The present invention is related to microelectronic devices and methods for packaging microelectronic devices. Several aspects of the present invention are directed toward covers for protecting image sensors and methods for wafer-level packaging of microelectronic imaging units that are responsive to radiation in the visible light spectrum or in other spectrums.
Microelectronic imagers are used in digital cameras, wireless devices with picture capabilities, and many other applications. Cell phones and Personal Digital Assistants (PDAs), for example, incorporate microelectronic imagers for capturing and sending pictures. The growth rate of microelectronic imagers has been steadily increasing as they become smaller and produce better images with higher pixel counts.
Microelectronic imagers include image sensors that use Charged Coupled Device (CCD) systems, Complementary Metal-Oxide Semiconductor (CMOS) systems, or other systems. CCD image sensors have been widely used in digital cameras and other applications. CMOS image sensors are also becoming very popular because they have low production costs, high yields, and small sizes. CMOS image sensors provide these advantages because they are manufactured using technology and equipment developed for fabricating semiconductor devices. CMOS image sensors, as well as CCD image sensors, are accordingly “packaged” to protect their delicate components and provide external electrical contacts.
The die 10 includes an image sensor 12 and a plurality of bond-pads 14 electrically coupled to the image sensor 12. The interposer substrate 20 is typically a dielectric fixture having a plurality of bond-pads 22, a plurality of ball-pads 24, and traces 26 electrically coupling bond-pads 22 to corresponding ball-pads 24. The ball-pads 24 are arranged in an array for surface mounting the imager 1 to a board or module of another device. The bond-pads 14 on the die 10 are electrically coupled to the bond-pads 22 on the interposer substrate 20 by wire-bonds 28 to provide electrical pathways between the bond pads 14 and the ball-pads 24.
The imager 1 shown in
One problem with conventional packaged microelectronic imagers is that they have relatively large footprints and occupy a significant amount of vertical space (i.e., high profiles). For example, the footprint of the imager 1 in
Yet another problem of the conventional imager 1 shown in
Another concern of conventional microelectronic imagers is the drive to reduce costs for packaging the dies. The housing 30 shown in
A. Overview
The following disclosure describes several embodiments of methods for forming and attaching covers to microelectronic imaging units, packaging microelectronic imagers at the wafer level, and microelectronic imagers having covers that protect the image sensor. Several embodiments of the invention attach covers to the imaging units early in the packaging process to protect the image sensors during subsequent assembly and packaging procedures. Several embodiments of covers for microelectronic imaging units and methods for attaching such covers to microelectronic imaging units are expected to significantly reduce the cost for assembling imaging units and produce more robust microelectronic imagers compared to conventional devices. Moreover, the covers can be formed and installed at the wafer-level, which is expected to significantly enhance the efficiency of manufacturing microelectronic imagers because a plurality of imaging units can be packaged simultaneously using highly accurate and efficient processes developed for fabricating semiconductor devices.
One aspect of the invention is directed toward wafer-level processes for forming a plurality of covers for use in microelectronic imaging units. An embodiment of one such method comprises providing a cover workpiece having a first substrate transmissive to a radiation and a plurality of covers on and/or in the first substrate. The covers have windows comprising regions of the first substrate and stand-offs projecting from the windows. The method further includes providing a microelectronic workpiece including a second substrate having a plurality of microelectronic dies. The dies have image sensors, integrated circuits electrically coupled to the image sensors, and a plurality of terminals (e.g., bond-pads) electrically coupled to corresponding integrated circuits. The method continues by assembling the covers with corresponding dies so that windows are aligned with corresponding image sensors and the stand-offs contact corresponding dies inboard of the terminals and outboard of the image sensors. The first substrate is then cut to singulate the individual covers. After cutting the first substrate, the second substrate is cut to singulate the individual imaging units.
Another aspect of the present invention is directed toward microelectronic imaging unit assemblies that are packaged or otherwise used in wafer-level packaging of microelectronic imaging units. One-embodiment of a microelectronic imaging unit assembly in accordance with the invention comprises a cover workpiece and a microfeature workpiece. The cover workpiece includes a first substrate transmissive to a desired radiation with a plurality of covers. The individual covers include a window and a stand-off projecting from the window. The microfeature workpiece includes a second substrate with a plurality of microelectronic dies. Individual dies include an image sensor, an integrated circuit electrically coupled to the image sensor, and a plurality of terminals (e.g., bond-pads) electrically coupled to the integrated circuit. The first and second substrates are coupled together so that (a) the windows are aligned with corresponding image sensors, and (b) the stand-offs of individual covers are between an individual image sensor and the terminals corresponding to the individual image sensor such that the stand-offs do not completely cover the terminals.
Specific details of several embodiments of the invention are described below with reference to CMOS imagers to provide a thorough understanding of these embodiments, but other embodiments can be CCD imagers or other types of imagers. Several details describing well-known structures often associated with microelectronic devices are not set forth in the following description to avoid unnecessarily obscuring the description of the disclosed embodiments. Moreover, although the following disclosure sets forth several embodiments of different aspects of the invention, several other embodiments of the invention can have different configurations or different components than those described in this section. As such, it should be understood that the invention may have other embodiments with additional elements or without several of the elements shown and described below with reference to
B. Fabricating Imaging Units for Use in Microelectronic Imagers
The first substrate 202 is transmissive to a desired spectrum of radiation. For example, when the imaging dies are for use in digital cameras, the first substrate 202 is transmissive to light in the visible spectrum. The first substrate 202, however, can be transmissive to ultraviolet (UV) light, infrared radiation (IR) and/or any other suitable spectrum according to the particular application of the imaging die. The first substrate 202 can be composed of glass, quartz, plastics, and/or other suitable materials. In embodiments directed toward imaging radiation in the visible spectrum, the first substrate 202 can also have films that filter UV, IR, or other undesirable spectrums of radiation. The first substrate 202, for example, can be formed of a material and/or have a coating that filters IR or near IR spectrums, and the first substrate 202 can have an anti-reflective coating.
After attaching the first substrate 202 to the second substrate 232 as described above, the first substrate 202 is cut along lines A-A to singulate the individual covers 220 and expose the terminals 256 on each die 250. The first substrate 202 is cut along lines A-A without contacting the underlying terminals 256 or the second substrate 232 with the cutting blades. The first substrate 202 is generally cut with blade pairs 270 arranged in a gang, but different methods can be used to cut the first substrate 202 along lines A-A (e.g., a laser).
Referring next to
One advantage of several embodiments for fabricating microelectronic imaging units described above with respect to
Yet another advantage of the processes for fabricating the imaging units 280 described above is that there is no need for additional spacers or support members to support the covers 220 over the individual dies 250. The stand-offs 222 are integral components of the individual covers 220-and are attached to the individual dies 250 to accurately position each cover 220 over corresponding image sensors 254 on the dies 250. This is an efficient manufacturing process because there is no need for additional steps or processes to construct spacer elements on the dies 250, mount individual cover windows to such spacers, or mount a separate housing to an interposer substrate. Further, the stand-offs 222 on the covers 220 provide very precise control of the stand-off distance for the covers 220 with respect to the image sensors 254.
Referring next to
The first substrate 502 further includes a plurality of stand-offs 522 on one side (e.g., the first side 504) of the first substrate 502. The stand-offs 522 can be composed of the same material as the first substrate 502, but the stand-offs 522 are generally composed of a different material. For example, the first substrate 502 can be quartz and the stand-offs 522 can be an epoxy or other polymer. The stand-offs 522 project away from the first substrate 502 at the individual device sites 510 in a pattern corresponding to the pattern of image sensors 254 and terminals 256 on the microfeature workpiece 230 (
The stand-offs 522 can be formed on the first substrate 502 using screen-printing processes, three-dimensional stereolithography techniques, or other disposing processes. In still further embodiments, the stand-offs 522 are formed on the first substrate 502 by molding material onto the substrate or attaching pre-formed stand-offs onto the substrate. After the plurality of stand-offs 522 have been formed on the first substrate 502, the cover workpiece 500 can be cut along lines E-E either before or after attaching the stand-offs 522 to the second substrate 232 as shown in either
C. Packaging of Microelectronic Imagers
The die 650 differs from the die 250 shown in
In another aspect of the embodiment illustrated in
The plate 692 and optic member 694 are supported by a support member 696 that accurately situates the optic member 694 at a desired location with respect to the image sensor 654. Suitable support members 696 with corresponding interface features are disclosed in U.S. application Ser. No. 10/723,363, entitled “Packaged Microelectronic Imagers and Methods of Packaging Microelectronic Imagers,” filed on Nov. 26, 2003, which is herein incorporated by reference in its entirety. The plate 692 is attached to the support member 696 in the embodiment shown in
One advantage of the imager 600 illustrated in
A further advantage of the imager 600 illustrated in
The imaging unit 280 can be attached to the interposer substrate 702 with an adhesive film, an epoxy, or another suitable material. After attaching the imaging unit 280 to the interposer substrate 702, a plurality of wire-bonds 722 are formed to electrically couple the die 250 to the interposer substrate 702. The imager 700 can further include the optics unit 690 attached to the cover 220 and aligned with the image sensor 254.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, the microelectronic imaging units and microelectronic imagers can have any combination of the features described above with reference to
Number | Name | Date | Kind |
---|---|---|---|
3345134 | Heymer et al. | Oct 1967 | A |
3448354 | Cohen | Jun 1969 | A |
3913217 | Misawa et al. | Oct 1975 | A |
4288284 | Kobayashi et al. | Sep 1981 | A |
4534100 | Lane | Aug 1985 | A |
4906314 | Farnworth et al. | Mar 1990 | A |
4941255 | Bull | Jul 1990 | A |
5070041 | Katayama et al. | Dec 1991 | A |
5130783 | McLellan | Jul 1992 | A |
5371397 | Maegawa et al. | Dec 1994 | A |
5424573 | Kato et al. | Jun 1995 | A |
5435887 | Rothschild et al. | Jul 1995 | A |
5447601 | Norris | Sep 1995 | A |
5505804 | Mizuguchi et al. | Apr 1996 | A |
5591563 | Suzuki et al. | Jan 1997 | A |
5593913 | Aoki | Jan 1997 | A |
5604160 | Warfield | Feb 1997 | A |
5605783 | Revelli et al. | Feb 1997 | A |
5672519 | Song et al. | Sep 1997 | A |
5694246 | Aoyama et al. | Dec 1997 | A |
5708293 | Ochi et al. | Jan 1998 | A |
5771158 | Yamagishi et al. | Jun 1998 | A |
5776824 | Farnworth et al. | Jul 1998 | A |
5811799 | Wu | Sep 1998 | A |
5821532 | Beaman et al. | Oct 1998 | A |
5857963 | Pelchy et al. | Jan 1999 | A |
5861654 | Johnson | Jan 1999 | A |
5877040 | Park et al. | Mar 1999 | A |
5897338 | Kaldenberg | Apr 1999 | A |
5914488 | Sone | Jun 1999 | A |
5915168 | Salatino et al. | Jun 1999 | A |
5950074 | Glenn et al. | Sep 1999 | A |
5977535 | Rostoker | Nov 1999 | A |
5998862 | Yamanaka | Dec 1999 | A |
6080291 | Woodruff et al. | Jun 2000 | A |
6104086 | Ichikawa et al. | Aug 2000 | A |
6114240 | Akram et al. | Sep 2000 | A |
6143588 | Glenn | Nov 2000 | A |
6236046 | Watabe et al. | May 2001 | B1 |
6259083 | Kimura | Jul 2001 | B1 |
6266197 | Glenn et al. | Jul 2001 | B1 |
6274927 | Glenn | Aug 2001 | B1 |
6285064 | Foster | Sep 2001 | B1 |
6351027 | Giboney et al. | Feb 2002 | B1 |
6372548 | Bessho et al. | Apr 2002 | B2 |
6407381 | Glenn et al. | Jun 2002 | B1 |
6411439 | Nishikawa | Jun 2002 | B2 |
6428650 | Chung | Aug 2002 | B1 |
6483652 | Nakamura | Nov 2002 | B2 |
6503780 | Glenn et al. | Jan 2003 | B1 |
6541762 | Kang et al. | Apr 2003 | B2 |
6558986 | Choi et al. | May 2003 | B1 |
6566745 | Beyne et al. | May 2003 | B1 |
6603183 | Hoffman | Aug 2003 | B1 |
6617623 | Rhodes | Sep 2003 | B2 |
6660562 | Lee | Dec 2003 | B2 |
6661047 | Rhodes | Dec 2003 | B2 |
6667551 | Hanaoka et al. | Dec 2003 | B2 |
6670986 | Ben Shoshan et al. | Dec 2003 | B1 |
6686588 | Webster et al. | Feb 2004 | B1 |
6703310 | Mashino et al. | Mar 2004 | B2 |
6734419 | Glenn et al. | May 2004 | B1 |
6759266 | Hoffman | Jul 2004 | B1 |
6774486 | Kinsman | Aug 2004 | B2 |
6778046 | Stafford et al. | Aug 2004 | B2 |
6791076 | Webster | Sep 2004 | B2 |
6795120 | Takagi et al. | Sep 2004 | B2 |
6797616 | Kinsman | Sep 2004 | B2 |
6800943 | Adachi | Oct 2004 | B2 |
6813154 | Diaz et al. | Nov 2004 | B2 |
6825458 | Moess et al. | Nov 2004 | B1 |
6828663 | Chen et al. | Dec 2004 | B2 |
6828674 | Karpman | Dec 2004 | B2 |
6844978 | Harden et al. | Jan 2005 | B2 |
6861763 | Akram | Mar 2005 | B2 |
6864172 | Noma et al. | Mar 2005 | B2 |
6882021 | Boon et al. | Apr 2005 | B2 |
6885107 | Kinsman | Apr 2005 | B2 |
6934065 | Kinsman | Aug 2005 | B2 |
6946325 | Yean et al. | Sep 2005 | B2 |
20020006687 | Lam | Jan 2002 | A1 |
20020057468 | Segawa et al. | May 2002 | A1 |
20020089025 | Chou | Jul 2002 | A1 |
20020096729 | Tu et al. | Jul 2002 | A1 |
20020113296 | Cho et al. | Aug 2002 | A1 |
20020145676 | Kuno et al. | Oct 2002 | A1 |
20030057359 | Webster | Mar 2003 | A1 |
20030062601 | Harnden et al. | Apr 2003 | A1 |
20030151479 | Stafford et al. | Aug 2003 | A1 |
20040012698 | Suda et al. | Jan 2004 | A1 |
20040023469 | Suda | Feb 2004 | A1 |
20040038442 | Kinsman | Feb 2004 | A1 |
20040041261 | Kinsman | Mar 2004 | A1 |
20040082094 | Yamamoto | Apr 2004 | A1 |
20040214373 | Jiang et al. | Oct 2004 | A1 |
20040245649 | Imaoka | Dec 2004 | A1 |
20050052751 | Liu et al. | Mar 2005 | A1 |
20050104228 | Rigg et al. | May 2005 | A1 |
20050110889 | Tuttle et al. | May 2005 | A1 |
20050127478 | Hiatt et al. | Jun 2005 | A1 |
20050151228 | Tanida et al. | Jul 2005 | A1 |
20050236708 | Farnworth et al. | Oct 2005 | A1 |
20050254133 | Akram et al. | Nov 2005 | A1 |
20050255628 | Kinsman | Nov 2005 | A1 |
20090026567 | Chen et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
0 886 323 | Dec 1998 | EP |
1 157 967 | Nov 2001 | EP |
2 835 654 | Aug 2003 | FR |
59-101882 | Jun 1984 | JP |
59191388 | Oct 1984 | JP |
59191388 | Oct 1984 | JP |
07-263607 | Oct 1995 | JP |
2001-077496 | Mar 2001 | JP |
2002-231921 | Aug 2002 | JP |
2003-197656 | Nov 2003 | JP |
2004-6834 | Jan 2004 | JP |
2002-64824 | Aug 2002 | KR |
WO-9005424 | May 1990 | WO |
WO-02075815 | Sep 2002 | WO |
WO-02095796 | Nov 2002 | WO |
WO-2004054001 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20050253213 A1 | Nov 2005 | US |