The present invention relates to magnetic heads, and more particularly, this invention relates to a Current-Perpendicular-to-Plane (CPP) Tunneling Magnetoresistance (TMR) heads having nonorthogonal alignment of free and reference layer magnetizations.
The heart of a computer is a magnetic disk drive which includes a rotating magnetic disk, a slider that has read and write heads, a suspension arm above the rotating disk and an actuator arm that swings the suspension arm to place the read and write heads over selected circular tracks on the rotating disk. The suspension arm biases the slider into contact with the surface of the disk when the disk is not rotating but, when the disk rotates, air is swirled by the rotating disk adjacent an air bearing surface (ABS) of the slider causing the slider to ride on an air bearing a slight distance from the surface of the rotating disk. When the slider rides on the air bearing the write and read heads are employed for writing magnetic impressions to and reading magnetic signal fields from the rotating disk. The read and write heads are connected to processing circuitry that operates according to a computer program to implement the writing and reading functions.
Magnetoresistive (MR) read sensors, commonly referred to as MR heads, are used in all high capacity disk drives. An MR sensor detects a magnetic field through the change in its resistance of as a function of the strength and direction of the magnetic flux being sensed by the MR layer. The standard type of MR sensor in disk drives manufactured today employs the tunneling magnetoresistive (TMR) effect, such that the resistance varies as a function of the spin-dependent quantum-mechanical tunneling transmission of the conduction electrons between two or more ferromagnetic layers separated by an insulating, non-magnetic tunneling barrier. The resistance of these sensors depends on the relative orientation of the magnetization of the different magnetic layers. For the TMR sensor, the electron flow provides a current perpendicular to-the-plane (CPP) of the magnetic layers. These devices are different in physical mechanism, material, and geometry than the current-in-plane giant magnetoresistive (CIP-GMR) sensor technology which they are presently replacing.
Not unlike their CIP-GMR predecessors, the resistance for TMR sensors depends primarily on the relative magnetization of only two layers of ferromagnetic material (e.g., CoFe), which in the TMR case are separated by a very thin (˜1 nm) insulating tunnel barrier layer (e.g., MgO). In a “simple” TMRsensor, one of the ferromagnetic layers, referred to as the reference layer (or pinned layer), has its magnetization typically pinned by exchange coupling with an antiferromagnetic (e.g., IrMn) layer. The pinning field generated by the antiferromagnetic layer should be sufficiently large to ensure that the magnetization direction of the reference layer remains fixed during the application of external fields (e.g., fields from bits recorded on the disk). The magnetization of the other ferromagnetic layer, referred to as the free layer, however, is not fixed and is free to rotate in response to the field from the recorded magnetic medium (the signal field). U.S. Pat. No. 5,206,590 granted to Dieny et al., incorporated herein by reference, discloses a “simple” CIP-GMR sensor operating on the basis of the GMR effect.
Almost universally employed in present day sensors ((either TMR or CIP-GMR) is the use is the use of antiparallel (AP)-pinning. In such AP-pinned sensors, the reference layer is a laminated structure of two ferromagnetic layers separated by a non-magnetic AP-coupling layer such that the magnetizations of the two ferromagnetic layers are strongly coupled together antiferromagnetically in an antiparallel orientation. The first ferromagnetic layer, referred to as the pinned layer, has its magnetization pinned/fixed in orientation by direct exchange coupling to an AFM layer. The second ferromagnetic layer serves as the reference layer in determining the resistance of the device, is strongly AP-coupled to the pinned layer, and by effect is also fixed in orientation. The cancellation of magnetic moment and demagnetizing fields of the AP-aligned pinned and reference layers greatly improves the stability of the reference layer relative to that obtained for the simple SV sensor of
Referring to
For TMR sensors, the conductance G of the TMR sensor (more so the resistance R=1/G), is believed to be a linear function of cos(θ), where θ is the angle between the (in-plane) magnetization vectors of the reference and free layer structures. Specifically, θ≡θf−θr, where θf is the angle of (in-plane) magnetization of the free layer and θr represents the angle of (in-plane) magnetization of the reference layer. The sensitivity of the sensor can be quantified by its magnetoconductance coefficient ΔG/Gmin, where ΔG=Gmax−Gmin is the maximum change in the conductance of the sensor. However, it is much more common, today (and historically) to characterize TMR sensors by the TMR ratio ΔR/Rmin, where ΔR=Rmax−Rmin the maximum change in the resistance of the sensor. It is virtually always the case in TMR sensors as practiced in the art that Rmax=R(θ=180°)=1/Gmin and Rmin=R(θ=0)=1/Gmax. The TMR ratio ΔR/Rmin, is mathematically identical in magnitude to, ΔG/Gmin.
In operation, the sensor is subjected to positive and negative magnetic signal fields Hsig from a moving magnetic disk. These positive and negative signal fields are typically equal in magnitude, and oriented orthogonal to the plane of the disk (or ABS plane). In addition to maximizing the magnitude of the readback signal from the TMR sensor, it is also desirable that positive and negative readback signals are equal as well.
It is well known magnetically that the rotation of the free layer magnetization angle θf in response to magnetic signal fields from the disk, is such that sin(θf) will vary approximately linearly (to first order) with the amplitude of the signal field Hsig. This is particularly true if θfb=0 is approximately the (quiescent) bias-point orientation of the free layer in the absence of signal fields, in which case the sensitivity d(sin(θf)/dHsig is also generally maximized. It follows that θfb≅0° will be a near-optimal bias point configuration with respect to the free layer:
However, consideration of the optimized (pinned) angle θr for the reference layer in a TMR sensor can be different than that of θr≅±90° that was historically practiced in the art for CIP-GMR sensors, and which often continues for current art TMR read sensors. In particular, if it is the conductance G that varies linearly with cos(θ), i.e.,
it follows that
assuming the aforementioned optimum free layer bias-point angle θfb≅0°
In the case where ΔR/Rmin<<1, it is readily deduced that the optimum reference layer point is θr≅±90°, as this both maximizes sensitivity |dR/dHsig| and puts the bias resistance point Rb≅½(Rmin+Rmax) at the midpoint for maximizing dynamic range and minimizing asymmetry of sensor response to opposite polarities of Hsig. This circumstance applied to traditional CIP-GMR sensors, as well as older TMR sensors such as those made using Alumina (Al2O3) tunneling barriers. However, for state-of-the-art TMR read sensors (e.g., CoFeB magnetic layers with MgO tunnel barriers) where ΔR/Rmin≈1, it follows from the above equation that both |dR/dHsig| and Rb will be better optimized when cos θr≅cos θ<0 is negative, corresponding to an obtuse bias angle |θb=θfb−θr|>90°. The actual optimum point, by these criteria, depends on how large the TMR ratio ΔR/Rmin is for a given sensor.
The present invention addresses several different ways to achieve this non-orthogonal bias point
As mentioned above, for traditional CIP-GMR sensors, or for older TMR sensors sensors, the (in-plane) angular magnetization orientations θr and θfb of the reference and free layer structures at the bias point are ideally orthogonal each other, such that |θrb−θr|≅90°. However, as indicated in the graph of
A TMR-SV head according to one embodiment includes a free layer having a nominal bias point magnetization orientation θfb in a first direction with respect to (and substantially parallel with) a longitudinal axis defined as the intersection of the plane of deposition of the free layer, and the plane of the air-bearing surface (ABS), a reference layer having a magnetization orientation θr nominally oriented in a second direction that is not orthogonal to θfb, and a tunnel barrier layer between the free and reference layers.
A TMR magnetic head according to another embodiment includes a pinned layer, a nonmagnetic antiparallel (AP)-coupling layer above the pinned layer, and a reference layer-above the AP-coupling layer, the reference layer magnetization being substantially antiparallel to that of the pinned layer. A tunnel barrier layer is positioned above the reference layer, and a free layer is positioned above the tunnel barrier layer. The free layer magnetization θfb is nominally oriented in a first direction with respect to (and substantially parallel with) a longitudinal axis defined as the intersection of the plane of deposition of the free layer, and the ABS plane. The reference layer has a magnetization orientation θr normally oriented in a second direction that is not orthogonal to θfb.
A magnetic storage system implementing any of the devices described above includes magnetic media, at least one head for reading from and writing to the magnetic media, each head having a sensor and a write element coupled to the sensor. A slider supports the head. A control unit is coupled to the head for controlling operation of the head.
Other aspects and advantages of the present invention will become apparent from the following detailed description, which, when taken in conjunction with the drawings, illustrate by way of example the principles of the invention.
For a fuller understanding of the nature and advantages of the present invention, as well as the preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings.
The following description is the best embodiment presently contemplated for carrying out the present invention. This description is made for the purpose of illustrating the general principles of the present invention and is not meant to limit the inventive concepts claimed herein. Further, particular features described herein can be used in combination with other described features in each of the various possible combinations and permutations.
Referring now to
At least one slider 313 is positioned near the disk 312, each slider 313 supporting one or more magnetic read/write heads 321. As the disks rotate, slider 313 is moved radially in and out over disk surface 322 so that heads 321 may access different tracks of the disk where desired data are recorded. Each slider 313 is attached to an actuator arm 319 by means of a suspension 315. The suspension 315 provides a slight spring force which biases slider 313 against the disk surface 322. Each actuator arm 319 is attached to an actuator means 327. The actuator means 327 as shown in
During operation of the disk storage system, the rotation of disk 312 generates an air bearing between slider 313 and disk surface 322 which exerts an upward force or lift on the slider. The air bearing thus counter-balances the slight spring force of suspension 315 and supports slider 313 off and slightly above the disk surface by a small, substantially constant spacing during normal operation.
The various components of the disk storage system are controlled in operation by control signals generated by control unit 329, such as access control signals and internal clock signals. Typically, control unit 329 comprises logic control circuits, storage means and a microprocessor. The control unit 329 generates control signals to control various system operations such as drive motor control signals on line 323 and head position and seek control signals on line 328. The control signals on line 328 provide the desired current profiles to optimally move and position slider 313 to the desired data track on disk 312. Read and write signals are communicated to and from read/write heads 321 by way of recording channel 325.
The above description of a typical magnetic disk storage system, and the accompanying illustration of
The write head portion 402 of the magnetic head 400 includes a coil layer 422 sandwiched between first and second insulation layers 416 and 418. A third insulation layer 420 may be employed for planarizing the head to eliminate ripples in the second insulation layer caused by the coil layer 422. The first, second and third insulation layers are referred to in the art as an “insulation stack”. The coil layer 422 and the first, second and third insulation layers 416, 418 and 420 are sandwiched between first and second pole piece layers 424 and 426. The first and second pole piece layers 424 and 426 are magnetically coupled at a back gap 428 and have first and second pole tips 430 and 432 which are separated by a write gap layer 434 at the ABS. Since the second shield layer 414 and the first pole piece layer 424 are a common layer this head is known as a merged head. In a piggyback head an insulation layer is located between a second shield layer and a first pole piece layer. First and second solder connections (not shown) connect leads (not shown) from the spin valve sensor 406 to leads (not shown) on the slider 313 (
As mentioned above, for traditional CIP-GMR sensors, the (in-plane) angular magnetization orientations θref of the reference and θfree of the free layers/structures are ideally orthogonal each other. However, as indicated in the graph of
The value of TMR ratio ΔR/Rmin can typically vary between 0.5 and 1 for state-of-the-art TMR read sensors.
This nonlinearity is such as to shift the optimum sensitivity point to have free and reference bias magnetizations be more antiparallel, i.e., |θfb−θr|>90° such that Qb=cos(θfb−θr) is negative rather than zero. The present invention includes and addresses several different ways to achieve this non-orthogonal bias point.
More than one type of heads can use the structures described herein, and the structures are particularly adapted to TMR sensors. In the following description, the track edges of the layers are defined by the track width (W). The sensor height is in a direction into the face of the paper in an ABS view. The longitudinal axis of each layer is parallel to both the ABS and the plane of deposition. Unless otherwise described, thicknesses of the individual layers are taken perpendicular to the plane of the associated layer and are provided by way of example only and may be larger and/or smaller than those listed. Similarly, the materials listed herein are provided by way of example only, and one skilled in the art will understand that other materials may be used without straying from the spirit and scope of the present invention. Also, the processes used to form the structures are conventional. Further, each layer can include a single layer, laminates of layers, etc.
TMR
With continued reference to
In TMR sensors, the shields 614, 616 also serve as current leads.
As shown in
Seed layers 704, 706 are formed on the first shield layer 702. The seed layers aid in creating the proper growth structure of the layers above them. Note that the stack of seed layers can be varied, and layers may be added or omitted based on the desired processing parameters.
An antiferromagnetic layer (AFM) 710, or antiferromagnet, is formed above the seed layers. The antiferromagnetic layer 710 pins the magnetization orientation of any overlying adjacent ferromagnetic layer. In any of the embodiments, the AFM layer 710 may be IrMn. This material allows easy reorienting of the pinning angle, which can be done more than once at multiple stages in the device build process.
Then an antiparallel (AP) pinned layer structure 712 is formed above the seed layers. As shown in
A tunnel barrier layer (BARRIER) 720 is formed above the pinned layer structure 712. Illustrative materials from which the tunnel barrier 720 may be constructed include metal oxides, such as magnesium oxide, aluminum oxide, etc The tunnel barrier layer 720 can be roughly 7-15 Å thick, typically about 10 Å.
A free layer (FL-S) 722 is formed above the first spacer layer 720. Though nominally stabilized in a substantially longitudinal orientation by the hard-bias structure 604, the magnetization of the free layer 722 remains susceptible to modest reorientation from external transverse magnetic fields, such as those exerted by data recorded on disk media. The relative motion of magnetic orientation of the free layer 722 when affected by data bits on disk media creates variations in the electrical resistance of the sensor 702, thereby creating the signal. Exemplary materials for the free layer 722 are CoFe or CoFeB etc. An illustrative thickness of the free layer 722 is about 30-60 Å. Note that some embodiments may deliberately cant the nominal bias-point orientation of the free layer magnetization to moderately deviate from the longitudinal direction.
The free and reference layers can each be formed of a single layer, a laminate of layers, etc.
A cap (CAP) 728 can be formed above the free layer 722. Exemplary materials for the cap 728 are Ta, Ta/Ru stack, etc. An illustrative thickness range of the cap 728 is 20-60 Å.
Insulating layers (IL) 738 are formed adjacent the stack to isolate it from the hard bias layers 740. A second shield layer (S2) 742 is formed above the cap 728.
Methods of Setting θfb and/or θr
Present day TMR read heads use the magnetostatic field from contiguous, longitudinally magnetized, hard-magnet films (hard-bias) 740 (
One embodiment of the present invention uses similar device processing, but rotates the quiescent free layer bias-point orientation θfb≠0° by controlling the magnitude and polarity/direction of the combined demagnetizing and interlayer coupling fields.
Another embodiment (which could be combined with the previous embodiment) would cause a rotation of the quiescent free layer magnetization orientation to θfb≠0° by producing a transverse component to the hard-bias field by a concomitant rotation of the hard-bias magnetization orientation. This embodiment is represented in
A preferred embodiment of the present invention, represented in
Yet another, more subtle potential advantage of this embodiment may arise from a “micromagnetic anisotropy” effect that is predicted to occur in pinned/reference AP pinned layer structures, despite whether the sensor has the preferred, approximately square sensor geometry (TWSH), and even in the (magnetostatically most stable) moment-matched case of Δm=0. Magnetostatic in origin, this “micromagnetic anisotropy”: shows biaxial character with easy-axes of relatively broad energy minima along the diagonals of the square sensor (θr=±135°), and hard-axes with sharper energy maxima in the transverse (θr=±90°) or longitudinal direction. The magnitude of this biaxial anisotropy increases rapidly as the ratio of thickness to exchange length approaches unity, and may reach several hundred Oe in practical cases of pin/reference layer thickness equivalent to ˜3 nm of CoFe. This places an added burden on necessary exchange pinning strength of the AFM/pinned-layer couple to maintain stability of the conventional transverse θp=+90° pinning orientation. By employing the third embodiment of the present invention and systematically operating with canted pinned/reference layers orientated significantly closer to the diagonal than purely transverse pinning, the net stability of pinned/reference layer stiffness (particularly if SH≦TW) will be enhanced, and pinned/reference layer magnetic fluctuation noise will be reduced.
In a variation on the above, represented in
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. For example, the structures and methodologies presented herein are generic in their application to all CPP heads. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application is a continuation in part of U.S. patent application Ser. No. 11/189,170 filed Jul. 25, 2005 now U.S. Pat. No. 7,411,765, and claims priority to U.S. Provisional Patent Application Ser. No. 60/700,549 filed Jul. 18, 2005 and entitled “Thermal and Spin-Torque Noise in CPP (TMR and/or GMR) Read Sensors” to Smith et al.; each of which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6201671 | Pinarbasi | Mar 2001 | B1 |
6208491 | Pinarbasi | Mar 2001 | B1 |
6219209 | Gill | Apr 2001 | B1 |
6262869 | Lin et al. | Jul 2001 | B1 |
7411765 | Childress et al. | Aug 2008 | B2 |
20050068688 | Sbiaa et al. | Mar 2005 | A1 |
20070063237 | Huai et al. | Mar 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090002898 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
60700549 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11189170 | Jul 2005 | US |
Child | 12172895 | US |