The present invention relates generally to a covered stent and a preparation method therefor. More particularly, the present invention relates to a covered stent and a preparation method therefor, wherein the covered stent is capable of widening a stenosed site by being implanted in the stenosed site caused by a lesion occurring in various organs such as the biliary tract, the esophagus, the respiratory tract and the ureter, or in a transjugular intrahepatic portosystemic shunt, is capable of maintaining a bent state in accordance with a shape of a lumen even when being implanted within the lumen in a bent state, and is capable of preventing a stent having a long length, such as an esophageal stent or an obesity-preventing stent to be implanted in the esophagus, from twisting.
In general, stents are implanted in the internal organs so as to push the lesion site and widen the stenosed organ. Such a stent is configured with a hollow cylindrical body having a plurality of rhombic openings by weaving one or more shape-memory alloy wires in an overlapping manner. Recently, various kinds of stents having different shapes have been developed.
Such a stent tends to remain straight, so there is a problem in that when the stent is implanted within a meandering tubular organ in the human body, the organ is brought to be straightened.
In an effort to solve the above-mentioned problem, Korean Patent No. 10-0457629 disclosed a stent capable of being maintained in a bent state.
With reference to
When the stent 6 is bent under the action of external force, the wires 1 and 2 travel respectively such that the rhombic opening 5 is reduced or increased in size, thus the stent is maintained in the bent state.
Accordingly, the stent 6 is maintained in the bent state in such a manner as to be implanted within meandering tubular organs in the human body.
However, the stent 6 is problematic in that an invasively growing lesion may grow through the rhombic opening 5 of the stent 6 when the stent is implanted in an internal organ where a growing lesion is present, thereby obstructing the movement of food, blood, various body fluids such as biliary fluid, etc. inside a passage of the stent 6.
In an effort to solve the above-mentioned problem, as shown in
Such a covered stent 8 is advantageous in that the rhombic opening 5 is blocked by a coating layer of silicone or PTFE 7, so it is possible to prevent invasion of the lesion into the covered stent 8, and is thus mainly implanted in organs having a lesion site that continues to grow.
However, there is a contradictory problem in that the coating layer of silicone or PTFE 7 blocks the rhombic opening 5, and at the same time completely fixes wires 1 and 2 that comprise the rhombic opening 5, such that the wires 1 and 2 are prevented from traveling freely even when external force is applied, and thus the covered stent 8 cannot be maintained in the bent state.
Thus, the covered stent 8 has the same problem of being maintained in the bent state as that of a conventional stent that tends to be returned to the straight shape, whereas the covered stent is employed in the meandering internal organs.
In an effort to overcome such disadvantages, Korean Patent No. 10-1006990 has been disclosed.
With reference to
With reference to
However, such the stent 6 is problematic in that since an upper surface of the tape 10 of PTFE is coated with the coating layer 12 of silicone, the tape 10 and the coating layer 12 are separated from each other due to heterogeneity.
Moreover, an upper surface of the tape 10 of PTFE is coated with the coating layer 12 of silicone, so there is a problem in that although it is required that the stent be maintained in a bent state after being bent, it is difficult for the stent to be maintained in the bent state due to a property of returning to the original shape, which is possessed by the coating layer 12 of silicone.
In addition, since an inside of the stent is coated with the coating layer 12 of silicone, it is difficult for the stent to be maintained in the bent state after the stent coated with dried the coating layer is bent, due to the said property of returning to the original shape, which is possessed by the coating layer 12 of silicone.
Furthermore, due to this reason, when the stent is bent at a certain angle or more, twisting of the stent occurs due to the coating layer 12 of silicone on the inside and outside of the stent, so it is difficult for the stent to be returned to the original shape, namely the straight shape, when the stent is required to be returned to the original shape after being bent. In order to solve these problems, as shown in
However, in this case, since the outside of the stent is exposed, the lesion grows into the stent through the rhombic openings 5 when the stent is implanted within a lumen of the human body. Thus, there is a further problem in that the growing lesion forces the coating layer 12 of silicone on the inside of the stent toward the inside of the passage of the stent, and thus the coating layer 12 blocks the passage of the stent.
Accordingly, the present invention has been made keeping in mind the above problems occurring in the related art, and the present invention is intended to propose a covered stent capable of being maintained in a bent state and preventing invasion of the lesion into the covered stent of the present invention by solving a problem of a conventional stent having bending characteristics.
In order to achieve the above object, according to one aspect of the present invention, there is provided a covered stent, wherein pieces of PTFE tape made of the same material can be maintained in a bonded state with each other through only a partial bonding on the inside and outside of a cylindrical stent, so it is possible to prevent the pieces of PTFE tape from being separated from each other. Due to this, the PTFE tape can be kept in a state of covering an entire outer surface of the cylindrical stent so it is possible to prevent invasion of a lesion into the cylindrical stent, moreover, the PTFE tape is allowed not to be provided at a part of the inside of the cylindrical stent so that the PTFE tape provided on the outside of the cylindrical stent and the cylindrical stent can remain free with respect to each other, and thus the cylindrical stent can be freely maintained in the bent state.
According to the present invention having the above-described characteristics, the present invention maintains excellent bending characteristics so it is possible to be implanted within a bent lumen in accordance with the degree of bending of the lumen. Moreover, since a PTFE tape covers on an entire outer surface of a cylindrical stent, it is possible to prevent invasion of a lesion such as growing cancerous cells inside a covered stent of the present invention even though the covered stent is implanted within any part of a lumen. In addition, pieces of PTFE tape made of the same material can be maintained in a bonded state with each other through only a partial bonding on the inside and outside of the cylindrical stent such that it is possible to prevent the pieces of PTFE tape from being separated from each other. Due to this, the PTFE tape can be kept in a state of covering the entire outer surface of the cylindrical stent.
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. With reference to
A process of winding PTFE tape 10 on the jig 70 at sections E divided in a lengthwise direction of the jig 70 with intervals D is carried out.
In this state, a process of fitting the cylindrical stent 52 having a plurality of rhombic openings 5 that are formed by weaving different shape-memory alloy wires 1 and 2 alternatively with a plurality of interlocking portions 3 and a plurality of intersection portions 4 such that the rhombic openings 5 are changeable in size by external force, over the jig 70 taped with the PTFE tape 10 at the sections E is carried out.
In this state, a process of winding a PTFE tape 10-1 on an entire outer surface of the cylindrical stent 52 is carried out.
After completion of the process of winding the PTFE tape 10-1 on the entire outer surface of the stent 52, heat and pressure are applied by using a heating and pressurizing device. By this process, the PTFE tape 10 provided on an inside of the cylindrical stent 52 and the PTFE tape 10-1 provided on an outside of the cylindrical stent 52 are bonded to each other through the rhombic openings 5 that comprise cylindrical stent 52, whereas the PTFE tape 10-1 provided at the intervals D on the outside of the cylindrical stent 52 remains free relative to the cylindrical stent 52 because no PTFE tape 10 is provided at the intervals D to be bonded to the PTFE tape 10-1.
In other words, at the sections E, the PTFE tape 10-1 provided on the outside of the cylindrical stent 52 and the PTFE tape 10 provided on the inside of the cylindrical stent 52 remain bonded to each other with the cylindrical stent 52 interposed therebetween. At the intervals D, the PTFE tape 10-1 provided on the outside of the cylindrical stent 52 remains free relative to the cylindrical stent 52.
A covered stent 100 having bending characteristics of the present invention is prepared by the above processes and is removed from the heating and pressurizing device, whereafter the covered stent 100 having bending characteristics of the present invention is removed from the jig 70. Here, since the outer surface of the cylindrical rod 50 is coated with the coating solution 60 of silicone or the similar lubricous material, it is possible to easily separate the covered stent 100 from the jig 70.
With reference to
As a result, it can be seen that the covered stent 100 having the bending characteristics of the present invention is capable of being maintained in the bent state at the intervals D.
Here, the intervals D may be increased or reduced in number and width as occasion demands, and may be varied to have different widths D1, D2, and D3 as shown in
Likewise, the sections E may be increased or reduced in number and width as occasion demands, and may be varied to have different widths E1, E2, and E3 as shown in
With reference to
Further, with reference to
Moreover, with reference to
As described above, according to the present invention, it can be understood that the present invention is a stent that maintains excellent bending characteristics, and thereby can be implanted within a bent lumen in accordance with the degree of bending of the lumen.
In addition, since the PTFE tape 10-1 is provided on the entire outer surface of the cylindrical stent 52, it is possible to prevent invasion of a lesion such as growing cancerous cells inside the covered stent 100 of the present invention even though the present invention is implanted within any part of a lumen, thereby being capable of performing intrinsic functions of a stent.
Thus, according to the present invention, pieces of PTFE tape made of the same material can remain bonded to each other through only a partial bonding on the inside and outside of the cylindrical stent such that it is possible to prevent the pieces of PTFE tape from being separated from each other. Due to this, the PTFE tape can be kept in a state of covering the entire outer surface of the cylindrical stent, such that it is possible to prevent invasion of the lesion into the cylindrical stent. Moreover, the PTFE tape is allowed not to be provided at a part of the inside of the cylindrical stent so that the PTFE tape provided on the outside of the cylindrical stent and the cylindrical stent can remain free relative to each other, and thus the cylindrical stent can be freely maintained in the bent state.
Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0087700 | Jul 2014 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2015/007167 | 7/10/2015 | WO | 00 |