The present invention relates to protective covers and, more particularly, to protective covers for distribution lines and insulators, such as power distribution lines and associated insulators.
Support structures, such as utility poles, are often used to suspend electrical lines, such as power distribution lines, above the ground. These support structures are generally located outdoors and may be of a variety of different configurations to suspend one or more lines. One problem with such lines, particularly with power distribution lines that transmit electrical power at high voltages, is that birds or other animals may land or climb onto the lines. Such contact of distribution lines by animals, particularly adjacent the support structure, may cause a short or electrical flash-over allowing current flow through the animal, which may cause a power outage or other problem with the power distribution system.
According to embodiments of the present invention, a cover for a distribution line conductor includes a cover body defining a channel extending along a lengthwise axis and adapted to receive the conductor. A unitarily formed attachment structure adjoins the cover body. The attachment structure includes first and second jaws positioned adjacent the channel. The first and second jaws are positioned at different locations along a jaw axis parallel to the lengthwise axis and, in a closed position, overlap one another across the jaw axis. The first and second jaws are relatively deflectable from the closed position to an open position to permit passage of the conductor therebetween and into the channel and the first and second jaws can thereafter return toward the closed position to secure the conductor in the channel.
According to further embodiments of the present invention, a cover for an insulator body and a distribution line conductor coupled thereto includes a cover body. The cover body includes a main body portion and a lateral body extension. The main body portion defines a chamber to receive the insulator body. The lateral body extension defines a channel to receive the conductor, and the main body portion and the lateral body extension each open to a receiving side of the cover. A stud bore is defined in the main body portion and is adapted to receive and engage the stud to secure the cover to the insulator body.
According to further embodiments of the present invention, a surge arrestor assembly for use with a distribution line conductor includes a surge arrestor and a cover. The surge arrestor is adapted to operatively couple with the conductor and to redirect electrical current from the conductor in the event of an overvoltage event. The cover is adapted to be mounted on the surge arrestor. The cover includes a cover body including a main body portion and a lateral body extension. The main body portion defines a chamber to receive the surge arrestor. The lateral body extension defines a channel to receive the conductor. The main body portion and the lateral body extension each open to a receiving side of the cover.
According to further embodiments of the present invention, a cover for use with an insulator body includes a cover body defining a channel extending along a lengthwise axis and adapted to receive the insulator body. A unitarily formed attachment structure adjoins the cover body. The attachment structure includes first and second jaws positioned adjacent the channel. The first and second jaws are positioned at different locations along a jaw axis parallel to the lengthwise axis and, in a closed position, overlap one another across the jaw axis. The first and second jaws are relatively deflectable from the closed position to an open position to permit passage of the insulator body therebetween and into the channel and the first and second jaws can thereafter return toward the closed position to secure the insulator body in the channel.
Further features, advantages and details of the present invention will be appreciated by those of ordinary skill in the art from a reading of the figures and the detailed description of the preferred embodiments that follow, such description being merely illustrative of the present invention.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which illustrative embodiments of the invention are shown. In the drawings, the relative sizes of regions or features may be exaggerated for clarity. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
It will be understood that when an element is referred to as being “coupled” or “connected” to another element, it can be directly coupled or connected to the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly coupled” or “directly connected” to another element, there are no intervening elements present. Like numbers refer to like elements throughout. As used herein the term “and/or” includes any and all combinations of one or more of the associated listed items.
In addition, spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Well-known functions or constructions may not be described in detail for brevity and/or clarity.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
With reference to
As best seen in
Turning to the protective cover 100 in more detail and as best seen in
As best seen in
In this embodiment, the arms 140 are mirror images of one another and therefore only one of the arms 140 will be described in detail, it being understood that such description applies likewise to the other arm 140. The arm 140 has a pair of opposed, spaced apart sidewalls 142, 144 adjoining and extending laterally outwardly from the main body 110 along the lengthwise axis C-C (which is transverse to the vertical axis V-V) to respective wall ends 142A, 144A (
An attachment structure 160 is located on the outer end of the arm 140. The attachment structure 160 includes an inner wall or jaw 162 joined to the end 142A of the sidewall 142. The attachment structure 160 further includes an outer wall or jaw 164 joined to the end 144A of the sidewall 144. The jaws 162, 164 have respective convex inner edges 162A, 164A and respective concave latching edges 162B, 164B. When the attachment structure 160 is in a closed position as shown in
As best seen in
The cover 100 may be formed of any suitable material. According to some embodiments, the cover 100 is formed of a flexible polymeric material. According to some embodiments, the cover 100 is formed of a track resistant, insulating grade, UV stable polymer. The main body 110, the arms 140 and the attachment structures 160 may be formed of the same or different materials. Preferably, the jaws 162, 164 are formed of a rigid or semi-rigid material. According to some embodiments, the material of the jaws 162, 164 has a secant modulus of at least 25,000 psi. According to some embodiments, the material of at least the arms 140 has a tensile strength of from about 1200 to 2500 psi. According to some embodiments, the attachment structures 160 are unitarily and integrally formed with the walls 142, 144, 146. According to some embodiments, the main body 110, the arms 140 and the attachment structures 160 are unitarily and integrally formed. According to some embodiments, the cover 100 is unitarily molded. According to some embodiments, the cover 100 is unitarily injection molded.
The cover 100 may be mounted on the arrestor 50 and the conductor 20 in the following manner. The conductor 20 is first installed on the arrestor 50 in conventional or other suitable manner as shown in
More particularly, and with reference to one of the arms 140 (it being understood that the other arm 140 operates in the same manner), the cover 100 is forced in a downward direction I as shown in
When the jaws 162, 164 return toward or to the closed position, portions of the latch edges 162B, 164B locate below the conductor 20 (i.e., between the conductor 20 and the channel opening 152) so that the conductor 20 is mechanically secured or interlocked in the channel 150. According to some embodiments, the sidewalls 142, 144, the connecting wall 146 and the latch edges 162B, 164B surround the circumference of the conductor 20 by at least 360 degrees. According to some embodiments, the jaw inner edges 162A, 164A at least partially overlap and the sidewalls 142, 144, the connecting wall 146 and the latch edges 162B, 164B surround the circumference of the conductor 20 by greater than about 360 degrees, and according to some embodiments by greater than about 400 degrees.
As the cover 100 is placed onto the surge arrestor 50 and the conductor 20 as described above, the stud 54 is received in the bore 126. According to some embodiments, the bore 126 is sized and configured to provide an interference fit between the stud 54 and the interior of the boss 124 so that the boss 124 grips the stud 54. The engagement between the stud 54 and the boss 124 may serve to restrict rotation of the cover 100 about the conductor 20 and to resist removal of the cover 100 from the arrestor 50.
The cover 100 can be installed on a “hot” or powered line using gloves or the like. The cover 100 may be modified to allow installation with a hot stick. In accordance with some embodiments, the attachment structure 160 automatically springs back to the closed or locked position once the conductor 20 is in place, thereby reducing the degree and complexity of manipulation needed to complete the installation. Removal may be accomplished by forcing the jaws 162, 164 apart (e.g., by hand or using a tool) and lifting the cover 100 off of the conductor 20.
Notably, the cavity 116 and the channels 150 both open from the same receiving side (i.e., the bottom side) of the cover 100 so that the cover 100 can be mounted on the arrestor 50 and the conductor 20 without requiring disconnection of the conductor 20 from the arrestor 50. Likewise, the configuration of the cover may allow for removal of the cover 100 from the arrestor 50 and the conductor 20 without requiring disconnection of the conductor 20 from the arrestor 50.
In addition to providing for convenient and positive attachment of the cover 100 to the conductor 20, the configuration of the attachment structures 160 may allow for improved flexibility, efficiency and/or cost-effectiveness in manufacture. The lengthwise-staggered, overlapping jaws 162, 164 do not require the formation of an undercut that may require special provision in the molding of the cover 100. In the cover 100 as illustrated, such an undercut is avoided by providing the notch 172 above the jaws 162, 164. The notch 172 may also serve to reduce the force required to open the jaws 162, 164 to permit insertion of the conductor 20.
The cover 100 may be adapted for use with a prescribed range of conductor sizes. According to some embodiments, for any conductor within the prescribed range of sizes, an insertion force of no more than 20 lbs. and of no less than 1 lbs. is required to install each attachment structure 160 onto the conductor.
The cover 100 can likewise be sized and configured to fit over a range of surge arrestor sizes. According to some embodiments, the cover 100 provides a minimum or nominal air gap between the electrically conductive portions of the arrestor 50 and the lower edge 114A of the main body 110 of at least ¼ inch. According to some embodiments, and as shown, the cover 100 is configured such that the sidewall 114 fits around and over the first (i.e., uppermost) skirt 52B of the arrestor 50. According to some embodiments, the diameter M of the cavity 116 is between about 4.75 and 5 inches. According to some embodiments, the depth K (
The arrestor 50 and the cover 100 may be provided as a matched combination or kit 51 (
While the cover 100 has been described as mounted on a surge arrestor 50, the cover 100 or covers otherwise formed in accordance with the present invention may be used with other types of devices. For example, the body of the cover 100 may be differently shaped. The arms 140 may be omitted and the attachment structures 160 formed directly on the main body 110. The arms 140 may be relatively positioned at different locations about the main body 110. More or fewer arms 140 may be provided.
The cover 100 may be mounted on a different type of insulated component than a surge arrestor. For example, the cover 100 may be mounted on a simple insulator. Covers in accordance with the present invention may be mounted on a conductor without also covering an insulator or the like. For example, the cover may be configured to cover only a length of conductor and incorporate one or more attachment structures such as the attachment structures 160 to secure the cover to the length of conductor.
With reference to
The T-shaped conductor slot 274 has a narrow lower slot portion 274B and a relatively wider upper slot portion 274A. The T-shaped conductor slot 274 can serve accommodate conductors at various offset positions relative to the cover 200. For example, the conductor may be mounted at one of several centered or offset positions relative to the insulator body on which the cover 200 is mounted. The T-shaped conductor slot 274 may accommodate each of these positions by permitting the conductor to pass through the lower slot portion 274B or the left, right or center portions of the upper slot portion 274A. Thus, the T-shaped conductor slot 274 may accommodate both lateral and heightwise offset of the conductor.
With reference to
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention. Therefore, it is to be understood that the foregoing is illustrative of the present invention and is not to be construed as limited to the specific embodiments disclosed, and that modifications to the disclosed embodiments, as well as other embodiments, are intended to be included within the scope of the invention.