The execution of a CPUID instruction returns processor identification and feature information.
Various examples in accordance with the present disclosure will be described with reference to the drawings, in which:
The present disclosure relates to methods, apparatus, systems, and non-transitory computer-readable storage media for enumerating deprecated features. In a typical updated core scenario, as functionality was added to a given core an indication of what was added was stored in a CPUID functionality data structure. That is running CPUID always described what was added, but never affirmatively what was subtracted. If something was taken out, at best CPUID could be made to reflect that a given feature cannot be enabled.
Additionally, the values in the CPUID functionality data structure are typically fused. It is anticipated that until more legacy software is deprecated, a core may need to operate in both a secondary mode and “legacy” mode. This may not be possible to do with the fused CPUID values as running CPUID will always indicate support for a particular functionality even if it should be disabled in secondary mode.
Detailed herein are embodiments of CPUID and its support that allows to give notice about what features are deprecated to software.
The computer system 100 includes a processor 101 and a memory 114. When deployed together in a system, the processor 101 and the memory 114 may be coupled with one another by an interconnection mechanism 198. The interconnection mechanism 198 may include one or more buses or other interconnects, one or more hubs or other chipset components, and combinations thereof. Various ways of coupling processors 100 with memories 114 known in the arts are suitable. Although the memory 114 is shown in
The processor 101 may provide at least two types of memory management: segmentation and paging. Segmentation provides a mechanism of isolating individual code, data, and stack modules so that multiple programs (or tasks) can run on the same processor without interfering with one another. Paging provides a mechanism for implementing a conventional demand-paged, virtual-memory system where sections of a program's execution environment are mapped into physical memory as needed. Paging can also be used to provide isolation between multiple tasks. When operating in protected mode (where a protected mode is a mode of processor operation in which segmentation is enabled and which is a prerequisite for enabling paging), some form of segmentation must be used. There is no mode bit to disable segmentation. The use of paging, however, is optional. These two mechanisms (segmentation and paging) can be configured to support simple single-program (or single-task) systems, multitasking systems, or multiple-processor systems that use shared memory. Segmentation provides a mechanism for dividing the processor's addressable memory space (called the linear address space) into smaller, protected address spaces called segments. Segments can be used to hold the code, data, and stack for a program or to hold system data structures (such as a task state segment (TSS) or local descriptor table (LDT)). If more than one program (or task) is running on the processor 101, each program can be assigned its own set of segments. The segmentation mechanism also allows typing of segments so that the operations that may be performed on a particular type of segment can be restricted. All the segments in a system are contained in the processor's linear address space.
Every segment register may have a “visible” part and a “hidden” part. (The hidden part is sometimes referred to as a “descriptor cache” or a “shadow register.”) When a segment selector is loaded into the visible part of a segment register, the processor also loads the hidden part of the segment register with the base address, segment limit, and access control information from the segment descriptor pointed to by the segment selector. The information cached in the segment register (visible and hidden) allows the processor to translate addresses without taking extra bus cycles to read the base address and limit from the segment descriptor. In systems in which multiple processors have access to the same descriptor tables, it is the responsibility of software to reload the segment registers when the descriptor tables are modified. If this is not done, an old (e.g., stale) segment descriptor cached in a segment register may be used after its memory-resident version has been modified.
To locate a byte in a particular segment, a logical address (also called a far pointer) must be provided. A logical address consists of a segment selector and an offset. The segment selector is a unique identifier for a segment. The segment sector may include, for example, a two-bit requested privileged level (RPL) (e.g., bits 1:0), a 1-bit table indicator (TI) (e.g., bit 2), and a 13-bit index (e.g., bits 15:3). Among other things, it provides an offset into a descriptor table (such as the global descriptor table (GDT)) to a data structure called a segment descriptor.
Each segment has a segment descriptor, which specifies the size of the segment, the access rights and privilege level for the segment, the segment type, and the location of the first byte of the segment in the linear address space. The offset part of the logical address is added to the base address for the segment to locate a byte within the segment. The base address plus the offset thus forms a linear address in the processor's linear address space.
The memory 114 may store privileged system software 115. Examples of suitable privileged system software 115 include, but are not limited to, one or more operating systems, a virtual machine monitor (VMM), a hypervisor, and the like, and combinations thereof. The memory 114 may also store one or more user-level applications 116. The user-level applications 116 may optionally include one or more user-level multithreaded applications. As will be explained further below, such user-level multithreaded applications may optionally use instructions disclosed herein to help increase the efficiency of performing user-level multithreading and/or performing user-level task switches.
During operation, the memory 114 may also store a stack 119. The stack 119 is sometimes referred to as the call stack, the data stack, or just the stack. The stack 119 may represent a stack type data structure that is operative to store both data 118 and control 117. The data 118 may represent any of a wide variety of different types of data that software wants to push onto the stack (e.g., parameters and other data passed to subroutines, etc.). Commonly, the control 117 may include one or more return addresses for one or more previously performed procedure calls. These return addresses may represent instruction addresses where the called procedure is to return control flow to when the called procedure finishes and returns.
A stack 119 is a contiguous array of memory locations. It is contained in a segment and identified by the segment selector in a stack segment register (e.g., SS register). When using a flat memory model, the stack 119 can be located anywhere in the linear address space for the program. Items are placed on the stack 119 using the PUSH instruction and removed from the stack 119 using the POP instruction. When an item is pushed onto the stack 119, a stack pointer register (e.g., ESP) is decremented, and then the item is written at the new top of stack 119. When an item is popped off the stack 119, the item is read from the top of stack 119, then the stack pointer register is incremented. In this manner, the stack 119 grows down in memory (towards lesser addresses) when items are pushed on the stack 119 and shrinks up (towards greater addresses) when the items are popped from the stack 119. A program or operating system/executive can set up many stacks 119. For example, in multitasking systems, each task can be given its own stack 119. The number of stacks 119 in a system is limited by the maximum number of segments and the available physical memory. When a system sets up many stacks 119, only one stack 119—the current stack—is available at a time. The current stack is the one contained in the segment referenced by the SS register. The current stack is the one referenced by the current stack-pointer register and contained in the segment referenced by the SS register.
A segment register may include a segment selector that is an identifier of a segment (e.g., a 16-bit identifier). This segment selector may not point directly to the segment, but instead may point to the segment descriptor that defines the segment.
The segment descriptor may include one or more of the following:
A Requested privilege level (RPL) field in a selector specifies the requested privilege level of a segment selector.
A Current privilege level (CPL) indicates the privilege level of the currently executing program or procedure. The term CPL refers to the setting of this field.
The following are parts of a paging structure: a User/supervisor (U/S) flag—(e.g., bit 2 of paging-structure entries) that determines the type of page: user or supervisor; a Read/write (R/W) flag—(e.g., bit 1 of paging-structure entries) that determines the type of access allowed to a page: read-only or read/write; and an Execute-disable (XD) flag—(e.g., bit 63 of certain paging-structure entities) that determines the type of access allowed to a page: executable or non-executable.
In return-oriented programming (ROP), jump-oriented programming (JOP), and other control flow subversion attacks, the attackers often seek to gain control of the stack 119 to hijack program control flow. One factor that may tend to make the conventional data stack more vulnerable to ROP, JOP, and other control flow subversion attacks is that the stack 119 generally stores both the data 118 and the control 117 (e.g., data and return addresses are commonly mixed together on the same stack 119). Another factor that may tend to make the conventional stack 119 more vulnerable to such attacks is that switching of the stack 119 may generally be performed as an unprivileged operation. Both factors may tend to increase the exposure to control flow subversion due to bugs that allow the stack pointer and/or control flow information (e.g., return addresses) to be modified (e.g., to point to malware/attacker-controlled memory).
One or more shadow stacks 120 may be included and used to help to protect the stack 119 from tampering and/or to help to increase computer security. The shadow stack(s) 120 may represent one or more additional stack type data structures that are separate from the stack 119. As shown, the shadow stack(s) 120 may be used to store control information 121 but not data (e.g., not parameters and other data of the type stored on the stack 119 that user-level application programs 116 would need to be able to write and modify). The control information 121 stored on the shadow stack(s) 120 may represent return address related information (e.g., actual return addresses, information to validate return addresses, other return address information). As one possible example, the shadow stack(s) 120 may be used to store copies of any return addresses that have been pushed on the stack 119 when functions or procedures have been called (e.g., a copy of each return address in the call chain that has also been pushed onto the regular call stack). Each shadow stack 120 may also include a shadow stack pointer (SSP) that is operative to identify the top of the shadow stack 120. The shadow stack(s) 120 may optionally be configured for operation individually in unprivileged user-level mode (e.g., a ring 3 privilege level) or in a privileged or supervisor privilege level mode (a ring 0, ring 1, or ring 2 privilege level). In one aspect, multiple shadow stacks 120 may potentially be configured in a system, but only one shadow stack 120 per logical processor at a time may be configured as the current shadow stack 120.
As shown, the shadow stack(s) 120 may be stored in the memory 114. Current or active shadow stack(s) 120 may be defined by a linear address range to help detect and prevent stack overflow and/or stack underflow when push and/or pop operations are performed on the shadow stack 120. To help provide additional protection, the shadow stack(s) 120 may optionally be stored in a protected or access-controlled portion of the memory 114 to which the unprivileged user-level applications 116 have restricted and/or incomplete access. Different ways of providing suitable protected portions of memory 114 for storing the shadow stack(s) 120 are possible. The shadow stack(s) 120 are optionally stored in a portion of the memory 114 that is protected by paging access controls. For example, the privileged system software 115 (e.g., an operating system) may configure access permissions (e.g., read-write-execute access permissions) in page table entries corresponding to pages where the shadow stack(s) 120 are stored to make the pages readable but not writable or executable. This may help to prevent user-level instructions, such as store to memory 114 instructions, move to memory 114 instructions, and the like, from being able to write to or modify data in the shadow stack(s) 120. As another option, the shadow stack(s) 120 may optionally be stored in a portion of the memory 114 that is protected with similar access control protections as those used for secure enclaves in Intel® Software Guard Extensions (SGX) secure enclaves, or other protected containers, isolated execution environments, or the like.
Memory 114 may also store thread local storage (TLS) 122.
Referring again to
Registers 140 of processor 101 may be used by the logical processor 108, flexible return and event delivery (“FRED”) logic 130, SMYT logic 111, and/or shadow stack logic 110. Note that the various logics 110, 111, and/130 may include circuitry, microcode, etc. These registers 140 may include the registers of
Processor 101 may have one or more instructions and logic to help manage and protect the shadow stack(s) 120. The processor 101 has an instruction set 102. The instruction set 102 is part of the instruction set architecture (ISA) of the processor 101 and includes the native instructions that the processor 101 is operative to execute. The instructions of the instruction set may represent macroinstructions, assembly language instructions, or machine-level instructions that are provided to the processor 101 for execution, as opposed to microinstructions, micro-operations, or other decoded instructions or control signals that have been decoded from the instructions of the instruction set.
As shown, the instruction set 102 includes several instructions 103 including CPUID (described in detail below). A processor or a core may be provided to perform (e.g., decode and execute) any one or more of these instructions. Furthermore, a method of performing (e.g., decoding and executing) any one of these instructions is provided.
The processor 101 may include at least one processing element or logical processor 108. For simplicity, only a single logical processor is shown, although it is to be appreciated that the processor 101 may optionally include other logical processors. Examples of suitable logical processors include, but are not limited to, cores, hardware threads, thread units, thread slots, and other logical processors. The logical processor 108 may be operative to process instructions of the instruction set 102. The logical processor 108 may have a pipeline or logic to process instructions. By way of example, each pipeline may include an instruction fetch unit to fetch instructions, an instruction decode unit to decode instructions, execution units to execute the decoded instructions, registers to store source and destination operands of the instructions, and the like shown as front end and execution resources 109. The logical processor 108 may be operative to process (e.g., decode, execute, etc.) any of the instructions 103.
CPUID circuitry 203 access processor identification and feature information 223 from storage (e.g., non-volatile storage 221 (e.g., read only memory, etc.) that includes capabilities of the core/processor 200. In some examples, one or more registers, written before the CPUID instruction, provide an indication of what is to be written. In some examples, a first register used for that indication is EAX. In some examples, a second register used for that indication is ECX. In some examples, the first and/or second register are implicit (that is they are not explicitly identified by the instruction's encoding). In some examples, the first and/or second register are explicit (that is they are explicitly identified by the instruction's encoding). In some examples, load circuitry 205 loads or retrieves this data from one or more storage locations based on the one or more registers.
The loaded or retrieved processor identification and feature information, including capabilities, is then written to one or more registers (e.g., first register 211, second register 213, third register 215, and/or fourth register 215. In some examples, write circuitry 207 performs this/these write(s).
The processor identification and feature information includes an indication of an availability of a secondary execution mode for the core/processor 200 that at least deprecates features of a first execution mode. For example, in some examples the second mode is to only natively support 64-bit system software and natively support 32-bit and 64-bit applications. In some examples, the return includes an indication of explicit features decremented in the secondary mode. Note that this indicates that functionality is taken away (e.g., no support for 16-bit applications or 32-bit system software) when the core/processor 200 is set to be in the secondary execution mode. Additionally, in some examples, the second mode adds features to the first mode.
In some examples, the setting of the secondary execution mode may be made during runtime. In some examples, the setting of the secondary execution mode requires a reboot. In some examples, the setting of the secondary execution mode may be made on a per core basis.
In some examples, when the first register stores a value of 07H and the second register stores a value of 1, then the execution of the CPUID instruction returns an indication of if the secondary execution mode is supported. The table below shows examples of output for that combination. In particular EAX is written to show if there is support for FRED (e.g., bit 17 is set to 1 when FRED is supported) and the secondary mode (e.g., bit 19 is set to 1 when the secondary mode is supported).
In some examples, when the first register stores a value of 07H and the second register stores a value of 2, then the execution of the CPUID instruction returns one more of an indication of if the secondary execution mode is supported and specifically what legacy feature(s) are disabled in the secondary mode. The table below shows examples of output for that combination.
In some examples, execution circuitry 201 is a part of the front end and execution resources 109, one or more of the registers 211-17 are a part of the registers 140, etc.
At 301, an instance of single instruction is fetched. For example, an instruction is fetched. The instruction includes fields for an opcode, single instruction having fields for an opcode, the opcode to indicate execution circuitry is to return processor identification and feature information determined by input into a first register and a second register, wherein the processor identification and feature information is to at least include an indication of an availability of a secondary execution mode that at least deprecates features of a first execution mode. For example, in some examples the second mode is to only natively support 64-bit system software and natively support 32-bit and 64-bit applications. In some examples, the return includes an indication of explicit features decremented in the secondary mode. Additionally, in some examples, the second mode adds features to the first mode.
The fetched instruction is decoded at 303. For example, the fetched processor identification and feature information instruction is decoded by decoder circuitry such as decoder circuitry 405 or decode circuitry 740 detailed herein.
Data values associated with the source operands of the decoded instruction are retrieved when the decoded instruction is scheduled at 305. For example, when one or more of the source operands are memory operands, the data from the indicated memory location is retrieved.
At 307, the decoded instruction is executed by execution circuitry (hardware) such as execution circuitry 209 shown in
In some examples, the instruction is committed or retired at 309.
The instruction 401 is received by decoder circuitry 405. For example, the decoder circuitry 405 receives this instruction from fetch circuitry (not shown). The instruction may be in any suitable format, such as that describe with reference to
More detailed examples of at least one instruction format for the instruction will be detailed later. The decoder circuitry 405 decodes the instruction into one or more operations. In some examples, this decoding includes generating a plurality of micro-operations to be performed by execution circuitry (such as execution circuitry 409). The decoder circuitry 405 also decodes instruction prefixes.
In some examples, register renaming, register allocation, and/or scheduling circuitry 407 provides functionality for one or more of: 1) renaming logical operand values to physical operand values (e.g., a register alias table in some examples), 2) allocating status bits and flags to the decoded instruction, and 3) scheduling the decoded instruction for execution by execution circuitry out of an instruction pool (e.g., using a reservation station in some examples).
Registers (register file) and/or memory 408 store data as operands of the instruction to be operated by execution circuitry 409. Example register types include packed data registers, general purpose registers (GPRs), and floating-point registers.
Execution circuitry 409 executes the decoded instruction. Example detailed execution circuitry includes execution circuitry 209 shown in
In some examples, retirement/write back circuitry 411 architecturally commits the destination register into the registers or memory 408 and retires the instruction.
An example of a format for an CPUID instruction is OPCODE with no operands.
Detailed below are examples of architectures, processors, cores, systems, instruction formats, etc. that support the CPUID instruction detailed herein.
Example Computer Architectures.
Detailed below are descriptions of example computer architectures. Other system designs and configurations known in the arts for laptop, desktop, and handheld personal computers (PC)s, personal digital assistants, engineering workstations, servers, disaggregated servers, network devices, network hubs, switches, routers, embedded processors, digital signal processors (DSPs), graphics devices, video game devices, set-top boxes, micro controllers, cell phones, portable media players, hand-held devices, and various other electronic devices, are also suitable. In general, a variety of systems or electronic devices capable of incorporating a processor and/or other execution logic as disclosed herein are generally suitable.
Processors 570 and 580 are shown including integrated memory controller (IMC) circuitry 572 and 582, respectively. Processor 570 also includes interface circuits 576 and 578; similarly, second processor 580 includes interface circuits 586 and 588. Processors 570, 580 may exchange information via the interface 550 using interface circuits 578, 588. IMCs 572 and 582 couple the processors 570, 580 to respective memories, namely a memory 532 and a memory 534, which may be portions of main memory locally attached to the respective processors.
Processors 570, 580 may each exchange information with a network interface (NW I/F) 590 via individual interfaces 552, 554 using interface circuits 576, 594, 586, 598. The network interface 590 (e.g., one or more of an interconnect, bus, and/or fabric, and in some examples is a chipset) may optionally exchange information with a coprocessor 538 via an interface circuit 592. In some examples, the coprocessor 538 is a special-purpose processor, such as, for example, a high-throughput processor, a network or communication processor, compression engine, graphics processor, general purpose graphics processing unit (GPGPU), neural-network processing unit (NPU), embedded processor, or the like.
A shared cache (not shown) may be included in either processor 570, 580 or outside of both processors, yet connected with the processors via an interface such as P-P interconnect, such that either or both processors' local cache information may be stored in the shared cache if a processor is placed into a low power mode.
Network interface 590 may be coupled to a first interface 516 via interface circuit 596. In some examples, first interface 516 may be an interface such as a Peripheral Component Interconnect (PCI) interconnect, a PCI Express interconnect or another I/O interconnect. In some examples, first interface 516 is coupled to a power control unit (PCU) 517, which may include circuitry, software, and/or firmware to perform power management operations with regard to the processors 570, 580 and/or co-processor 538. PCU 517 provides control information to a voltage regulator (not shown) to cause the voltage regulator to generate the appropriate regulated voltage. PCU 517 also provides control information to control the operating voltage generated. In various examples, PCU 517 may include a variety of power management logic units (circuitry) to perform hardware-based power management. Such power management may be wholly processor controlled (e.g., by various processor hardware, and which may be triggered by workload and/or power, thermal or other processor constraints) and/or the power management may be performed responsive to external sources (such as a platform or power management source or system software).
PCU 517 is illustrated as being present as logic separate from the processor 570 and/or processor 580. In other cases, PCU 517 may execute on a given one or more of cores (not shown) of processor 570 or 580. In some cases, PCU 517 may be implemented as a microcontroller (dedicated or general-purpose) or other control logic configured to execute its own dedicated power management code, sometimes referred to as P-code. In yet other examples, power management operations to be performed by PCU 517 may be implemented externally to a processor, such as by way of a separate power management integrated circuit (PMIC) or another component external to the processor. In yet other examples, power management operations to be performed by PCU 517 may be implemented within BIOS or other system software.
Various I/O devices 514 may be coupled to first interface 516, along with a bus bridge 518 which couples first interface 516 to a second interface 520. In some examples, one or more additional processor(s) 515, such as coprocessors, high throughput many integrated core (MIC) processors, GPGPUs, accelerators (such as graphics accelerators or digital signal processing (DSP) units), field programmable gate arrays (FPGAs), or any other processor, are coupled to first interface 516. In some examples, second interface 520 may be a low pin count (LPC) interface. Various devices may be coupled to second interface 520 including, for example, a keyboard and/or mouse 522, communication devices 527 and storage circuitry 528. Storage circuitry 528 may be one or more non-transitory machine-readable storage media as described below, such as a disk drive or other mass storage device which may include instructions/code and data 530 and may implement the storage 403 in some examples. Further, an audio I/O 524 may be coupled to second interface 520. Note that other architectures than the point-to-point architecture described above are possible. For example, instead of the point-to-point architecture, a system such as multiprocessor system 500 may implement a multi-drop interface or other such architecture.
Example Core Architectures, Processors, and Computer Architectures.
Processor cores may be implemented in different ways, for different purposes, and in different processors. For instance, implementations of such cores may include: 1) a general purpose in-order core intended for general-purpose computing; 2) a high-performance general purpose out-of-order core intended for general-purpose computing; 3) a special purpose core intended primarily for graphics and/or scientific (throughput) computing. Implementations of different processors may include: 1) a CPU including one or more general purpose in-order cores intended for general-purpose computing and/or one or more general purpose out-of-order cores intended for general-purpose computing; and 2) a coprocessor including one or more special purpose cores intended primarily for graphics and/or scientific (throughput) computing. Such different processors lead to different computer system architectures, which may include: 1) the coprocessor on a separate chip from the CPU; 2) the coprocessor on a separate die in the same package as a CPU; 3) the coprocessor on the same die as a CPU (in which case, such a coprocessor is sometimes referred to as special purpose logic, such as integrated graphics and/or scientific (throughput) logic, or as special purpose cores); and 4) a system on a chip (SoC) that may be included on the same die as the described CPU (sometimes referred to as the application core(s) or application processor(s)), the above described coprocessor, and additional functionality. Example core architectures are described next, followed by descriptions of example processors and computer architectures.
Thus, different implementations of the processor 600 may include: 1) a CPU with the special purpose logic 608 being integrated graphics and/or scientific (throughput) logic (which may include one or more cores, not shown), and the cores 602(A)-(N) being one or more general purpose cores (e.g., general purpose in-order cores, general purpose out-of-order cores, or a combination of the two); 2) a coprocessor with the cores 602(A)-(N) being a large number of special purpose cores intended primarily for graphics and/or scientific (throughput); and 3) a coprocessor with the cores 602(A)-(N) being a large number of general purpose in-order cores. Thus, the processor 600 may be a general-purpose processor, coprocessor or special-purpose processor, such as, for example, a network or communication processor, compression engine, graphics processor, GPGPU (general purpose graphics processing unit), a high throughput many integrated core (MIC) coprocessor (including 30 or more cores), embedded processor, or the like. The processor may be implemented on one or more chips. The processor 600 may be a part of and/or may be implemented on one or more substrates using any of a number of process technologies, such as, for example, complementary metal oxide semiconductor (CMOS), bipolar CMOS (BiCMOS), P-type metal oxide semiconductor (PMOS), or N-type metal oxide semiconductor (NMOS).
A memory hierarchy includes one or more levels of cache unit(s) circuitry 604(A)-(N) within the cores 602(A)-(N), a set of one or more shared cache unit(s) circuitry 606, and external memory (not shown) coupled to the set of integrated memory controller unit(s) circuitry 614. The set of one or more shared cache unit(s) circuitry 606 may include one or more mid-level caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or other levels of cache, such as a last level cache (LLC), and/or combinations thereof. While in some examples interface network circuitry 612 (e.g., a ring interconnect) interfaces the special purpose logic 608 (e.g., integrated graphics logic), the set of shared cache unit(s) circuitry 606, and the system agent unit circuitry 610, alternative examples use any number of well-known techniques for interfacing such units. In some examples, coherency is maintained between one or more of the shared cache unit(s) circuitry 606 and cores 602(A)-(N). In some examples, interface controller units circuitry 616 couple the cores 602 to one or more other devices 618 such as one or more I/O devices, storage, one or more communication devices (e.g., wireless networking, wired networking, etc.), etc.
In some examples, one or more of the cores 602(A)-(N) are capable of multi-threading. The system agent unit circuitry 610 includes those components coordinating and operating cores 602(A)-(N). The system agent unit circuitry 610 may include, for example, power control unit (PCU) circuitry and/or display unit circuitry (not shown). The PCU may be or may include logic and components needed for regulating the power state of the cores 602(A)-(N) and/or the special purpose logic 608 (e.g., integrated graphics logic). The display unit circuitry is for driving one or more externally connected displays.
The cores 602(A)-(N) may be homogenous in terms of instruction set architecture (ISA). Alternatively, the cores 602(A)-(N) may be heterogeneous in terms of ISA; that is, a subset of the cores 602(A)-(N) may be capable of executing an ISA, while other cores may be capable of executing only a subset of that ISA or another ISA.
Example Core Architectures—In-Order and Out-of-Order Core Block Diagram.
In
By way of example, the example register renaming, out-of-order issue/execution architecture core of
The front-end unit circuitry 730 may include branch prediction circuitry 732 coupled to instruction cache circuitry 734, which is coupled to an instruction translation lookaside buffer (TLB) 736, which is coupled to instruction fetch circuitry 738, which is coupled to decode circuitry 740. In one example, the instruction cache circuitry 734 is included in the memory unit circuitry 770 rather than the front-end circuitry 730. The decode circuitry 740 (or decoder) may decode instructions, and generate as an output one or more micro-operations, micro-code entry points, microinstructions, other instructions, or other control signals, which are decoded from, or which otherwise reflect, or are derived from, the original instructions. The decode circuitry 740 may further include address generation unit (AGU, not shown) circuitry. In one example, the AGU generates an LSU address using forwarded register ports, and may further perform branch forwarding (e.g., immediate offset branch forwarding, LR register branch forwarding, etc.). The decode circuitry 740 may be implemented using various different mechanisms. Examples of suitable mechanisms include, but are not limited to, look-up tables, hardware implementations, programmable logic arrays (PLAs), microcode read only memories (ROMs), etc. In one example, the core 790 includes a microcode ROM (not shown) or other medium that stores microcode for certain macroinstructions (e.g., in decode circuitry 740 or otherwise within the front-end circuitry 730). In one example, the decode circuitry 740 includes a micro-operation (micro-op) or operation cache (not shown) to hold/cache decoded operations, micro-tags, or micro-operations generated during the decode or other stages of the processor pipeline 700. The decode circuitry 740 may be coupled to rename/allocator unit circuitry 752 in the execution engine circuitry 750.
The execution engine circuitry 750 includes the rename/allocator unit circuitry 752 coupled to retirement unit circuitry 754 and a set of one or more scheduler(s) circuitry 756. The scheduler(s) circuitry 756 represents any number of different schedulers, including reservations stations, central instruction window, etc. In some examples, the scheduler(s) circuitry 756 can include arithmetic logic unit (ALU) scheduler/scheduling circuitry, ALU queues, address generation unit (AGU) scheduler/scheduling circuitry, AGU queues, etc. The scheduler(s) circuitry 756 is coupled to the physical register file(s) circuitry 758. Each of the physical register file(s) circuitry 758 represents one or more physical register files, different ones of which store one or more different data types, such as scalar integer, scalar floating-point, packed integer, packed floating-point, vector integer, vector floating-point, status (e.g., an instruction pointer that is the address of the next instruction to be executed), etc. In one example, the physical register file(s) circuitry 758 includes vector registers unit circuitry, writemask registers unit circuitry, and scalar register unit circuitry. These register units may provide architectural vector registers, vector mask registers, general-purpose registers, etc. The physical register file(s) circuitry 758 is coupled to the retirement unit circuitry 754 (also known as a retire queue or a retirement queue) to illustrate various ways in which register renaming and out-of-order execution may be implemented (e.g., using a reorder buffer(s) (ROB(s)) and a retirement register file(s); using a future file(s), a history buffer(s), and a retirement register file(s); using a register maps and a pool of registers; etc.). The retirement unit circuitry 754 and the physical register file(s) circuitry 758 are coupled to the execution cluster(s) 760. The execution cluster(s) 760 includes a set of one or more execution unit(s) circuitry 762 and a set of one or more memory access circuitry 764. The execution unit(s) circuitry 762 may perform various arithmetic, logic, floating-point or other types of operations (e.g., shifts, addition, subtraction, multiplication) and on various types of data (e.g., scalar integer, scalar floating-point, packed integer, packed floating-point, vector integer, vector floating-point). While some examples may include a number of execution units or execution unit circuitry dedicated to specific functions or sets of functions, other examples may include only one execution unit circuitry or multiple execution units/execution unit circuitry that all perform all functions. The scheduler(s) circuitry 756, physical register file(s) circuitry 758, and execution cluster(s) 760 are shown as being possibly plural because certain examples create separate pipelines for certain types of data/operations (e.g., a scalar integer pipeline, a scalar floating-point/packed integer/packed floating-point/vector integer/vector floating-point pipeline, and/or a memory access pipeline that each have their own scheduler circuitry, physical register file(s) circuitry, and/or execution cluster—and in the case of a separate memory access pipeline, certain examples are implemented in which only the execution cluster of this pipeline has the memory access unit(s) circuitry 764). It should also be understood that where separate pipelines are used, one or more of these pipelines may be out-of-order issue/execution and the rest in-order.
In some examples, the execution engine unit circuitry 750 may perform load store unit (LSU) address/data pipelining to an Advanced Microcontroller Bus (AMB) interface (not shown), and address phase and writeback, data phase load, store, and branches.
The set of memory access circuitry 764 is coupled to the memory unit circuitry 770, which includes data TLB circuitry 772 coupled to data cache circuitry 774 coupled to level 2 (L2) cache circuitry 776. In one example, the memory access circuitry 764 may include load unit circuitry, store address unit circuitry, and store data unit circuitry, each of which is coupled to the data TLB circuitry 772 in the memory unit circuitry 770. The instruction cache circuitry 734 is further coupled to the level 2 (L2) cache circuitry 776 in the memory unit circuitry 770. In one example, the instruction cache 734 and the data cache 774 are combined into a single instruction and data cache (not shown) in L2 cache circuitry 776, level 3 (L3) cache circuitry (not shown), and/or main memory. The L2 cache circuitry 776 is coupled to one or more other levels of cache and eventually to a main memory.
The core 790 may support one or more instructions sets (e.g., the x86 instruction set architecture (optionally with some extensions that have been added with newer versions); the MIPS instruction set architecture; the ARM instruction set architecture (optionally with optional additional extensions such as NEON)), including the instruction(s) described herein. In one example, the core 790 includes logic to support a packed data instruction set architecture extension (e.g., AVX1, AVX2), thereby allowing the operations used by many multimedia applications to be performed using packed data.
Example Execution Unit(s) Circuitry.
Example Register Architecture.
In some examples, the register architecture 900 includes writemask/predicate registers 915. For example, in some examples, there are 8 writemask/predicate registers (sometimes called k0 through k7) that are each 16-bit, 32-bit, 64-bit, or 128-bit in size. Writemask/predicate registers 915 may allow for merging (e.g., allowing any set of elements in the destination to be protected from updates during the execution of any operation) and/or zeroing (e.g., zeroing vector masks allow any set of elements in the destination to be zeroed during the execution of any operation). In some examples, each data element position in a given writemask/predicate register 915 corresponds to a data element position of the destination. In other examples, the writemask/predicate registers 915 are scalable and consists of a set number of enable bits for a given vector element (e.g., 8 enable bits per 64-bit vector element).
The register architecture 900 includes a plurality of general-purpose registers 925. These registers may be 16-bit, 32-bit, 64-bit, etc. and can be used for scalar operations. In some examples, these registers are referenced by the names RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, and R8 through R15.
In some examples, the register architecture 900 includes scalar floating-point (FP) register file 945 which is used for scalar floating-point operations on 32/64/80-bit floating-point data using the x87 instruction set architecture extension or as MMX registers to perform operations on 64-bit packed integer data, as well as to hold operands for some operations performed between the MMX and XMM registers.
One or more flag registers 940 (e.g., EFLAGS, RFLAGS, etc.) store status and control information for arithmetic, compare, and system operations. For example, the one or more flag registers 940 may store condition code information such as carry, parity, auxiliary carry, zero, sign, and overflow. In some examples, the one or more flag registers 940 are called program status and control registers.
Segment registers 920 contain segment points for use in accessing memory. In some examples, these registers are referenced by the names CS, DS, SS, ES, FS, and GS.
Model specific registers or machine specific registers (MSRs) 935 control and report on processor performance. Most MSRs 935 handle system-related functions and are not accessible to an application program. For example, MSRs may provide control for one or more of: performance-monitoring counters, debug extensions, memory type range registers, thermal and power management, instruction-specific support, and/or processor feature/mode support. Machine check registers 960 consist of control, status, and error reporting MSRs that are used to detect and report on hardware errors. Control register(s) 955 (e.g., CR0-CR4) determine the operating mode of a processor (e.g., processor 570, 580, 538, 515, and/or 600) and the characteristics of a currently executing task. In some examples, MSRs 935 are a subset of control registers 955.
One or more instruction pointer register(s) 930 store an instruction pointer value. Debug registers 950 control and allow for the monitoring of a processor or core's debugging operations.
Memory (mem) management registers 965 specify the locations of data structures used in protected mode memory management. These registers may include a global descriptor table register (GDTR), interrupt descriptor table register (IDTR), task register, and a local descriptor table register (LDTR) register.
Alternative examples may use wider or narrower registers. Additionally, alternative examples may use more, less, or different register files and registers. The register architecture 900 may, for example, be used in register file/memory 408, or physical register file(s) circuitry 758.
Instruction Set Architectures.
An instruction set architecture (ISA) may include one or more instruction formats. A given instruction format may define various fields (e.g., number of bits, location of bits) to specify, among other things, the operation to be performed (e.g., opcode) and the operand(s) on which that operation is to be performed and/or other data field(s) (e.g., mask). Some instruction formats are further broken down through the definition of instruction templates (or sub-formats). For example, the instruction templates of a given instruction format may be defined to have different subsets of the instruction format's fields (the included fields are typically in the same order, but at least some have different bit positions because there are less fields included) and/or defined to have a given field interpreted differently. Thus, each instruction of an ISA is expressed using a given instruction format (and, if defined, in a given one of the instruction templates of that instruction format) and includes fields for specifying the operation and the operands. For example, an example ADD instruction has a specific opcode and an instruction format that includes an opcode field to specify that opcode and operand fields to select operands (source1/destination and source2); and an occurrence of this ADD instruction in an instruction stream will have specific contents in the operand fields that select specific operands. In addition, though the description below is made in the context of x86 ISA, it is within the knowledge of one skilled in the art to apply the teachings of the present disclosure in another ISA.
Example Instruction Formats.
Examples of the instruction(s) described herein may be embodied in different formats. Additionally, example systems, architectures, and pipelines are detailed below. Examples of the instruction(s) may be executed on such systems, architectures, and pipelines, but are not limited to those detailed.
The prefix(es) field(s) 1001, when used, modifies an instruction. In some examples, one or more prefixes are used to repeat string instructions (e.g., 0xF0, 0xF2, 0xF3, etc.), to provide section overrides (e.g., 0x2E, 0x36, 0x3E, 0x26, 0x64, 0x65, 0x2E, 0x3E, etc.), to perform bus lock operations, and/or to change operand (e.g., 0x66) and address sizes (e.g., 0x67). Certain instructions require a mandatory prefix (e.g., 0x66, 0xF2, 0xF3, etc.). Certain of these prefixes may be considered “legacy” prefixes. Other prefixes, one or more examples of which are detailed herein, indicate, and/or provide further capability, such as specifying particular registers, etc. The other prefixes typically follow the “legacy” prefixes.
The opcode field 1003 is used to at least partially define the operation to be performed upon a decoding of the instruction. In some examples, a primary opcode encoded in the opcode field 1003 is one, two, or three bytes in length. In other examples, a primary opcode can be a different length. An additional 3-bit opcode field is sometimes encoded in another field.
The addressing information field 1005 is used to address one or more operands of the instruction, such as a location in memory or one or more registers.
The content of the MOD field 1142 distinguishes between memory access and non-memory access modes. In some examples, when the MOD field 1142 has a binary value of 11 (11b), a register-direct addressing mode is utilized, and otherwise a register-indirect addressing mode is used.
The register field 1144 may encode either the destination register operand or a source register operand or may encode an opcode extension and not be used to encode any instruction operand. The content of register field 1144, directly or through address generation, specifies the locations of a source or destination operand (either in a register or in memory). In some examples, the register field 1144 is supplemented with an additional bit from a prefix (e.g., prefix 1001) to allow for greater addressing.
The R/M field 1146 may be used to encode an instruction operand that references a memory address or may be used to encode either the destination register operand or a source register operand. Note the R/M field 1146 may be combined with the MOD field 1142 to dictate an addressing mode in some examples.
The SIB byte 1104 includes a scale field 1152, an index field 1154, and a base field 1156 to be used in the generation of an address. The scale field 1152 indicates a scaling factor. The index field 1154 specifies an index register to use. In some examples, the index field 1154 is supplemented with an additional bit from a prefix (e.g., prefix 1001) to allow for greater addressing. The base field 1156 specifies a base register to use. In some examples, the base field 1156 is supplemented with an additional bit from a prefix (e.g., prefix 1001) to allow for greater addressing. In practice, the content of the scale field 1152 allows for the scaling of the content of the index field 1154 for memory address generation (e.g., for address generation that uses 2scale*index+base).
Some addressing forms utilize a displacement value to generate a memory address. For example, a memory address may be generated according to 2scale*index+base+displacement, index*scale+displacement, r/m+displacement, instruction pointer (RIP/EIP)+displacement, register+displacement, etc. The displacement may be a 1-byte, 2-byte, 4-byte, etc. value. In some examples, the displacement field 1007 provides this value. Additionally, in some examples, a displacement factor usage is encoded in the MOD field of the addressing information field 1005 that indicates a compressed displacement scheme for which a displacement value is calculated and stored in the displacement field 1007.
In some examples, the immediate value field 1009 specifies an immediate value for the instruction. An immediate value may be encoded as a 1-byte value, a 2-byte value, a 4-byte value, etc.
Instructions using the first prefix 1001(A) may specify up to three registers using 3-bit fields depending on the format: 1) using the reg field 1144 and the R/M field 1146 of the MOD R/M byte 1102; 2) using the MOD R/M byte 1102 with the SIB byte 1104 including using the reg field 1144 and the base field 1156 and index field 1154; or 3) using the register field of an opcode.
In the first prefix 1001(A), bit positions 7:4 are set as 0100. Bit position 3 (W) can be used to determine the operand size but may not solely determine operand width. As such, when W=0, the operand size is determined by a code segment descriptor (CS.D) and when W=1, the operand size is 64-bit.
Note that the addition of another bit allows for 16 (24) registers to be addressed, whereas the MOD R/M reg field 1144 and MOD R/M R/M field 1146 alone can each only address 8 registers.
In the first prefix 1001(A), bit position 2 (R) may be an extension of the MOD R/M reg field 1144 and may be used to modify the MOD R/M reg field 1144 when that field encodes a general-purpose register, a 64-bit packed data register (e.g., a SSE register), or a control or debug register. R is ignored when MOD R/M byte 1102 specifies other registers or defines an extended opcode.
Bit position 1 (X) may modify the SIB byte index field 1154.
Bit position 0 (B) may modify the base in the MOD R/M R/M field 1146 or the SIB byte base field 1156; or it may modify the opcode register field used for accessing general purpose registers (e.g., general purpose registers 925).
In some examples, the second prefix 1001(B) comes in two forms—a two-byte form and a three-byte form. The two-byte second prefix 1001(B) is used mainly for 128-bit, scalar, and some 256-bit instructions; while the three-byte second prefix 1001(B) provides a compact replacement of the first prefix 1001(A) and 3-byte opcode instructions.
Instructions that use this prefix may use the MOD R/M R/M field 1146 to encode the instruction operand that references a memory address or encode either the destination register operand or a source register operand.
Instructions that use this prefix may use the MOD R/M reg field 1144 to encode either the destination register operand or a source register operand, or to be treated as an opcode extension and not used to encode any instruction operand.
For instruction syntax that support four operands, vvvv, the MOD R/M R/M field 1146 and the MOD R/M reg field 1144 encode three of the four operands. Bits[7:4] of the immediate value field 1009 are then used to encode the third source register operand.
Bit[7] of byte 21417 is used similar to W of the first prefix 1001(A) including helping to determine promotable operand sizes. Bit[2] is used to dictate the length (L) of the vector (where a value of 0 is a scalar or 128-bit vector and a value of 1 is a 256-bit vector). Bits[1:0] provide opcode extensionality equivalent to some legacy prefixes (e.g., 00=no prefix, 01=66H, 10=F3H, and 11=F2H). Bits[6:3], shown as vvvv, may be used to: 1) encode the first source register operand, specified in inverted (1s complement) form and valid for instructions with 2 or more source operands; 2) encode the destination register operand, specified in 1s complement form for certain vector shifts; or 3) not encode any operand, the field is reserved and should contain a certain value, such as 1111b.
Instructions that use this prefix may use the MOD R/M R/M field 1146 to encode the instruction operand that references a memory address or encode either the destination register operand or a source register operand.
Instructions that use this prefix may use the MOD R/M reg field 1144 to encode either the destination register operand or a source register operand, or to be treated as an opcode extension and not used to encode any instruction operand.
For instruction syntax that support four operands, vvvv, the MOD R/M R/M field 1146, and the MOD R/M reg field 1144 encode three of the four operands. Bits[7:4] of the immediate value field 1009 are then used to encode the third source register operand.
The third prefix 1001(C) can encode 32 vector registers (e.g., 128-bit, 256-bit, and 512-bit registers) in 64-bit mode. In some examples, instructions that utilize a writemask/opmask (see discussion of registers in a previous figure, such as
The third prefix 1001(C) may encode functionality that is specific to instruction classes (e.g., a packed instruction with “load+op” semantic can support embedded broadcast functionality, a floating-point instruction with rounding semantic can support static rounding functionality, a floating-point instruction with non-rounding arithmetic semantic can support “suppress all exceptions” functionality, etc.).
The first byte of the third prefix 1001(C) is a format field 1511 that has a value, in one example, of 62H. Subsequent bytes are referred to as payload bytes 1515-1519 and collectively form a 24-bit value of P[23:0] providing specific capability in the form of one or more fields (detailed herein).
In some examples, P[1:0] of payload byte 1519 are identical to the low two mm bits. P[3:2] are reserved in some examples. Bit P[4] (R′) allows access to the high 16 vector register set when combined with P[7] and the MOD R/M reg field 1144. P[6] can also provide access to a high 16 vector register when SIB-type addressing is not needed. P[7:5] consist of R, X, and B which are operand specifier modifier bits for vector register, general purpose register, memory addressing and allow access to the next set of 8 registers beyond the low 8 registers when combined with the MOD R/M register field 1144 and MOD R/M R/M field 1146. P[9:8] provide opcode extensionality equivalent to some legacy prefixes (e.g., 00=no prefix, 01=66H, 10=F3H, and 11=F2H). P[10] in some examples is a fixed value of 1. P[14:11], shown as vvvv, may be used to: 1) encode the first source register operand, specified in inverted (1s complement) form and valid for instructions with 2 or more source operands; 2) encode the destination register operand, specified in 1s complement form for certain vector shifts; or 3) not encode any operand, the field is reserved and should contain a certain value, such as 1111b.
P[15] is similar to W of the first prefix 1001(A) and second prefix 1011(B) and may serve as an opcode extension bit or operand size promotion.
P[18:16] specify the index of a register in the opmask (writemask) registers (e.g., writemask/predicate registers 915). In one example, the specific value aaa=000 has a special behavior implying no opmask is used for the particular instruction (this may be implemented in a variety of ways including the use of a opmask hardwired to all ones or hardware that bypasses the masking hardware). When merging, vector masks allow any set of elements in the destination to be protected from updates during the execution of any operation (specified by the base operation and the augmentation operation); in other one example, preserving the old value of each element of the destination where the corresponding mask bit has a 0. In contrast, when zeroing vector masks allow any set of elements in the destination to be zeroed during the execution of any operation (specified by the base operation and the augmentation operation); in one example, an element of the destination is set to 0 when the corresponding mask bit has a 0 value. A subset of this functionality is the ability to control the vector length of the operation being performed (that is, the span of elements being modified, from the first to the last one); however, it is not necessary that the elements that are modified be consecutive. Thus, the opmask field allows for partial vector operations, including loads, stores, arithmetic, logical, etc. While examples are described in which the opmask field's content selects one of a number of opmask registers that contains the opmask to be used (and thus the opmask field's content indirectly identifies that masking to be performed), alternative examples instead or additional allow the mask write field's content to directly specify the masking to be performed.
P[19] can be combined with P[14:11] to encode a second source vector register in a non-destructive source syntax which can access an upper 16 vector registers using P[19]. P[20] encodes multiple functionalities, which differs across different classes of instructions and can affect the meaning of the vector length/rounding control specifier field (P[22:21]). P[23] indicates support for merging-writemasking (e.g., when set to 0) or support for zeroing and merging-writemasking (e.g., when set to 1).
Example examples of encoding of registers in instructions using the third prefix 1001(C) are detailed in the following tables.
Program code may be applied to input information to perform the functions described herein and generate output information. The output information may be applied to one or more output devices, in known fashion. For purposes of this application, a processing system includes any system that has a processor, such as, for example, a digital signal processor (DSP), a microcontroller, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a microprocessor, or any combination thereof.
The program code may be implemented in a high-level procedural or object-oriented programming language to communicate with a processing system. The program code may also be implemented in assembly or machine language, if desired. In fact, the mechanisms described herein are not limited in scope to any particular programming language. In any case, the language may be a compiled or interpreted language.
Examples of the mechanisms disclosed herein may be implemented in hardware, software, firmware, or a combination of such implementation approaches. Examples may be implemented as computer programs or program code executing on programmable systems comprising at least one processor, a storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device.
One or more aspects of at least one example may be implemented by representative instructions stored on a machine-readable medium which represents various logic within the processor, which when read by a machine causes the machine to fabricate logic to perform the techniques described herein. Such representations, known as “intellectual property (IP) cores” may be stored on a tangible, machine readable medium and supplied to various customers or manufacturing facilities to load into the fabrication machines that make the logic or processor.
Such machine-readable storage media may include, without limitation, non-transitory, tangible arrangements of articles manufactured or formed by a machine or device, including storage media such as hard disks, any other type of disk including floppy disks, optical disks, compact disk read-only memories (CD-ROMs), compact disk rewritables (CD-RWs), and magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random access memories (RAMs) such as dynamic random access memories (DRAMs), static random access memories (SRAMs), erasable programmable read-only memories (EPROMs), flash memories, electrically erasable programmable read-only memories (EEPROMs), phase change memory (PCM), magnetic or optical cards, or any other type of media suitable for storing electronic instructions.
Accordingly, examples also include non-transitory, tangible machine-readable media containing instructions or containing design data, such as Hardware Description Language (HDL), which defines structures, circuits, apparatuses, processors and/or system features described herein. Such examples may also be referred to as program products.
Emulation (including binary translation, code morphing, etc.).
In some cases, an instruction converter may be used to convert an instruction from a source instruction set architecture to a target instruction set architecture. For example, the instruction converter may translate (e.g., using static binary translation, dynamic binary translation including dynamic compilation), morph, emulate, or otherwise convert an instruction to one or more other instructions to be processed by the core. The instruction converter may be implemented in software, hardware, firmware, or a combination thereof. The instruction converter may be on processor, off processor, or part on and part off processor.
References to “one example,” “an example,” etc., indicate that the example described may include a particular feature, structure, or characteristic, but every example may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same example. Further, when a particular feature, structure, or characteristic is described in connection with an example, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other examples whether or not explicitly described.
Moreover, in the various examples described above, unless specifically noted otherwise, disjunctive language such as the phrase “at least one of A, B, or C” or “A, B, and/or C” is intended to be understood to mean either A, B, or C, or any combination thereof (i.e. A and B, A and C, B and C, and A, B and C).
Examples include, but are not limited to:
The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It will, however, be evident that various modifications and changes may be made thereunto without departing from the broader spirit and scope of the disclosure as set forth in the claims.