Crimping device for loading stents and prosthetic heart valves

Information

  • Patent Grant
  • 11464659
  • Patent Number
    11,464,659
  • Date Filed
    Monday, July 13, 2020
    4 years ago
  • Date Issued
    Tuesday, October 11, 2022
    2 years ago
Abstract
Systems and devices for crimping a medical device and associated methods are disclosed herein. A crimping device configured in accordance with embodiments of the present technology can include, for example, a frame including a stationary plate, a movable member, and a plurality of blades arranged to form a channel and each including a pin that projects through a slot on the movable member and a corresponding slot on the stationary plate. The crimping device can be actuated to move the movable member relative to the stationary plate to drive the pins along paths defined by the slots to thereby drive the blades radially inward to crimp a medical device positioned within the channel.
Description
TECHNICAL FIELD

The present technology relates generally to devices, systems, and methods for reducing the size of a medical device. In particular, some embodiments of the present technology relate to compact crimping devices for reducing a size of prosthetic heart valve devices.


BACKGROUND

Medical devices, such as stents and prosthetic valve devices, can be introduced into a lumen of a body vessel via percutaneous catheterization techniques. These medical devices may be expandable from a first cross-sectional dimension that allows for percutaneous device delivery to a second cross-sectional dimension at a treatment site. In the expanded state, the medical device has a larger cross-sectional dimension than the catheter used to deliver the medical device. Accordingly, a crimping device is typically used to crimp (i.e., reduce) a cross-sectional dimension of the medical device so that the medical device can be loaded into the catheter and advanced to a treatment location in the body. At the treatment location, the medical device can be removed from the catheter and expanded (e.g., via self-expansion, balloon catheter expansion, or mechanical expansion means) to provide a treatment function.


Prosthetic heart valve devices (e.g., prosthetic mitral valve devices) can have a large cross-sectional dimension in the expanded state relative to other medical devices (e.g., stents) delivered via percutaneous catheterization techniques. For example, some prosthetic mitral valves can have an expanded cross sectional dimension of 1.97 inches or more. It is often desirable to package and store prosthetic heart valve devices in their expanded state until just before implantation into the patient. For example, prosthetic heart valve devices can be stored in a sterile solution up until the time the prosthetic heart valve device is ready to be loaded into a delivery system for implantation. Therefore, it is often desirable to crimp prosthetic heart valve devices in the operating room and only a few minutes before a procedure to implant the prosthetic heart valve device. Such procedures preclude pre-crimping by the manufacturer, and benefit from crimping devices that are highly portable and readily available as a sterile system.





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Instead, emphasis is placed on illustrating clearly the principles of the present disclosure. Furthermore, components can be shown as transparent in certain views for clarity of illustration only and not to indicate that the illustrated component is necessarily transparent. The headings provided herein are for convenience only.



FIG. 1 is an isometric view of a system for reducing the size of a medical device configured in accordance with some embodiments of the present technology.



FIGS. 2 and 3 are isometric views of a crimping device of the system of FIG. 1 in a first position and a second position, respectively, in accordance with embodiments of the present technology.



FIG. 4 is a partially exploded view of the crimping device shown in FIGS. 2 and 3.



FIG. 5 is an isometric view of a blade of the crimping device shown in FIGS. 2-4 configured in accordance with some embodiments of the present technology.



FIG. 6 is an isometric view of a medical device holder for use with the system shown in FIG. 1 and releasably coupled to a portion of a prosthetic heart valve device in accordance with some embodiments of the present technology.



FIGS. 7 and 8 are an isometric view and cross-sectional view, respectively, illustrating the medical device holder of FIG. 6 coupled to the crimping device of FIGS. 2-4 in accordance with embodiments of the present technology.



FIG. 9 is a top view of a tray of the system of FIG. 1 configured in accordance with various embodiments of the present technology.





DETAILED DESCRIPTION

The present technology is generally directed to systems including crimping devices for reducing the size of prosthetic heart valve devices and other medical devices. The term “crimp” (e.g., used in relation to a crimping device or a crimping method) can refer to devices and methods that compact or compress a medical device to a smaller size. Specific details of several embodiments of the present technology are described herein with reference to FIGS. 1-9. Although many of the embodiments are described with respect to devices, systems, and methods for crimping, loading, and delivering prosthetic heart valve devices to a native mitral valve, other applications and other embodiments in addition to those described herein are within the scope of the present technology. For example, at least some embodiments of the present technology may be useful for delivering prosthetics to other native valves, such as the tricuspid valve or the aortic valve. It should be noted that other embodiments in addition to those disclosed herein are within the scope of the present technology. Further, embodiments of the present technology can have different configurations, components, and/or procedures than those shown or described herein. Moreover, a person of ordinary skill in the art will understand that embodiments of the present technology can have configurations, components, and/or procedures in addition to those shown or described herein and that these and other embodiments can be without several of the configurations, components, and/or procedures shown or described herein without deviating from the present technology.


With regard to the terms “distal” and “proximal” within this description, unless otherwise specified, the terms can reference relative positions of portions of a prosthetic valve device and/or an associated delivery device with reference to an operator and/or a location in the vasculature or heart. For example, in referring to a delivery catheter suitable to deliver and position various prosthetic valve devices described herein, “proximal” can refer to a position closer to the operator of the device or an incision into the vasculature, and “distal” can refer to a position that is more distant from the operator of the device or further from the incision along the vasculature (e.g., the end of the catheter).


Overview



FIG. 1 shows an embodiment of a crimping and loading system 10 (“system 10”) for reducing the size of a medical device in accordance with the present technology. In particular, the system 10 can be used to crimp or compact the medical device to enable the medical device to be loaded into a delivery system for percutaneously delivering the medical device to a patient. In some embodiments, the medical device can be a prosthetic heart valve device. More particularly, the medical device can be a mitral valve device for implantation into a native mitral valve and the delivery system can be a delivery system for delivering the mitral valve device to the native mitral valve, such as one or more of the mitral valve devices and/or delivery systems disclosed in (1) International Patent Application No. PCT/US2014/029549, filed Mar. 14, 2014, (2) International Patent Application No. PCT/US2012/061219, filed Oct. 19, 2012, (3) International Patent Application No. PCT/US2012/061215, filed Oct. 19, 2012, (4) International Patent Application No. PCT/US2012/043636, filed Jun. 21, 2012, (5) U.S. patent application Ser. No. 15/490,047, filed Apr. 18, 2017, and (6) U.S. patent application Ser. No. 15/490,008, filed Apr. 18, 2017, each of which is incorporated herein by reference in its entirety.


As shown in FIG. 1, the system 10 includes a crimping device 100, a medical device holder 200 (“holder 200”), a tray 300, and a stand 400. The crimping device 100 includes a plurality of blades (not visible; described in further detail below) that define a channel 115 configured to receive a medical device in an expanded state, and an actuating member 105 operably coupled to the blades. The actuating member 105 can be manipulated by a user to vary or reduce a cross-sectional dimension (e.g., a diameter) of the channel 115 and, thereby, reduce the outer dimension of the medical device positioned within the channel 115. In some embodiments, the holder 200 is releasably coupled to the medical device, and then detachably coupled to an entry side 101 of the crimping device 100 such that the holder 200 positions the medical device appropriately within the channel 115 of the crimping device 100 before and/or during crimping.


As shown in FIG. 1, the crimping device 100 can be positioned at least partially within a reservoir 310 in the tray 300. In some embodiments, the tray 300 includes a plurality of flanges 305 that project into the reservoir 310 and define a recess 315 that is sized and shaped to retain the crimping device 100 such that the channel 115 is positioned within the reservoir 310. In other embodiments, the tray 300 can include different or additional features for retaining and appropriately positioning the crimping device 100 within the tray 300, such as fasteners, interlocking surfaces, and/or other suitable retention features. The reservoir 310 can hold a liquid (e.g., chilled saline) that submerges the channel 115 when the crimping device 100 is positioned within the recess 315. As further shown in FIG. 1, the tray 300 can also include an aperture 320 for receiving a portion of a delivery system 600 therethrough and to facilitate loading the crimped medical device into the delivery system 600. For example, an elongated catheter body 605 and/or delivery capsule 610 of the delivery system 600 can be inserted through the aperture 320 and positioned adjacent to the channel 115 on an exit side 103 of the crimping device 100. In some embodiments, the tray 300 can further include one or more sealing members (not shown) positioned within the aperture 320 to at least partially seal liquid within the reservoir 310 when the delivery system is moved into and out of the reservoir 310. The stand 400 can be positioned to support a portion of the catheter body 605 and/or align the delivery system 600 with the aperture 320 of the tray 300. In other embodiments, the system 10 can include additional components or some of the features may be omitted.


In operation, the crimping device 100 is positioned within the recess 315 of the tray 300. A medical device, such as a prosthetic heart valve device, is releasably attached to the holder 200 while the medical device is in its expanded state (e.g., an unconstrained state), and then the holder 200 is attached to the entry side 101 of the crimping device 100 such that the medical device extends into the channel 115. In some embodiments, the holder 200 is attached to the entry side 101 of the crimping device 100 before the crimping device 100 is positioned within the recess 315 of the tray 300. In some embodiments, the medical device can be packaged with and pre-attached to the holder 200. In some embodiments, the holder 200 is omitted, and the medical device can be placed in the channel 115 by itself and/or releasably attached to another portion of the crimping device 100 to retain the medical device in the channel 115. Before or after the medical device is positioned in the channel 115, the reservoir 310 of the tray 300 can be filled with a liquid (e.g., chilled saline) such that the channel 115 of the crimping device 100 and the medical device positioned therein are submerged in the liquid. Submerging the medical device can keep the medical device chilled as the crimping device 100 acts on the medical device to reduce the outer dimension of the medical device.


When the system 10 is used to facilitate loading of the device into the delivery system 600, a distal portion of the catheter body 605 can be positioned through the aperture 320 such that the delivery capsule 610 at the distal end of the catheter body 605 is positioned at the exit side 103 of the crimping device 100 adjacent the channel 115. In some embodiments, a distal nose cone of the delivery capsule 610 and an elongated central shaft attached thereto are inserted at least partly through the channel 115 and the unconstrained medical device (e.g., toward the entry side 101 of the crimping device 100 beyond a distal end of the medical device). The stand 400 can be positioned to support the catheter body 605 and/or other portions of the delivery system 600 outside of the tray 300, and to align the delivery system 600 with the aperture 320 of the tray 300 and the channel 115 of the crimping device 100.


Once the delivery system 600 and the medical device are properly positioned with respect to the crimping device 100, a user can manipulate the actuating member 105 of the crimping device 100 to reduce the cross-sectional dimension of the channel 115, and thereby reduce the outer dimension of the medical device (i.e., “crimp” the medical device). In some embodiments, the medical device is crimped to accommodate sizing of the delivery capsule 610 for implanting the medical device using a minimally invasive procedure. In some embodiments, reducing the cross-sectional dimension of the channel 115 disengages the holder 200 from the medical device such that the medical device is no longer attached to the holder 200 to allow for subsequent removal of the medical device from the channel 115 (e.g., via the exit side 103 or the entry side 101 of the crimping device 100).


Once the medical device has been crimped, the medical device can be loaded into the delivery system 600 for subsequent delivery to a patient. For example, a portion of the delivery system 600 can be configured to engage the medical device and pull the crimped medical device into the delivery capsule 610 and/or the catheter body 605. In some embodiments, a piston device of the delivery system 600 engages with features of the medical device, and is then retracted to pull the medical device into the delivery capsule 610. In some embodiments, the channel 115 of the crimping device 100 has a generally funnel-like shape in which the diameter of the channel 115 decreases along an axis from the entry side 101 to the exit side 103 (i.e., away from the holder 200 and toward the delivery capsule 610. In such embodiments, pulling the medical device into the delivery capsule 610 can further crimp a portion of the medical device as the medical device is pulled from a wider-diameter portion of the channel 115 and through a narrower-diameter portion of the channel 115. In some embodiments, the medical device is pulled into the delivery system 600 while submerged in the liquid within the reservoir 310. This is expected to inhibit air pockets or air bubbles from forming in the delivery system 600 as the medical device is loaded. Once the medical device is loaded in the delivery system 600, the delivery system 600 can be withdrawn from the tray 300 and subsequently used to implant the medical device in a patient. In some embodiments, the system 10 is configured to be a completely disposable system. Accordingly, the various components of the system 10, including the crimping device 100, can be disposed of (as compared to being cleaned for subsequent re-use) after the medical device is loaded into the delivery system. By making the system 10 disposable, the system 10 can be provided as a new, sterile environment prior to each procedure.


Selected Embodiments of Crimping Devices, Medical Device Holders, and Associated Methods



FIGS. 2 and 3 are isometric views of the crimping device 100 of FIG. 1 illustrating the crimping device 100 in a first position with the channel 115 having a first cross-sectional dimension (FIG. 2) and in a second position with the channel 115 having a second cross-sectional dimension (FIG. 3). FIG. 4 is an isometric partially exploded view of the crimping device 100 of FIG. 2 (i.e., showing the crimping device 100 in the first position). In some embodiments, the first and second cross-sectional dimensions are a maximum and a minimum cross-sectional dimension, respectively. The crimping device 100 includes a frame 110, a plurality of movable blades 140 arranged circumferentially within the frame 110 to define the channel 115 having a central axis 107 extending therethrough.


Referring to FIG. 4, the frame 110 can include a first plate 120 having a plurality of first slots 122 extending through portions of the first plate 120, and a second plate 130 having a plurality of second slots 132 extending through portions of the second plate 130 (collectively referred to as “plates 120, 130”). The crimping device 100 further includes a first movable member 160 and a second movable member 170 (collectively “movable members 160, 170”) that are movable (e.g., rotatable) with respect to the first and second plates 120 and 130. For example, the movable members 160, 170 can be configured to rotate about the central axis 107 of the channel 115. The first movable member 160 is positioned between the blades 140 and the first plate 120, and the first movable member 160 includes a plurality of third slots 162 extending through portions of the first movable member 160. Similarly, the second movable member 170 is positioned between the blades 140 and the second plate 130, and the second movable member 170 includes a plurality of fourth slots 172 extending through portions of the second movable member 170. Portions of the first slots 122 can be aligned with portions of the third slots 162, and portions of the second slots 132 can be aligned with portions of the fourth slots 172. In some embodiments, the first and second slots 122 and 132 (collectively referred to as “slots 122, 132”) and the third and fourth slots 162 and 172 (collectively referred to as “slots 162, 172”) are reflectively symmetric about a plane extending perpendicularly to the central axis 107 of the channel 115.


Each blade 140 can include a pin 142 that projects from a portion of the blade 140 spaced apart from the central axis 107 (e.g., an outer portion of the blade 140). At the exit side 103 of the crimping device 100, each pin 142 extends through one of the first slots 122 of the first plate 120 and a corresponding one of the third slots 162 of the first movable member 160, and at the entry side 101 of the crimping device 100 each pin 142 extends through one of the second slots 132 and a corresponding one of the fourth slots 172 of the second movable member 170. Accordingly, the quantity of slots 122, 132, 162, 172 on each of the plates 120, 130 and the movable members 160, 170 can correspond to the quantity of blades 140. In operation, a user can manipulate the actuating member 105 to rotate, slide, or otherwise move the first and second movable members 160 and 170 relative to the first and second plates 120 and 130. This drives the pins 142 along paths defined by corresponding slots 122, 132, 162, 172, thereby driving the blades 140 radially inward to decrease the cross-sectional dimension of the channel 115 (FIG. 3). The radially inward movement of the blades 140 acts on an outer surface of a medical device (e.g., a prosthetic heart valve device) positioned within the channel 115 and, thereby, reduces the outer cross-sectional dimension (e.g., diameter) of the medical device to fit within a delivery capsule (e.g., the delivery capsule 610 of FIG. 1). In some embodiments, the second plate 130 and the second movable member 170 are omitted such that the relative movement of the first plate 120 and the first movable member 160 alone drive the inward motion of the blades 140.


The plates 120, 130 can have a generally rectangular shape such that the frame 110 has a generally rectangular cross-section. In other embodiments, the plates 120, 130 can have other shapes such as, for example, circular, hexagonal, polygonal, etc., and can have different shapes from one another. For example, when the plates 120, 130 have a circular shape, the frame 110 can include a stabilizing base region. In some embodiments, the plates 120, 130 can be internal components positioned within an outer housing that defines the frame 110. The frame 110 can have a shape configured to fit snugly within the recess 315 (FIG. 1) of the tray 300. The actuating member 105 can be positioned on an upper surface 112 (FIG. 2) of the frame 110 such that it is accessibly to a user during a crimping procedure. In other embodiments, the actuating member 105 may be positioned elsewhere on the frame 110, or may be an electric motor instead of a manual actuator. As shown in FIG. 4, the plates 120, 130 are stationary relative to the movable members 160, 170. In some embodiments, the first plate 120 is movable relative to the first movable member 160 and/or the second plate 130 is movable relative to the second movable member 170 to drive the blades 140 radially inward. For example, manipulating the actuating member 105 can rotate the first plate 120 in an opposite direction as the first movable member 160.


The first and second slots 122 and 132 can each define a straight path extending radially away from the central axis of the channel 115. As shown in FIG. 4, each plate 120, 130 can include twelve slots 122, 132 spaced at equal intervals around the central axis 107 of the channel 115. However, in some embodiments, each plate 120, 130 can include fewer than or more than twelve slots (e.g., six slots, eight slots, fourteen slots, etc.) depending on the quantity of blades 140, and/or the slots 122, 132 can be arranged in other configurations and can have different shapes. For example, one or more of the slots 122, 132 can define a generally arcuate or other path. As illustrated in FIG. 4, the second slots 132 can have generally similar features to the first slots 122. In other embodiments, the second slots 132 can have a different number and/or have a different configuration, shape, etc. from the first slots 122.


The third slots 162 on the first movable member 160 can each define an arcuate or angled path having a first end 163a and a second end 163b spaced radially closer to the central axis of the channel 115 than the first end 163a. In some embodiments, the first movable member 160 includes twelve arcuate slots 162 spaced apart from each other at equal intervals around the central axis 107 of the channel 115. In other embodiments, the plurality of third slots 162 can include fewer than or more than twelve slots (e.g., eight slots) depending on the quantity of blades 140, and can be arranged in other configurations and can have different shapes. For example, the third slots 162 can define a generally straight path, or could have a concave portion that faces radially outward from the central axis of the channel 115. Although partly obscured in FIG. 4, the fourth slots 172 can have generally similar features to the third slots 162. In some embodiments, the slots 162, 172 are reflectively symmetric about a plane extending perpendicularly to the central axis 107 of the channel 115. In other embodiments, the slots 162, 172 can each comprise a different number of slots, and/or have different configurations, shapes, etc. from one another. Moreover, as shown in FIG. 4, the slots 162, 172 can be longer than the slots 122, 132 in the plates 120, 130. In some embodiments, the slots 162, 172 extend radially the same or a substantially similar distance as the slots 122, 132.


The first through fourth slots 122132, 162, 172 define a path of movement for the pins 142. For example, the first and second slots 122 and 132 can be sized and shaped to maintain the position of the individual blades 140 relative to each other, and the third and fourth slots 162 and 172 can be sized and shaped to drive the blades 140 radially inward or outward. Accordingly, movement of the pins 142 along the slot paths causes the blades 140 to slide relative to each other and to move radially inward or outward. For example, movement of the first movable member 160 relative to the first plate 120 drives the pins 142 along the path defined by the third slots 162 of the first movable member 160 and constrained by the path of the first slots 122 of the first plate 120. Similarly, movement of the second movable member 170 relative to the second plate 130 drives the pins 142 along the path defined by the fourth slots 172 of the second movable member 170 and constrained by the path of the second slots 132 of the second plate 130. When the pins 142 are in an initial or first pin position (FIG. 2), the blades 140 are arranged such that the channel 115 has a maximum cross-sectional dimension (e.g., diameter), and the pins 142 are positioned at a radially outer end 123a (FIG. 2) of the first slots 122 and a radially outer end 162a (FIG. 4) of the third slots 162. When the pins 142 are in a final or second pin position (FIG. 3), the pins 142 are positioned at a radially inner end 123b (FIG. 3) of the first slots 122 and a radially inner end 162b (FIG. 4) of the third slots 162, and the channel 115 has a minimum cross-sectional dimension. Accordingly, the pins 142 can move between the first and second pin positions to reduce and expand the cross-sectional dimension of the channel 115. In other embodiments, the pins 142 can be positioned at different locations (e.g., positioned at an intermediate location) along the first slots 122 when in the first and/or second pin configuration. When the medical device is positioned within the channel 115, driving the pins 142 radially inward can reduce a cross-sectional dimension (e.g., diameter) of the medical device. In some embodiments, such as embodiments including twelve blades 140, the blades 140 are configured to reduce an outer diameter of a prosthetic heart valve device from about 1.67 inches (42.42 mm) to 0.4 inch (10.16 mm) or less. For example, the blades 140 can be configured to completely close the channel 115 in the second pin position (i.e., a cross-sectional dimension of the channel 115 is zero). As another example, in embodiments including eight blades 140, the blades 140 can be arranged such that the channel 115 has a maximum outer diameter of about 1.3 inches (33.02 mm) and can reduce the diameter of the channel 115 to 0.4 inch (10.16 mm) or less. The maximum and minimum cross-sectional dimensions of the channel 115 can depend on the quantity of blades 140, the size and shape of the blades 140, the locations of the pins 142 on the blades 140, and/or the travel path of the blades 140 as defined by the slots 122, 132, 162, 172.


As shown in FIG. 4, the second plate 130 includes a plurality of first connective features 133 and a plurality of second connective features 135. The first connective features 133 can be holes, flanged surfaces, and/or other attachment mechanisms configured to releasably couple the medical device holder 200 (FIG. 1) to the second plate 120 of the frame 110. The second connective features 135 are configured to provide an attachment mechanism for forming the frame 110 (e.g., connecting the first plate 120 to the second plate 130). As shown, the second connective features 135 can be hooks or fasteners shaped to mate with corresponding holes 125 on the first plate 120. In some embodiments, the second connective features 135 permit the frame 110 of the crimping device 100 to be taken apart to, for example, permit cleaning of the individual components within the frame (e.g., the blades 140 and movable members 160, 170). In some embodiments, the first and second plates 120 and 130 can be fixedly attached to each other via bonding, welding, and/or other attachment methods.


As further shown in FIG. 4, the crimping device 100 can also include an actuator device 150 operably coupled to the first and second movable members 160 and 170, and configured to move the first and second movable members 160, 170 relative to the first and second plates 120 and 130. In some embodiments, as shown in FIG. 4, the actuator device 150 includes the actuating member 105 coupled to a threaded shaft 152 and a connector 154 having a threaded shaft 156 extending therethrough. The connector 154 couples to portions of the first and second movable members 160, 170. Turning the actuating member 105 rotates the threaded shaft 152 about a longitudinal axis of the threaded shaft 152, which in turn moves the connector 154 along the length of the threaded shaft 152. Movement of the connector 154 moves the first and second movable members 160, 170, thereby driving the pins 142 inward or outward along the paths defined by the slots 122, 132, 162, 172 of the plates 120, 130 and the movable members 160, 170. For example, a user can turn the actuating member 105 in a first direction to cause the connector 104 to move downwards (i.e., towards the bottom of the page) in order to rotate the first and second movable members 160, 170 clockwise about the central axis 107 of the channel 115. Clockwise rotation of the first and second movable members 160, 170 can drive the pins 142 inward along the combined paths of the first and third slots 122, 162 and second and fourth slots 132, 172 to reduce the cross-sectional dimension of the channel 115. Turning the actuating member 105 in the opposite direction can rotate the movable members 160, 170 in the counterclockwise direction to drive the pins 142 outward along the combined paths of the first and third slots 122, 162 and second and fourth slots 132, 172 to increase the cross-sectional dimension of the channel 115. In some embodiments, the actuator device 150 can be configured to rotate the blades 140 in the opposite directions to effectuate device compression. The actuator device 150 illustrated in FIG. 4 provides for continuous (e.g., rather than stepwise) compression of a medical device placed within the channel 115 of the crimping device 100, and can have a relatively smaller footprint as compared to other types of actuators.


In some embodiments, the actuator device 150 can comprise a different mechanism to drive movement of the movable members 160, 170, and/or the actuator device 150 can be coupled to the movable members 160, 170 in a different manner. For example, in some embodiments, the actuator device 150 can comprise a lever coupled to the movable members 160, 170. In other embodiments, the movable members 160, 170 can be configured to slide (i.e., rather than rotate) relative to the plates 120, 130. In such embodiments, the actuator device 150 may comprise a handle or other gripping mechanism for sliding the movable members 160, 170. In still other embodiments, the actuator device 150 may include an electric motor configured to move the movable members 160, 170.



FIG. 5 is an isometric view of one of the blades 140 of the crimping device 100 (FIGS. 1-4). Each blade 140 can include a first end portion 141a, a second end portion 141b, a first side 143a, and a second side 143b. The pin 142 of each blade 140 can include a first pin portion 142a projecting from the first side 143a of the blade 140 (e.g., toward the entry side 101 of the crimping device 100 of FIGS. 1-4), and a second pin portion 142b projecting from the second side 143b of the blade 140 (e.g., toward the exist side 103 of the crimping device 100 of FIGS. 1-4). The first pin portion 142a and the second pin portion 142b (collectively referred to as “pin portions 142a, 142b”) can be a single component (e.g., a single shaft) extending through and/or integrally formed with the blade 140, or the pin portions 142a, 142b can be separate pin components that project from either side of the blade 140. In some embodiments, some or all of the blades 140 can include only the first pin portion 142a or only the second pin portion 142b. As shown in FIG. 5, the pin portions 142a, 142b project from the second end portion 141b of the blade 140. When the blade 140 is positioned within the crimping device 100, the second end portion 141b is spaced apart from and radially farther from the central axis 107 of the channel 115 than the first end portion 141a. Accordingly, the pin portions 142a, 142b project from a radially outer portion of the blade 140. Compared to a blade with a pin positioned at a central or more radially inward position of the blade, this radially outward positioning of the pin 142 requires less actuation (i.e., the pin 142 need not be driven as far) to produce an equal amount of inward movement of the blade 140. As a result, the overall size of the crimping device 100 is reduced while still maintaining a sufficiently large crimping range (e.g., the range between a minimum and maximum cross-sectional dimension of the channel 115) to accommodate the sizing of a medical device in an expanded state and the sizing of a delivery system (e.g., a delivery capsule).


As further shown in FIG. 5, the blade 140 includes an inner surface 146a and an outer surface 146b. In general, the inner and outer surfaces 146a and 146b are configured to enable adjacent blades 140 to slide relative to one another and to define a shape of the channel 115 of the crimping device 100. More specifically, the inner surface 146a can be generally sloped along an axis extending between the first and second sides 143a and 143b of the blade 140 (e.g., along the central axis 107 of the channel 115 shown in FIGS. 2-4). The outer surface 146b can have a portion that is generally shaped to match the shape of the inner surface 146a of an adjacent blade 140, and is configured to slide against the inner surface 146a of an adjacent blade 140 as the pin portions 142a, 142b are actuated (e.g., driven radially inward or outward along the slots 122, 132 and slots 162, 172).


A portion of the inner surfaces 146a (e.g., a portion not covered by the outer surface 146b of an adjacent blade 140) of the blades 140 collectively define the channel 115 of the crimping device 100. When the blades 140 with a sloped inner surface 146a are arranged circumferentially, the channel 115 can have a generally funnel-like shape (e.g., as shown in FIG. 8). That is, the channel 115 can have a larger cross-sectional dimension closer to the second sides 143b of the blades 140 (e.g., proximate to the second plate 130 at the entry side 101 of the crimping device 100) than the first sides 143a of the blades 140 (e.g., proximate the first plate 120 at the exit side 103 of the crimping device). In other embodiments, the inner and outer surfaces 146a, 146b of the blade 140 can have other shapes or arrangements. For example, the inner surfaces 146a of each blade can have a wedge-like shape such that the channel 115 has a constant cross-sectional dimension along the central axis of the channel 115. In yet other embodiments, the blades 140 can generally have any other shape or configuration so as to form a channel 115 with a varying cross-sectional dimension along the central axis 107 of the channel 115. In some embodiments, the inner and/or outer surfaces 146a, 146b of the blade 140 can include one or more grooves, slots, holes, etc. These features can reduce the weight of the blade 140 to thereby increase the portability of the crimping device 100, without affecting the function or strength of the crimping device 100.


In some embodiments of the present technology, the crimping device 100 can omit one or more of the components described above with reference to FIGS. 2-5. For example, the crimping device 100 can include only one of the movable members 160, 170, and each blade 140 may include only one of the pin portions 142a or 142b to drive the blades 140 inward to reduce the size of a medical device. However, redundancy of the two movable members 160, 170 and the two plates 120, 130 at the first and second sides 101 and 103 of the crimping device 100 effectively supports each blade 140 at both the first and second side 143a, 143b of the blade 140. Including two movable members 160, 170 can also decrease the amount of force required to actuate the blades 140, and can facilitate at least substantially equal distribution of the actuating force across the blades 140 between the first and second sides 143a, 143b. In some embodiments, the crimping device 100 can include fewer than twelve blades (e.g., four blades, five blades, six blades, eight blades, etc.) or more than twelve blades (e.g., sixteen blades, twenty blades, etc.), and the quantity of slots 122, 132, 162, 172 of the movable members 160, 170 and the plates 120, 130 can be modified to correspond to the number of blades 140.


Each of the components described above with reference to FIGS. 2-5 can be made from the same or different materials, such as metals, polymers, plastic, composites, combinations thereof, and/or other materials. The components of the crimping device 100 can be manufactured using suitable processes, such as, for example, three-dimensional printing, injection molding, and/or other processes for supporting and compressing a medical device during a crimping procedure. In some embodiments, each component is made from a suitable plastic or polymer such that the system is completely disposable and able to be manufactured at a relatively low cost. In some embodiments, some of the components illustrated herein as individual components can be integrally formed together or otherwise combined.


In use, the crimping device 100 can provide a compact, yet efficient mechanism for reducing the size of a prosthetic heart valve device or other medical device. The slots 122, 132 of the plates 120, 130 and the slots 162, 172 of the movable members 160, 170 define paths for the pins 142 that slide the blades 140 radially inward relative to each other to reduce the diameter of the channel 115. This radially inward force is continuous along the surfaces of the blades 140 contacting the medical device within the channel 115, and therefore provides continuous compression of the medical device. As such, the continuous compression allows the user to pause or terminate the crimping procedure at any time (i.e., not just at the maximum and minimum diameters of the channel 115). Further, the funnel-like shape of the channel 115 provided by the blade shape allows portions of the medical device to be compressed more than other portions during inward movement of the blades. For example, a larger portion of the medical device may be positioned in the larger portion of the channel 115 (e.g., toward the entry side 101 of the crimping device 100) and not undergo as much compression as the portion of the medical device positioned in the smaller portion of the channel 115 (e.g., toward the exit side 103 of the crimping device 100). This can inhibit the compressive crimping forces from moving the medical device laterally toward the entry side 101 of the crimping device 100 and help retain the medical device within the channel 115 during crimping. In addition, the position of the pins 142 on the outer portions of the blades 140 reduces the length of the pin travel path necessary for inward movement of the blades 140 to achieve the desired crimping range. For example, the pins 142 can travel a distance of 0.26 inch (6.604 mm) to reduce the channel diameter from about 1.3 inches to 0.4 inch or less. Thus, the arrangement of the pins 142, the blades 140, the movable members 160, 170, and the plates 120, 130, in conjunction with the actuator device 150, allows the crimping device 100 to have a compact size that can easily be moved by a clinician to and from a sterile field, while still providing for a large crimping range suitable for reducing the size of prosthetic heart valves to allow for percutaneous delivery of the device.



FIG. 6 is an isometric view showing the medical device holder 200 (“holder 200”) configured in accordance with an embodiment of the present technology and coupled to an exemplary medical device 500. In some embodiments as shown in FIG. 6, the medical device 500 is a valve support for use with a prosthetic heart valve device. The holder 200 includes a base 202 having a first side 203a, a second side 203b, and an opening 205 extending therebetween. The base 202 can include a plurality of connectors 201 on the second side 203b and configured to removably couple the holder 200 to the crimping device 100 (e.g., to the connective features 113 of the second plate 130 of FIGS. 2-4). As shown in FIG. 6, the base 202 can have a generally annular shape including a radially outer surface 209a and a radially inner surface 209b, both extending between the first and second sides 203a, 203b. The outer surface 209a can include a plurality of grooves 207 and/or ridges to make the holder 200 easy to grip and manipulate, even while submerged during the crimping process. The holder 200 further includes a plurality of first fingers 206 and a plurality of second fingers 208 (collectively “fingers 206, 208”) projecting from the base 202 and arranged circumferentially around a central axis extending through the opening 205 of the base 202. The fingers 206, 208 are configured to engage at least a portion of the medical device 500 to hold the medical device 500 within the channel 115 of the crimping device 100 (FIGS. 2-4) during at least an initial portion of a crimping procedure.


As shown in FIG. 6, the first fingers 206 can be spaced around the central axis of the opening 205 to engage the medical device 500 at more than one point around a circumference of the medical device 500. The first fingers 206 include a first portion 206a extending radially inward from the inner surface 209b of the base 202 toward the central axis of the opening 205, a second portion 206b extending from the first portion 206a and away from the second side 203b of the base 202, a third portion 206c extending from the second portion 206b and radially inward toward the central axis of the opening 205, and a fourth portion 206d configured to engage the medical device 500. The fourth portion 206d can include an index feature 206e shaped to engage a portion of the medical device 500. For example, as shown in FIG. 6, the medical device 500 can be a stent-device including a frame 580 comprising a plurality of frame cells 582. Each frame cell 582 can have a hexagonal shape and comprise a pair of first struts 583, a pair of second struts 584, and a pair of third struts 585. Each of the first struts 583 can extend from an end of the second struts 584, and pairs of the first struts 583 can be connected together to form V-struts 586. At least some of the V-struts 586 at an end portion of the frame 580 can define an apex 587. As shown, the index features 206e can have a generally V-like shape to engage (e.g., mate with) an individual V-strut 586 of the medical device 500. In other embodiments, the medical device 500 and/or the first fingers 206 can have other suitable shapes that enable the first fingers 206 to engage a portion of the medical device 500. For example, the medical device 500 may be a stent device having frame cells 582 with a rectangular, sinusoidal, triangular, polygonal, or other shape, and the index features 206e can have a corresponding shape and arrangement that mates with or fits within a portion of the frame cells 582. In some embodiments, the first fingers 206 are configured to engage with the atrial end of a valve support of a prosthetic mitral valve device and/or other atrial portions of the prosthetic mitral valve device. In some embodiments, the first fingers 206 are configured to engage with the ventricular side of the valve support and/or other ventricular portions of the prosthetic mitral valve device.


In some embodiments, the first fingers 206 are flexible such that they bend radially inward or outward in response to external forces applied to the first fingers 206. For example, when the holder 200 is not attached to the medical device 500, the fourth portions 206d of the first fingers 206 can be positioned a distance away from the central axis of the opening 205 that is slightly greater than a cross-sectional dimension of the medical device 500. To attach the medical device 500, the first fingers 206 can be bent radially inward until the fourth portions 206d of the first fingers 206 are within the medical device 500, and then released. Accordingly, the index features 206e of the first fingers 206 can press against (e.g., the first fingers 206 are slightly radially biased outward against) a radially interior side of the medical device 500 to hold or grip the medical device 500. The index features 206e can prevent the medical device 500 from slipping off of the holder 200 when no other forces are applied to the first fingers 206. When the holder 200 is attached to the crimping device 100 (FIGS. 1-4), the blades 140 can press down on the first fingers 206 as the channel 115 decreases in size, thereby causing the first fingers 206 to flex inwardly and release the medical device 500 from the holder 200 for subsequent loading into the delivery system 600 (FIG. 1).


The second fingers 208 can each include a first portion 208a extending radially inward from the inner surface 209b of the base 202 toward the central axis of the opening 205, a second portion 208b extending from the first portion 208a and away from the second side 203b of the base 202, and a third portion 206c extending from the second portion 208b and radially inward toward the central axis of the opening 205. Notably, the first portion 208a of each second finger 208 is longer than the first portion 206a of each first finger 206. The second portions 206b of the first fingers 206 are therefore positioned radially farther from the central axis of the opening 205 than the second portions 208b of the second fingers 208. As shown, the third portions 208c of the second fingers 208 can be shaped and positioned to receive the apexes 587 of the medical device 500. The second fingers 208 can therefore provide additional support for holding the medical device 500 in place. In some embodiments, the holder 200 can include fingers 206, 208 with other shapes, arrangements, quantities, etc., suitable for holding the medical device 500 in place. For example, the holder 200 may comprise more or less than the twelve fingers 206, 208 shown in FIG. 6 (e.g., more or less than three first fingers 206 and more or less than nine second fingers 208). In some embodiments, the holder 200 includes only the first fingers 206 or only the second fingers 208.



FIGS. 7 and 8 are an isometric view and a cross-sectional side view, respectively, illustrating the holder 200 of FIG. 6 coupled to the crimping device 100 shown in FIGS. 2-4. For ease of illustration, the medical device 500 is not shown in FIGS. 7 and 8. Referring first to FIG. 7, the holder 200 can be removably coupled to the entry side 101 of the crimping device 100 via the second plate 130 of the frame 110. More specifically, the connectors 201 (shown in FIG. 6) of the holder 200 can connect to the first connective features 133 disposed on the frame 110. In some embodiments, the connectors 201 are at least one of hooks, fasteners, clips, locking features, etc. that engage (e.g., mate with) the first connective features 133 to removably secure the holder 200 to the crimping device 100. In some embodiments, the connectors 201 are inserted into the connective features 113, and the holder 200 is rotated to secure the holder 200 in place. Once secured, the central axis of the opening 205 of the holder 200 can be generally aligned with the central axis 107 of the channel 115 of the crimping device 100. By aligning the central axes of the crimping device 100 and holder 200, the medical device 500 can be evenly spaced with respect to the blades 140 within the channel 115 before the medical device 500 is crimped to facilitate generally symmetric radial compression of the medical device 500.


As shown in FIG. 8, the fingers 206, 208 of the holder 200 can project at least partly into the channel 115 of the crimping device 100. Accordingly, the fingers 206, 208 of the holder 200 can hold the medical device 500 (FIG. 6) in a position that is fully within the channel 115. FIG. 8 further shows an embodiment in which the channel 115 has a generally funnel-like shape in which a cross-sectional dimension (e.g., diameter) of the channel 115 decreases along the central axis 107 moving from the entry side 101 of the crimping device 100 to the exit side 103 of the crimping device 100.


Referring to FIGS. 6-8 together, to crimp the medical device 500, the actuating member 105 is manipulated as described above to reduce the diameter of the channel 115. As the diameter of the channel 115 decreases, portions of the blades 140 can contact portions of the first fingers 206 and/or portions of the second fingers 208 that are within the channel 115. Specifically, the blades 140 first contact the second portions 206b of the first fingers 206 because they are positioned radially farther from the central axis of the channel 115 than the second portions 208b (FIG. 6) of the second fingers 208. As the diameter of the channel 115 is further decreased, the blades 140 exert an inward force against the second fingers 208 that bends the fingers 208 radially inward and causes the fourth portions 206d of the first fingers 206 to disengage from the medical device 500. The blades 140 do not contact the first fingers 206 until after contacting the second fingers 208 because the second portions 208b of the second fingers 208 are positioned radially closer to the central axis 107 of the channel 115 than the second portions 206b of the first fingers 206. Therefore, after the first fingers 206 disengage from the medical device 500, the third portions 208c of the second fingers 208 can still engage and support a portion of the medical device 500 (e.g., the apexes 587). In some embodiments, the second fingers 208 can inhibit the medical device 500 from moving laterally (e.g., translation between the opposing plates 120, 130) while the medical device 500 is crimped. For example, the second fingers 208 can counteract the tendency of the medical device 500 to move laterally toward the entry side 101 of the crimping device 100 as a result of non-uniform compression of the medical device 500 caused by the funnel-like shape of the channel 115.


In some embodiments, the diameter of the channel 115 can be decreased to a small enough diameter to disengage the holder 200 from the medical device 500 (e.g., disengage the first fingers 206), but maintain a large diameter such that the fingers 206,208 positioned within the medical device 500 do not interfere with the crimping of the medical device 500. For example, the holder 200 and the crimping device 100 can be configured such that the holder 200: (i) holds (e.g., is engaged with and grips) the medical device 500 when the channel 115 of the crimping device 100 has a maximum diameter (e.g., the first position shown FIG. 2), and (ii) is disengaged from the medical device 500 when the channel 115 of the crimping device 100 has a minimum diameter (e.g., the second position shown FIG. 3). In some embodiments, the holder 200 can be removed from the crimping device 100 after the holder 200 disengages from the medical device 500. In such embodiments, the diameter of the channel 115 can then be further decreased to further crimp the medical device 500.


Selected Embodiments of Trays for Receiving a Crimping Device



FIG. 9 is a top view of the tray 300 of the crimping and loading system 10 of FIG. 1 configured in accordance with embodiments the present technology. The tray 300 can be formed using a thermoforming process and/or other suitable tray forming processes. As shown, the interior walls of the tray 300 define the reservoir 310 for holding a liquid (e.g., chilled saline). The reservoir 310 can include a first portion 312, a second portion 314, and a third portion 316. The first portion 312 can be sized and shaped to receive the crimping device 100 (FIGS. 1-4) with the entry side 101 or the exit side 103 facing down against a bottom surface of the tray 300 prior to use (e.g., during storage and/or shipping). The second portion 314 of the reservoir 310 is defined by the flanges 305 of the tray 300 and includes the recess 315 that is configured to retain the crimping device 100 (FIGS. 1-4) in a stable upright position during the crimping procedure. In some embodiments, the tray 300 includes a slot for introducing the liquid into the reservoir 310. The slot can be configured to allow liquid to enter the reservoir 310 in a non-turbulent manner, which is expected to inhibit air bubbles from forming in portions of the tray 300 or the crimping device 100. For example, in some embodiments, the slot provides a liquid flow path into the first portion 312 of the reservoir 310.


The third portion 316 of the reservoir 310 can be positioned at the exit side 103 of the crimping device 100 (e.g., as shown in FIG. 1), and can provide a region in which the crimped medical device can be loaded into a delivery system (e.g., the delivery system of FIG. 1). In some embodiments, the third portion 316 of the reservoir 310 can also provide an area to visualize the channel 115 of the crimping device 100 and/or portions of the delivery system positioned adjacent the crimping device 100 (FIG. 1) during device loading. For example, the tray 300 can include slanted sidewalls (identified individually as a first slanted sidewall 317a and a second slanted sidewall 317b; referred to collectively as “slanted sidewalls 317”) on which one or more mirrors can be placed to provide alternate views of the crimping device 100 (FIGS. 1-4) and/or the delivery system. In some embodiments, the tray 300 has a generally flat lower surface in the third portion 316 with a mirror disposed on the lower surface to provide for visualization during device loading. The third portion 316 of the reservoir 310 can also be shaped to receive the stand 400 (FIG. 1) so that that the stand 400 can be positioned in the third portion 316 prior to use (e.g., during storage and/or shipping). Accordingly, in some embodiments, each component of the system 10 (FIG. 1) can be securely positioned within dedicated portions of the tray 300 for shipping and storage. The system 10 (FIG. 1) can therefore be provided to a physician in a streamlined and sterile manner.


As further shown in FIG. 9, the walls of the tray 300 further includes the aperture 320 for receiving a portion of a delivery system (e.g., the delivery system 600 of FIG. 1) therethrough, and one or more grooves (identified individually as a first groove 319a and a second groove 319b; referred to collectively as “grooves 319”) positioned on either side the aperture 320. The grooves 319 can be configured to receive a dam member (not pictured) for sealing the reservoir 310 and preventing liquid from escaping through the aperture 320. In some embodiments, a portion of a suitable delivery system can puncture the dam members positioned within the grooves 319 in order to position the portion of the delivery system adjacent the crimping device 100 (FIG. 1). In some embodiments, the tray 300 can include valve and/or sealing device that is positioned on a sidewall of the tray 300 (e.g., in the aperture 320 or other hole) and in fluid communication with the reservoir 310. The valve and/or sealing device can fluidically seal liquid in the reservoir 310 before, during, and/or after a delivery system (e.g., the delivery system 600 of FIG. 1) has been moved therethrough. For example, a valve (e.g., a cross-slit valve, a one-way check valve, etc.) can be housed within a grommet (e.g., a molded silicone grommet) that is positioned in the hole in the sidewall of the tray 300 to at least partially prevent liquid from leaking from the reservoir 310 when the delivery system is moved into and out of the valve member. In other embodiments, the tray 300 can include other configurations of valves and/or sealing devices to seal liquid within the reservoir 310, while still allowing access to the reservoir 310 from a sidewall of the tray 300 for device loading or adjustment.


EXAMPLES

Several aspects of the present technology are set forth in the following examples.


1. A crimping device comprising:

    • a stationary plate having a plurality of first slots;
    • a movable member having a plurality of second slots, wherein the individual second slots are aligned with a portion of the corresponding individual first slots;
    • a plurality of movable blades arranged circumferentially to form a channel having a central axis extending therethrough, wherein—
      • each blade has a first end portion and a second end portion, and wherein the second end portion is radially farther from the central axis than the first end portion,
      • each blade includes a pin projecting from the second end portion of the blade, and
      • each pin extends through one of the first slots and a corresponding one of the second slots; and
    • an actuator device operably coupled to the movable member and configured to move the movable member relative to the stationary plate, wherein movement of the movable member drives the plurality of pins along a path defined by the first and second slots such that the plurality of blades move radially inward to decrease a diameter of the channel, and wherein the radial inward movement of the blades is configured to reduce a diameter of a medical device positioned within the channel to accommodate sizing of a delivery capsule for implanting the medical device using a minimally invasive procedure.


2. The crimping device of example 1 wherein the blades include a first side and a second side facing away from the first side, the stationary plate is a first stationary plate facing the first side of the blades, the movable member is a first movable member facing the first side of the blades, and each pin is a first pin on the first side of each blade, and wherein the crimping device further comprises:

    • a second stationary plate facing the second side of the blades, the second stationary plate having a plurality of third slots;
    • a second movable member facing the second side of the blades, the second movable member having a plurality of fourth slots,
    • wherein—
      • each blade includes a second pin projecting from the second end portion on the second side of the blade,
      • each second pin extends through one of the third slots and a corresponding one of the fourth slots, and
      • the actuator device is operably coupled to the first and second movable members and configured to move the first and second movable members relative to the first and second stationary plates to thereby actuate the plurality of blades to vary the diameter of the channel.


3. The crimping device of example 1 or 2 wherein the second slots define an arcuate path with a first end and a second end spaced closer to the channel than the first end.


4. The crimping device of any one of examples 1-3 wherein the diameter of the channel varies along the central axis.


5. The crimping device of any one of examples 1-4 wherein the blades have inner surfaces that define the channel, and wherein the inner surfaces are shaped such that the channel has a generally funnel-like shape.


6. The crimping device of any one of examples 1-5 wherein the plurality of blades includes twelve blades.


7. The crimping device of any one of examples 1-6 wherein—

    • the movable member has a first position in which the channel has a maximum diameter,
    • the movable member has a second position in which the channel has a minimum diameter, and
    • the pins are positioned radially farther from the central axis in the first position than in the second position.


8. The crimping device of any one of examples 1-7, further comprising:

    • a frame; and
    • a holder removably coupled to the frame and configured to hold the medical device within the channel as the blades reduce the diameter of the medical device.


9. The crimping device of example 8 wherein—

    • the movable member has a first position and a second position,
    • the channel has a smaller diameter in the second position than in the first position, and
    • the holder includes a plurality of fingers configured to engage a portion of the medical device in the first position and configured to disengage from the portion of the medical device in the second position.


10. The crimping device of any one of examples 1-9 wherein the first slots define a straight path that extends radially away from the central axis.


11. The crimping device of any one of examples 1-10 wherein the second slots have a length that is longer than a length of the first slots.


12. The crimping device of any one of examples 1-11 wherein the first slots and second slots are equally spaced angularly around the central axis.


13. The crimping device of any one of examples 1-12, further comprising a connector coupled to the movable member and having a threaded hole extending therethrough, wherein—

    • the movable member is a rotatable member,
    • the actuator device is a threaded shaft and extends through the threaded hole of the connector, and
    • actuating the rotatable member includes rotating the threaded shaft about a longitudinal axis of the shaft such that the connector moves along the shaft.


14. The crimping device of any one of examples 1-13 wherein the channel is configured to receive a prosthetic heart valve device for implantation into a native mitral valve, and wherein the blades are configured to reduce an outer diameter of the prosthetic heart valve device from 1.300 inches to 0.4 inch or less.


15. A system for reducing a size of a stent device, the system comprising:

    • a crimping device including—
      • a frame having a stationary plate having a plurality of first slots,
      • a movable member having a plurality of second slots, wherein the movable member is movable with respect to the stationary plate,
      • a plurality of movable blades arranged circumferentially to define a channel having a central axis extending therethrough, wherein—
        • the channel is configured to receive a prosthetic heart valve device in an unexpanded state,
        • the movable member is between the blades and the stationary plate,
        • each blade has a first end portion and a second end portion spaced radially farther from the central axis than the first end portion,
        • each blade includes a pin projecting from the second end portion and extending through one of the first slots and a corresponding one of the second slots, and
      • an actuator device configured to move the movable member to drive the plurality of blades between a first position in which the channel has a first cross-sectional dimension to a second position in which the channel has a second cross-sectional dimension smaller than the first cross-sectional dimension, wherein moving the blades from the first position to the second position decreases an outer dimension of the stent device, and wherein the first slots are configured to maintain relative position between the blades as the blades move between the first and second positions; and
    • a holder removably coupled to the frame and configured to hold the stent device within the channel when the blades are in the first position.


16. The system of example 15 wherein the blades are configured to continuously compress the prosthetic heart valve device as the blades move from the first position to the second position.


17. The system of example 15 or 16 wherein the channel has a funnel shape.


18. The system of any one of examples 15-17, further comprising a tray defining a reservoir that is configured to receive the crimping device therein.


19. The system of example 18 wherein the reservoir is configured to hold a chilled liquid therein, and wherein the liquid fills the channel when the crimping device is positioned within the reservoir.


20. The system of example 18 wherein the tray includes an aperture extending through the tray to the reservoir, wherein the channel of the crimping device is accessible via the aperture to permit the prosthetic heart valve device to be positioned within the channel.


21. The system of any one of examples 15-20 wherein—

    • the holder includes a plurality of fingers configured to engage attachment features of the prosthetic heart valve device in the first position; and
    • the blades are sized and shaped to press against the fingers as the blades move from the first position to the second position to disengage the attachment features from the holder.


22. The system of any one of examples 15-21 wherein, in the first position, the pins are positioned radially farther from the central axis of the channel than in the second position.


23. A method for reducing a size of a medical device for loading into a delivery capsule, comprising:

    • positioning the medical device within a channel of the crimping device, wherein—
      • the channel is defined by a plurality of movable blades arranged circumferentially around a central axis of the channel,
      • each blade includes a pin projecting from an end portion of the blade spaced radially apart from the channel, and
      • each pin projects through a first slot on a stationary plate and a second slot on a movable member positioned between the stationary plate and the blades; and
    • driving the blades radially inwardly from a first position to a second position to reduce a cross-sectional dimension of the channel, thereby reducing an outer diameter of the medical device, wherein driving the blades includes moving the movable member relative to the stationary plate to move the pins along individual arcuate paths defined by the corresponding second slots.


24. The method of example 23 wherein driving the blades radially inwardly comprises driving the blades from the first position in which the channel has a minimum cross-sectional dimension of at least 1.300 inches to the second position in which the channel has a minimum cross-sectional dimension of at most 0.4 inch.


25. The method of example 23 or 24 wherein driving the blades radially inwardly comprises moving each pin from a first end of the arcuate path toward a second end of the arcuate path, wherein the second end is closer to the central axis of the channel than the first end.


26. The method of any one of examples 23-25 wherein driving the blades radially inwardly comprises continuously compressing the medical device.


27. The method of any one of examples 23-26 wherein the medical device is a prosthetic heart valve device, and wherein the method further comprises:


removably coupling a plurality of engagement features of the prosthetic heart valve device to a corresponding plurality of fingers of a holder, wherein the holder retains the prosthetic heart valve device while the blades are in the first position; and

    • wherein driving the blades radially inwardly presses the blades against outer surfaces of the fingers to disengage the engagement features from the holder.


28. The method of any one of examples 23-27 wherein the blades have inner surfaces that define the channel, wherein the inner surfaces are shaped such that the channel has a generally funnel-like shape, and further comprising:


after driving the blades to the second position, moving the medical device through the channel toward the delivery capsule to further reduce an outer diameter of the medical device.


29. The method of any one of examples 23-28, further comprising submerging the crimping device in a liquid such that the medical device is submerged when positioned within the channel.


CONCLUSION

The above detailed descriptions of embodiments of the technology are not intended to be exhaustive or to limit the technology to the precise form disclosed above. Although specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the technology as those skilled in the relevant art will recognize. For example, although steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may also be combined to provide further embodiments.


From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the technology. Where the context permits, singular or plural terms may also include the plural or singular term, respectively.


Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. It will also be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. Further, while advantages associated with some embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.

Claims
  • 1. A crimping device comprising: a plate defining a plurality of first slots;a movable member defining a plurality of second slots, wherein individual first slots are aligned with a portion of a corresponding individual second slot;a plurality of blades arranged to form a channel having a central axis extending therethrough, wherein the movable member is disposed between the plate and the plurality of blades, wherein: each blade includes a pin projecting from a radially outer end portion of the blade, andeach pin extends through one of the individual first slots and the corresponding individual second slot; andan actuator configured to move the movable member relative to the plate to drive the plurality of pins along a path defined by the first and second slots such that the plurality of blades move radially inward to decrease a diameter of the channel.
  • 2. The crimping device of claim 1, wherein the radially inward movement of the plurality of blades is configured to reduce a diameter of a medical device positioned within the channel.
  • 3. The crimping device of claim 1, wherein each blade of the plurality of blades includes a first side and a second side facing away from the first side, the plate is a first plate facing the first sides of the blades, the movable member is a first movable member facing the first sides of the blades, and each pin is a first pin on the first side of each blade, and wherein the crimping device further comprises: a second plate facing the second side of the blades, the second plate having a plurality of third slots;a second movable member facing the second side of the blades, the second movable member having a plurality of fourth slots,wherein: each blade includes a second pin projecting from the radially outer end portion on the second side of the blade,each second pin extends through one of the third slots and a corresponding one of the fourth slots, andthe actuator is further configured to move the second movable member relative to the second plate to actuate the plurality of blades to vary the diameter of the channel.
  • 4. The crimping device of claim 1, wherein the second slots define an arcuate path with a first end and a second end spaced closer to the channel than the first end.
  • 5. The crimping device of claim 1, wherein the diameter of the channel varies along a length the central axis.
  • 6. The crimping device of claim 1, wherein the plurality of blades have inner surfaces that define the channel, and wherein the inner surfaces are shaped such that the channel has a generally funnel shape.
  • 7. The crimping device of claim 1, wherein: the movable member has a first position in which the channel has a maximum diameter and a second position in which the channel has a smaller diameter, andthe pins are positioned radially farther from the central axis in the first position than in the second position.
  • 8. The crimping device of claim 1, wherein the first slots define a straight path that extends radially away from the central axis.
  • 9. The crimping device of claim 1, wherein the second slots have a length that is longer than a length of the first slots.
  • 10. The crimping device of claim 1, wherein the first slots and second slots are substantially equally spaced angularly around the central axis.
  • 11. The crimping device of claim 1, further comprising a connector coupled to the movable member and having a threaded hole extending therethrough, wherein: the movable member is a rotatable member,the actuator device is a threaded shaft and extends through the threaded hole of the connector, andwherein, to actuate the rotatable member, the actuator is configured to rotate the threaded shaft about a longitudinal axis of the shaft such that the connector moves along the shaft.
  • 12. A system comprising: a crimping device comprising: a plurality of blades arranged to define a channel having a central axis extending therethrough, andan actuator configured to cause the plurality of blades to move radially inward to decrease a diameter of the channel;a holder configured to hold a medical device, the holder being removably coupled to the crimping device and being configured to insert the medical device into the channel; anda tray defining a reservoir that is configured to receive the crimping device therein.
  • 13. The system of claim 12, wherein, when the plurality of blades are movable by the actuator from a first position in which the channel has a first cross-sectional dimension to a second position in which the channel has a second cross-sectional dimension smaller than the first cross-sectional dimension.
  • 14. The system of claim 13, wherein the plurality of blades are configured to continuously compress a prosthetic heart valve device disposed in the channel as the blades move from the first position to the second position.
  • 15. The system of claim 12, wherein the reservoir is configured to hold a chilled liquid, and wherein the liquid fills the channel when the crimping device is positioned within the reservoir.
  • 16. The system of claim 12, wherein the tray includes an aperture extending through the tray to the reservoir, wherein the channel of the crimping device is accessible via the aperture to permit a prosthetic heart valve device to be positioned within the channel.
  • 17. A method for reducing a size of a medical device for loading into a delivery capsule, the method comprising: positioning the medical device within a channel of a crimping device, wherein: the channel is defined by a plurality of blades arranged around a central axis of the channel,each blade includes a pin projecting from a radially outer end portion of the blade, andeach pin projects through a corresponding first slot in a plate and a corresponding second slot in a movable member positioned between the plate and the blades, wherein the plate comprises a plurality of first slots and the movable member comprises a plurality of second slots; andmoving the movable member relative to the plate to move the pins and drive the blades radially inwardly from a first position to a second position to reduce a cross-sectional dimension of the channel, thereby reducing an outer diameter of the medical device.
  • 18. The method of claim 17, further comprising submerging the crimping device in a liquid such that the medical device is submerged when positioned within the channel.
  • 19. The system of claim 12, wherein the crimping device comprises: a frame comprising a plate defining a plurality of first slots; anda movable member defining a plurality of second slots, wherein the movable member is movable with respect to the plate,wherein each blade of the plurality of blades comprises a pin projecting from a radially outer end portion and extending through one of the first slots and a corresponding one of the second slots, andwherein the actuator is configured to move the movable member to drive the plurality of pins along a path defined by the first and second slots such that the plurality of blades move radially inward from a first position to a second position to decrease the diameter of the channel, wherein the first slots are configured to maintain relative position between the blades as the blades move between the first and second positions.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 15/615,144, filed Jun. 6, 2017, the entire contents of which are incorporated herein by reference.

US Referenced Citations (811)
Number Name Date Kind
3526219 Balamuth Sep 1970 A
3565062 Kuris Feb 1971 A
3589363 Banko et al. Jun 1971 A
3667474 Lapkin et al. Jun 1972 A
3823717 Pohlman et al. Jul 1974 A
3861391 Antonevich et al. Jan 1975 A
3896811 Storz Jul 1975 A
4042979 Angell Aug 1977 A
4188952 Loschilov et al. Feb 1980 A
4388735 Ionescu et al. Jun 1983 A
4423525 Vallana et al. Jan 1984 A
4431006 Trimmer et al. Feb 1984 A
4441216 Ionescu et al. Apr 1984 A
4445509 Auth May 1984 A
4484579 Meno et al. Nov 1984 A
4490859 Black et al. Jan 1985 A
4587958 Noguchi et al. May 1986 A
4589419 Lauqhlin et al. May 1986 A
4602911 Ahmadi et al. Jul 1986 A
4629459 Ionescu et al. Dec 1986 A
4646736 Auth Mar 1987 A
4653577 Noda Mar 1987 A
4666442 Arru et al. May 1987 A
4679556 Lubock et al. Jul 1987 A
4692139 Stiles Sep 1987 A
4747821 Kensey et al. May 1988 A
4750902 Wuchinich et al. Jun 1988 A
4758151 Arru et al. Jul 1988 A
4777951 Cribier et al. Oct 1988 A
4787388 Hofmann Nov 1988 A
4796629 Grayzel Jan 1989 A
4808153 Parisi Feb 1989 A
4819751 Shimada et al. Apr 1989 A
4841977 Griffith et al. Jun 1989 A
4870953 DonMicheal et al. Oct 1989 A
4878495 Grayzel Nov 1989 A
4892540 Vallana Jan 1990 A
4898575 Fischell et al. Feb 1990 A
4909252 Goldberger Mar 1990 A
4919133 Chiang Apr 1990 A
4920954 Alliger et al. May 1990 A
4936281 Stasz Jun 1990 A
4960411 Buchbinder Oct 1990 A
4986830 Owens et al. Jan 1991 A
4990134 Auth Feb 1991 A
5002567 Bona et al. Mar 1991 A
5058570 Idemoto et al. Oct 1991 A
5069664 Guess et al. Dec 1991 A
5076276 Sakurai et al. Dec 1991 A
5084151 Vallana et al. Jan 1992 A
5104406 Curcio et al. Apr 1992 A
5106302 Farzin-Nia et al. Apr 1992 A
5248296 Alliger Sep 1993 A
5267954 Nita Dec 1993 A
5269291 Carter Dec 1993 A
5295958 Shturman Mar 1994 A
5304115 Pflueger et al. Apr 1994 A
5314407 Auth et al. May 1994 A
5318014 Carter Jun 1994 A
5332402 Teitelbaum Jul 1994 A
5344426 Lau et al. Sep 1994 A
5352199 Tower Oct 1994 A
5356418 Shturman Oct 1994 A
5370684 Vallana et al. Dec 1994 A
5387247 Vallana et al. Feb 1995 A
5397293 Alliger et al. Mar 1995 A
5411552 Andersen et al. May 1995 A
5443446 Shturman Aug 1995 A
5449373 Pinchasik et al. Sep 1995 A
5489297 Duran Feb 1996 A
5584879 Reimold et al. Dec 1996 A
5609151 Mulier et al. Mar 1997 A
5626603 Venturelli et al. May 1997 A
5656036 Palmaz Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5681336 Clement et al. Oct 1997 A
5695507 Auth et al. Dec 1997 A
5713953 Vallana et al. Feb 1998 A
5725494 Brisken Mar 1998 A
5782931 Yang et al. Jul 1998 A
5817101 Fiedler Oct 1998 A
5827229 Auth et al. Oct 1998 A
5827321 Roubin et al. Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5853422 Huebsch et al. Dec 1998 A
5855601 Bessler et al. Jan 1999 A
5868781 Killion Feb 1999 A
5873811 Wang et al. Feb 1999 A
5873812 Ciana et al. Feb 1999 A
5904679 Clayman May 1999 A
5957882 Nita et al. Sep 1999 A
5972004 Williamson, IV et al. Oct 1999 A
5989208 Nita Nov 1999 A
5989280 Euteneuer et al. Nov 1999 A
6047700 Eggers et al. Apr 2000 A
6056759 Fiedler May 2000 A
6085754 Alferness et al. Jul 2000 A
6113608 Monroe et al. Sep 2000 A
RE36939 Tachibana et al. Oct 2000 E
6129734 Shturman et al. Oct 2000 A
6132444 Shturman et al. Oct 2000 A
6168579 Tsuaita Jan 2001 B1
6217595 Shturman et al. Apr 2001 B1
6254635 Schroeder et al. Jul 2001 B1
6295712 Shturman et al. Oct 2001 B1
6306414 Koike Oct 2001 B1
6321109 Ben-Haim et al. Nov 2001 B2
6402679 Mortier et al. Jun 2002 B1
6423032 Parodi Jul 2002 B2
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454737 Nita et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6494890 Shturman et al. Dec 2002 B1
6494891 Cornish et al. Dec 2002 B1
6505080 Sutton Jan 2003 B1
6530952 Vesely Mar 2003 B2
6540782 Snvders Apr 2003 B1
6562067 Mathis May 2003 B2
6565588 Clement et al. May 2003 B1
6569196 Vesely May 2003 B1
6579308 Jansen et al. Jun 2003 B1
6582462 Andersen et al. Jun 2003 B1
6595912 Lau et al. Jul 2003 B2
6605109 Fiedler Aug 2003 B2
6616689 Ainsworth et al. Sep 2003 B1
6623452 Chien et al. Sep 2003 B2
6638288 Shturman et al. Oct 2003 B1
6648854 Patterson et al. Nov 2003 B1
6689086 Nita et al. Feb 2004 B1
6702748 Nita et al. Mar 2004 B1
6730121 Ortiz et al. May 2004 B2
6746463 Schwartz Jun 2004 B1
6811801 Nguyen et al. Nov 2004 B2
6818001 Wulfman et al. Nov 2004 B2
6843797 Nash et al. Jan 2005 B2
6852118 Shturman et al. Feb 2005 B2
6855123 Nita Feb 2005 B2
6869439 White et al. Mar 2005 B2
6951571 Srivastava Oct 2005 B1
6986775 Morales et al. Jan 2006 B2
7018404 Holmberg et al. Mar 2006 B2
7052487 Cohn et al. May 2006 B2
7077861 Spence Jul 2006 B2
7125420 Rourke et al. Oct 2006 B2
7186264 Liddicoat et al. Mar 2007 B2
7220277 Arru et al. May 2007 B2
7261732 Justino Aug 2007 B2
7296577 Lashinski et al. Nov 2007 B2
7381218 Schreck Jun 2008 B2
7404824 Webler et al. Jul 2008 B1
7442204 Schwammenthal et al. Oct 2008 B2
7473275 Marquez Jan 2009 B2
7510575 Spenser et al. Mar 2009 B2
7585321 Cribier Sep 2009 B2
7588582 Starksen et al. Sep 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7636997 Perreault et al. Dec 2009 B2
7708775 Rowe et al. May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7753922 Starksen Jul 2010 B2
7753949 Lamphere et al. Jul 2010 B2
7803168 Gifford et al. Sep 2010 B2
7857845 Stacchino et al. Dec 2010 B2
7896915 Guyenot et al. Mar 2011 B2
7942928 Webler et al. May 2011 B2
7992273 Austin Aug 2011 B2
7993392 Righini et al. Aug 2011 B2
8002826 Seguin Aug 2011 B2
8006535 Righini et al. Aug 2011 B2
8034103 Burriesci et al. Oct 2011 B2
8052750 Tuval et al. Nov 2011 B2
8057539 Ghione et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8070799 Righini et al. Dec 2011 B2
8109996 Stacchino et al. Feb 2012 B2
8114154 Righini et al. Feb 2012 B2
8252051 Chau et al. Aug 2012 B2
8353953 Giannetti et al. Jan 2013 B2
8398704 Straubinger et al. Mar 2013 B2
8403981 Forster et al. Mar 2013 B2
8403982 Giannetti et al. Mar 2013 B2
8403983 Quadri et al. Mar 2013 B2
8414643 Tuval et al. Apr 2013 B2
8449599 Chau et al. May 2013 B2
8470024 Ghione et al. Jun 2013 B2
8486137 Suri et al. Jun 2013 B2
8475521 Suri et al. Jul 2013 B2
8496671 Hausen Jul 2013 B1
8512252 Ludomirsky et al. Aug 2013 B2
8512397 Rolando et al. Aug 2013 B2
8518107 Tsukashima et al. Aug 2013 B2
8523883 Saadat Sep 2013 B2
8532352 Ionasec et al. Sep 2013 B2
8539662 Stacchino et al. Sep 2013 B2
8540767 Zhanq Sep 2013 B2
8540768 Stacchino et al. Sep 2013 B2
8545551 Loulmet Oct 2013 B2
8551161 Dolan Oct 2013 B2
8579788 Orejola Nov 2013 B2
8579964 Lane et al. Nov 2013 B2
8585755 Chau et al. Nov 2013 B2
8597347 Maurer et al. Dec 2013 B2
8597348 Rowe et al. Dec 2013 B2
8608796 Matheny Dec 2013 B2
8608797 Gross et al. Dec 2013 B2
8623077 Cohn Jan 2014 B2
8628566 Eberhardt et al. Jan 2014 B2
8632585 Seguin et al. Jan 2014 B2
8632586 Spenser et al. Jan 2014 B2
8634935 Gaudiani Jan 2014 B2
8640521 Righini et al. Feb 2014 B2
8647254 Callas et al. Feb 2014 B2
8652203 Quadri et al. Feb 2014 B2
8652204 Quill et al. Feb 2014 B2
8657872 Seguin Feb 2014 B2
8672998 Lichtenstein et al. Mar 2014 B2
8673001 Cartledge et al. Mar 2014 B2
8679176 Matheny Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8688234 Zhu et al. Apr 2014 B2
8690858 Machold et al. Apr 2014 B2
8709074 Solem et al. Apr 2014 B2
8712133 Guhring et al. Apr 2014 B2
8715160 Raman et al. May 2014 B2
8715207 Righini et al. May 2014 B2
8721665 Oz et al. May 2014 B2
8721718 Kassab May 2014 B2
8740918 Seguin Jun 2014 B2
8747460 Tuval et al. Jun 2014 B2
8758431 Orlov et al. Jun 2014 B2
8758432 Solem Jun 2014 B2
8771292 Allen et al. Jul 2014 B2
8771345 Tuval et al. Jul 2014 B2
8771346 Tuval et al. Jul 2014 B2
8777991 Zarbatany et al. Jul 2014 B2
8778016 Janovsky et al. Jul 2014 B2
8781580 Hedberg et al. Jul 2014 B2
8784482 Rahdert et al. Jul 2014 B2
8792699 Guetter et al. Jul 2014 B2
8795356 Quadri et al. Aug 2014 B2
8801779 Sequin et al. Aug 2014 B2
8808356 Braido et al. Aug 2014 B2
8808366 Braido et al. Aug 2014 B2
8808367 Suri et al. Aug 2014 B2
8812431 Voigt et al. Aug 2014 B2
8828043 Chambers Sep 2014 B2
8834563 Righini Sep 2014 B2
8840661 Manasse Sep 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8845723 Spence et al. Sep 2014 B2
8852213 Gammie et al. Oct 2014 B2
8852272 Gross et al. Oct 2014 B2
8858622 Machold et al. Oct 2014 B2
8859724 Meier et al. Oct 2014 B2
8864822 Spence et al. Oct 2014 B2
8870936 Rowe Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8870949 Rowe Oct 2014 B2
8894702 Quadri et al. Nov 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8920492 Stacchino et al. Dec 2014 B2
8926694 Costello Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8951285 Suaimoto et al. Feb 2015 B2
8961597 Subramanian et al. Feb 2015 B2
8968393 Rothstein Mar 2015 B2
8968395 Hauser et al. Mar 2015 B2
8974445 Warnking et al. Mar 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8979923 Spence et al. Mar 2015 B2
8986370 Annest Mar 2015 B2
8986376 Solem Mar 2015 B2
8992604 Gross et al. Mar 2015 B2
9011522 Annest Apr 2015 B2
9011523 Seguin Apr 2015 B2
9017399 Gross et al. Apr 2015 B2
9023098 Kuehn May 2015 B2
9023100 Quadri et al. May 2015 B2
9050188 Schweich, Jr. et al. Jun 2015 B2
9056008 Righini et al. Jun 2015 B2
9066800 Clague et al. Jun 2015 B2
9084676 Chau et al. Jul 2015 B2
9095433 Lutter et al. Aug 2015 B2
9114010 Gaschino et al. Aug 2015 B2
9119713 Board et al. Sep 2015 B2
9132009 Hacohen et al. Sep 2015 B2
9138312 Tuval et al. Sep 2015 B2
9138313 McGuckin, Jr. et al. Sep 2015 B2
9138314 Rolando et al. Sep 2015 B2
9149207 Sauter et al. Oct 2015 B2
9161836 Rolando et al. Oct 2015 B2
9168105 Giannetti et al. Oct 2015 B2
9180005 Lashinski et al. Nov 2015 B1
9186249 Rolando et al. Nov 2015 B2
9192466 Kovalsky et al. Nov 2015 B2
9192471 Bolling Nov 2015 B2
9204819 Grunwald et al. Dec 2015 B2
9232942 Seguin et al. Jan 2016 B2
9232999 Maurer et al. Jan 2016 B2
9241790 Lane et al. Jan 2016 B2
9248014 Lane et al. Feb 2016 B2
9248017 Rolando et al. Feb 2016 B2
9254192 Lutter et al. Feb 2016 B2
9271833 Kim et al. Mar 2016 B2
9289289 Rolando et al. Mar 2016 B2
9289291 Gorman, III et al. Mar 2016 B2
9289297 Wilson et al. Mar 2016 B2
9295547 Costello et al. Mar 2016 B2
9301836 Buchbinder et al. Apr 2016 B2
9308087 Lane et al. Apr 2016 B2
9326850 Venkatasubramanian May 2016 B2
9339207 Grunwald et al. May 2016 B2
9339378 Quadri et al. May 2016 B2
9339379 Quadri et al. May 2016 B2
9339380 Quadri et al. May 2016 B2
9339382 Tabor et al. May 2016 B2
9358105 Marchisio et al. Jun 2016 B2
9358108 Bortlein et al. Jun 2016 B2
9387075 Bortlein et al. Jul 2016 B2
9387078 Gross et al. Jul 2016 B2
9393111 Ma et al. Jul 2016 B2
9421094 Schweich, Jr. et al. Aug 2016 B2
9433574 Martin et al. Sep 2016 B2
9480559 Vidlund et al. Nov 2016 B2
9486313 Stacchino et al. Nov 2016 B2
9504835 Graindorge Nov 2016 B2
9629719 Rothstein et al. Apr 2017 B2
9675454 Vidlund et al. Jun 2017 B2
9681951 Ratz et al. Jun 2017 B2
9687342 Figulla et al. Jun 2017 B2
9687343 Bortlein et al. Jun 2017 B2
9693859 Braido et al. Jul 2017 B2
9693862 Campbell et al. Jul 2017 B2
9694121 Alexander et al. Jul 2017 B2
9700409 Braido et al. Jul 2017 B2
9700411 Klima et al. Jul 2017 B2
9700413 Ruyra Baliarda et al. Jul 2017 B2
9730791 Ratz et al. Aug 2017 B2
9730794 Carpentier et al. Aug 2017 B2
9750605 Ganesan et al. Sep 2017 B2
9750606 Ganesan et al. Sep 2017 B2
9750607 Ganesan et al. Sep 2017 B2
9763657 Hacohen et al. Sep 2017 B2
9763658 Eigler et al. Sep 2017 B2
9763782 Solem et al. Sep 2017 B2
9770328 Macoviak et al. Sep 2017 B2
9788931 Giordano et al. Oct 2017 B2
9801717 Edquist et al. Oct 2017 B2
9827092 Vidlund et al. Nov 2017 B2
9827101 Solem et al. Nov 2017 B2
9833313 Board et al. Dec 2017 B2
9833315 Vidlund et al. Dec 2017 B2
9839511 Ma et al. Dec 2017 B2
9844435 Eidenschink Dec 2017 B2
9848880 Coleman et al. Dec 2017 B2
9848981 Suri et al. Dec 2017 B2
9848983 Lashinski et al. Dec 2017 B2
9861477 Backus et al. Jan 2018 B2
9861480 Zakai et al. Jan 2018 B2
9867695 Stacchino et al. Jan 2018 B2
9895223 Stacchino et al. Feb 2018 B2
9895225 Rolando et al. Feb 2018 B2
9918841 Righini et al. Mar 2018 B2
9974647 Ganesan et al. May 2018 B2
10058313 Manasse Aug 2018 B2
10065032 Ollivier Sep 2018 B2
10098733 Righini Oct 2018 B2
10117741 Schweich, Jr. et al. Nov 2018 B2
10143550 Achiluzzi Dec 2018 B2
10213301 Ganesan et al. Feb 2019 B2
10245141 Ghione et al. Apr 2019 B2
10265166 Schweich, Jr. et al. Apr 2019 B2
10285810 Schweich, Jr. et al. May 2019 B2
10449039 Ganesan et al. Oct 2019 B2
10709591 Fox Jul 2020 B2
20010021872 Bailey et al. Sep 2001 A1
20010049492 Frazier et al. Dec 2001 A1
20020007219 Merrill et al. Jan 2002 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020072792 Burgermeister et al. Jun 2002 A1
20020082637 Lumauia Jun 2002 A1
20020099439 Schwartz et al. Jul 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020173841 Ortiz et al. Nov 2002 A1
20020188350 Arru et al. Dec 2002 A1
20030120340 Liska et al. Jun 2003 A1
20030139689 Shturman et al. Jul 2003 A1
20040006358 Wulfman et al. Jan 2004 A1
20040039412 Isshiki et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040057955 O'Brien et al. Mar 2004 A1
20040082910 Constantz et al. Apr 2004 A1
20040092858 Wilson et al. May 2004 A1
20040092962 Thornton et al. May 2004 A1
20040092989 Wilson et al. May 2004 A1
20040106989 Wilson et al. Jun 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040122510 Sarac Jun 2004 A1
20040127979 Wilson et al. Jul 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040199191 Schwartz Oct 2004 A1
20040230117 Tosaya et al. Nov 2004 A1
20040230212 Wulfman Nov 2004 A1
20040230213 Wulfman et al. Nov 2004 A1
20040243162 Wulfman et al. Dec 2004 A1
20050007219 Ma et al. Jan 2005 A1
20050075662 Pedersen et al. Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075727 Wheatley Apr 2005 A1
20050107661 Lau et al. May 2005 A1
20050137682 Justino Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137700 Spence et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050183259 Eidenschink et al. Aug 2005 A1
20050188525 Weber et al. Sep 2005 A1
20050228477 Grainger et al. Oct 2005 A1
20050267523 Devellian et al. Dec 2005 A1
20050273135 Chanduszko Dec 2005 A1
20060058872 Salahieh et al. Mar 2006 A1
20060106456 Machold et al. May 2006 A9
20060149360 Schwammenthal et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20070056346 Spencer et al. Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070073391 Bourang et al. Mar 2007 A1
20070078302 Ortiz et al. Apr 2007 A1
20070088431 Bourana et al. Apr 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070173932 Cali et al. Jul 2007 A1
20080071369 Tuval et al. Mar 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080103586 Styrc et al. May 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080147181 Ghione et al. Jun 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234728 Starksen et al. Sep 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080243246 Ryan et al. Oct 2008 A1
20080262603 Giaquinta et al. Oct 2008 A1
20090054969 Salahieh et al. Feb 2009 A1
20090076586 Hauser et al. Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090093670 Annest et al. Apr 2009 A1
20090105794 Ziarno et al. Apr 2009 A1
20090157174 Yoganathan et al. Jun 2009 A1
20090164006 Seguin et al. Jun 2009 A1
20090198315 Boudjemline Aug 2009 A1
20090216312 Straubinaer et al. Aug 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090259292 Bonhoeffer Oct 2009 A1
20090259306 Rowe Oct 2009 A1
20090264997 Salahieh et al. Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281609 Benichou et al. Nov 2009 A1
20090281618 Hill et al. Nov 2009 A1
20090292350 Eberhardt et al. Nov 2009 A1
20090306768 Quadri Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20090319038 Gurskis et al. Dec 2009 A1
20100016958 St. Goar et al. Jan 2010 A1
20100023115 Robaina et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100030330 Bobo et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100076376 Manasse et al. Mar 2010 A1
20100076548 Konno Mar 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100094411 Tuval et al. Apr 2010 A1
20100121436 Tuval et al. May 2010 A1
20100185275 Richter et al. Jul 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249915 Zhang Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20100312333 Navia et al. Dec 2010 A1
20100324554 Gifford et al. Dec 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110015722 Hauser et al. Jan 2011 A1
20110022166 Dahlgren et al. Jan 2011 A1
20110029071 Zlotnick et al. Feb 2011 A1
20110029072 Gabbay Feb 2011 A1
20110040374 Goetz et al. Feb 2011 A1
20110040375 Letac et al. Feb 2011 A1
20110056064 Malewicz et al. Mar 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110112632 Chau et al. May 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137409 Yana et al. Jun 2011 A1
20110137410 Hacohen Jun 2011 A1
20110153008 Marchand et al. Jun 2011 A1
20110172784 Richter et al. Jul 2011 A1
20110208293 Tabor Aug 2011 A1
20110319988 Schankereli et al. Dec 2011 A1
20120022639 Hacohen et al. Jan 2012 A1
20120078347 Braido et al. Mar 2012 A1
20120078360 Rafiee Mar 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120179239 Quadri Jul 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120203336 Annest Aug 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20120303048 Manasse Nov 2012 A1
20130030418 Taft et al. Jan 2013 A1
20130123915 Giannetti et al. May 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130190860 Sundt, III Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130197630 Azarnoush Aug 2013 A1
20130226289 Shaolian et al. Aug 2013 A1
20130226290 Yellin et al. Aug 2013 A1
20130238089 Lichtenstein et al. Sep 2013 A1
20130244927 Lal et al. Sep 2013 A1
20130261737 Costello Oct 2013 A1
20130261738 Clague et al. Oct 2013 A1
20130261739 Kuehn Oct 2013 A1
20130261741 Accola Oct 2013 A1
20130268066 Rowe Oct 2013 A1
20130274870 Lombardi et al. Oct 2013 A1
20130282060 Tuval Oct 2013 A1
20130282110 Schweich, Jr. et al. Oct 2013 A1
20130289642 Hedberg et al. Oct 2013 A1
20130289717 Solem Oct 2013 A1
20130289718 Tsukashima et al. Oct 2013 A1
20130296851 Boronyak et al. Nov 2013 A1
20130296999 Burriesci et al. Nov 2013 A1
20130304180 Green et al. Nov 2013 A1
20130304181 Green et al. Nov 2013 A1
20130304197 Buchbinder et al. Nov 2013 A1
20130304198 Solem Nov 2013 A1
20130304200 McLean et al. Nov 2013 A1
20130309292 Andersen Nov 2013 A1
20130310436 Lowes et al. Nov 2013 A1
20130310925 Eliasen et al. Nov 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130317603 McLean et al. Nov 2013 A1
20130325110 Khalil et al. Dec 2013 A1
20130325114 McLean et al. Dec 2013 A1
20130331864 Jelich et al. Dec 2013 A1
20130338684 Hausen Dec 2013 A1
20130338763 Rowe et al. Dec 2013 A1
20130338766 Hastings et al. Dec 2013 A1
20130345797 Dahlgren et al. Dec 2013 A1
20130345803 Bergheim, III Dec 2013 A1
20140005778 Buchbinder et al. Jan 2014 A1
20140018906 Rafiee Jan 2014 A1
20140018913 Cartledge et al. Jan 2014 A1
20140023261 Watanabe et al. Jan 2014 A1
20140025164 Montorfano et al. Jan 2014 A1
20140031928 Murphy et al. Jan 2014 A1
20140046219 Sauter et al. Feb 2014 A1
20140046436 Kheradvar Feb 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140052240 Zhang Feb 2014 A1
20140056906 Yue et al. Feb 2014 A1
20140066895 Kipperman Mar 2014 A1
20140067048 Chau et al. Mar 2014 A1
20140067052 Chau et al. Mar 2014 A1
20140067054 Chau et al. Mar 2014 A1
20140088071 Nakai et al. Mar 2014 A1
20140088680 Costello et al. Mar 2014 A1
20140088693 Seguin et al. Mar 2014 A1
20140088695 Figulla et al. Mar 2014 A1
20140094906 Spence et al. Apr 2014 A1
20140107775 Hjelle et al. Apr 2014 A1
20140114404 Gammie et al. Apr 2014 A1
20140114407 Raiamannan Apr 2014 A1
20140121763 Duffy et al. May 2014 A1
20140128965 Rafiee May 2014 A1
20140135913 Lichtenstein et al. May 2014 A1
20140163652 Witzel et al. Jun 2014 A1
20140163668 Rafiee Jun 2014 A1
20140172076 Jonsson et al. Jun 2014 A1
20140172084 Callas et al. Jun 2014 A1
20140172085 Quadri et al. Jun 2014 A1
20140172086 Quadri et al. Jun 2014 A1
20140179993 Alexander et al. Jun 2014 A1
20140180401 Quill et al. Jun 2014 A1
20140188108 Goodine et al. Jul 2014 A1
20140188215 Hlavka et al. Jul 2014 A1
20140194920 Krahbichler Jul 2014 A1
20140194976 Starksen et al. Jul 2014 A1
20140200397 Raman et al. Jul 2014 A1
20140200649 Essinger et al. Jul 2014 A1
20140200657 Maurer et al. Jul 2014 A1
20140200662 Eftel et al. Jul 2014 A1
20140207011 Righini et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140219524 Takeguchi et al. Aug 2014 A1
20140222040 Park et al. Aug 2014 A1
20140243954 Shannon Aug 2014 A1
20140243964 Venkatasubramanian Aug 2014 A1
20140249621 Eidenschink Sep 2014 A1
20140257101 Gaudiani Sep 2014 A1
20140257466 Board et al. Sep 2014 A1
20140257467 Lane et al. Sep 2014 A1
20140257473 Rajamannan Sep 2014 A1
20140257475 Gross et al. Sep 2014 A1
20140275757 Goodwin et al. Sep 2014 A1
20140276395 Wilson et al. Sep 2014 A1
20140276609 Maaee et al. Sep 2014 A1
20140276782 Paskar Sep 2014 A1
20140276971 Kovach Sep 2014 A1
20140277119 Akpinar Sep 2014 A1
20140277390 Ratz et al. Sep 2014 A1
20140277404 Wilson et al. Sep 2014 A1
20140277405 Wilson et al. Sep 2014 A1
20140277406 Arcidi Sep 2014 A1
20140277407 Dale et al. Sep 2014 A1
20140277408 Folan Sep 2014 A1
20140277409 Bortlein et al. Sep 2014 A1
20140277410 Bortlein et al. Sep 2014 A1
20140277411 Bortlein et al. Sep 2014 A1
20140277412 Bortlein et al. Sep 2014 A1
20140277420 Migliazza et al. Sep 2014 A1
20140277422 Ratz et al. Sep 2014 A1
20140288480 Zimmerman et al. Sep 2014 A1
20140296878 Oz et al. Oct 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140296970 Ekvall et al. Oct 2014 A1
20140296971 Tegels et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303719 Cox et al. Oct 2014 A1
20140303721 Fung et al. Oct 2014 A1
20140309727 Lamelas et al. Oct 2014 A1
20140309730 Alon et al. Oct 2014 A1
20140309731 Quadri et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140316516 Vidlund et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140358222 Gorman, III et al. Dec 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140371843 Wilson et al. Dec 2014 A1
20140371844 Dale et al. Dec 2014 A1
20140371846 Wilson et al. Dec 2014 A1
20140379074 Spence et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150005874 Vidlund et al. Jan 2015 A1
20150005875 Tuval et al. Jan 2015 A1
20150025623 Granada et al. Jan 2015 A1
20150032127 Gammie et al. Jan 2015 A1
20150045878 Rowe Feb 2015 A1
20150066140 Quadri et al. Mar 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150094803 Navia Apr 2015 A1
20150100116 Mohl et al. Apr 2015 A1
20150112427 Schweich, Jr. et al. Apr 2015 A1
20150112429 Khairkhahan et al. Apr 2015 A1
20150112433 Schweich, Jr. et al. Apr 2015 A1
20150119978 Tegels et al. Apr 2015 A1
20150119981 Khairkhahan et al. Apr 2015 A1
20150119982 Quill et al. Apr 2015 A1
20150127091 Cecere et al. May 2015 A1
20150127096 Rowe et al. May 2015 A1
20150142101 Coleman et al. May 2015 A1
20150142103 Vidlund May 2015 A1
20150142105 Bolling et al. May 2015 A1
20150150678 Brecker Jun 2015 A1
20150157458 Thambar et al. Jun 2015 A1
20150157459 Macoviak et al. Jun 2015 A1
20150164637 Khairkhahan et al. Jun 2015 A1
20150164641 Annest Jun 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150173898 Drasler et al. Jun 2015 A1
20150173900 Hauser et al. Jun 2015 A1
20150190229 Seguin Jul 2015 A1
20150196390 Ma et al. Jul 2015 A1
20150196393 Vidlund et al. Jul 2015 A1
20150202043 Zakai et al. Jul 2015 A1
20150209137 Quadri et al. Jul 2015 A1
20150209139 Granada et al. Jul 2015 A1
20150216655 Lane et al. Aug 2015 A1
20150216661 Hacohen et al. Aug 2015 A1
20150223802 Tegzes Aug 2015 A1
20150223934 Vidlund et al. Aug 2015 A1
20150223935 Subramanian et al. Aug 2015 A1
20150230920 Alfieri et al. Aug 2015 A1
20150230921 Chau et al. Aug 2015 A1
20150238312 Lashinski Aug 2015 A1
20150238313 Spence et al. Aug 2015 A1
20150250590 Gries et al. Sep 2015 A1
20150257877 Hernandez Sep 2015 A1
20150257878 Lane et al. Sep 2015 A1
20150257879 Bortlein et al. Sep 2015 A1
20150257881 Bortlein et al. Sep 2015 A1
20150257882 Bortlein et al. Sep 2015 A1
20150272737 Dale et al. Oct 2015 A1
20150305861 Annest Oct 2015 A1
20150305864 Quadri et al. Oct 2015 A1
20150313739 Hummen et al. Nov 2015 A1
20150320553 Chau et al. Nov 2015 A1
20150327999 Board et al. Nov 2015 A1
20150328000 Ratz et al. Nov 2015 A1
20150336150 Peterson Nov 2015 A1
20150342733 Alkhatib et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20150351908 Keranen et al. Dec 2015 A1
20150359628 Keranen Dec 2015 A1
20150359629 Ganesan et al. Dec 2015 A1
20150359631 Sheahan et al. Dec 2015 A1
20150366666 Khairkhahan et al. Dec 2015 A1
20150374495 Ruyra Baliarda et al. Dec 2015 A1
20160000983 Mohl et al. Jan 2016 A1
20160015513 Lashinski et al. Jan 2016 A1
20160015514 Lashinski et al. Jan 2016 A1
20160015515 Lashinski et al. Jan 2016 A1
20160015543 Perouse et al. Jan 2016 A1
20160030171 Quijano et al. Feb 2016 A1
20160038246 Wang et al. Feb 2016 A1
20160038280 Morriss et al. Feb 2016 A1
20160038283 Divekar et al. Feb 2016 A1
20160038286 Yellin et al. Feb 2016 A1
20160074160 Christianson et al. Mar 2016 A1
20160106539 Buchbinder et al. Apr 2016 A1
20160113764 Sheahan et al. Apr 2016 A1
20160113765 Ganesan et al. Apr 2016 A1
20160113766 Ganesan et al. Apr 2016 A1
20160113768 Ganesan et al. Apr 2016 A1
20160120643 Kupumbati May 2016 A1
20160143730 Kheradvar May 2016 A1
20160151154 Gorman, III et al. Jun 2016 A1
20160151156 Seguin et al. Jun 2016 A1
20160151552 Solem Jun 2016 A1
20160157999 Lane et al. Jun 2016 A1
20160158000 Granada et al. Jun 2016 A1
20160158001 Wallace et al. Jun 2016 A1
20160158002 Wallace et al. Jun 2016 A1
20160158003 Wallace et al. Jun 2016 A1
20160158415 Strasly et al. Jun 2016 A1
20160184095 Spence et al. Jun 2016 A1
20160206280 Vidlund et al. Jul 2016 A1
20160206424 Al-Jilaihawi et al. Jul 2016 A1
20160262881 Schankereli et al. Sep 2016 A1
20160317290 Chau et al. Nov 2016 A1
20170079790 Vidlund et al. Mar 2017 A1
20170100248 Tegels et al. Apr 2017 A1
20170100250 Marsot et al. Apr 2017 A1
20170119526 Luong et al. May 2017 A1
20170128198 Cartledge et al. May 2017 A1
20170128205 Tamir et al. May 2017 A1
20170128206 Rafiee et al. May 2017 A1
20170128208 Christianson et al. May 2017 A1
20170156860 Lashinski Jun 2017 A1
20170165054 Benson et al. Jun 2017 A1
20170165055 Hauser et al. Jun 2017 A1
20170165064 Nyuli et al. Jun 2017 A1
20170172737 Kuetting et al. Jun 2017 A1
20170181851 Annest Jun 2017 A1
20170189177 Schweich, Jr. et al. Jul 2017 A1
20170189179 Ratz et al. Jul 2017 A1
20170189180 Alkhatib Jul 2017 A1
20170189181 Alkhatib et al. Jul 2017 A1
20170196688 Christianson et al. Jul 2017 A1
20170231762 Quadri et al. Aug 2017 A1
20170231763 Yellin et al. Aug 2017 A1
20170258585 Marquez et al. Sep 2017 A1
20170266001 Vidlund et al. Sep 2017 A1
20170281345 Yang et al. Oct 2017 A1
20170290659 Ulmer et al. Oct 2017 A1
20170296338 Cambell et al. Oct 2017 A1
20170296339 Thambar et al. Oct 2017 A1
20170319333 Tegels et al. Nov 2017 A1
20170325842 Siegel Nov 2017 A1
20170325941 Wallace et al. Nov 2017 A1
20170325945 Dale et al. Nov 2017 A1
20170325948 Wallace et al. Nov 2017 A1
20170325949 Rodgers et al. Nov 2017 A1
20170325953 Klima et al. Nov 2017 A1
20170325954 Perszyk Nov 2017 A1
20170333186 Spargias Nov 2017 A1
20170333188 Carpentier et al. Nov 2017 A1
20170340440 Ratz et al. Nov 2017 A1
20170348098 Rowe et al. Dec 2017 A1
20170348100 Lane et al. Dec 2017 A1
20170354496 Quadri et al. Dec 2017 A1
20170354497 Quadri et al. Dec 2017 A1
20170354499 Granada et al. Dec 2017 A1
20170360426 Hacohen et al. Dec 2017 A1
20170360549 Lashinski et al. Dec 2017 A1
20170360558 Ma Dec 2017 A1
20170360585 White Dec 2017 A1
20170367858 Saar et al. Dec 2017 A1
20180161585 Ollivier Jun 2018 A1
20180214263 Rolando et al. Aug 2018 A1
20180221147 Ganesan et al. Aug 2018 A1
20180235753 Ganesan et al. Aug 2018 A1
20180296325 McLean Oct 2018 A1
20180338832 Ganesan et al. Nov 2018 A1
20190000618 Schweich, Jr. et al. Jan 2019 A1
20190029814 Schweich, Jr. et al. Jan 2019 A1
20190142581 Maiso et al. May 2019 A1
20190183641 Ganesan et al. Jun 2019 A1
20190192292 Schweich, Jr. et al. Jun 2019 A1
Foreign Referenced Citations (378)
Number Date Country
1440261 Sep 2003 CN
101076290 Nov 2007 CN
101291637 Oct 2008 CN
103491900 Jan 2014 CN
19605042 Jan 1998 DE
102006052564 Dec 2007 DE
186104 Jul 1986 EP
0224080 Jul 1992 EP
1512383 Mar 2005 EP
1088529 Jun 2005 EP
1545371 Jun 2005 EP
1551274 Jul 2005 EP
1629794 Mar 2006 EP
1646332 Apr 2006 EP
170224 7 Sep 2006 EP
1734903 Dec 2006 EP
1891914 Feb 2008 EP
1967164 Sep 2008 EP
2026280 Feb 2009 EP
2033581 Mar 2009 EP
2037829 Mar 2009 EP
2081519 Jul 2009 EP
2111190 Oct 2009 EP
2142143 Jan 2010 EP
2167742 Mar 2010 EP
2014257 Sep 2010 EP
2278944 Feb 2011 EP
2033597 Mar 2011 EP
2306821 Apr 2011 EP
2327429 Jun 2011 EP
2165651 Aug 2011 EP
1719476 Nov 2011 EP
2399527 Dec 2011 EP
2400924 Jan 2012 EP
2400926 Jan 2012 EP
2410947 Feb 2012 EP
2416739 Feb 2012 EP
2419050 Feb 2012 EP
2399527 Mar 2012 EP
2444031 Apr 2012 EP
2488126 Aug 2012 EP
2509538 Oct 2012 EP
2549955 Jan 2013 EP
2549956 Jan 2013 EP
2566416 Mar 2013 EP
2586492 May 2013 EP
2618784 Jul 2013 EP
2623068 Aug 2013 EP
2626013 Aug 2013 EP
2629699 Aug 2013 EP
2641 S69 Sep 2013 EP
26334S7 Sep 2013 EP
26376S9 Sep 2013 EP
26S679S Oct 2013 EP
26S4624 Oct 2013 EP
26S6794 Oct 2013 EP
26S6796 Oct 2013 EP
2644158 Oct 2013 EP
26703S8 Dec 2013 EP
2667823 Dec 2013 EP
2676640 Dec 2013 EP
2688041 Jan 2014 EP
2695586 Feb 2014 EP
2697721 Feb 2014 EP
2713953 Apr 2014 EP
2714068 Apr 2014 EP
2723272 Apr 2014 EP
2723273 Apr 2014 EP
2723277 Apr 2014 EP
2739214 Jun 2014 EP
2741711 Jun 2014 EP
2750630 Jul 2014 EP
2750631 Jul 2014 EP
2755562 Jul 2014 EP
2755602 Jul 2014 EP
2757962 Jul 2014 EP
2777616 Sep 2014 EP
2777617 Sep 2014 EP
2782523 Oct 2014 EP
2785282 Oct 2014 EP
2786817 Oct 2014 EP
2790609 Oct 2014 EP
2793751 Oct 2014 EP
2229921 Nov 2014 EP
2S1442S Dec 2014 EP
2S09263 Dec 2014 EP
2S10620 Dec 2014 EP
2S14429 Dec 2014 EP
2S19617 Jan 2015 EP
2819618 Jan 2015 EP
2819619 Jan 2015 EP
28384 75 Feb 2015 EP
2717803 Feb 2015 EP
2833836 Feb 2015 EP
2839815 Feb 2015 EP
2844190 Mar 2015 EP
2849680 Mar 2015 EP
2849681 Mar 2015 EP
2852354 Apr 2015 EP
2854719 Apr 2015 EP
2861186 Apr 2015 EP
2870933 May 2015 EP
2873011 May 2015 EP
2875797 May 2015 EP
2760375 Jun 2015 EP
2882374 Jun 2015 EP
2886082 Jun 2015 EP
2886083 Jun 2015 EP
2886084 Jun 2015 EP
2895111 Jul 2015 EP
2250976 Aug 2015 EP
2901966 Aug 2015 EP
2907479 Aug 2015 EP
2945572 Nov 2015 EP
2948094 Dec 2015 EP
2948102 Dec 2015 EP
296884 7 Jan 2016 EP
2964152 Jan 2016 EP
2967859 Jan 2016 EP
2967860 Jan 2016 EP
2967866 Jan 2016 EP
2981208 Feb 2016 EP
2982336 Feb 2016 EP
2999433 Mar 2016 EP
3003187 Apr 2016 EP
3003219 Apr 2016 EP
3003220 Apr 2016 EP
3010447 Apr 2016 EP
3013281 May 2016 EP
3017792 May 2016 EP
3021792 May 2016 EP
3023117 May 2016 EP
3027143 Jun 2016 EP
3033048 Jun 2016 EP
3037064 Jun 2016 EP
3050541 Aug 2016 EP
3079633 Oct 2016 EP
3229736 Nov 2016 EP
3102152 Dec 2016 EP
2470119 May 2017 EP
2999436 May 2017 EP
3184081 Jun 2017 EP
3191027 Jul 2017 EP
2611389 Aug 2017 EP
3082656 Aug 2017 EP
3206628 Aug 2017 EP
2010103 Sep 2017 EP
2509538 Sep 2017 EP
3223751 Oct 2017 EP
3027144 Nov 2017 EP
3110368 Nov 2017 EP
3110369 Nov 2017 EP
3132773 Nov 2017 EP
3245980 Nov 2017 EP
3250154 Dec 2017 EP
3256077 Dec 2017 EP
3258883 Dec 2017 EP
3273910 Jan 2018 EP
6504516 May 1994 JP
H10258124 Sep 1998 JP
2002509756 Apr 2002 JP
2005280917 Oct 2005 JP
2008528117 Jul 2008 JP
2008541863 Nov 2008 JP
2009195712 Sep 2009 JP
2010518947 Jun 2010 JP
5219518 Jun 2013 JP
WO-1992017118 Oct 1992 WO
WO-1995016407 Jun 1995 WO
WO-1999004 730 Feb 1999 WO
WO-1999039648 Aug 1999 WO
WO-1999049799 Oct 1999 WO
WO-2001010343 Feb 2001 WO
WO-2002003892 Jan 2002 WO
WO-2002028421 Apr 2002 WO
WO-2002039908 May 2002 WO
WO-2003043685 May 2003 WO
WO-2004084 746 Oct 2004 WO
WO-2004093 728 Nov 2004 WO
WO-2004096097 Nov 2004 WO
WO-200411265 7 Dec 2004 WO
WO-2005002466 Jan 2005 WO
WO-2005007219 Jan 2005 WO
WO-2005009285 Feb 2005 WO
WO-2005009506 Feb 2005 WO
WO-2005087140 Sep 2005 WO
WO-2006041877 Apr 2006 WO
WO-2006063199 Jun 2006 WO
WO-2007008371 Jan 2007 WO
WO-2007067820 Jun 2007 WO
WO2007098232 Aug 2007 WO
WO-2008022077 Feb 2008 WO
WO-200803533 7 Mar 2008 WO
WO-2008028569 Mar 2008 WO
2008103722 Aug 2008 WO
WO-2008103497 Aug 2008 WO
WO-2008129405 Oct 2008 WO
WO-2009045338 Apr 2009 WO
2009091509 Jul 2009 WO
WO-201 0006627 Jan 2010 WO
WO-2010008549 Jan 2010 WO
WO-2010057262 May 2010 WO
WO-2010080594 Jul 2010 WO
WO-201 0098857 Sep 2010 WO
WO-2010099032 Sep 2010 WO
2010121076 Oct 2010 WO
WO-2010117680 Oct 2010 WO
2011025981 Mar 2011 WO
WO-201104 7168 Apr 2011 WO
WO-2011051 043 May 2011 WO
WO-2011057087 May 2011 WO
WO-2011072084 Jun 2011 WO
WO-2011106137 Sep 2011 WO
WO-2011106544 Sep 2011 WO
WO-2011111047 Sep 2011 WO
WO-2011137531 Nov 2011 WO
WO-2011139747 Nov 2011 WO
WO-20120111 08 Jan 2012 WO
WO-2012011018 Jan 2012 WO
WO-2012027487 Mar 2012 WO
WO-2012035279 Mar 2012 WO
WO-2012040655 Mar 2012 WO
2012052718 Apr 2012 WO
WO-201204 7644 Apr 2012 WO
WO-2012055498 May 2012 WO
WO-2012087842 Jun 2012 WO
WO-2012095455 Jul 2012 WO
WO-2012102928 Aug 2012 WO
WO-2012106602 Aug 2012 WO
WO-2012118508 Sep 2012 WO
WO-2012118816 Sep 2012 WO
WO-2012118894 Sep 2012 WO
WO-2012177942 Dec 2012 WO
WO-2013021374 Feb 2013 WO
WO-2013021375 Feb 2013 WO
WO-2013028387 Feb 2013 WO
WO-2013059743 Apr 2013 WO
WO-2013059747 Apr 2013 WO
WO-2013114214 Aug 2013 WO
WO-2013120181 Aug 2013 WO
WO-2013123059 Aug 2013 WO
WO-2013128432 Sep 2013 WO
WO-2013130641 Sep 2013 WO
WO-2013131925 Sep 2013 WO
WO-2013140318 Sep 2013 WO
WO-2013148017 Oct 2013 WO
WO-2013148018 Oct 2013 WO
WO-2013148019 Oct 2013 WO
WO-2013150512 Oct 2013 WO
WO-2013152161 Oct 2013 WO
WO-2013158613 Oct 2013 WO
WO-2013169448 Nov 2013 WO
WO-2013175468 Nov 2013 WO
WO-2013176583 Nov 2013 WO
WO-2013188077 Dec 2013 WO
WO-2013192107 Dec 2013 WO
WO-201404 7325 Mar 2014 WO
WO-2014036113 Mar 2014 WO
WO-2014043527 Mar 2014 WO
WO-2014047111 Mar 2014 WO
WO-2014055981 Apr 2014 WO
WO-2014059432 Apr 2014 WO
WO-2014064694 May 2014 WO
WO-2014066365 May 2014 WO
WO-2014089424 Jun 2014 WO
WO-2014093861 Jun 2014 WO
WO-2014114 794 Jul 2014 WO
WO-2014111918 Jul 2014 WO
WO-2014114795 Jul 2014 WO
WO-2014114796 Jul 2014 WO
WO-2014114798 Jul 2014 WO
WO-2014116502 Jul 2014 WO
WO-2014121280 Aug 2014 WO
WO-2014128705 Aug 2014 WO
WO-20141441 00 Sep 2014 WO
WO-2014134277 Sep 2014 WO
WO-2014138194 Sep 2014 WO
WO-2014138284 Sep 2014 WO
WO-2014138482 Sep 2014 WO
WO-2014138868 Sep 2014 WO
WO-2014144937 Sep 2014 WO
WO-2014145338 Sep 2014 WO
WO-2014147336 Sep 2014 WO
WO-2014152306 Sep 2014 WO
WO-2014152375 Sep 2014 WO
WO-2014152503 Sep 2014 WO
WO-2014153544 Sep 2014 WO
WO-201415S617 Oct 2014 WO
WO-2014162151 Oct 2014 WO
WO-2014162306 Oct 2014 WO
WO-2014163705 Oct 2014 WO
WO-2014168655 Oct 2014 WO
WO-2014179391 Nov 2014 WO
WO-2014181336 Nov 2014 WO
WO-2014189974 Nov 2014 WO
WO-201421 0299 Dec 2014 WO
WO-2014191994 Dec 2014 WO
WO-2014194178 Dec 2014 WO
WO-2014201384 Dec 2014 WO
WO-2014201452 Dec 2014 WO
WO-2014205064 Dec 2014 WO
WO-2014207699 Dec 2014 WO
WO-2014210124 Dec 2014 WO
WO-2015009503 Jan 2015 WO
WO-2015020971 Feb 2015 WO
WO-2015028986 Mar 2015 WO
WO-201505 7735 Apr 2015 WO
WO-2015051430 Apr 2015 WO
WO-2015052663 Apr 2015 WO
WO-2015057407 Apr 2015 WO
WO-2015057995 Apr 2015 WO
WO-2015061378 Apr 2015 WO
WO-2015061431 Apr 2015 WO
WO-2015061463 Apr 2015 WO
WO-2015061533 Apr 2015 WO
WO-2015075128 May 2015 WO
WO-2015081775 Jun 2015 WO
WO-2015089334 Jun 2015 WO
WO-2015092554 Jun 2015 WO
2015118464 Aug 2015 WO
WO-2015120122 Aug 2015 WO
WO-2015125024 Aug 2015 WO
WO-2015127264 Aug 2015 WO
WO-2015127283 Aug 2015 WO
WO-2015128739 Sep 2015 WO
WO-2015128741 Sep 2015 WO
WO-2015128747 Sep 2015 WO
WO-2015132667 Sep 2015 WO
WO-2015132668 Sep 2015 WO
WO-2015135050 Sep 2015 WO
WO-2015142648 Sep 2015 WO
WO-2015142834 Sep 2015 WO
WO-2015148241 Oct 2015 WO
2015179181 Nov 2015 WO
WO-2015171190 Nov 2015 WO
WO-2015171743 Nov 2015 WO
WO-2015191604 Dec 2015 WO
WO-2015191839 Dec 2015 WO
WO-2015195823 Dec 2015 WO
WO-2016011185 Jan 2016 WO
WO-2016020918 Feb 2016 WO
WO-2016027272 Feb 2016 WO
WO-2016059533 Apr 2016 WO
WO-2016065158 Apr 2016 WO
WO-2016073741 May 2016 WO
WO-201609733 7 Jun 2016 WO
WO-2016083551 Jun 2016 WO
WO-2016093877 Jun 2016 WO
WO-2016108181 Jul 2016 WO
2016133950 Aug 2016 WO
WO2016150806 Sep 2016 WO
WO2016201024 Dec 2016 WO
WO2016209970 Dec 2016 WO
WO2017011697 Jan 2017 WO
WO-2017062640 Apr 2017 WO
2017087701 May 2017 WO
2017096157 Jun 2017 WO
2017100927 Jun 2017 WO
2017101232 Jun 2017 WO
2017117388 Jul 2017 WO
2017127939 Aug 2017 WO
2017136287 Aug 2017 WO
2017136596 Aug 2017 WO
2017165810 Sep 2017 WO
2017173331 Oct 2017 WO
2017192960 Nov 2017 WO
2017196511 Nov 2017 WO
2017196909 Nov 2017 WO
2017196977 Nov 2017 WO
2017197064 Nov 2017 WO
2017197065 Nov 2017 WO
2017218671 Dec 2017 WO
2017223486 Dec 2017 WO
2018017886 Jan 2018 WO
WO2018029680 Feb 2018 WO
2018167536 Sep 2018 WO
2019069145 Apr 2019 WO
2019209927 Oct 2019 WO
Non-Patent Literature Citations (52)
Entry
US 9,265,606 B2, 02/2016, Buchbinder et al. (withdrawn)
International Search Report and Written Opinion dated Jul. 11, 2018 for PCT Application No. PCT/US2018/027990, 15 pages.
International Search Report and Written Opinion dated Jun. 28, 2018 for PCT Application No. PCT/US2018/027983, 15 pages.
International Search Report and Written Opinion dated Aug. 3, 2018 for PCT Application No. PCT/US2018035086, 15 pages.
International Search Report and Written Opinion dated Aug. 9, 2018 for PCT Application No. PCT/US2018/035081, 11 pages.
International Search Report and Written Opinion dated Sep. 11, 2018 for PCT Application No. PCT/US2018/038841, 15 pages.
International Search Report and Written Opinion dated Sep. 4, 2018 for PCT Application No. PCT/US2018/027966, 17 pages.
International Search Report and Written Opinion dated Sep. 11, 2018 for PCT Application No. PCT/US2018/038847, 18 pages.
International Search Report and Written Opinion dated Jul. 3, 2018 for PCT Application No. PCT/US2018/031438, 14 pages.
Bernard et al., “Aortic Valve Area Evolution After Percutaneous Aortic Valvuloplasty,” European Heart Journal, Jul. 1990, vol. 11 (2), pp. 98-107.
BlueCross BlueShield of Northern Carolina Corporate Medical Policy “Balloon valvuloplasty, Percutaneous”, (Jun. 1994).
Cimino et al., “Physics of Ultrasonic Surgery Using Tissue Fragmentation: Part I and Part II”, Ultrasound in Medicine and Biology!, Jun. 1996, vol. 22 (1), pp. 89-100, and pp. 101-117.
Cimino, “Ultrasonic Surgery: Power Quantification and Efficiency Optimization”, Aesthetic Surgery Journal, Feb. 2001, pp. 233-241.
Cowell et al., “A Randomized Trial of Intensive Lipid-Lowering Therapy in Calcific Aortic Stenosis,” NEJM, Jun. 2005, vol. 352 (23), pp. 2389-2397.
De Korte et al., “Characterization of Plaque Components and Vulnerability with Intravascular Ultrasound Elastography”, Phys. Med. Biol., Feb. 2000, vol. 45, pp. 1465-1475.
European Search Report dated Mar. 13, 2015 for European Application. No. 05853460.3.
Feldman, “Restenosis Following Successful Balloon Valvuloplasty: Bone Formation in Aortic Valve Leaflets”, Cathet Cardiovasc Diagn, May 1993, vol. 29 (1), pp. 1-7.
Fitzgerald et al., “Intravascular Sonotherapy Decreased Neointimal Hyperplasia After Stent Implantation in Swine”, Circulation, Feb. 2001, vol. 103, pp. 1828-1831.
Freeman et al., “Ultrasonic Aortic Valve Decalcification: Serial Doppler EchocardiographicFollow Up”, J Am Coll Cardiol., Sep. 1990, vol. 16 (3), pp. 623-630.
Greenleaf et al., “Selected Methods for Imaging Elastic Properties of Biological Tissues”, Annu. Rev. Biomed. Eng., Apr. 2003, vol. 5, pp. 57-78.
Guzman et al., “Bioeffects Caused by Changes in Acoustic Cavitation Bubble Density and Cell Concentration: A Unified Explanation Based on Cell-to-Bubble Ratio and Blast Radius”, Ultrasound in Med. & Biol., Mar. 2003, vol. 29 (8), pp. 1211-1222.
Hallgrimsson et al., “Chronic Non-Rheumatic Aortic Valvular Disease: a Population StudyBased on Autopsies”, J Chronic Dis., Jun. 1979, vol. 32 (5), pp. 355-363.
Isner et al., “Contrasting Histoarchitecture of Calcified Leaflets from Stenotic Bicuspid Versus Stenotic Tricuspid Aortic Valves”, J Am Coll Cardiol., Apr. 1990, vol. 15 (5), p. 1104-1108.
Lung et al., “A Prospective Survey of Patients with Valvular Heart Disease in Europe: The Euro Heart Survey on Valvular Heart Disease”, Euro Heart Journal, Mar. 2003, vol. 24, pp. 1231-1243.
McBride et al “Aortic Valve Decalcification”, J Thorac Cardiovas—Surg, Jul. 1990, vol. 100, pp. 36-42.
Miller et al., “Lysis and Sonoporation of Epidermoid and Phagocytic Monolayer Cells by Diagnostic Ultrasound Activation of Contrast Agent Gas Bodies”, Ultrasound in Med. & Biol., May 2007, vol. 27 (8), pp. 1107-1113.
Mohler, “Mechanisms of Aortic Valve Calcificaion”, Am J Cardiol, Dec. 2004, vol. 94 (11),pp. 1396-1402.
Otto et al., “Three-Year Outcome After Balloon Aortic Valvuloplasty. Insights into Prognosis of Valvular Aortic Stenosis”, Circulation, Feb. 1994, vol. 89, pp. 642-650.
Gunn et al., “New Developments in Therapeutic Ultra-sound-Assisted Coronary Angioplasty”, Curr Interv Cardiol Rep., Dec. 1990, vol. 1 (4), pp. 281-290.
Passik et al., “Temporal Changes in the Causes of Aortic Stenosis: A Surgical Pathologic Study of 646 Cases”, Mayo Clin Proc, Feb. 1987, vol. 62, pp. 19-123.
Quaden et al., “Percutaneous Aortic Valve Replacement: Resection Before Implantation”, EurJ Cardiothorac Surg, Jan. 2005, vol. 27, pp. 836-840.
Riebman et al., “New Concepts in the Management of Patients with Aortic Valve Disease”, Abstract, Valvular Heart Disease, JACC, Mar. 2004, p. 34A.
Rosenschein et al., “Percutaneous Transluminal Therapy of Occluded Saphenous Vein Grafts” Circulation, Jan. 1999, vol. 99, pp. 26-29.
Sakata et al., “Percutaneous Balloon Aortic Valvuloplasty: Antegrade Transseptal vs. Conventional Retrograde Transarterial Approach”, Catheter Cardiovasc Interv., Mar. 2005, vol. 64 (3), pp. 314-321.
Sasaki et al., “Scanning Electron Microscopy and Fourier Transformed Infrared Spectroscopy Analysis of Bone Removal Using Er:YAG and CO2 Lasers”, J Periodontal., Jun. 2002, vol. 73 (6), 00. 643-652.
Search Report and Written Opinion dated Dec. 10, 2012 for PCT Application No. PCT/US2012/043636.
Search Report and Written Opinion dated Dec. 6, 2016 for PCT Application No. PCT/US2016/047831.
Search Report and Written Opinion dated Apr. 19, 2014 PCT Application No. PCT/US2012/061215.
Search Report and Written Opinion dated Apr. 19, 2014 PCT Application No. PCT/US2012/061219.
Search Report and Written Opinion dated Mar. 2, 2015 for PCT Application No. PCT/US2014/029549.
Search Report and Written Opinion dated May 1, 2012 for PCT Application No. PCT/US2011/065627.
Search Report and Written Opinion dated May 22, 2007 for PCT Application No. PCT/US2005/044543.
Search Report and Written Opinion dated Oct. 20, 2014 for PCT Application No. PCT/US2014/038849.
Search Report and Written Opinion dated Sep. 4, 2014 for PCT Application No. PCT/US2014/014704.
The CoreValve System Medtronic, 2012, 4 Pages.
Van Den Brand et al., “Histological Changes in the Aortic Valve after Balloon Dilation: Evidence for a Delayed Healing Process”, Br Heart J, Jun. 1992, vol. 67, pp. 445-459.
Verdaadadonk et al., “The Mechanism of Action of the Ultrasonic Tissue Resectors Disclosed Using High-Speed and Thermal Imaging Techniques”, SPIE, Jan. 1999, vol. 3594, pp. 221-231.
Voelker et al., “Inoperative Valvuloplasty in Calcific Aortic Stenosis: a Study Comparing the Mechanism of a Novel Expandable Device with Conventional Balloon Dilation”, Am Heart J., Nov. 1991, vol. 122 (5), pp. 1327-1333.
Waller et al., “Catheter Balloon Valvuloplasty of Stenotic Aortic Valves. Part II: Balloon Valvuloplasty During Life Subsequent Tissue Examination”, Clin Cardiol., Nov. 1991, vol. 14 (11), pp. 924-930.
Wang, “Balloon Aortic Valvuloplasty”, Prog Cardiovasc Dis., Jul.-Aug. 1997, vol. 40 (1), pp. 27-36.
Wilson et al., “Elastography—The movement Begins”, Phys. Med. Biol., Jun. 2000, vol. 45, pp. 1409-1421.
Yock et al, “Catheter-Based Ultrasound Thrombolysis”, Circulation, Mar. 1997, vol. 95 (6), pp. 1411-1416.
Related Publications (1)
Number Date Country
20200337872 A1 Oct 2020 US
Continuations (1)
Number Date Country
Parent 15615144 Jun 2017 US
Child 16927238 US