This application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Apr. 13, 2022, is named H049870616US02-SEQ-MSB and is 137600 bytes in size.
In nature, biomolecules assemble into hierarchical structures through intermolecular interactions. In synthetic biology, it is possible to rationally design biosynthetic building blocks, with hierarchical structures arising from built-in functionality at the molecular level controlling intermolecular interactions. Such biosynthetic self-assembling structures have useful applications in the field of nanotechnology, for example.
Provided herein, in some embodiments, is a technology (including, for example, methods, compositions and kits) for controlling nucleation and hierarchical assembly (programmable self-assembly) of molecular structures, such as nucleic acid (e.g., DNA) and/or protein nanostructures, microstructures, and macrostructures. This technology, referred to herein as ‘crisscross cooperative assembly’ can be used to program and rapidly assemble structures that only originate from provided macromolecular ‘seeds,’ thus may be considered a ‘zero-background’ assembly method. Through the design of cooperative binding sites on individual biomolecular subunits that require simultaneous engagement with a large number of other subunits to achieve stable attachment, the system imposes an intrinsically high energetic barrier against spontaneous nucleation of structures, even in the presence of high concentrations of each individual component. Nucleation can only be triggered by providing a macromolecular ‘seed’ that resembles a pre-existing structural interface (presents multiple weak binding sites for stable capture of the next subunit). Addition of a seed that can stably capture individual subunits effectively bypasses the activation energy barrier against spontaneous nucleation to drive higher-order assembly of a microscale structure. Components can be continually added to the structures such that their growth in one-dimension, two-dimensions or three-dimensions is potentially as large as for other polymerization or crystallization processes.
Crisscross cooperative assembly, as provided herein, uses molecular (e.g., nucleic acid or protein) building blocks (
The nucleating structure and the building blocks are engineered to interact with (e.g., bind to) each other based on a set of kinetic/nucleation energy parameters, as follows. An initial subset of building blocks (drones) should bind strongly (irreversibly/stably) to and form an aligned layer along the nucleating structure (queen). The building blocks (drones) of the initial subset should not interact with (bind to) each other. Likewise, building blocks (workers) of a subsequent subset should not interact with (bind to) each other. Further, in the absence of a nucleating structure (queen), any building block (drone) from the initial subset should have only one weak (reversible) interaction with any other building block (worker) from another subset. In the presence of a nucleating structure (queen), a single building block (drone) from an initial subset may interact with more than one building block (worker) from a subsequent subset, and a single building block (worker) from a subsequent subset may interact with more than one building block (drone) from the initial subset or another subset (‘workers’ of another subset). For example, with reference to
The single interaction between a building block (drone) from the initial subset and a building block from a subsequent subset (worker) should be weak enough such that there is an arbitrarily large entropy penalty against nucleation in the absence of a seed structure (a large number of individual workers would have to come together simultaneously). With these parameters, zero-background and minimal defects can be achieved, even at high concentrations
Thus, provided herein are compositions, comprising (a) a nucleating nucleic acid nanostructure, (b) a first layer of parallel elongated nucleic acid nanostructures stably bound to the nucleating nanostructure of (a), and (c) a second layer of parallel elongated nucleic acid nanostructures stably bound to the elongated nanostructures of (b) and rotated at an angle relative to the parallel elongated nanostructures of (b), wherein a single elongated nanostructure of (b) binds to multiple elongated nanostructures of (c), each through a single cooperative binding site.
In some embodiments, a single elongated nanostructure of (c) binds to multiple elongated nanostructures of (b), each through a single cooperative binding site.
Also provided herein, in some aspects, are compositions comprising: (a) nucleating nanostructures; (b) a first subset of elongated nanostructures, wherein less than 10% of the nanostructures of (b) bind to each other, and wherein the nanostructures of (b) irreversibly bind to a nucleating nanostructure of (a); and (c) a second subset of elongated nanostructures, wherein less than 10% of the nanostructures of (c) bind to each other, wherein, in the absence of a nucleating nanostructure, a nanostructure of (b) can reversibly binding to a nanostructure of (a) only at a single position on the nanostructure of (a), and wherein, in the absence of a nucleating nanostructure, a nanostructure of (a) can reversibly binding to a nanostructure of (b) only at a single position on the nanostructure of (b). See, e.g.,
Also provided herein, in some embodiments, are crisscross nucleic acid nanostructures, comprising a first nanorod comprising a first plug strand and a second plug strand; a second nanorod comprising a third plug strand and a fourth plug strand, wherein the second nanorod is parallel to the first nanorod; a third nanorod comprising a fifth plug strand complementary to and bound to the first plug strand and a sixth plug strand complementary to and bound to the second plug strand; a fourth nanorod comprising a seventh plug strand complementary to and bound to the third plug strand and an eighth plug strand complementary to and bound to the fourth plug strand, wherein the third nanorod is parallel to the fourth nanorod. See, e.g.,
Thus, in some embodiments, a crisscross nucleic acid nanostructure, comprises a first plurality of nanorods parallel to each other, and a second plurality of nanorods parallel to each other, wherein the nanorods of the first plurality are bound to and perpendicular to (or are non-parallel to) the nanorods of the second plurality. See, e.g.,
In some embodiments, each nanorod is comprised of DNA. For example, a nanorod may be comprised of a 6-helix DNA bundle (see, e.g., Douglas S M1, Chou J J, Shih W M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci USA. 104, 6644-6648, 2007, incorporated herein by reference).
Also provided herein, in some aspects, are crisscross nucleic acid slats, comprising: a first plurality of at least four nucleic acid strands parallel to each other, each strand of the first plurality having a length of 20-100 nucleotides (e.g., 20-30, 20-40 or 20-50 nucleotides); and a second plurality of at least four nucleic acid strands parallel to each, each strand of the second plurality having a length of 20-100 nucleotides (e.g., 20-30, 20-40 or 20-50 nucleotides), wherein the at least four nucleic acid strands of the first plurality are bound to and perpendicular to the at least four nucleic acid strands of the second plurality. See, e.g.,
Also provided herein, in some aspects are crisscross nucleic acid slats, comprising: a first plurality of at least four nucleic acid strands parallel to each other, each strand of the first plurality having a length of at least 21 nucleotides; and a second plurality of at least four nucleic acid strands parallel to each, each strand of the second plurality having a length of at least 21 nucleotides, wherein the at least four nucleic acid strands of the first plurality are bound to and perpendicular to the at least four nucleic acid strands of the second plurality. See, e.g.,
Further provided herein, in some aspects, are nucleic acid nanostructures comprising a nucleic acid scaffold strand folded (e.g., M13 or M13-derived) into repeating loop-like shapes (e.g., 5-15 loops, or 5, 6, 7, 8, 9 or 10 loops) secured by shorter nucleic acid staple strands, wherein the repeating loop structures are bound to at least one (e.g., at least 2, 3, 4, 5, 10, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 or more) crisscross nucleic acid slat. See, e.g.,
Further still, provided herein, in some aspects, are nucleic acid nanostructures, comprising a nucleic acid scaffold strand folded into repeating loop-like shapes secured by at least two crisscross nucleic acid slats. See, e.g.,
The present disclosure also provides, in some aspects, methods of producing a crisscross nucleic acid nanostructures, comprising: combining in a reaction mixture (a) a first nanorod comprising a first plug strand and a second plug strand, (b) a second nanorod comprising a third plug strand and a fourth plug strand, wherein the second nanorod is parallel to the first nanorod, (c) a third nanorod comprising a fifth plug strand complementary to and bound to the first plug strand and a sixth plug strand complementary to and bound to the second plug strand, and (d) a fourth nanorod comprising a seventh plug strand complementary to and bound to the third plug strand and an eighth plug strand complementary to and bound to the fourth plug strand, wherein the third nanorod is parallel to the fourth nanorod; and incubating the reaction mixture under conditions (e.g., nucleic acid hybridization conditions) that result in assembly of a crisscross nucleic acid nanostructure. See, e.g.,
Biomolecule (analyte) detection methods are also provided herein, in some aspects. In some embodiments, a method, comprises (a) combining in a reaction mixture (i) a sample comprising a biomolecule; (ii) a nucleic acid strand capable of self-assembling into a nanostructure that comprise vertically-stacked parallel strands; (iii) a plurality of oligonucleotides, shorter than the nucleic acid strand of (ii), wherein the oligonucleotides of (iii) bind to the strand of (ii) to assemble the vertically-stacked parallel strands; (iv) two crisscross nucleic acid slats, wherein the two slats bind to the strand of (ii), and wherein each of the slats is linked to a biomolecule binding partner that specifically binds to the biomolecule in the sample; (b) incubating the reaction mixture under conditions that permit binding of the biomolecule binding partners to the biomolecule and assembly of the nanostructure into vertically-stacked parallel strands; (c) removing the plurality of oligonucleotides of (iii) from the reaction mixture of (b); (d) incubating the reaction mixture of (c) in the presence of a plurality of crisscross nucleic acid slats described herein, wherein the crisscross nucleic acid slats bind to the vertically-stacked parallel strands to form a three-dimensional barrel structure. In some embodiments, the methods further comprise imaging the three-dimensional barrel structure. See, e.g.,
In some embodiments, the methods may comprise combining in a reaction mixture (e.g., with hybridization buffer) (a) a sample comprising a biomolecule and (b) a nucleic acid nanostructure comprising (i) a nucleic acid scaffold strand capable of folding into repeating loop-like shapes (e.g., 2-15 vertically-stacked loops) and (ii) two crisscross nucleic acid slats, wherein a biomolecule binding partner (e.g., an antibody) that specifically binds to the biomolecule is linked to each of the crisscross nucleic acid slats such that in the presence of the cognate biomolecule the biomolecule binding partner binds to the biomolecule and the nucleic acid nanostructure folds into repeating loop-like shapes. See, e.g.,
In some embodiments, the methods further comprise combining the reaction mixture with a plurality (e.g., 2-50 or 2-100) of crisscross nucleic acid slats to form a three-dimensional barrel-like structure. See, e.g.,
It should be understood that the nucleic-acid nanostructures as described herein (e.g., nanorods, slats, barrels, etc.) and variants thereof, as provided herein, may be designed, for example, using the following publicly-available tool described by Douglas S M, Marblestone A H, Teerapittayanon S, Vazquez A, Church G M, Shih W M. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001-5006, 2009, incorporated herein by reference. See, also, Douglas et al. Nature, 459(7245): 414-418, 2009, incorporated herein by reference. For example, and as described elsewhere herein, it is known in the art that custom shape (e.g., megadalton-scale) DNA nanostructures may be produced using a long ‘scaffold’ strand to template the assembly of hundreds of oligonucleotide ‘staple’ strands into a planar antiparallel array of cross-linked helices. This ‘scaffolded DNA origami’ method has also been adapted to produce 3D shapes formed as pleated layers of double helices constrained to a honeycomb lattice. caDNAno, an open-source software package with a graphical user interface, may be used to aid in the design of DNA sequences for folding 3D DNA (or other nucleic acid) nanostructures. The caDNAno software is available at cadnano.org, along with example designs and video tutorials demonstrating their construction.
Nature achieves rapid and nucleation-limited growth of cytoskeletal filaments such as actin and microtubules. This is achieved by securing each additional subunit by weak interactions to 2-3 already attached subunits at the growing end of the filament. This means that if any two monomers bind to each other in solution, they will rapidly (e.g., within milliseconds) dissociate from each other, because the single interaction is so weak. It is only after four subunits come together simultaneously—a rare event—that a stable nucleus will be formed. Therefore, untriggered spontaneous nucleation will be rare. Conversely, nucleation can be triggered by providing a macromolecular “seed” that mimics a fully formed filament end.
Rapid and nucleation-limited growth are very useful features for programmable self-assembly, however technological modification of natural filaments such as actin or microtubules has many current drawbacks: (1) there is a limited understanding of how to tune the interaction strength between subunits; (2) the level of cooperativity is relatively low (the weak interactions upon binding are spread only over 2-3 subunits), therefore the suppression of spontaneous nucleation is not as robust as it could be; and (3) growth is limited to one-dimension (filament formation).
Rapid, reversible, zero-background, triggered nucleation and growth, as provided herein, can have useful applications in nanotechnology and biotechnology, such as ultrasensitive detection, and templates for miniaturized materials.
Crisscross Cooperative Assembly
The crisscross cooperative assembly technology as provided herein is based on a concept that may apply to many self-assembling molecules, including nucleic acids and proteins. For simplicity and ease of understanding, however, reference herein primarily will address crisscross cooperative assembly in the context of nucleic acids, such as deoxyribonucleic acid (DNA). A crisscross cooperative assembly system uses three basic components: a nucleating nanostructure, an initial (first) subset of nanostructures programmed to bind to the nucleating nanostructure, and another (second) subset of nanostructures programmed to bind to the nanostructures of the initial.
An example of a crisscross cooperative assembly is provided in
An example protocol for a crisscross cooperative assembly system is as follows: (1) Design constitutive building blocks (queen, drones and workers) using DNA CAD tools. See, e.g., Douglas S M, Marblestone A H, Teerapittayanon S, Vazquez A, Church G M, Shih W M. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001-5006, 2009, incorporated herein by reference in its entirety.
Cooperative binding site sequences and number of sites on queens are tailored to modulate the activation energy of nucleation as required. (2) Construct and purify constitutive building blocks using techniques in DNA synthesis and DNA origami. (3) Mix drones and workers in solution, and add queens to initiate growth of higher order DNA structures.
Nanostructures bind to each other through cooperative binding sites. A “cooperative binding site” is the location at which two nanostructures interact (hybridize/bind). For example, a nucleating nanostructure may be programmed with multiple nucleotide base sequences, each of which is complementary to a nucleotide base sequence of one of the nanostructures of the initial subset of nanostructures. A cooperative binding site may include plug and socket sites that include plug and socket strands. A plug strand is a nucleic acid strand (single-stranded nucleic acid) attached to a nucleic acid nanostructure, such as a nanorod. A plug strand contains a nucleotide sequence that is complementary to (and this binds to) a nucleotide sequence within a cognate socket strand. Thus, a pair of plug and socket strands include nucleotide sequences that are complementary to each other such that the plug and socket strand bind (hybridize) to each other to anchor, for example, a drone to a queen or a worker to a drone (see, e.g.,
Cooperative binding sites, e.g., plug and socket strands, may also be used to assemble nucleic acid (e.g., DNA) slats onto another nucleic acid scaffold structure in a similar manner. For example, as shown in
Cooperative binding sites (e.g., plug and socket sequences) are arranged on a nucleating nanostructure in a spatial configuration that facilitates binding and alignment of the initial e.g., scaffold) nanostructures. The length of a cooperative binding site may vary, depending in part on the desired strength (strong v. weak) of the intended interaction between two molecules having complementary sites. In some embodiments, a cooperative binding site has a length of 5-50 nucleotides. For example, a cooperative binding site may have a length of 5-40, 5-30, 5-20, 5-10, 5-15, 10-50, 10-40, 10-30, 10-20, 30-50, 30-40, or 40-50 nucleotides. In some embodiments, a cooperative binding site has a length of 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides. A single plug strand and/or socket strand may have a length of 5-20 (e.g., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20) nucleotides, for example.
The number of cooperative binding sites on a nanostructure may also vary. In some embodiments, the number of cooperative binding sites on a nanostructure is 3-1000. For example, the number of cooperative binding sites on a nanostructure may be 3-900, 3-800, 3-700, 3-600, 3-500, 3-400, 3-300, 3-200, or 3-100. In some embodiments, the number of cooperative binding sites on a nanostructure is 3-10, 3-15, 3-20, 3-25, 3-30, 3-35, 3-40, 3-45 or 3-50. In some embodiments, the number of cooperative binding sites on a nanostructure is 3-15, 3-20, 3-25, 3-30, 3-35, 3-40, 3-45 or 3-50. In some embodiments, the number of cooperative binding sites on a nanostructure is 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100.
The distance between cooperative binding sites may also vary. In some embodiments, the distance between two cooperative binding sites on the same nanostructure is 20-1000 angstroms. For example, the distance between two cooperative binding sites on a nanostructures may be 20-900, 20-800, 20-700, 20-600, 20-500, 20-400, 20-300, 20-200, 20-100, 50-1000, 50-900, 50-800, 50-700, 50-600, 50-500, 50-400, 50-300, 50-200, or 50-100 angstroms. In some embodiments, the distance between two cooperative binding sites on a nanostructures is 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450 or 500 angstroms.
In some embodiments, the distance between cooperative binding sites, for example, the distance between plug strands (and/or between socket strands) may be 5 to 100 nucleotides (or nucleotide base pairs (bp)). In some embodiments, the distance between plug strands (and/or between socket strands) is 5-20, 5-25, 5-50 or 5-100 nucleotides. In some embodiments, the distance between plug strands (and/or between socket strands) is 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 nucleotides. In some embodiments, the distance between plug strands (and/or between socket strands) is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or 21 nucleotides. In some embodiments, the distance between plug strands (and/or between socket strands) is 42+/−21 nucleotides. For example, the distance between plug strands (and/or between socket strands) may be 21, 42 or 63 nucleotides. In some embodiments, the distance between plug strands (and/or between socket strands) is 42 nucleotides.
One nucleotide unit measures 0.33 nm. Thus, in some embodiments, the distance between cooperative binding sites, for example, the distance between plug strands (and/or between socket strands) may be 5 to 35 nanometers (nm). In some embodiments, the distance between plug strands (and/or between socket strands) is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, or 35 nm. In some embodiments, the distance between plug strands (and/or between socket strands) is 14+/−7 nm. For example, the distance between plug strands (and/or between socket strands) may be 7, 14 or 21 nm. In some embodiments, the distance between plug strands (and/or between socket strands) is 14 nucleotides.
In some embodiments, the distance between two cooperative binding sites on a nanostructure is evenly spaced, while in other embodiments, the distances may vary. For example, the distance between a first cooperative binding site and a second cooperative binding site may be 30 angstroms, while the distance between the second cooperative binding site and a third may be 30 angstroms, 40 angstroms or 50 angstroms.
Two or more nanostructures are considered “aligned” if they are oriented in the same direction relative to one another. For example, the 5′ ends (or 3′ ends) of the nanostructures maybe facing the same direction along its y axis. The top layer of the structure shown in
A nucleating nanostructure is required to initiate assembly of the first (initial) and second (and, thus, subsequent, e.g., third, fourth, fifth, etc.) subsets of nanostructures, and binding of the nanostructures in the first subset to the nucleating structure is required to initiate assembly of the nanostructures of the second subset. A “nucleating nanostructure” is any nanostructure programmed with binding sites that interacts strongly (irreversibly) with binding sites on each member of drone nanostructures of the initial subset, and aligns them for recruitment of subsequent subsets of worker nanostructures. That is, the binding sites between a nucleating nanostructure and nanostructures of the initial subset should be strong enough that the initial nanostructures bind to and align along the nucleating nanostructures and do not dissociate from the nucleating nanostructure under reaction conditions (e.g., isothermal, physiological conditions). A nucleating nanostructure may have a two-dimensional or a three-dimensional shape, for example.
Additional subsets of nanostructures may be added to the crisscross cooperative assembly system to propagate growth of the end structure (e.g., nanostructure, microstructure or macrostructure). For example, third, fourth and fifth subsets of nanostructures may be added. Binding of the nanostructures of the second subset to the first subset is required to initiate assembly of the nanostructures of the third subset; binding of the nanostructures of the third subset to the second subset is required to initiate assembly of the nanostructures of the fourth subset; and so on. The user-defined end structure may be assembled in one dimension, two dimensions (see, e.g.,
Each subset of nanostructures (e.g., nanorods) should follow a specific set of binding energy parameters. More specifically, the initial subset of nanostructures (e.g., nanorods) should bind strongly (irreversibly) to and form an aligned layer (where each nanostructure is oriented in the same direction relative to one another) along the nucleating nanostructure. The nanostructures (e.g., nanorods) of the initial subset should not interact with (bind to) each other. Likewise, nanostructures (e.g., nanorods) of a subsequent subset should not interact with (bind to) each other. Further, in the absence of a nucleating structure, any nanostructure (e.g., nanorod) from the initial subset should have only one weak (reversible) interaction with any other nanostructure (e.g., nanorod) from a subsequent subset. In the presence of a nucleating structure, a single nanostructure (e.g., nanorod) from an initial subset may interact with more than one nanostructure (e.g., nanorod) from a subsequent subset, and a single nanostructure (e.g., nanorod) from a subsequent subset may interact with more than one nanostructure (e.g., nanorod) from the initial subset. For example, with reference to
A “strong interaction” refers to binding that is engaged more than 50% (e.g., more than 60%, 70%, 80% or 90%) of the time that the binding nanostructures are in a reaction together (the dissociation constant is lower than the concentration of the species/nanostructures in excess).
A “weak interaction”—refers to binding that is engaged less than 1% of the time that the binding nanostructures are in a reaction together (the dissociation constant is at least 100 times higher than the concentration of the species/nanostructures in excess).
A nucleating nanostructure may bind to two or more other nanostructures. In some embodiments, a nucleating nanostructure binds to 5-1000 nanostructures (e.g., DNA nanorods). For example, a nucleating nanostructure may bind to 3-900, 3-800, 3-700, 3-600, 3-500, 3-400, 3-300, 3-200, or 3-100 nanostructures. In some embodiments, a nucleating nanostructure binds to 3-10, 3-15, 3-20, 3-25, 3-30, 3-35, 3-40, 3-45 or 3-50 nanostructures. In some embodiments, a nucleating nanostructure binds to 10-15, 10-20, 10-25, 10-30, 10-35, 10-40, 10-45 or 10-50 nanostructures. In some embodiments, a nucleating nanostructure binds to 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 nanostructures (e.g., DNA nanorods).
Thus, a single subset of nanostructures (nanostructures programmed to interact with a single nucleating nanostructure) may comprise 3-900, 3-800, 3-700, 3-600, 3-500, 3-400, 3-300, 3-200, or 3-100 nanostructures. In some embodiments, a single subset of nanostructures comprises 3-10, 3-15, 3-20, 3-25, 3-30, 3-35, 3-40, 3-45 or 3-50 nanostructures. In some embodiments, a single subset of nanostructures comprises 10-15, 10-20, 10-25, 10-30, 10-35, 10-40, 10-45 or 10-50 nanostructures. In some embodiments, a single subset of nanostructures comprises 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 nanostructures (e.g., DNA nanorods).
A “subset of nanostructures” refers to a specific group of nanostructures that are similar in size (have similar dimensions) and structure/shape and are programmed to bind to either the nucleating nanostructure (the initial subset) or to a pre-existing layer formed by alignment and binding of other nanostructures that have already aligned and bound to the nucleating structure or nanostructures of another pre-existing layer.
Nanostructures within a defined subset are programmed not bind to each other. Thus, in some embodiments, less than 10% of the nanostructures of a subset bind to another nanostructure of the same subset. In some embodiments, less than 9%, less than 8%, less than 7%, less than 6%, less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, less than 0.5%, less than 0.2%, or less than 0.1% of the nanostructures of a subset bind to another nanostructure of the same subset. In some embodiments, none of the nanostructures of a subset bind to another nanostructure of the same subset.
With crisscross cooperative assembly, nanostructures are aligned to form multiple layers, each layer rotated by some degree relative to adjacent layers (above and below). An example of two layers rotated relative to one another is shown in
Nucleic Acid Nanostructures
A “nucleic acid nanostructure,” including a “DNA nanostructure,” refers to a nanostructure (e.g., a structure that is between 0.1 nm and 1 μm (e.g., 0.1 nm and 100 nm) in each spatial dimension, e.g., 1D, 2D or 3D) that is rationally designed to self-assemble (is programmed) into a pre-determined, defined shape that would not otherwise assemble in nature. The use of nucleic acids to build nanostructures is enabled by strict nucleotide base pairing rules (e.g., A binds to T, G binds to C, A does not bind to G or C, T does not bind to G or C), which result in portions of strands with complementary base sequences binding together to form strong, rigid structures. This allows for the rational design of nucleotide base sequences that will selectively assemble (self-assemble) to form nanostructures.
Examples of nucleic acid (e.g., DNA) nanostructures include, but are not limited to, DNA origami structures, in which a long scaffold strand (e.g., at least 500 nucleotides in length) is folded by hundreds (e.g., 100, 200, 200, 400, 500 or more) of short (e.g., less than 200, less than 100 nucleotides in length) auxiliary strands into a complex shape (Rothemund, P. W. K. Nature 440, 297-302 (2006); Douglas, S. M. et al. Nature 459, 414-418 (2009); Andersen, E. S. et al. Nature 459, 73-76 (2009); Dietz, H. et al. Science 325, 725-730 (2009); Han, D. et al. Science 332, 342-346 (2011); Liu, W et al. Angew. Chem. Int. Ed. 50, 264-267 (2011); Zhao, Z. et al. Nano Lett. 11, 2997-3002 (2011); Woo, S. & Rothemund, P. Nat. Chem. 3, 620-627 (2011); Tørring, T. et al. Chem. Soc. Rev. 40, 5636-5646 (2011)). Other more modular strategies have also been used to assemble DNA tiles (Fu, T. J. & Seeman, N. C. Biochemistry 32, 3211-3220 (1993); Winfree, E. et al. Nature 394, 539-544 (1998); Yan, H. et al. Science 301, 1882-1884 (2003); Rothemund, P. W. K. et al. PLoS Biol. 2, e424 (2004); Park, S. H. et al. Angew. Chem. Int. Ed. 45, 735-739 (2006); Schulman, R. & Winfree, E. Proc. Natl Acad. Sci. USA 104, 15236-15241 (2007); He, Y. et al. Nature 452, 198-201 (2008); Yin, P. et al. Science 321, 824-826 (2008); Sharma, J. et al. Science 323, 112-116 (2009); Zheng, J. P. et al. Nature 461, 74-77 (2009); Lin, C. et al. ChemPhysChem 7, 1641-1647 (2006)) or RNA tiles (Chworos, A. et al. Science 306, 2068-2072 (2004); Delebecque, C. J. et al. Science 333, 470-474 (2011)) into periodic (Winfree, E. et al., Nature 394, 539-544 (1998); Yan, H. et al. Science 301, 1882-1884 (2003); Chworos, A. et al. Science 306, 2068-2072 (2004); Delebecque, C. J. et al. Science 333, 470-474 (2011)) and algorithmic (Rothemund, P. W. K. et al. PLoS Biol. 2, e424 (2004)) two-dimensional lattices (Seeman, N. C. J. Theor. Biol. 99, 237-247 (1982); Park, S. H. et al. Angew. Chem. Int. Ed. 45, 735-739 (2006)), extended ribbons-(Schulman, R. & Winfree, E. Proc. Natl Acad. Sci. USA 104, 15236-15241 (2007); Yin, P. et al. Science 321, 824-826 (2008)) and tubes (Yan, H. et al. Science 301, 1882-1884 (2003); Yin, P. et al. Science 321, 824-826 (2008); Sharma, J. et al. Science 323, 112-116 (2009)), three-dimensional crystals (Zheng, J. P. et al. Nature 461, 74-77 (2009)), polyhedral (He, Y. et al. Nature 452, 198-201 (2008)) and simple finite two-dimensional shapes (Chworos, A. et al. Science 306, 2068-2072 (2004); Park, S. H. et al. Angew. Chem. Int. Ed. 45, 735-739 (2006)).
Thus, crisscross cooperative assembly building blocks (e.g., nucleating nanostructures and subsets of nanostructures) may be one of a number of nucleic acid nanostructure shapes, including, but not limited to, rods/tubes, sheets, ribbons, lattices, cubes, spheres, polyhedral, or another two-dimensional or three-dimensional shape. In some embodiments, a nanostructure has junction(s), branch(es); crossovers, and/or double-crossovers formed by nucleotide base pairing of two or more nucleic acid strands (see, e.g., Mao, C. PLoS Biology, 2(12), 2036-2038, 2004).
In some embodiments, a nucleic acid nanostructure has a handle and barrel shape, similar to that depicted in
The versatile and stable nature of DNA origami enables the construction of various individual architectures that can be designed in a particular way, to facilitate to cooperative assembly of larger structures. In one example, each component is a separately folded DNA-origami structure.
A nucleic acid (e.g., DNA) slat is a slat-shaped nanostructure that is composed of DNA. A slat may be an antiparallel-crossover single-stranded slat (AXSSS) comprising single strands that cross a partnering single strand only once. Also provided herein are paranemic crossover slats that include a pair of strands that cross another pair of strands.
Similar to the larger scale DNA-origami crisscross cooperative assembly, single-stranded DNA can be used to achieve cooperative assembly of higher order structures. In order to achieve this, drones and workers are replaced with oligonucleotides of various lengths (depending on the proposed architecture) that can assemble onto a DNA-origami queen nucleation site (shown in
Typically, nucleic acid nanostructures do not contain coding sequences (sequences that code for a full length mRNA or protein), thus, nucleic acid nanostructures do not contain a promoter or other genetic elements that control gene/protein expression. An individual single-stranded nucleic acid (e.g., DNA strand or RNA strand without secondary structure), or an individual double-stranded nucleic acid (e.g., without secondary structure), for example, double helices found in nature or produced synthetically or recombinantly (e.g., such as a plasmid or other expression vector), are specifically excluded from the definition of a nucleic acid nanostructure.
Nanostructures, in some embodiments, have a void volume, which is the combine volume of space between nucleic acids that form a nanostructures. It should be understood that “space” includes fluid-filled space. Thus, a nanostructure in solution, have a void volume of 25% may include 75% nucleic acids and 25% reaction buffer (filling the 25% void volume of the nanostructure). In some embodiments, a nanostructure in solution, e.g., in reaction buffer, may have a void volume of at least 10% (e.g., 10-90%, 10-80%, 10-70%, 10-60%, 10-50%, 10-40%, or 10-30%), at least 20% (e.g., 20-90%, 20-80%, 20-70%, 20-60%, 20-50%, 20-40%, or 20-30%), at least 30%, (e.g., 30-90%, 30-80%, 30-70%, 30-60%, 30-50%, or 30-40%), at least 40% (e.g., 40-90%, 40-80%, 40-70%, 40-60%, or 40-50%), at least 50% (e.g., 50-90%, 50-80%, 50-70%, or 50-60%), at least 60% (e.g., 60-90%, 60-80%, or 60-70%), at least 70% (e.g., 70-90% or 70-80%), or at least 80% (e.g., 80-90%). In some embodiments, a nanostructure has a void volume of 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, or 90%.
A “nucleic acid nanorod,” including a “DNA nanorod” is a nucleic acid (e.g., DNA) nanostructure in the shape of a rod. A nanorod is a three-dimensional cylindrical shape having a length longer than its diameter. Examples of nanorods are depicted in
The length and diameter of a nanorod (or other nanostructure) may vary. In some embodiments, a nanorod (or other nanostructure) has a length of 10-100 nm, or 10-500 nm. For example, a nanorod may have a length of 10-500 nm, 10-400 nm, 10-300 nm, 10-200 nm, 10-100 nm, 10-90 nm, 10-80 nm, 10-70 nm, 10-60 nm, 10-50 nm, 10-30 nm, or 10-20 nm. In some embodiments, a nanorod has a length of 100-500 nm, 200-500 nm, or 300-500 nm. In some embodiments, a nanorod has a length of 100 nm, 150 nm, 200 nm, 250 nm, 300 nm, 350 nm, 400 nm, 450 nm or 500 nm. In some embodiments, a nanorod has a length of 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 nm. In some embodiments, the length of a nanorod (or other nanostructure) is longer than 100 nm (e.g., 100-1000 nm), or shorter than 10 nm (e.g., 1-10 nm). In some embodiments, a nanorod (or other nanostructure) has a diameter of 5-90 nm. For example, a nanorod may have a diameter of 5-80 nm, 5-70 nm, 5-60 nm, 5-50 nm, 5-30 nm, 5-20 or 5-10 nm. In some embodiments, a nanorod has a diameter of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85 or 90 nm. In some embodiments, the diameter of a nanorod is longer than 9 nm, or shorter than 5 nm. Thus, in some embodiments, a nanorod (or other nanostructure) has a circumference of 15-300 nm (C≈3.14×d).
A nucleic acid nanostructure, such as a nanorod, is considered “elongated,” if the length of the nanostructure is longer than its width/diameter (e.g., by at least 10%, 20%, 25%, 50%, 100%, or 200%).
Nucleic acid nanostructures are typically nanometer-scale structures (e.g., having lengths of 1 to 1000 nanometers). In some embodiments, however, the term “nanostructure” herein may include micrometer-scale structures (e.g., assembled from more than one nanometer-scale or micrometer-scale structure). In some embodiments, a nanostructure has a dimension (e.g., length or width/diameter) of greater than 500 nm or greater than 1000 nm. In some embodiments, a nanostructure has a dimension of 1 micrometer to 2 micrometers. In some embodiments, a nanostructure has a dimension of 10 to 500 nm, 10 to 450 nm, 10 to 400 nm, 10 to 350 nm, 10 to 300 nm, 10 to 250 nm, 10 to 200 nm, 10 to 150 nm, 10 to 100 nm, 10 to 50 nm, or 10 to 25 nm. In some embodiments, the nanostructure has a dimension of 500 to 450 nm, 500 to 400 nm, 500 to 350 nm, 500 to 300 nm, 500 to 250 nm, 500 to 200 nm, 500 to 150 nm, 500 to 100 nm, 500 to 50 nm, or 500 to 25 nm. In some embodiments, the nanostructure has a dimension of 10, 25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, or 500 nm.
A nucleic acid nanostructure is considered to “self-assemble.” Bottom up, self-assembly refers to the process by which molecules adopt a defined arrangement without guidance or management from an outside source. Although, it should be understood that with synthetic nucleic acid self-assembly, as provided herein, the nucleotide base sequences that guide assembly of nucleic acids are artificially designed, and the corresponding nucleic acids are accordingly synthesized by an outside source, such as one of skill in the art (using, for example, standard nucleic acid synthesis techniques). That is, one of ordinary skill in the art can ‘program’ nucleotide base sequences within a single nucleic acid strand or between two difference nucleic acid strands to selectively bind to each other in solution based on a strict set of nucleotide base pairing rules (e.g., A binds to T, G binds to C, A does not bind to G or C, T does not bind to G or C). Self-assembly may be intramolecular (folding) or intermolecular.
The nanostructures and, thus, nanostructures, microstructures and macrostructures assembled from smaller nanostructures, are “rationally designed.” A nanostructure, as discussed above, does not assemble in nature. Nucleic acid strands for use in crisscross cooperative assembly are ‘programmed’ such that among a specific population of strands, complementary nucleotide base sequences within the same strand or between two different strands bind selectively to each other to form a complex, user-defined structure, such as a rod/tube, ribbon, lattice, sheet, polyhedral, cube, sphere, or other two-dimensional or three-dimensional shape. A nanostructure may have a regular shape (sides that are all equal and interior angles that are all equal) or an irregular shape (sides and angles of any length and degree).
Methods of Crisscross Cooperative Assembly
Self-assembly of a nucleating nanostructure and subsets of nanostructures occurs, in some embodiments, in a ‘one-pot’ reaction, whereby all nucleic acid nanostructures of a crisscross cooperative assembly system are combined in a reaction buffer, and then the reaction buffer is incubated under conditions that result in self-assembly of all of the nucleic acid nanostructures.
Conditions that result in self-assembly of nucleic acid nanostructures of a crisscross cooperative assembly reaction may vary depending on the size, shape, composition and number of nucleic acid nanostructures in a particular reaction. Such conditions may be determined by one of ordinary skill in the art, for example, one who rationally designs/programs the nanostructures to self-assemble.
A crisscross cooperative assembly method may be performed at a variety of temperatures. In some embodiments, a crisscross cooperative assembly method is performed at room temperature (˜25° C.) or 37° C. A crisscross cooperative assembly method may be performed at a temperature lower than 25° C. or higher than 37° C.
The salt concentration of the reaction buffer in which a crisscross cooperative assembly reaction is performed may also vary. In some embodiments, the reaction buffer comprises MgCl2 salt at a concentration of 1 mM-10 mM (e.g., 1 mM, 2 mM, 3 mM, 4 mM, 5 mM, 6 mM, 7 mM, 8 mM, 9 mM or 10 mM). In some embodiments, the reaction buffer comprises NaCl at a concentration of 100 mM-500 mM (e.g., 100 mM, 200 mM, 300 mM, 400 mM or 500 mM). In some embodiments, a crisscross cooperative assembly method is performed under high-salt conditions. Thus, in some embodiments, the reaction buffer comprises MgCl2 salt at a concentration of at least 20 mM (e.g., 20-500 mM, or 20-200 mM). In some embodiments, the reaction buffer comprises NaCl at a concentration of at least 1 M (e.g., 1-2 M, 1-3 M, 1-4 M, or 1-5 M).
In any given reaction, the number of initial nanostructures (drones) exceeds the number of nucleating nanostructures (queens). Thus, in some embodiments, the ratio of nucleating nanostructure to non-nucleating nanostructure (e.g., a drone from an initial subset, or a worker from a subsequent subset) is 1:10-1:1012 (trillion). For example, the ratio of nucleating nanostructure to non-nucleating nanostructure may be 1:10-1:1000, 1:10-1:500, 1:10-1:100, 1:10-1:75, 1:10-1:50, or 1:10-1:25. In some embodiments, the ratio of nucleating nanostructure to non-nucleating nanostructure is 1:1000, 1:500, 1:100, 1:90, 1:80, 1:70, 1:60, 1:50, 1:40, 1:30, 1:20 or 1:10.
In some embodiments, a crisscross cooperative assembly reaction is incubated for 2-96 hours. For example, a crisscross cooperative assembly reaction may be incubated for 2-24 hours, 2-30 hours, 2-36 hours, 2-42 hours, 2-48 hours, 2-54 hours, 2-60 hours, 2-66 hours, 2-72 hours, 2-78 hours, 2-84 hours, 2-90 hours, or 2-96 hours. In some embodiments, a crisscross cooperative assembly reaction is incubated for 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, or 72 hours. In some embodiments, a crisscross cooperative assembly reaction is incubated for 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 or 72 hours.
Biosensors
In some embodiments, the crisscross assembly products may be used as biosensors that are capable of detecting a selected biomolecule (analyte) using a variety of different mechanisms and the systems described herein. For example, in such systems, the presence of a biomolecule can be used to trigger crisscross assembly, which can then be detected (visualized), indicating the presence of the biomolecule.
The biomolecule may be detected using a ring system. As depicted in
The presence of the biomolecule, in some embodiments may be detected in mixtures, such as biological samples, as follows. First, a biological sample is mixed with a high concentration of the catenane queen, allowing macromolecules of interest bind the biomolecule capture site. Then, a chemical reaction is used to reversibly cleave the biomolecule capture site. Catenane queens not bound to the target biomolecule will fall apart more quickly compared to those held together by the target biomolecule. The remaining catenane queens in the test mixture are re-ligated at the biomolecule test site. Subsequently, drones and workers are added to the test mixture to amplify remaining intact queens using readily observable micrometer-scale DNA structures. This system is modular, and the biomolecule capture site may be customized to bind disease markers, including proteins or nucleic acid sequences.
Ultraspecific biosensors can also be created by adding a biomolecule detection system to the multiple guest-ring (e.g., guest-loop) catenane systems with DNA slats, as depicted in FIGS. 27-28. In this example, a barrel-queen is used; however, other 3-dimensional shapes are also possible (e.g., sheets, blocks and dendrimers). An example of the production of a barrel queen (a rolled sheet) is described above.
An example of a DNA slat is depicted in
Using a scaffold for DNA origami, for example an M13 scaffold and staple strands, a multiple guest-ring catenane system can be formed. For example, in
DNA slats or other nucleic acids of a biosensor may be modified with one or more switchable bridges. A “switchable bridge” is a link between functional groups that forms or breaks in the presence of a particular agent (e.g., reaction agent or dissociation agent). Examples of switchable bridges include bonds formed via a “click chemistry” reaction (e.g., a between an azide and an alkyne), protein-protein binding (e.g., one or more antibodies binding to a target protein/antigen), a disulfide bond (between two thiols).
Thus, some aspects of the present disclosure provide a biosensor comprising (i) a first DNA slat comprising a first functional group (e.g., an azide or alkyne), a first binding partner (e.g., an antibody, aptamer or nanobody), and a second functional group (e.g., a thiol or nucleic acid), and (ii) a second DNA slat comprising a third functional group (e.g., a thiol or nucleic acid), a second binding partner (e.g., an antibody, aptamer or nanobody), and a fourth functional group (e.g., an azide or alkyne), wherein the first and fourth functional groups react in the presence of a reaction agent to form a link (e.g., a covalent link), wherein the first and fourth binding partners bind specifically to a biomolecule of interest to form a link (e.g., non-covalent link), and wherein the second and third functional groups form a link (e.g., a covalent link) that breaks in the presence of a dissociation agent.
In some embodiments, a biosensor comprises a first DNA slat comprising an azide, an antibody, and a thiol group, and a second DNA slat comprising an alkyne, an antibody, and a thiol group, wherein antibody of (i) and the antibody of (ii) bind specifically to a biomolecule of interest.
A “first biomolecule binding partner” and a “second biomolecule binding partner” are any molecules that bind to the same target biomolecule to form a switchable bridge linking DNA slats to each other (via a non-covalent link). In some embodiments, the first and second biomolecule binding partners are proteins or peptides. For example, the first and second biomolecule binding partners may be antibodies that bind to different epitopes of the same antigen. Thus, in some embodiments, the first and second biomolecule binding partners are antibodies (e.g., monoclonal, polyclonal, human, humanized or chimeric). In some embodiments, the first and second biomolecule binding partners are antibody fragments (e.g., Fab, F(ab′)2, Fc, scFv, or vhh). The biomolecule binding partners may also be nanobodies or aptamers. Other protein-protein binding partners may be used.
A “first functional group” and a “fourth functional group” are functional groups that react with each other to form a link (bond, such as a covalent bond or a non-covalent bond), which forms a switchable bridge linking the DNA slats to each other. In some embodiments, this bridge is formed through a click chemistry (azide-alkyne cycloaddition) reaction (e.g., V. V.
Rostovtsev, et al., Angew. Chem. Int. Ed., 2002, 41, 2596-2599; and F. Himo, et al. J. Am. Chem. Soc., 2005, 127, 210-216, each of which is incorporated herein by reference). Thus, in some embodiments, one of the first or fourth functional group is an azide, while the other of the first or fourth functional groups is an alkyne. For example, the first functional group may be azide, and the fourth functional group may be trans-cyclooctene (TCO). Other click chemistry functional groups may be used.
A “second functional group” and a “third functional group” are functional groups that react with each other to form a link (bond, such as a covalent bond or a non-covalent bond), which forms yet another switchable bridge linking the DNA slats to each other. This bridge breaks (dissociates) in the presence of a dissociation agent. A “dissociation agent” is an agent (e.g., chemical) that breaks the bond (e.g., covalent bond) between the second and third functional groups. In some embodiments, the second and third functional groups are thiol groups that react with each other to form a disulfide bridge. Thus, in some embodiments, the dissociation agent is dithiothreitol (DTT). In some embodiments, the concentration of DTT is 50 mM-200 mM. For example, the concentration of DTT may be 100 mM. Other functional groups may be used.
1. A composition, comprising:
The examples demonstrates assembly of a nucleating nanostructures (queen). The sharpest bands from a screen of nucleic acid self-assembly reactions were selected and subjected to a 2 minute incubation at 90° C. for denaturing and then an 18 hour ramp. The gel (
The experiment was repeated with different nanostructures that function as ‘drones’. The sharpest bands from a large screen were selected and subjected to 2 minute incubation at 90° C. for denaturing and then an 18 hour ramp. The gel (
Next, the assembly of a queen together with a drone was examined (
A similar system was built using single-stranded DNA instead of 6 helix bundles. A schematic of the nucleating nanostructure architecture is shown in
The workers stack on top of drones in layers (
Assembly without the queen and only the workers (both short and long linkers) was examined. In this example, workers did not assemble under conditions with high salt concentration (1M NaCL, up to 15 mM MgCl2), low temperature (4° C.), and a high concentration of workers (3.125 μM). Other conditions, including 10-20 mM PEG and high salt and a high concentration of oligonucleotides were also tested. No assembly occurred.
The duplex length was then increased to 8 bp and linker regions of 2 nt (v0.1) and 3 nt (v0.2) were tested. Weaving was introduced into the structure and staple strands were added to constrain the end of the scaffold loops (
This Example demonstrates assembly of 6-helix bundle DNA nanorod drones into a crisscross structure via nucleation by a gridiron queen (
The gridiron queen and 6-helix bundle drones were conceptualized and then designed using the caDNAno design tool (see
The folded structures were separated from excess folding staples using agarose gel electrophoresis and bands containing the structure of interest were purified from the agarose gel matrix. The purified structures were placed onto carbon grids, stained with 2% uranyl formate, and analyzed by TEM to validate assembly of the correct structure (see
The purified sub-components were assembled into crisscross formation using the following conditions: 0.1 or 0.01 nM queen, 1 nM drones, 30 mM MgCl2, 45 mM Tris-borate, 1 mM EDTA, and 0.01% Tween-20; incubation at 50° Celsius for 8-24 hours. Assembly reactions were analyzed using gel electrophoresis and TEM, as shown in
A similar system was built using single-stranded DNA (ssDNA) instead of 6 helix bundles, referred to as “crisscross DNA slats” (short: “DNA slats”). A schematic of the base unit is shown in
This Example shows how extending the DNA slats to create more binding sites facilitates polymerization seeded on the queen.
Through the use of the barrel DNA-Origami queen multiple guest-ring catenane systems can be produced in a one-pot reaction.
All references, patents and patent applications disclosed herein are incorporated by reference with respect to the subject matter for which each is cited, which in some cases may encompass the entirety of the document.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.” It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
This application is a continuation of U.S. application Ser. No. 16/322,787, filed Feb. 1, 2019, which is a national stage filing under 35 U.S.C. § 371 of international application number PCT/US2017/045013, filed Aug. 2, 2017, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional Application No. 62/370,098, filed Aug. 2, 2016, each of which is incorporated by reference herein in its entirety.
This invention was made with government support under 1435964 awarded by the Office of Naval Research. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
5591601 | Wagner et al. | Jan 1997 | A |
5846949 | Wagner et al. | Dec 1998 | A |
6355247 | Selby et al. | Mar 2002 | B1 |
7842793 | Rothemund | Nov 2010 | B2 |
8501923 | Rothemund | Aug 2013 | B2 |
11254972 | Minev et al. | Feb 2022 | B2 |
11414694 | Wong et al. | Aug 2022 | B2 |
20050112578 | Matsuura et al. | May 2005 | A1 |
20070117109 | Rothemund | May 2007 | A1 |
20110033706 | Krishnan | Feb 2011 | A1 |
20110243910 | Hahn et al. | Oct 2011 | A1 |
20110293698 | Primiano et al. | Dec 2011 | A1 |
20120263783 | Messmer | Oct 2012 | A1 |
20130136925 | Kim et al. | May 2013 | A1 |
20130245102 | Ryan et al. | Sep 2013 | A1 |
20140220655 | Sun et al. | Aug 2014 | A1 |
20140255939 | Wong et al. | Sep 2014 | A1 |
20160271268 | Shih et al. | Sep 2016 | A1 |
20180363022 | Li et al. | Dec 2018 | A1 |
20190083522 | Shih et al. | Mar 2019 | A1 |
20190203277 | Minev et al. | Jul 2019 | A1 |
20200308625 | Wong et al. | Oct 2020 | A1 |
20250019750 | Shih et al. | Jan 2025 | A1 |
Number | Date | Country |
---|---|---|
2002-114797 | Apr 2002 | JP |
2003-522524 | Jul 2003 | JP |
2008-504846 | Feb 2008 | JP |
2008-523061 | Jul 2008 | JP |
2009-518008 | May 2009 | JP |
2009-213390 | Sep 2009 | JP |
2012-509983 | Apr 2012 | JP |
2011-0014258 | Feb 2011 | KR |
WO 2012058488 | May 2012 | WO |
WO 2012151328 | Nov 2012 | WO |
WO 2014018675 | Jan 2014 | WO |
WO 2015070080 | May 2015 | WO |
WO 2015130805 | Sep 2015 | WO |
WO 2015165643 | Nov 2015 | WO |
WO 2016144755 | Sep 2016 | WO |
WO 2017156252 | Sep 2017 | WO |
WO 2017156264 | Sep 2017 | WO |
WO 2018026880 | Feb 2018 | WO |
Entry |
---|
U.S. Appl. No. 16/083,932, filed Sep. 11, 2018, Allowed, 2020-0308625. |
U.S. Appl. No. 17/858,925, filed Jul. 6, 2022, Pending. |
U.S. Appl. No. 16/322,787, filed Feb. 1, 2019, Granted, U.S. Pat. No. 11,254,972. |
EP 17764091, Jul. 15, 2019, Extended European Search Report. |
EP 21187413.6, Feb. 11, 2022, Extended European Search Report. |
PCT/US2017/021562, May 31, 2017, International Search Report and Written Opinion. |
PCT/US2017/021562, Sep. 20, 2018, International Preliminary Report on Patentability. |
EP 17837580.4, Mar. 20, 2020, Partial European Search Report. |
PCT/US2017/040513, Dec. 8, 2017, Invitation to Pay Additional Fees. |
PCT/US2017/040513, Feb. 13, 2018, International Search Report and Written Opinion. |
PCT/US2017/040513, Feb. 14, 2019, International Preliminary Report on Patentability. |
Extended European Search Report mailed Jul. 15, 2019 for Application No. EP 17764091. |
Extended European Search Report mailed Feb. 11, 2022 for Application No. EP 21187413.6. |
International Search Report and Written Opinion mailed May 31, 2017 for Application No. PCT/US2017/021562. |
International Preliminary Report on Patentability mailed Sep. 20, 2018 for Application No. PCT/US2017/021562. |
Partial European Search Report mailed Mar. 20, 2020, for Application No. EP 17837580.4. |
Invitation to Pay Additional Fees mailed Dec. 8, 2017 for Application No. PCT/US2017/040513. |
International Search Report and Written Opinion mailed Feb. 13, 2018 for Applciation No. PCT/US2017/040513. |
International Preliminary Report on Patentability mailed Feb. 14, 2019 for Applciation No. PCT/US2017/040513. |
No Author Listed, Biochemistry Dictionary, 1998, 3rd edition, pp. 886. |
Babic et al. Poly L-lysine-modified iron oxide nanoparticle for stem cell labelling. Bioconjug Chem. 2008;19:740-50. Epub Feb. 21, 2008. |
Bikram et al., Biodegradable Poly(ethylene glycol)-co-poly(l-lysine)-g-histidine Multiblock Copolymers for Nonviral Gene Delivery. Macromolecules. Feb. 11, 2004;37(5):1903-16. |
Dietz et al., Folding DNA into twisted and curved nanoscale shapes. Science. Aug. 7, 2009;325(5941):725-30. |
Ding et al., Gold nanoparticle self-similar chain structure organized by DNA origami. J Am Chem Soc. 2010;132(10):3248-9. Epub Feb. 17, 2010. |
Douglas et al., Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. Aug. 2009;37(15):5001-6. doi: 10.1093/nar/gkp436. Epub Jun. 16, 2009. |
Douglas et al., Self-assembly of DNA into nanoscale three-dimensional shapes. Nature. May 21, 2009;459(7245):414-8. Author Manuscript, 11 pages. |
Fujigaya et al., Enhanced cell uptake via non-covalent decollation of a single-walled carbon nanotube-DNA hybrid with polyethylene glycol-grafted poly(l-lysine) labeled with an Alexa-dye and its efficient uptake in a cancer cell. Nanoscale. Oct. 5, 2011;3(10):4352-8. doi: 10.1039/c1nr10635j. Epub Sep. 20, 2011. |
Han et al., DNA gridiron nanostructures based on four-arm junctions. Science. Mar. 22, 2013;339(6126):1412-5. doi: 10.1126/science.1232252. |
Hansen et al., Nanoswitch-linked immunosorbent assay (NLISA) for fast, sensitive, and specific protein detection. PNAS. Sep. 26, 2017;114(39):10367-10372. Supporting Information, 4 pages. |
Kadlecova et al., Hyperbranched polylysine: a versatile, biodegradable transfection agent for the production of recombinant proteins by transient gene expression and the transfection of primary cells. Macromol Biosci. Jun. 2012;12(6):794-804. doi: 10.1002/mabi.201100519. Epub Apr. 11, 2012. |
Koussa et al., DNA nanoswitches: A quantitative platform for gel-based biomolecular interaction analysis. Nat Methods. Feb. 2015;12(2):123-6. Epub Dec. 8, 2014. |
Koussa et al., Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures. Methods. May 2014;67(2):134-41. |
Kuzuya et al., Precisely programmed and robust 2D streptavidin nanoarrays by using periodical nanometer-scale wells embedded in DNA origami assembly. Chembiochem. Jul. 2009;10(11):1811-5. |
Kuzyk et al., DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature. Mar. 15, 2012;483(7389):311-4. doi:10.1038/nature10889. |
Kwoh et al., Stablilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochimica et Biophysica Acta. 1999;1444:171-90. |
Liu et al., Biological properties of poly-L-lysine-DNA complexes generated by cooperative binding of the polycation. J Biol Chem. Sep. 14, 2001;276(37):34379-87. Epub Jul. 3, 2001. |
Lu et al., Recent advances in the synthesis and functions of reconfigurable interlocked DNA nanostructures. J Am Chem Soc. 2016;138:5172-85. Epub Mar. 28, 2016. |
Maruyama et al., Characterization of interpolyelectrolyte complexes between double-stranded DNA and polylysine comb-type copolymers having hydrophilic side chains. Bioconjugate Chem. 1998;9:292-9. Epub Feb. 24, 1998. |
Rajendran et al., Single-molecule analysis using DNA origami. Angew Chem Int Ed Engl. Jan. 23, 2012;51(4):874-90. doi: 10.1002/anie.201102113. Epub Nov. 25, 2011. |
Santos et al., Low-cost fabrication technologies for nanostructures: state-of-the-art and potential. Nanotechnology. Jan. 30, 2015;26(4):042001(1-20). doi: 10.1088/0957-4484/26/4/042001. Epub Jan. 8, 2015. |
Schlichthaerle et al., DNA nanotechnology and fluorescence applications. Curr Opin Biotechnol. Jun. 2016;39:41-47. doi: 10.1016/j.copbio.2015.12.014. Epub Jan. 13, 2016. |
Shih et al., poster. DNA-Based Molecular Containers and NMR Alignment Media. 2006. 1 page. |
Simmel et al., Wireframe and tensegrity DNA nanostructures. Acc Chem Res. Jun. 17, 2014;47(6):1691-9. doi: 10.1021/ar400319n. Epub Apr. 10, 2014. |
Steinhauer et al., DNA origami as a nanoscopic ruler for super-resolution microscopy. Angew Chem Int Ed Engl. 2009;48(47):8870-3. doi: 10.1002/anie.200903308. |
Valero et al., Interlocked DNA topologies for nanotechnology. Curr Opin Biotechnol. May 12, 2017;48:159-67. |
Walsh et al., DNA cage delivery to mammalian cells. ACS Nano. 2011;5(7):5427-32. Epub Jun. 22, 2011. Supplemental information, 12 pages. |
Weizmann et al., A polycatenated DNA scaffold for the one-step assembly of hierarchical nanostructures. Proc Nat Acad Sci. Apr. 8, 2008;105(14):5289-94. |
Yan et al., DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science. Sep. 26, 2003;301(5641):1882-4. |
Yang et al., Nanostructures as Programmable Biomolecular Scaffolds. Bioconjug Chem. Aug. 19, 2015;26(8):1381-95. doi: 10.1021/acs.bioconjchem.5b00194. Epub May 11, 2015. |
Zhang et al., Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem. Feb. 2011;3(2):103-13. doi: 10.1038/nchem.957. |
Zhang et al., Structural DNA nanotechnology: state of the art and future perspective. J Am Chem Soc. Aug. 13, 2014;136(32):11198-211. doi:10.1021/ja505101a. Epub Jul. 16, 2014. |
Zhou et al., Lipophilic polylysines mediate efficient DNA transfection in mammalian cells. Biochim Biophys Acta. May 31, 1991;1065(1):8-14. |
Zhu et al. Hollow mesoporous silica poly-(l-lysine) particles for codelivery of drug and gene with enzyme-triggered release property. J Phys Chem C. Jun. 2011;115:13630-5. Epub Jun. 15, 2011. |
Evans et al., Physical principles for DNA tile self-assembly. Chem Soc Rev. Jun. 19, 2017;46(12):3808-3829. doi: 10.1039/c6cs00745g. |
Hong et al., 3D Framework DNA origami with layered crossovers. Angew Chem Int Ed Engl. Oct. 4, 2016;55(41):12832-5. Epub Sep. 15, 2016. |
Ke et al., Three-dimensional structures self-assembled from DNA bricks. Science. Nov. 30, 2012;338(6111):1177-83. Author Manuscript, 16 pages. doi: 10.1126/science.1227268. |
Mathieu et al., Six-helix bundles designed from DNA. Nano Lett. Apr. 2005;5(4):661-5. |
Minev et al., 2019 Robust nucleation control via crisscross polymerization of DNA slats. bioRxiv doi: 10.1101/2019.12.11.873349, https://www.biorxiv.org/content/10.1101/2019.12.11.873349v1, 26 pages. |
Minev et al., Robust nucleation control via crisscross polymerization of highly coordinated DNA slats. Nat Commun. Mar. 19, 2021;12(1):1741. doi: 10.1038/s41467-021-21755-7. |
Ong et al., Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature. Dec. 6, 2017;552(7683):72-77. Author Manuscript, 17 pages. doi: 10.1038/nature24648. |
Rothemund P.W., Folding DNA to create nanoscale shapes and patterns. Nature. Mar. 16, 2006;440(7082):297-302. doi: 10.1038/nature04586. |
Seeman N., DNA Nanotechnology at 40. Nano Lett. Mar. 11, 2020;20(3):1477-1478. doi: 10.1021/acs.nanolett.0c00325. Epub Feb. 3, 2020. |
Wintersinger et al., 2022 Multi-micron crisscross structures from combinatorially assembled DNA-origami slats. bioRxiv doi: 10.1101/2022.01.06.475243, https://www.biorxiv.org/content/10.1101/2022.01.06.475243v1, 22 pages. |
Woods et al., Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Nature. Mar. 2019;567(7748):366-372. doi: 10.1038/s41586-019-1014-9. Epub Mar. 20, 2019. Erratum in: Nature. Aug. 2019;572(7771):E21. doi: 10.1038/s41586-019-1378-x. |
Zhang et al., Programming the Nucleation of DNA Brick Self-Assembly with a Seeding Strand. Angew Chem Int Ed Engl. May 25, 2020;59(22):8594-8600. doi: 10.1002/anie.201915063. Epub Mar. 17, 2020. |
Number | Date | Country | |
---|---|---|---|
20220403453 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
62370098 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16322787 | US | |
Child | 17576550 | US |