The present invention relates to pressure vessels for fluid storage applications. More particularly, the present invention relates to cryogenic-capable high pressure containers for compact flexible storage of hydrogen onboard vehicles.
Hydrogen as an alternative fuel to petroleum is well known, as well as its potential to reduce or eliminate petroleum dependence and associated tailpipe air pollutants and greenhouse gases. However, the predominant technical barrier limiting widespread use of hydrogen-powered vehicles is insufficient onboard fuel storage capacity for highway vehicles within volume, weight, cost, and refueling time constraints.
Three known technologies for automotive hydrogen storage include: high pressure compressed gas storage (CH2), storage by low-pressure absorption of hydrogen in porous and/or reactive materials, and cryogenic storage as liquid hydrogen (LH2). Each has its challenges. For example, one drawback of hydrogen stored as a compressed gas is that it occupies a relatively large volume at ambient temperature. For materials which absorb hydrogen, significant weight, cost, and thermal complexity is typically added to onboard storage systems. And LH2 storage has the potential for evaporative losses from distribution, transfer and refueling operations, as well as from the venting necessary to relieve pressure buildup during periods of inactivity due to heat transfer from the environment. Because of the high sensitivity of LH2 storage containers to heat transfer, high performance insulation has been used with typical thicknesses of 3 cm or more. Such evaporative losses are commonly associated with the use of conventional low-pressure cryogenic tanks consisting of a vessel for containing a cryogenic liquid, and a jacket spaced from and surrounding the vessel for thermal insulation.
One alternative to the use of conventional low pressure cryogenic tanks for LH2 storage has been cryogenic-capable/compatible pressure vessels, such as disclosed for example in U.S. Pat. No. 6,708,502, incorporated by reference herein, for flexibly storing cryogenic liquid fuels or compressed gas fuels at cryogenic or ambient temperatures. The cryogenic-capable pressure vessel in the '502 patent has an inner pressure container enclosing a fuel storage volume, an outer container surrounding the inner pressure container to form an evacuated space therebetween, and a thermal insulator surrounding the inner pressure container in the evacuated space to inhibit heat transfer. Additionally, vacuum loss from fuel permeation is substantially inhibited in the evacuated space by, for example, lining the container liner with a layer of fuel-impermeable material, capturing the permeated fuel in the evacuated space, or purging the permeated fuel from the evacuated space. Cryogenic-capable pressure vessels like the one disclosed in the '502 patent are capable of storing hydrogen with far greater thermal endurance than conventional cryogenic tanks, more compactly than conventional ambient temperature pressure vessels, and with lower weight than hydrogen absorption storage technologies.
Moreover, such cryogenic-capable pressure vessels are capable of being refueled with hydrogen in a broad range of thermodynamic states (e.g. compressed hydrogen at ambient temperature, cryogenic LH2, etc.) to enable more flexible usage by allowing drivers to tailor refueling choices to best meet their driving patterns and priorities (driving range, perceived safety, refueling cost, location, speed, etc). In other words, the choice of fueling options serves to optimize hydrogen storage to suit various purposes, such as maximizing driving range versus minimizing fueling cost. For example, cryogenic-compatible pressure vessels may be filled as needed with either cryogenic LH2 which provides a greater driving range but costs more to fill, or compressed hydrogen gas, at cryogenic or ambient temperatures which provides a shorter range but significantly reduces fuel costs, increases access to a greater number of refueling locations, and extends dormancy and thermal endurance for shorter distance and/or infrequent driving trips.
Differences between conventional low-pressure cryogenic storage tanks and high-pressure cryogenically-insulated pressure vessels are discussed in the publications by Applicants entitled, “Thermodynamics of Insulated Pressure Vessels for Vehicular Hydrogen Storage, ” UCRL-JC-128388, June 1997, and “Analytical and Experimental Evaluation of Insulated Pressure Vessels for Cryogenic Hydrogen Storage,” International Journal of Hydrogen Energy 25 (2000), both of which are incorporated by reference herein.
One aspect of the present invention includes a cryogenic-capable high pressure container for flexibly storing hydrogen, or other substance, in gas and/or liquid phase, comprising: a high pressure vessel (HPV) enclosing a high pressure-capable storage volume and including an access port for providing controlled access to the high-pressure-capable storage volume; and an ultra-thin thermal insulator having a thickness less than about 5 mm surrounding the HPV.
Another aspect of the present invention includes a cryogenic-capable high pressure container for flexibly storing hydrogen, or other substance, in gas and/or liquid phase, comprising: at least two substantially box-shaped high pressure vessels (HPVs) secured in stacked arrangement with each other to form a substantially box-shaped stack, each HPV enclosing a high pressure-capable storage volume and including an access port for providing controlled access to the high-pressure-capable storage volume; a substantially box-shaped lower pressure vessel (LPV) with the stack nested inside the LPV so that a lower pressure-capable storage volume is formed between the stack and the LPV, said LPV including an access port for providing controlled access to the lower-pressure-capable storage volume; and an ultra-thin thermal insulator having a thickness less than about 5 mm conformably surrounding the LPV.
Another aspect of the present invention includes a cryogenic-capable high pressure container for flexibly storing hydrogen, or other substance, in gas and/or liquid phase, comprising: at least one high pressure vessel (HPV) enclosing a high pressure-capable storage volume and including an access port for providing controlled access to the high-pressure-capable storage volume; a substantially box-shaped lower pressure vessel (LPV) with the HPV nested inside the LPV so that a lower pressure-capable storage volume is formed between the HPV and the LPV, said LPV including an access port for providing controlled access to the lower-pressure-capable storage volume; and an ultra-thin thermal insulator having a thickness less than about 5 mm conformably surrounding the LPV.
And another aspect of the present invention includes a method of flexibly storing hydrogen, comprising: providing a cryogenic-capable high pressure container having a high pressure vessel (HPV) enclosing a high pressure-capable storage volume and including an access port for providing controlled access to the high-pressure-capable storage volume, and an ultra-thin thermal insulator having a thickness less than about 5 mm surrounding the HPV; and filling the cryogenic-capable high pressure container with liquefied hydrogen having a 25/75 percentage ratio of para-hydrogen to ortho-hydrogen.
Generally, the present invention is directed to a cryogenic-capable high pressure container which in the broadest sense combines the use of cryogenic-capable high pressure vessels (HPVs) and ultra-thin thermal barrier(s). The HPVs are of a type capable of high internal pressures, such as for example greater than about 5000 psi. And in contrast to the prior thick insulations (e.g. greater than 3 cm) typically used for cryogenic storage applications, the ultra-thin thermal insulators/barriers of the present invention generally have a thickness less than about 5 mm, e.g. ˜1-3 mm because of the reduced thermal requirements of the container from the flexible usage. The reduced thickness can thus maximize a given available storage space for the storage of fuel. The “ultra-thin thermal barrier” may be one of two types: either a vacuum space, or an insulating material. In the case of a vacuum space, two vessels (e.g. stainless steel) are typically required one nested inside the other and spaced by a low conductivity support/spacer. In the case of insulation material, multiple layers of plastic may be used, for that is easily adapted to any geometry. In addition to the ultra-thin thermal insulation, the cryogenic capable high pressure container of the present invention may also be substantially “box-shaped” to conform to similarly “box-shaped” or otherwise cuboidal spaces available onboard a vehicle to further maximize fuel capacity beyond that of a cryogenic high pressure vessel of conventional shape (e.g. cylindrical, ellipsoidal, or spherical). Further still, lower pressure vessels (LPVs) (capable of internal pressures less than about 5000 psi) may also be used in conjunction with HPVs to provide additional fuel storage volumes.
Exemplary embodiments of the present invention include: “conformable” cryogenic-capable high pressure containers, 2) cryogenic capable pressure containers using cylindrical HPVS to operate at even higher pressures (e.g. in the 10-20 k psi or higher range), and 3) cryogenic capable HPVs and lower pressure conformable LPVs (both inside an ultra-thin thermal barrier/insulator) partitioning hydrogen storage capacity into higher and lower pressure spaces. All of these exemplary embodiments provide flexibility of refueling with hydrogen in different thermodynamic states (for example pressure, temperature, phase, fraction of parahydrogen, etc.) and in varying quantities, which allows the driver to best meet instantaneous requirements (i.e. refueling cost, location, and time as well as vehicle range, trip length, vessel dormancy, and thermal endurance) as discussed in the Background.
The cryogenic-capable high pressure container of the present invention may be constructed in a manner similar to previous cryogenic-compatible pressure containers such as that discussed in U.S. Pat No. 6,708,502. In this regard, in each of the exemplary embodiments, the high pressure vessel (HPV) component of the cryogenic-capable high pressure container is preferably a composite fiber-wrapped vessel similar to those used to store compressed gases. The HPVs enclose a high-pressure-capable storage volume that can be flexibly refueled, such as for example, with high pressure LH2. Furthermore, performance of the container may be improved and enhanced by selecting appropriate surface treatments leading to a reduction in outgassing. For example, sorbent material may be used (e.g. carbon aerogel, activated carbon, or metal-organic framework) that is located inside the vessel. The sorbent material may improve the thermal endurance of the vessel due to its thermal capacity, and it may provide enhanced hydrogen storage capability at low pressure due to its high porosity. Performance may also be improved by using fiber formulations that may approach the thermal expansion coefficient of aluminum for reduced thermal stresses. Another embodiment may use plastic liners that include liner configurations that may avoid or eliminate hydrogen permeation (See U.S. Pat. No. 6,708,502). Access ports are also provided to enable controlled access to the high pressure-capable storage volume or the low pressure-capable storage volume. Such access port may include an inlet and an outlet for filling and extracting, respectively, hydrogen to and from the respective storage volumes.
And while hydrogen is a common example of an alternative fuel used for alternative fuel vehicle (AFV) applications, it is appreciated that other fuels may also be utilized which are suitable for compressed gas storage and/or cryogenic liquid storage, such as for example compressed natural gas (CNG). In the present discussion, hydrogen is used as an exemplary fuel for generally illustrating operation of the present invention. Additionally, while the advantages of a cryogenic-capable pressure vessel are readily apparent for vehicular storage applications, it is not limited only to such. The present invention may be generally used for any application requiring flexibility in the types of fluids stored.
The accompanying drawings, which are incorporated into and form a part of the disclosure, are as follows:
Turning now to the drawings,
Because the vessel mounting space in a vehicle (e.g. trunk) is typically a boxy, cuboid space formed by substantially planar surfaces and edges, the conformable embodiment of the present invention is intended to better fill such available boxy spaces (not normally available to a conventional (e.g. cylindrical) pressure vessel), and thereby achieve higher storage capacity. As such, the HPVs individually and as a combined stack shown in
The container 10 is particularly shown in
As can be seen in
The vacuum insulation in
The high pressure vessel 42 in
In
Furthermore, these containers can be designed to take advantage of the self-cooling available from driving that can be stored in the ortho-para nuclear spin states of hydrogen. This thermal energy storage mechanism could occur spontaneously or be intentionally accelerated. All classes of these hydrogen storage systems benefit from the possibility of refueling with lower cost (lower than equilibrium fraction of parahydrogen) cryogenic hydrogen. For example, if a vehicle is initially fueled with a quantity of liquid hydrogen in which 25% of the molecules have the nuclear spin state known as “para” and 75% of which have the nuclear spin state known as “ortho” (this mixture of hydrogen molecules is often referred to as ‘normal’ hydrogen), the orthohydrogen molecules tend to change nuclear spin state and convert to parahydrogen molecules that are more stable at liquid hydrogen temperatures. This process releases heat, increasing the pressure of the stored hydrogen. This is beneficial to vehicle operation, providing the pressure potentially needed for vehicle operation, reducing or eliminating the need for a heat exchanger. Subsequently, as the hydrogen approaches temperatures between 40 and 100 K, an increasing fraction of parahydrogen molecules will tend to convert to orthohydrogen molecules, thereby absorbing heat and significantly enhancing thermal endurance. Another possibility is deliberate manipulation of the nuclear spin states of hydrogen molecules during refueling to store even greater amounts of hydrogen in the container. For example, if the container is filled with liquid parahydrogen and then topped off with high pressure cryogenic parahydrogen, the contents warm up. Conversion to the equilibrium concentration of parahydrogen at this warmer temperature will cool and further densify the fuel. Filling the high pressure vessel and/or the low pressure space are fueled with a quantity of liquid hydrogen in which 25% of the molecules have the nuclear spin state known as “para” and 75% of which have the nuclear spin state known as “ortho” (this mixture of hydrogen molecules is often referred to as ‘normal’ hydrogen) has the following advantages. Hydrogen with this combination of spin states can be liquefied with considerably less energy (˜30% less) than the equilibrium composition of liquid hydrogen (100% para). Ortho-hydrogen at liquid hydrogen temperature will convert over a few days to para-hydrogen, releasing heat and enhancing evaporation. This makes it impossible to use normal liquid hydrogen in most applications. The high pressure capability of our cryogenic pressure vessels described here enable direct utilization of normal liquid hydrogen in the vehicle without ortho-para conversion, thereby reducing by 30% the liquefaction energy.)
While particular operational sequences, materials, temperatures, parameters, and particular embodiments have been described and or illustrated, such are not intended to be limiting. Modifications and changes may become apparent to those skilled in the art, and it is intended that the invention be limited only by the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/053,754 filed May 16, 2008, entitled, “Cryogenic Capable High Pressure Containers for Compact Storage of Hydrogen Onboard Vehicles” by Gene D. Berry et al, and incorporated by reference herein.
The United States Government has rights in this invention pursuant to Contract No. DE-AC52-07NA27344 between the United States Department of Energy and Lawrence Livermore National Security, LLC for the operation of Lawrence Livermore National Laboratory.
Number | Date | Country | |
---|---|---|---|
61053754 | May 2008 | US |