaccine. In the third motif, multiple CoV-2 CTL vaccine peptides or other protective epitopes are in tandem and interspersed with promiscuous helper peptides for CD4 helper T cell induction.
(iv) Bifunctionality: B cell epitopes or using truncated CoV-2 proteins, for example different portions or functional segmental domains of the S protein, inserted either in replaced loop regions scaffolded by the adjacent constraining secondary structures, attached to the N- or C-terminus of the protein scaffolds in aforementioned (i) to (iii). Noticeably, RNA vaccines-encoded proteins are produced in the cytosol, functionally assembled in 3-D conformation to elicit B cell and T cell responses. Furthermore, the RNA vaccines synthesized in the cytosol via released from endosomes, or into ER and Golgi can be degraded into peptide fragments and are utilized in the MHC pathways to be presented for induction of CoV-2 CTL or for helper T cells. Thus, the RNA vaccine embodied in the invention will yield immunogenic and/or suppressive tolerogenic RNA vaccines in not only B cell epitopic protective antibody responses but also T cells protective responses, resulting in protection from microbial infection and cytokine storms from the inserted B cell and T cell epitopes in the loop regions of the protein scaffolds.
Embodying Three Designs for Cov-2 RNA Vaccines: First and Second Design Motifs Offer Both B Cell Epitopic as Well as CTL Nonameric (+1/−1), which are Processed Via the ER Stress Pathways.
The three prototype vaccines (SEQ ID: 1175; SEQ ID: 1177; SEQ ID: 1179) for accommodating the larger protein and peptide fragments are listed below; and the three filled-in examples (complete) with the candidate genes are chosen from the human IgE-mediated allergy therapeutic and tolerogenic sequences are listed in the Sequence Files as SEQ ID: 1176; SEQ ID: 1178; SEQ ID: 1180.
The RNA vaccines proposed are unique in taking the loop antigenic B and T cell epitopes or truncated polypeptide alone or onto the protein scaffolds (
Number | Date | Country | |
---|---|---|---|
62985792 | Mar 2020 | US |