The present invention relates to a cover for a component of a polishing apparatus.
There has been known a chemical-mechanical polishing (CMP) apparatus for polishing substrate surfaces in the manufacture of semiconductor devices. In the CMP apparatus, a polishing pad is attached to the upper surface of a polishing table to form a polishing surface. In this CMP apparatus, the surface to be polished of a substrate held by a top ring is pressed against the polishing surface and the polishing table and the top ring are rotated while supplying slurry serving as a polishing liquid to the polishing surface. Consequently, the polishing surface and the surface to be polished are relatively moved in a sliding manner and the surface to be polished is thus polished. When polishing is performed in this way, abrasive grains and polishing sludge adhere to the polishing surface, and therefore, polishing characteristics degrade gradually according to the operating time of the polishing apparatus. For this reason, the polishing surface is dressed at a predetermined point of time using a dresser.
Patent Literature 1: Japanese Patent Laid-Open No. 2007-168039
In the environment of usage of such a polishing apparatus as described above, slurry (including fine liquid particles thereof) scatters or floats to adhere to a cover for a component of the polishing apparatus (in particular, a component located in a low position), for example, a cover for a dresser. Most of slurry adherent to the cover runs off downward. If such liquid particles do not run off but are left to stand in a state of being deposited, however, the particles become dry and give rise to solidified matter. If this solidified matter should drop onto a substrate being polished, serious problems may occur, including the problem of scratches being produced on a surface to be polished.
Hence, there is a need for a cover to which a polishing liquid is less likely to stick and solidify. In addition, the cover is preferably configured to require only small amounts of installation man-hour and time.
The present invention has been accomplished in order to solve at least some of the above-described problems and can be carried out, for example, in the aspects to be described hereinafter.
According to a first embodiment of the present invention, there is provided a cover for a component of a polishing apparatus for polishing substrates. This cover is provided with a locking mechanism disposed inside the cover and configured to latch together the main body of the component and the cover. An external surface of the cover exposed to the outside has no recessed portion, and has no horizontal plane, except on a top portion of the cover.
According to such a cover as described above, the external surface of the cover exposed to the outside has no recessed portion. Accordingly, a polishing liquid does not scatter into a recessed portion and stay therein. In addition, the external surface has no horizontal plane, except on the top portion of the cover. Accordingly, a scattering polishing liquid is less likely to deposit on the external surface. It is therefore possible to prevent problems from arising as the result of the polishing liquid sticking to and solidifying on the cover, thus causing the sticking solidified matter to drop off from the cover during the polishing of a substrate. Furthermore, since the locking mechanism is disposed inside the cover, the main body of the component and the cover need not be bolt-fastened in a multitude of places. It is therefore possible to reduce amounts of man-hour and time required to attach the cover, compared with amounts of man-hour and time required in a configuration where the cover is bolt-fastened in a multitude of places. In addition, since the cover need not be bolt-fastened in a multitude of places, there are not formed any horizontal planes, such as a flange portion, used to overlay the cover on the main body of the component, and bolt heads. This also contributes to the advantage of the external surface of the cover exposed to the outside not having any horizontal planes, except on the top portion of the cover. That is, the constituent elements of the first embodiment interrelate with one another to make it possible to simultaneously realize both the prevention of the sticking and solidifying of a polishing liquid and the reduction of amounts of installation man-hour and time. Note that a polishing liquid is less likely to scatter onto the top portion of the cover, i.e., a portion of the cover positioned in the topmost location thereof. Accordingly, even if any horizontal planes are formed in the top portion of the cover, the polishing liquid is unlikely to stick to and solidifying on the horizontal planes.
According to a second embodiment of the present invention, in the first embodiment, the locking mechanism is provided with a ball catch mechanism or a magnet. According to such an embodiment as described above, the main body of the component and the cover can be latched together with a simple configuration.
According to a third embodiment of the present invention, in the first or second embodiment, the external surface of the cover exposed to the outside has water repellency. According to such an embodiment as described above, a polishing liquid, even if scattered onto the external surface of the cover exposed to the outside, drops off immediately, thus facilitating the effect of preventing the sticking and solidifying of the polishing liquid.
According to a fourth embodiment of the present invention, in one of the first to third embodiments, the thickness of the cover in an abutment portion thereof between an outer edge of the main body of the component and an outer edge of the cover is smaller than the thicknesses of the cover in portions thereof other than the abutment portion. According to such an embodiment as described above, it is possible to reduce the thickness-direction distance of the abutment portion between the outer edge of the main body of the component and the outer edge of the cover. Accordingly, it is possible to reduce a microscopic gap in the abutment portion (fine particles of the polishing liquid may enter this gap), thus making it possible to reduce the risk of the polishing liquid depositing in the gap, becoming stuck and solidified therein, and dropping off.
According to a fifth embodiment of the present invention, there is provided a component of the polishing apparatus. This component is provided with the main body thereof and the cover according to one of the first to fourth embodiments. Such a component of the polishing apparatus as described above has the same advantageous effect as that of one of the first to fourth embodiments.
According to a sixth embodiment of the present invention, in the fifth embodiment, a protruding part projecting toward the inner side of the cover is formed in an internal surface of the cover over the entire range of the cover along the horizontal direction thereof. The component is provided with a foamable sealing member disposed between the main body of the component and the protruding part. According to such an embodiment as described above, a space between the main body of the component and the cover is sealed with the foamable sealing member superior in shape followability in a case where the interior of the cover needs to be sealed up. Accordingly, suitable sealability can be obtained without having to adopt a configuration in which the cover is bolt-fastened in a multitude of places.
According to a seventh embodiment of the present invention, in the fifth or sixth embodiment, the component is provided with an auxiliary cover disposed on the cover and configured to cover a partial area of the cover. The cover includes, in the area to be covered with the auxiliary cover, a horizontal plane in which a bolt-hole used to fix together the cover and the main body of the component is formed. According to such an embodiment as described above, the cover can be bolt-fixed on the main body of component. Accordingly, it is possible to further strengthen the relation of fixing between the cover and the main body of the component. Note that since the cover and the main body of the component are fixed to each other with the locking mechanism, a sufficiently strong relation of fixing can be obtained simply by bolt-fastening the cover and the main body in a reduced number of places (for example, one place). Any significant increase is therefore not caused in the amounts of man-hour and time required in cover installation. Furthermore, since the bolt-fixed place is located within an area not exposed to the outside, a polishing liquid does not stick to and solidify on either the horizontal plane in which the bolt-hole is formed, or the bolt head.
According to an eighth embodiment of the present invention, a polishing apparatus is provided. This polishing apparatus is provided with the component according to one of the fifth to seventh embodiments. Such a polishing apparatus as described above has the same advantageous effect as that of one of the fifth to seventh embodiments.
The top ring 30 holds a wafer W on the lower surface of the top ring 30 with a holding mechanism (for example, a vacuum chuck mechanism). This top ring 30 is supported with a support arm 35 located above the top ring 30. The support arm 35 can be moved in a vertical direction by an actuator (not illustrated), such as an air cylinder and a motor. In addition, the support arm 35 is configured to be capable of rotating the top ring 30 with the wafer W held thereon.
The polishing liquid supply nozzle 40 supplies slurry serving as a polishing liquid and a dressing liquid (for example, water) to the polishing surface of the polishing pad 25. The dresser 50 includes a dresser arm 51 and a dressing member 52 rotatably attached to the leading end of the dresser arm 51. Such a dresser 50 as described above dresses the polishing surface if predetermined amounts of abrasive grains and polishing sludge adhere to the polishing surface. The dresser arm 51 is configured to be able to swing (arc motion) around the base end (the end on the opposite side of the dressing member 52) thereof. The dresser arm 51 retreats the dressing member 52 from the polishing table 20 when the wafer W is polished.
In such a polishing apparatus 10 as described above, the wafer W is polished in the manner described below. First, the top ring 30 holding the wafer W is rotated, and the polishing table 20 is rotated as well. Under such a condition, slurry serving as a polishing liquid is supplied from the polishing liquid supply nozzle 40 to the polishing surface of the polishing pad 25, and the rotating top ring 30 is brought down. A surface (surface to be polished) of the wafer W is thus pressed against the polishing surface of the rotating polishing pad 25. Consequently, the surface to be polished of the wafer W and the polishing surface of the polishing pad 25 move relatively, while being placed in contact with each other under the presence of the slurry, and the surface to be polished of the wafer W is thus polished. During such a polishing treatment as described above, the slurry mainly turns into fine liquid particles and scatters in the vicinity of the polishing apparatus.
As illustrated in
According to such a configuration as described above, slurry does not scatter into recessed portions and stay therein. In addition, since the external surfaces of the cover 70 exposed to the outside have no horizontal plane, except on the central portion 71a, slurry scattering onto the external surfaces easily drops off. Accordingly, slurry is prevented from sticking to the external surfaces for a prolonged period of time. It is therefore possible to prevent problems from arising as the result of the slurry scattering onto the external surfaces of the cover 70 and sticking to and solidifying on the surfaces, thus causing sticking and solidified matter to drop off during the polishing of the wafer W. In addition, the external surfaces of the cover 70 exposed to the outside have water repellency in the present embodiment. Accordingly, scattering slurry drops off immediately, thus facilitating the effect of preventing the sticking and solidifying of the slurry. A water-repellent property can be imparted to the external surfaces of the cover 70 by coating the surfaces with, for example, water-repellent paint. Note that in the present embodiment, the central portion 71a of the top surface 71, though formed as a horizontal plane, is relatively high among the portions of the cover 70. Accordingly, it is unlikely that slurry scatters upward against gravitational force from the supply port of the polishing liquid supply nozzle 40 and the polishing pad 25, reaches the central portion 71a, and sticks thereto and solidifies thereon. The same holds true for an upper surface 81 of the auxiliary cover 80 formed as a horizontal plane.
As illustrated in
As illustrated in
On the other hand, the cover 70 of the above-described present embodiment need not be bolt-fastened in a multitude of places, and therefore, the flange portion 173 and the heads of the bolts 181 are not formed. That is, the cover 70 can simultaneously realize both the prevention of the sticking and solidifying of slurry and the reduction of amounts of installation man-hour and time by means of the interrelation between the installation structure and configuration of the cover 70.
The above-described various configurations are not limited to the dresser 50 but applicable to any components which constitute the polishing apparatus 10 and to which slurry may scatter.
While some embodiments of the present invention have thus been described, the above-described embodiments of the present invention are merely examples for easy understanding of the present invention and are not intended to limit the present invention. It is a matter of course that the present invention may be modified or improved without departing from the spirit of the invention and that the present invention includes the equivalents thereof. In addition, arbitrary combinations of the constituent elements described in the appended claims and the specification or omission of any one or more of the constituent elements is possible to the extent of being able to achieve at least part of the above-described object or exercise at least part of the above-described advantageous effect. For example, a configuration in which the cover is provided with a locking mechanism disposed inside the cover and used to latch together the main unit of a component part and the cover may be embodied independently, apart from the shape of the external surfaces of the cover exposed to the outside. Such a configuration has the effect of suitably reducing amounts of man-hour and time required to attach the cover, as described above.
This application claims priority to Japanese Patent Application No. 2014-072227, filed on Mar. 31, 2014, and the entire content of this disclosure is incorporated herein by reference.
10: Polishing apparatus
20: Polishing table
25: Polishing pad
30: Top ring
35: Support arm
40: Polishing liquid supply nozzle
50: Dresser
51: Dresser arm
52: Dressing member
60: Dresser arm body
61: Step
62: Horizontal plane
63: Supporting section
64: Bolt-hole
70: Cover
71: Top surface
71
a: Central portion
71
b: Reinforcement rib
72: Side surface
73: Opening
74: Horizontal plane
75: Bolt-hole
76: Surface
77: Protruding part
78: Edge face
80: Auxiliary cover
81: Upper surface
91: Ball catch mechanism
92: Foamable sealing member
W: Wafer
Number | Date | Country | Kind |
---|---|---|---|
2014-072227 | Mar 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/059631 | 3/27/2015 | WO | 00 |