Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells

Abstract
A cryoprotectant for use with a treatment device for improved removal of heat from subcutaneous lipid-rich cells of a subject having skin is provided. The cryoprotectant is a non-freezing liquid, gel, or paste for allowing pre-cooling of the treatment device below 0° C. while preventing the formation of ice thereon. The cryoprotectant may also prevent freezing of the treatment device to the skin or ice from forming from moisture seeping out from the skin. The cryoprotectant may further be hygroscopic, thermally conductive, and biocompatible.
Description
BACKGROUND

Excess body fat, or adipose tissue, can detract from personal appearance and athletic performance. Excess adipose tissue may be present in various locations of the body, including, for example, the thigh, buttocks, abdomen, knees, back, face, arms, and other areas. Moreover, excess adipose tissue is thought to magnify the unattractive appearance of cellulite, which forms when subcutaneous fat protrudes into the dermis and creates dimples where the skin is attached to underlying structural fibrous strands. Cellulite and excessive amounts of adipose tissue are often considered to be unappealing. Moreover, significant health risks may be associated with higher amounts of excess body fat. An effective way of controlling or removing excess body fat therefore is needed.


Liposuction is a method for selectively removing adipose tissue to “sculpt” a person's body. Liposuction typically is performed by plastic surgeons or dermatologists using specialized surgical equipment that invasively removes subcutaneous adipose tissue via suction. One drawback of liposuction is that it is a surgical procedure, and the recovery may be painful and lengthy. Moreover, the procedure typically requires the injection of tumescent anesthetics, which is often associated temporary bruising. Liposuction can also have serious and occasionally even fatal complications. In addition, the cost for liposuction is usually substantial. Other emerging techniques for removal of subcutaneous adipose tissue include mesotherapy, laser-assisted liposuction, and high intensity focused ultrasound.


Conventional non-invasive treatments for removing excess body fat typically include topical agents, weight-loss drugs, regular exercise, dieting, or a combination of these treatments. One drawback of these treatments is that they may not be effective or even possible under certain circumstances. For example, when a person is physically injured or ill, regular exercise may not be an option. Similarly, weight-loss drugs or topical agents are not an option when they cause an allergic or negative reaction. Furthermore, fat loss in selective areas of a person's body cannot be achieved using general or systemic weight-loss methods.


Other non-invasive treatment methods include applying heat to a zone of subcutaneous lipid-rich cells. U.S. Pat. No. 5,948,011 discloses altering subcutaneous body fat and/or collagen by heating the subcutaneous fat layer with radiant energy while cooling the surface of the skin. The applied heat denatures fibrous septae made of collagen tissue and may destroy fat cells below the skin, and the cooling protects the epidermis from thermal damage. This method is less invasive than liposuction, but it still may cause thermal damage to adjacent tissue, and can also be painful and unpredictable.


Another promising method of reducing subcutaneous fat cells is to cool the target cells as disclosed in U.S. Patent Publication No. 2003/0220674, the entire disclosure of which is incorporated herein. This publication discloses, among other things, reducing the temperature of lipid-rich subcutaneous fat cells to selectively affect the fat cells without damaging the cells in the epidermis. Although this publication provides promising methods and devices, several improvements for enhancing the implementation of these methods and devices would be desirable.


U.S. Patent Publication No. 2003/0220674 also discloses methods for selective removal of lipid-rich cells, and avoidance of damage to other structures including dermal and epidermal cells. A method for inducing collagen compaction, remodeling, and formation is also needed for treatment of loose or sagging skin, age- or sun-damaged skin, or a variety of other skin disorders. Therefore, a method for simultaneously removing lipid-rich cells while providing beneficial collagen effects is also needed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view of a system for removing heat from subcutaneous lipid-rich cells in accordance with an embodiment of the invention.



FIG. 2 is a side elevation view of a coupling device in accordance with an embodiment of the invention.



FIG. 3 is an isometric view of a coupling device in accordance with another embodiment of the invention.



FIG. 4 is a flow chart illustrating a method for pre-cooling a treatment device in accordance with embodiments of the invention.



FIG. 5 is a flow chart illustrating a method for pre-cooling a treatment device in accordance with further embodiments of the invention.



FIG. 6 is a flow chart illustrating a method for protecting the skin of a subject with a cryoprotectant in accordance with further embodiments of the invention.



FIG. 7 is an isometric view of a treatment device for removing heat from subcutaneous lipid-rich cells in accordance with an embodiment of the invention.



FIGS. 8A-B are isometric views of a treatment device for removing heat from subcutaneous lipid-rich cells in accordance with a further embodiment of the invention.



FIG. 9 is an isometric and exploded view of a treatment device for removing heat from subcutaneous lipid-rich cells in accordance with a further embodiment of the invention.



FIG. 10 is an isometric and exploded view of a vibrator disposed in the treatment device for removing heat from subcutaneous lipid-rich cells in accordance with yet another embodiment of the invention.





DETAILED DESCRIPTION
A. OVERVIEW

The present disclosure describes devices, systems, and methods for cooling subcutaneous lipid-rich cells with a heat exchanging element and a thermally conductive cryoprotectant. The term “subcutaneous tissue” means tissue lying beneath the dermis and includes subcutaneous fat, or adipose tissue, which primarily is composed of lipid-rich cells, or adipocytes. It may be appreciated that several of the details set forth below are provided to describe the following embodiments in a manner sufficient to enable a person skilled in the relevant art to make and use the disclosed embodiments. Several of the details and advantages described below, however, may not be necessary to practice certain embodiments of the invention. Additionally, the invention may include other embodiments that are within the scope of the claims but are not described in detail with respect to the Figures.


B. SYSTEM FOR SELECTIVELY REDUCING LIPID-RICH CELLS


FIG. 1 is an isometric view of a treatment system 100 for exchanging heat from subcutaneous lipid-rich cells of a subject 101 in accordance with an embodiment of the invention. The treatment system 100 may include a treatment device 104 placed at an abdominal area 102 of the subject 101 or another area where reduction of the subcutaneous fat, or fat layer, is desired. The treatment device 104 may be fastened to the subject 101 using, for example, a mechanical fastener (e.g., a belt 105), an adhesive (e.g., an epoxy), suction (e.g., a vacuum or reduced pressure), or any other mechanisms. The treatment device 104 may be configured to heat and/or cool the subject 101. In certain embodiments, the treatment device 104 may contain a non-freezing cryoprotectant to, among other advantages, allow pre-cooling of the treatment device 104 to a temperature around or below the freezing point of water (0° C.) while preventing ice from forming. Various embodiments of the treatment device 104 are described in more detail below with reference to FIGS. 7-10. In other embodiments, the treatment system 100 may also include a coupling device (not shown in FIG. 1) for supplying the cryoprotectant to the treatment device 104 or the skin of the subject 101, as described in more detail below with reference to FIG. 2 and FIG. 3.


In one embodiment, the treatment device 104 is configured to cool subcutaneous lipid-rich cells of the subject 101. In such cases, the treatment system 100 may further include a fluid source 106 and fluid lines 108a-b connecting the treatment device 104 to the fluid source 106. The fluid source 106 may remove heat from a coolant to a heat sink and provide the chilled coolant to the treatment device 104 via the fluid lines 108a-b. Examples of the circulating coolant include water, glycol, synthetic heat transfer fluid, oil, a refrigerant, and any other suitable heat conducting fluids. The fluid lines 108a-b may be hoses or other conduits constructed from polyethylene, polyvinyl chloride, polyurethane, steel, aluminum, copper and other materials that may accommodate the particular circulating coolant. The fluid source 106 may be a refrigeration unit, a cooling tower, a thermoelectric chiller, or any other device capable of removing heat from a coolant or municipal water supply.


The treatment device 104 may also include one or more thermoelectric elements, such as Peltier-type thermoelectric elements. In such cases, the treatment system 100 may further include a power supply 110 and a processing unit 114 operatively coupled to the treatment device 104 via electrical cables 112, 116. In one embodiment, the power supply 110 may provide a direct current voltage to the treatment device 104 remove heat from the subject 101. The processing unit 114 may monitor process parameters via sensors (not shown in FIG. 1) placed proximate to the treatment device 104 and adjust the heat removal rate based on the process parameters. The processing unit 114 may include any processor, Programmable Logic Controller, Distributed Control System, and the like.


The processing unit 114 may be in electrical communication with an input device 118, an output device 120, and/or a control panel 122. The input device 118 may include a keyboard, a mouse, a touch screen, a push button, a switch, a potentiometer, and any other device suitable for accepting user input. The output device 120 may include a display screen, a printer, a medium reader, an audio device, and any other device suitable for providing user feedback. The control panel 122 may include indicator lights, numerical displays, and audio devices. In the embodiment shown in FIG. 1, the processing unit 114, power supply 110, control panel 122, fluid source 106, input device 118, and output device 120 are carried by a rack 124 with wheels 126 for portability. In another embodiment, the various components may be fixedly installed at a treatment site.


As explained in more detail below, a cryoprotectant applied to the treatment device 104 may allow the treatment device 104 to be pre-cooled prior to being applied to the subject 101 for more efficient treatment. Further, the cryoprotectant can also enable the treatment device 104 to be maintained at a desired temperature while preventing ice from forming on a surface of the treatment device 104, and thus reduces the delay in reapplying the treatment device 104 to the subject. Yet another advantage is that the cryoprotectant may prevent the treatment device 104 from freezing to the skin of the subject. If the cryoprotectant is hygroscopic, it can adsorb moisture from the atmosphere and/or from the skin, which might otherwise form ice.


The treatment device 104, the cryoprotectant, and/or other components of the treatment system 100 can be included in a kit (not shown) for removing heat from subcutaneous lipid rich cells of the subject 101. The cryoprotectant can have a freezing point in the range of about −40° C. to about 0° C. and be configured to be applied to an interface between the treatment device 104 and the skin of the subject 101. The kit can also include instruction documentation containing information regarding how to (a) apply the cryoprotectant to a target region and/or a heat exchanging surface of the treatment device 104 and (b) reduce a temperature of the target region such that lipid rich cells in the region are affected while preserving non-lipid rich cells proximate to the heat exchanging surface.


C. COUPLING DEVICE


FIG. 2 is a side elevation view illustrating a coupling device 502 suitable to be used in the treatment system 100 of FIG. 1 and configured in accordance with an embodiment of the invention. The coupling device 502 may be placed adjacent to a treatment region 501 of the subject 101. The coupling device 502 may include attachment features 510 for releasably or fixedly attaching the coupling device 502 to a heat exchanging element 130 of the treatment device 104 (FIG. 1). In the illustrated embodiment, the attachment features 510 include tensioning clips. During assembly, the coupling device 502 may be snapped onto the heat exchanging element 130 with the backside portion 504 facing the treatment device 104. In other embodiments, the attachment features 510 may include screws, pins, hinges, and/or any other suitable attachment devices.


The coupling device 502 may include a backside portion 504 proximate to the heat exchanging element 130, a front side portion 508 spaced apart from the backside portion 504, and an intermediate portion 506 between the backside portion 504 and the front side portion 508. In certain embodiments, the coupling device 502 optionally may include a protective layer (e.g., a polymeric film, not shown) attached to the front side portion 508. The protective layer may isolate the front side portion 508 from the environment and may be peeled off to expose the front side portion 508 before treatment.


The backside portion 504 may be a film, a plate, a sheet, or other structure constructed from a metal, a metal alloy, ceramics, a polymeric material, or other suitable conductive material. The backside portion 504 may transfer heat between the heat exchanging element 130 and the treatment region 501. The backside portion 504 may also isolate the heat exchanging element 130 from the treatment region 501 for sanitation purposes.


The intermediate portion 506 may be a reservoir constructed from a mesh, a foam material, a porous plastic and/or metal, or other materials that may at least temporarily contain a fluid and/or a gel. In one embodiment, the intermediate portion 506 contains, or is loaded with, a cryoprotectant before a treatment process begins. In another embodiment, the intermediate portion 506 may be generally empty before a treatment process begins and only loaded with cryoprotectant immediately before and/or during the treatment process. In any of these embodiments, the intermediate portion 506 may be pressurized with the cryoprotectant or may be at a generally atmospheric pressure during treatment.


The front side portion 508 may be a film constructed from a polymeric material, a plastic material, or other material that is at least partially flexible. The front side portion 508 may include one or more apertures 516 in fluid communication with the intermediate portion 506. During treatment, the aperture or apertures 516 may allow the cryoprotectant contained in the intermediate portion 506 to escape to the treatment region 501 of the subject 101 through capillary actions or other mechanisms. For example, the intermediate portion 506 may continually supply the cryoprotectant to the treatment region 501 during treatment. In certain embodiments, the intermediate portion 506 is pre-loaded with excess cryoprotectant. As a portion of the cryoprotectant escapes from the apertures 516, additional cryoprotectant may be supplied from the intermediate portion 506 to the skin of the subject during treatment. In other embodiments, the intermediate portion 506 may be constantly replenished to provide a continuous supply of the cryoprotectant. The cryoprotectant can be absorbed by the skin in the treatment region 501. The degree of cryoprotectant absorption by the skin depends on a number of factors, the most important of which are cryoprotectant concentration, duration of contact, solubility, and the physical condition of the skin.


The coupling device 502 optionally may include at least one sensor 514 proximate to the front side portion 508 to measure at least one parameter of the treatment process. The sensor 514 may be a temperature sensor, a pressure sensor, a transmissivity sensor, a bio-resistance sensor, an ultrasound sensor, an optical sensor, an infrared sensor, a heat flux sensor, any other desired sensors, or any combination thereof. An operator may adjust the treatment process based on the measured parameter.


In the illustrated embodiment, the treatment device 104 optionally may include a supply device 520 connected to a port 515 of the coupling device 502 by a conduit 522 for supplying and/or replenishing the cryoprotectant in the intermediate portion 506. In the illustrated embodiment, the supply device 520 is a syringe holding a volume of the cryoprotectant. In other embodiments, the supply device 520 may include a pump coupled to a cryoprotectant storage (not shown), or other suitable supply configurations.


Optionally, a pressure sensor 524 (shown schematically) may be used for monitoring a cryoprotectant pressure in the intermediate portion 506. The pressure sensor 524 may be operatively coupled to the conduit 522, the intermediate portion 506, or the supply device 520. During treatment, the pressure sensor 524 may provide an electric, visual, or other signal indicating the cryoprotectant pressure in the intermediate portion 506. In one embodiment, an operator may manually adjust the output of the supply device 520 based on the indicated pressure. In another embodiment, the signal from the pressure sensor 524 may be used as a process variable to automatically control the output of the supply device 520.


Several embodiments of the treatment system 100 may continually protect the skin of the subject against freezing damage. According to conventional techniques, a cryoprotectant may be topically applied to the skin before a treatment begins. The skin then absorbs the applied cryoprotectant, which dissipates over a period of time. After the cryoprotectant dissipates, in conventional techniques, the skin may be subject to freezing damage. As a result, by continually replenishing the dissipated cryoprotectant from the intermediate portion 506, the treatment system 100 may at least reduce the risk of freezing damage, or even prevent such freezing damage, during treatment.


Several embodiments of the treatment system 100 may also reduce the risk of air pockets that can reduce the heat transfer efficiency between the treatment region 501 and the treatment device 104. As the cryoprotectant escapes through the aperture or apertures 516 during treatment, the pressure in the intermediate portion 506 decreases, and air pockets may form. The air pockets may interfere with the heat transfer efficiency between the treatment region 501 and the treatment device 104. As a result, maintaining the intermediate portion 506 at a constant pressure may at least reduce the risk of air pocket formation, and thus improve the efficiency of such heat transfer.


Even though the coupling device 502 is illustrated as having the attachment features 510, in certain embodiments, the attachment features 510 may be omitted, and the coupling device 502 may be configured and/or incorporated into other structures. For example, FIG. 3 illustrates another embodiment, in which the coupling device 502 is incorporated into a sleeve 162 that attaches to the heat exchanging element 130. The coupling device 502 can define a first sleeve portion 164, and the sleeve 162 can also have a second sleeve portion 166. For example, the first sleeve portion 164 may include the backside portion 504, the front side portion 508, and the intermediate portion 506 (FIG. 3). The second sleeve portion 166 may be an isolation layer extending from the first sleeve portion 164. For example, the second sleeve portion 166 may be constructed from latex, rubber, nylon, polyimide, polyethylene, Kevlar®, or other substantially impermeable or semi-permeable material. The second sleeve portion 166 may prevent any contact between the skin of the subject and the heat exchanging element 130. In one embodiment, the sleeve 162 may be reusable. In other embodiments, the sleeve 162 may be disposable. The sleeve 162 may be provided sterile or non-sterile. In one embodiment, the sleeve is fabricated from a flex circuit material such as polyimide or polyethylene, with etched traces to connect sensors to electronics resident in, e.g., the processing unit 114.


The second sleeve portion 166 may also include attachment features to affix the sleeve 162 to the treatment device 104. In the illustrated embodiment, the second sleeve portion 166 includes four brackets 172 (identified individually as 172a-d), each located at a corner of the second sleeve portion 166. Individual brackets 172 include an aperture 174 (identified individually as 174a-d) that corresponds to an attachment point 170 of the treatment device 104. During assembly, the apertures 174 of the brackets 172 may fit over the attachment point 170 such that the second sleeve portion 166 at least partially encloses the heat exchanging element 130.


In another embodiment, the second sleeve portion 166 may include brackets that may engage each other. For example, the bracket 172a may include a pin that may engage the aperture 174d of the bracket 172d. During assembly, the second sleeve portion 166 may wrap around the treatment device 104 and be held in place by engaging the brackets 172 with each other. In a further embodiment, the second sleeve portion 166 may include a flexible member (not shown, e.g., an elastic band) at an outer edge 176 of the second sleeve portion 166 that may hold the sleeve 162 over the treatment device 104 during assembly. In a further embodiment, the second sleeve portion 166 may include a releasable attachment member (not shown, e.g., Velcro® or snaps) at the outer edge 176 of the second sleeve portion 166 that may hold the sleeve 162 over the treatment device 104 during assembly. In yet another embodiment, adhesive may hold the second sleeve portion 166 to the treatment device 104.


In addition to the expected advantages described above, one expected advantage of using the sleeve 162 is the improved sanitation of using the treatment device 104. The sleeve 162 may prevent cross-contamination between the skin of the subject and the heat exchanging element 130 because the sleeve 162 is substantially impermeable. Also, operating expense of the treatment device 104 may be reduced because the heat exchanging element 130 does not need to be sanitized after each use.


The sleeve 162 may have many additional embodiments with different and/or additional features without detracting from its operation. For example, the first and second sleeve portions 164, 166 may be constructed from the same material (e.g., polyimide) or different materials. The sleeve 162 may include an adhesive layer (not shown) that binds the sleeve 162 to the treatment device 104.


D. METHOD OF PRE-COOLING A TREATMENT DEVICE USING A CRYOPROTECTANT


FIG. 4 is a flow chart illustrating a method suitable to be performed in the treatment system 100 of FIG. 1 and in accordance with an embodiment of the invention. The method may include applying a cryoprotectant to a heat exchanging element contained in a treatment device (block 10). In certain embodiments, the cryoprotectant may be applied to the skin of a subject or both the skin and the heat exchanging element. The temperature of the heat exchanging element may be reduced to a desired temperature (block 12). Once the temperature of the heat exchanging element is reduced to a desired temperature, for example, around or below the freezing point of water (0° C.), the heat exchanging element may be placed adjacent to the skin of a subject (block 14). Placing the heat exchanging element adjacent to the skin of a subject reduces the temperature of a region such that lipid-rich cells in the region are selectively affected while non-lipid-rich cells in the epidermis and/or dermis are not generally affected (block 16). In certain embodiments, the temperature of the treatment device optionally may be further reduced to a treatment temperature once the heat exchanging element is placed adjacent to the skin of a subject (block 15).


After a selected period of time, the treatment device may then be removed from the skin of the subject (block 18), and the process may then end (block 20). Once the treatment device is removed from the skin of the subject, the reduced temperature of the heat exchanging element optionally may be maintained at a desired temperature (block 22). In certain embodiments, the heat exchanging element optionally may be placed adjacent to another region of the skin of the subject to selectively affect lipid-rich cells in a different region of the skin of the subject (block 24). Once the heat exchanging element is placed adjacent to another region of the skin of the subject, the lipid-rich cells are affected (block 16). The treatment device may then be removed from the skin of the subject (block 18) and then the process may end (block 20). Optionally, the cryoprotectant may be reapplied to the heat exchanging element, the skin of the subject, or to an interface between the treatment device and the skin of the subject (block 28) prior to placing the heat exchanging element on another region of the skin of the subject.


In another embodiment, a cryoprotectant may be applied to the heat exchanging element, the skin of the subject, or an interface between the treatment device and the skin of the subject to prevent the formation of ice (block 10) as the temperature of the heat exchanging element is reduced to a desired temperature. The heat exchanging element is placed adjacent to the skin of the subject in a desired region (block 14), and the lipid-rich cells are selectively affected (block 16). After a selected period of time, the heat exchanging element may then be removed from the skin of the subject (block 18). Optionally, the cryoprotectant is reapplied to the heat exchanging element, the skin of the subject, and/or an interface between the treatment device and the skin of the subject (block 28), and the temperature of the heat exchanging element is maintained at a desired temperature (block 22). The process of treating the selected region of the skin of the subject optionally may be repeated to selectively affect the lipid-rich cells in a region of the subject while non-lipid-rich cells in the epidermis and/or dermis are not generally affected (block 26).



FIG. 5 illustrates another method for pre-cooling the heat exchanging element by applying a cryoprotectant on the heat exchanging element prior to decreasing the temperature of the heat exchanging element to prevent icing. In one embodiment, a cryoprotectant is placed on the heat exchanging element to prevent the heat exchanging element from icing (block 50). The heat exchanging element is then pre-cooled by decreasing the temperature to at or below 0° C. (block 52). The heat exchanging element is applied to the skin of the subject in a first treatment region (block 54), to selectively affect lipid-rich cells in the treatment region (block 56). In certain embodiments, the temperature of the heat exchanging element may be further decreased (block 68). The heat exchanging element is then removed from the treatment region (block 58) and the treatment may then end (block 64). In certain embodiments, the temperature of the heat exchanging element may be maintained at a target temperature (block 60), and the heat exchanging element may be applied to a second treatment region on the skin of the subject (block 62), to selectively affect the lipid-rich cells. Once the heat exchanging element is removed from the treatment region (block 58), the temperature of the heat exchanging element may be allowed to return to an ambient temperature (block 66), or the temperature of the heat exchanging element may be maintained at or below 0° C. (block 60). In yet another embodiment, the temperature of the heat exchanging element may be maintained at a target temperature (block 70). The heat exchanging element may then be applied to a second treatment region on the skin of the subject (block 72), or may be reapplied to the first treatment region on the skin of the subject to selectively affect the lipid-rich cells (block 54).


By cooling the subcutaneous tissues to a temperature lower than 37° C., subcutaneous lipid-rich cells may be selectively affected. In general, the epidermis and dermis of a subject have lower amounts of unsaturated fatty acids compared to the underlying lipid-rich cells forming the subcutaneous tissues. Because non-lipid-rich cells usually withstand colder temperatures better than lipid-rich cells, the subcutaneous lipid-rich cells may be selectively affected while maintaining the non-lipid-rich cells in the dermis and epidermis. For example, a range for the heat exchanging elements may be from about −20° C. to about 20° C., preferably from about −20° C. to about 10° C., more preferably from about −15° C. to about 5° C., more preferably from about −10° C. to about 0° C.


The lipid-rich cells may be affected by affecting, shrinking, disabling, destroying, removing, killing, or otherwise being altered. Without being bound by theory, selectively affecting lipid-rich cells is believed to result from localized crystallization of highly saturated fatty acids at temperatures that do not induce crystallization in non-lipid-rich cells. The crystals may rupture the bi-lipid membrane of lipid-rich cells to selectively necrose these cells. Thus, damage of non-lipid-rich cells, such as dermal cells, may be avoided at temperatures that induce crystal formation in lipid-rich cells. Cooling is also believed to induce lipolysis (e.g., fat metabolism) of lipid-rich cells to further enhance the reduction in subcutaneous lipid-rich cells. Lipolysis may be enhanced by local cold exposure, inducing stimulation of the sympathetic nervous system.


One expected advantage of several of the embodiments described above is that the treatment device may selectively reduce subcutaneous lipid-rich cells without unacceptably affecting the dermis, epidermis, and/or other tissues. Another expected advantage is that the treatment device may simultaneously selectively reduce subcutaneous lipid-rich cells while providing beneficial effects to the dermis and/or epidermis. These effects may include: fibroplasias, neocollagenesis, collagen contraction, collagen compaction, collagen density increase, collagen remodeling, and acanthosis (epidermal thickening).


Another expected advantage of several of the embodiments described above is that the heat exchanging element may be pre-cooled in advance of treatment to more efficiently treat the skin of the subject. Further, the embodiments allow the treatment device to be maintained at a temperature at or below 0° C. or at a target temperature because the cryoprotectant may prevent icing on the heat exchanging element and/or on the skin of the subject.


E. METHOD OF PROTECTING THE SKIN OF A SUBJECT USING CRYOPROTECTANT


FIG. 6 is a flow chart illustrating another method suitable to be performed in the treatment system 100 of FIG. 1 and in accordance with an embodiment of the invention. The method 80 of FIG. 6 may be applied separately or in combination with the methods shown in FIG. 4 and/or FIG. 5. For example, a cryoprotectant may be applied to both the skin of the subject for protecting the skin from freezing damage and the heat exchanging surface of the treatment device for pre-cooling the treatment device.


In the illustrated embodiment, the method 80 may include applying a cryoprotectant to a treatment region of the skin of the subject (block 82). For example, applying the cryoprotectant may include spraying or smearing the cryoprotectant onto the skin using an instrument including, e.g., a spatula, a spray bottle, and/or a coupling device as shown in FIG. 2. In another embodiment, the cryoprotectant may be injected into the skin of the subject using, e.g., a syringe.


A heat exchanging element is subsequently placed adjacent to the skin of the subject (block 84). The heat exchanging element may cool the treatment region that is in contact with the cryoprotectant to selectively affect lipid-rich cells in the region (block 86). During treatment, the cryoprotectant may be continually supplied to the skin of the subject (block 88). The continually supplied cryoprotectant may maintain a sufficient concentration of absorbed cryoprotectant in the epidermis and/or dermis of the subject for reducing the risk of freezing damage. The cryoprotectant may be continually supplied using an absorbent (e.g., a cotton pad, a gauze, or other absorbents) pre-loaded with the cryoprotectant, or using a coupling device releasably attached to the treatment device.


A decision is made to determine whether the treatment should be continued (block 90). The determination may be based on time, skin temperatures, and/or other parameters of the treatment process. If the treatment is continued, then the process returns to block 86; otherwise, the process ends.


The applied cryoprotectant may at least reduce the risk of freezing damage in the epidermis and/or dermis of the subject during treatment and may even prevent such freezing damage. Without being bound by theory, it is believed that low temperatures may potentially cause damage in the epidermis and/or dermis via at least intracellular and/or extracellular ice formation. Intracellular ice formation occurs when ice forms inside a cell. The ice may expand and rupture the cell as the ice grows through the cellular wall, thus causing cell death. When extracellular ice formation occurs, extracellular water freezes to form ice. As a result, the remaining extracellular fluid becomes concentrated with solutes. The high concentration of the extracellular fluid may cause intracellular fluid to permeate through the semi-permeable cellular wall and eventually cause cell dehydration and death. The high concentration of the extracellular fluid may also interrupt electrical and/or ionic interactions among neighboring cells to cause irreversible protein damage.


Applying a cryoprotectant may at least reduce the risk of intracellular and/or extracellular ice formation, or even prevent such ice formation, by reducing the freezing point of water in the body fluid affected by the cryoprotectant. It is believed that after the cryoprotectant is absorbed into the epidermis and/or dermis, the cryoprotectant dissolves in or otherwise combines with water of the intracellular and/or extracellular fluid to delay the onset of ice formation by lowering the freezing point of the solution in which it resides. For example, the cryoprotectant may reduce the freezing point of the body fluid from, e.g., about −2° C. to about −5° C., −10° C., −16° C., or other temperatures suitable for a particular treatment. In some embodiments, the cryoprotectant may have a sufficient concentration in the body fluid such that water in the body fluid does not freeze but instead vitrifies under low temperature conditions. As a result, the onset of intracellular and/or extracellular ice formation may be prevented in these embodiments.


One expected advantage of several of the embodiments of the method 80 is that an operator may use lower treatment temperatures for selectively affecting lipid-rich cells of the subject without causing freezing damage to the epidermis and/or dermis of the subject. The applied cryoprotectant may lower the freezing point of the skin of the subject or body fluid in the target region to at least reduce the risk of intracellular and/or extracellular ice formation at such low treatment temperatures.


Another expected advantage is that the epidermis and/or dermis of the subject may be continually protected against freezing damage. It is believed that a topically administered cryoprotectant may protect the treatment region of the skin of the subject. After the cryoprotectant is applied to the skin of the subject, the cryoprotectant is believed to enter the epidermis, the dermis, and eventually the blood stream of the subject. The subject's blood stream then may carry the cryoprotectant away from the treatment region. As a result, the cryoprotectant concentration in the treatment region drops, and the freezing point of the subject's affected body fluid increases to heighten the risk of freezing damage. Accordingly, continually supplying the cryoprotectant to the skin of the subject may at least reduce or even prevent such a risk.


Another expected advantage of several of the embodiments is that cooling the skin of the subject may increase the residence time of the cryoprotectant and may reduce local and/or systemic side effects of the cryoprotectant. It is believed that the skin of the subject absorbs the cryoprotectant at a slower rate under low temperature conditions than under normal temperature (e.g., body temperature) conditions. Thus, the reduced absorption rate may increase the amount of time it takes for the subject's blood stream to remove the cryoprotectant, and thus prolong the efficacy of the cryoprotectant. It is also believed that certain cryoprotectants at certain concentration levels may be toxic to the subject by causing, for example, denaturation of proteins (e.g., enzymes). Thus, reducing the absorption rate of the cryoprotectant may reduce the cryoprotectant concentration in deeper tissues, and thus may reduce the associated local or systemic side effects.


F. CRYOPROTECTANTS

A cryoprotectant suitable to be used in the treatment system 100 of FIG. 1 is a substance that may protect biological tissues of a subject from freezing damage (e.g., damage due to ice formation). The cryoprotectant may contain a temperature depressant along with a thickening agent, a pH buffer, a humectant, a surfactant, and/or other additives. The cryoprotectant may be formulated as a liquid (e.g., an aqueous solution or a non-aqueous solution), a gel, a hydrogel, or a paste. The cryoprotectant may be hygroscopic, thermally conductive, and is ideally biocompatible. In certain embodiments, the cryoprotectant may be formulated to be ultrasonically acoustic to allow ultrasound to pass through the cryoprotectant, such as a water-based gel described in U.S. Pat. No. 4,002,221 issued to Buchalter and U.S. Pat. No. 4,459,854 issued to Richardson et al., the entire disclosures of which are incorporated herein by reference.


The temperature depressant may include polypropylene glycol (PPG), polyethylene glycol (PEG), propylene glycol, ethylene glycol, dimethyl sulfoxide (DMSO), or other glycols. The temperature depressant may also include ethanol, propanol, iso-propanol, butanol, and/or other suitable alcohol compounds. The temperature depressant may lower the freezing point of a solution (e.g., body fluid) to about 0° C. to −40° C., and more preferably to about −10° C. to −16° C. Certain temperature depressants (e.g., PPG, PEG, etc.) may also be used to improve smoothness of the cryoprotectant and to provide lubrication.


The thickening agent may include carboxyl polyethylene polymer, hydroxyethyl xylose polymer, and/or other viscosity modifiers to provide a viscosity in the range of about 1 cP to about 10,000 cP, more preferably in the range of about 4,000 cP to about 8,000 cP, and most preferably from about 5,000 cP to about 7,000 cP. The cryoprotectant with a viscosity in this range may readily adhere to the treatment device, the skin of the subject, and/or the interface between the treatment device and the skin of the subject during treatment.


The pH buffer may include cholamine chloride, cetamidoglycine, tricine, glycinamide, bicine, and/or other suitable pH buffers. The pH buffer may help the cryoprotectant to have a consistent pH of about 3.5 to about 11.5, more preferably about 5 to about 9.5, and most preferably about 6 to about 7.5. In certain embodiments, the pH of the cryoprotectant may be close to the pH of the skin of the subject.


The humectant may include glycerin, alkylene glycol, polyalkylene glycol, propylene glycol, glyceryl triacetate, polyols (e.g., sorbitol and/or maltitol), polymeric polyols (e.g., polydextrose), quillaia, lactic acid, and/or urea. The humectant may promote the retention of water to prevent the cryoprotectant from drying out.


The surfactant may include sodium dodecyl sulfate, ammonium lauryl sulfate, sodium lauryl sulfate, alkyl benzene sulfonate, sodium lauryl ether sulfate, and other suitable surfactants. The surfactant may promote easy spreading of the cryoprotectant when an operator applies the cryoprotectant to the treatment device, the skin of the subject, and/or the interface between the treatment device and the skin of the subject during treatment.


The cryoprotectant may also include other additives in addition to or in lieu of the ingredients described above. For example, the cryoprotectant may also include a coloring agent, perfume, emulsifier, an anesthetic agent, and/or other ingredient.


In a particular embodiment, the cryoprotectant may include about 30% polypropylene glycol, about 30% glycerin, and about 40% ethanol. In another embodiment, the cryoprotectant may include about 40% propylene glycol, about 0.8% hydroxyethylcellulose, and about 59.2% water. In a further embodiment, the cryoprotectant may include about 50% polypropylene glycol, about 40% glycerin, and about 10% ethanol.


G. TREATMENT DEVICES WITH ROTATABLE HEAT EXCHANGING ELEMENTS


FIG. 7 is an isometric view of a treatment device 104 in accordance with one embodiment of the invention suitable for use in the treatment system 100. In this embodiment, the treatment device 104 includes a support 128 having a first portion 129a and a second portion 129b, a first heat exchanging element 130a located at the first portion 129a, and a second heat exchanging element 130b located at the second portion 129b. The treatment device 104 is generally configured to be a handheld unit for manual operation, and/or it may be strapped or otherwise configured to be releasably attached to the subject. The first heat exchanging element 130a and/or the second heat exchanging element 130b may be configured to move along the support 128 and/or rotate to position the heat exchanging elements 130a-b for applying pressure to the treatment region during operation.


The first and second heat exchanging elements 130a-b may have many similar features. As such, the features of the first heat exchanging element 130a are described below with reference symbols followed by an “a”, and corresponding features of the second heat exchanging element 130b are shown and noted by the same reference symbol followed by a “b.” The first heat exchanging element 130a may include a housing 139a and fluid ports 138a-b coupled to the fluid lines 108a-b. The housing 139a may be constructed from polymeric materials, metals, ceramics, woods, and/or other suitable materials. The housing 139a shown in FIG. 7 is generally rectangular, but it may have any other desired shape.


The first heat exchanging element 130a may further include a first interface member 132a having a first heat exchanging surface 131a for transferring heat to/from the subject 101. A cryoprotectant (not shown) may be applied to the heat exchanging surface 131a to prevent ice from forming thereon when the temperature is reduced to a temperature around or below the freezing point of water (0° C.). In one embodiment, the first heat exchanging surface 131a is generally planar, but in other embodiments, the first heat exchanging surface 131a is non-planar (e.g., curved, faceted, etc.) The first interface member 132a may be constructed from any suitable material with a thermal conductivity greater than 0.05 Watts/Meter º Kelvin, and in many embodiments, the thermal conductivity is more than 0.1 Watts/Meter º Kelvin. Examples of suitable materials include aluminum, other metals, metal alloys, graphite, ceramics, some polymeric materials, composites, or fluids contained in a flexible membrane. Portions of the first heat exchanging surface 131a may be an insulating material with a thermal conductivity less than 0.05 Watts/Meter º Kelvin.


The first heat exchanging element 130a may also include at least one sensing element 135a proximate to the first heat exchanging surface 131a. The sensing element 135a, for example, may be generally flush with the heat exchanging surface 131a. Alternatively, it may be recessed or protrude from the surface. The sensing element 135a may include a temperature sensor, a pressure sensor, a transmissivity sensor, a bio-resistance sensor, an ultrasound sensor, an optical sensor, an infrared sensor, a sensor for measuring blood flow, or any other desired sensor. In one embodiment, the sensing element 135a may be a temperature sensor configured to measure the temperature of the first heat exchanging surface 131a and/or the temperature of the skin of the subject. For example, the temperature sensor may be configured as a probe or as a needle that penetrates the skin during measurement. Examples of suitable temperature sensors include thermocouples, resistance temperature devices, thermistors (e.g., neutron-transmutation-doped germanium thermistors), and infrared radiation temperature sensors. In another embodiment, the sensing element 135a may be an ultrasound sensor configured to measure the thickness of a fat layer in the subject or crystallization of subcutaneous fat in the treatment region of a subject. In yet another embodiment, the sensing element 135a may be an optical or infrared sensor configured to monitor an image of the treatment region to detect, for example, epidermal physiological reactions to the treatment. In yet another embodiment, the sensing element 135a may be a device to measure blood flow. The sensing element 135a may be in electrical communication with the processing unit 114 via, for example, a direct wired connection, a networked connection, and/or a wireless connection.


The treatment device 104 may further include a mounting element 136a that couples the first heat exchanging element 130a to the first portion 129a of the support 128. The mounting element 136a, for example, may be a pin, a ball joint, a bearing, or other types of rotatable joints. Suitable bearings include, but are not limited to, ball bearings, roller bearings, thrust bearings, and journal bearings. The mounting element 136a may accordingly be configured to rotatably couple the first heat exchanging element 130a to the support 128. In certain embodiments, the first heat exchanging element 130a may rotate relative to the support 128 in two dimensions (indicated by arrow A) such that the angle between the first and second heat exchanging surfaces 131a-b may be adjusted. In another embodiment, the first heat exchanging element 130a may rotate in three dimensions relative to the support 128 (as indicated by arrows A and B).


A specific embodiment of the mounting element 136a includes a first mounting base 134a and a flange 137a coupled to the base 134a by a rotatable or pivotable joint. By rotatably mounting at least one of the first and second heat exchanging elements 130a-b to the support 128, the angle between the first and second heat exchanging surfaces 131a-b may be adjusted. For example, the first and second heat exchanging elements 130a-b may be generally parallel to each other, i.e., have an angle of generally 0° between the first and second heat exchanging surfaces 131a-b. The first and second heat exchanging elements 130a-b may also be generally co-planar, i.e., have an angle of generally 180° between the first and second heat exchanging surfaces 131a-b. With the rotatable mounting elements 136a-b, any angle of about 0° to about 180° between the first and second heat exchanging surfaces 131a-b may be achieved.


The treatment device 104 may further include a shaft 133, and the first mounting base 134a may be attached to the shaft 133. As explained in more detail below, at least one of the heat exchanging elements 130a-b moves along the shaft 133 and/or the shaft 133 moves relative to the support 128 to adjust the distance between the first and second heat exchanging elements 130a-b (shown by arrow C). The shaft 133, more specifically, extends between the first and second heat exchanging elements 130a-b to enable movement of at least one of the heat exchanging elements 130a-b relative to the support 128. In certain embodiments, the first mounting base 134a may be fixedly attached to the shaft 133, and a second mounting base 134b of the second heat exchanging element 130b is configured such that the second mounting base 134b may slide along the shaft 133. In other embodiments, both the first mounting base 134a and the second mounting base 134b may be configured to slide along the shaft 133. The shaft 133 is generally constructed from polymeric materials, metals, ceramics, woods, or other suitable materials.


The treatment device 104 further includes a handle 140 slidably coupled to the shaft 133 or formed as a part of the shaft 133. The handle 140 is configured to be held by a hand of an operator. For example, the handle 140 may have a grip with grooves to improve stability of the treatment device 104 when held by the operator. The handle 140 further includes an actuator 142 that operates with the shaft 133 to move the second heat exchanging element 130b relative to the shaft 133. The actuator 142 may be a lever that engages the shaft 133 to incrementally advance the second heat exchanging element 130b in an axial motion (arrow C) along the shaft 133.


In operation, an operator may hold the treatment device 104 in one hand by grasping the handle 140. Then, the heat exchanging elements 130a-b may be rotated via the mounting elements 136a-b to achieve a desired orientation. The operator may place the treatment device 104 having the heat exchanging elements 130a-b in the desired orientation proximate to the skin of the subject to remove heat from a subcutaneous region of the subject 101. In one embodiment, the operator may clamp a portion of the skin of the subject between the heat exchanging surfaces 131a-b when the surfaces 131a-b are generally parallel to each other. In another embodiment, the operator may press the heat exchanging surfaces 131a-b against the skin of the subject when the surfaces 131a-b are generally co-planar. In certain embodiments, the operator may use thermoelectric coolers to remove heat from the subcutaneous region as described below with reference to FIG. 8. The operator may also monitor and control the treatment process by collecting measurements, such as skin temperatures, from the sensing element 135a. By cooling the subcutaneous tissues to a temperature lower than 37° C., subcutaneous lipid-rich cells may be selectively affected. The affected cells are then reabsorbed into the subject through natural processes.


One expected advantage of using the treatment device 104 is that the treatment device may be applied to various regions of the subject's body because the two heat exchanging elements 130a-b may be adjusted to conform to any body contour. Another expected advantage is that by pressing the treatment device 104 against the skin of the subject, blood flow through the treatment region may be reduced to achieve efficient cooling. Yet another expected advantage is that by applying the cryoprotectant to prevent icing and to allow pre-cooling of the heat exchanging elements, the treatment duration may be shortened. Yet another expected advantage is that maintaining the temperature of the heat exchanging elements may reduce the power consumption of the device. Still another expected advantage is that the power requirement is reduced for each of the heat exchanging elements 130a-b because heat is removed from the skin through the two heat exchanging surfaces 131a-b instead of a single heat exchanging element.


The first and second heat exchanging elements 130a-b may have many additional embodiments with different and/or additional features without detracting from the operation of both elements. For example, the second heat exchanging element 130b may or may not have a sensing element proximate to the second heat exchanging surface 131b. The second heat exchanging element 130b may be constructed from a material that is different from that of the first heat exchanging element 130a. The second mounting base 134b may have a shape and/or a surface configuration different from that of the first mounting base 134a. The first heat exchanging element 130a may be rotatable, but the second heat exchanging element 130b may be non-rotatable.


The first and second heat exchanging elements 130a-b may further include a thermoelectric cooler (not shown), such as a Peltier-type element, proximate to the interface members 132a-b. The thermoelectric cooler may be a single Peltier-type element or an array of Peltier-type elements. One suitable thermoelectric cooler is a Peltier-type heat exchanging element (model # CP-2895) produced by TE Technologies, Inc. in Traverse City, Michigan.


H. TREATMENT DEVICE HAVING A PLURALITY OF COOLING ELEMENTS


FIGS. 8A-B are isometric views of a treatment device 104 in accordance with embodiments of the invention suitable for use in the treatment system 100. In this embodiment, the treatment device 104 includes a control system housing 202 and cooling element housings 204a-g. The cooling element housings 204a-g are connected to the heat exchanging elements (not shown) by attachment means 206. The attachment means may be any mechanical attachment device such as a screw or pin as is known in the art. The plurality of cooling element housings 204a-g may have many similar features. As such, the features of the first cooling element housing 204a are described below with reference symbols followed by an “a,” corresponding features of the second cooling element housing 204b are shown and noted by the same reference symbol followed by a “b,” and so forth. The cooling element housing 204a may be constructed from polymeric materials, metals, ceramics, woods, and/or other suitable materials. The cooling element housing 204a shown in FIGS. 8A-B is generally rectangular, but it may have any other desired shape.


The treatment device 104 is shown in a first relatively flat configuration in FIG. 8A and in a second curved configuration in FIG. 8B. As shown in FIG. 8B, each segment of the cooling element housings 204a-g is rotatably connected to adjacent segments and moveable about connection 207a-f to allow the treatment device 104 to curve. The connection 207a-f, for example, may be a pin, a ball joint, a bearing, or other type of rotatable joints. The connection 207 may accordingly be configured to rotatably couple the first cooling element housing 204a to the second cooling element housing 204b. According to aspects of the invention, the first cooling element housing 204a may rotate relative to the second cooling element housing 204b (indicated by arrow A), each adjacent moveable pair of cooling elements being such that, for example, the angle between the first and second cooling element housings 204a and 204b may be adjusted up to 45°. In this way, the treatment device is articulated such that it may assume a curved configuration as shown in FIG. 8B, conformable to the skin of a subject.


One advantage of the plurality of rotatable heat exchanging surfaces is that the arcuate shape of the treatment device may concentrate the heat transfer in the subcutaneous region. For example, when heat exchanging surfaces are rotated about a body contour of a subject, the arcuate shape may concentrate heat removal from the skin.


The control system housing 202 may house a processing unit for controlling the treatment device 104 and/or fluid lines 108a-b and/or electrical power and communication lines. The control system housing 202 includes a harness port 210 for electrical and supply fluid lines (not shown for purposes of clarity). The control system housing 202 may further be configured to serve as a handle for a user of the treatment device 104. Alternatively, the processing unit may be contained at a location other than on the treatment device.


The treatment device 104 may further include at each end of the treatment device 104 retention devices 208a and 208b. The retention devices 208a and 208b are rotatably connected to a frame by retention device coupling elements 212a-b. The retention device coupling elements 212a-b, for example, may be a pin, a ball joint, a bearing, or other type of rotatable joints. In certain embodiments, the retention devices 208a and 208b may be rigidly affixed to the end portions of the cooling element housings 204a and 204g. Alternately, the retention device may attach to control system housing 202.


The retention devices 208a and 208b are each shown as tabs 214, each having a slot 216 therein for receiving a band or elastomeric strap (not shown for purposes of clarity) to retain the treatment device 104 in place on a subject 101 during treatment. Alternatively, the treatment device may not contain any attached retention device and may be held in place by hand, may be held in place by gravity, or may be held in place with a band, elastomeric strap, or non-elastic fabric (e.g., nylon webbing) wrapped around the treatment device 104 and the subject 101.


As shown in FIGS. 8A-B, the cooling element housings 204a-g have a first edge 218 and an adjacent second edge 220 of a reciprocal shape to allow the treatment device 104 to mate and, thus, configure in a flat configuration. The first edge 218 and the second edge 220 are generally angular in the Figures; however, the shape could be curved, straight, or a combination of angles, curves, and straight edges that provides a reciprocal shape between adjacent segments of the cooling element housings 204a-g.


I. ADDITIONAL EMBODIMENTS OF TREATMENT DEVICE


FIG. 9 is an isometric and exploded view of a treatment device 104 in accordance with another embodiment of the invention. The treatment device 104 may include a housing 302, a cooling assembly 308 at least partially disposed in the housing 302, and retention devices 318 configured for fastening the cooling assembly 308 to the housing 302. The treatment device 104 may also include a vibration member disposed in the housing 302, as described in more detail below with reference to FIG. 10.


The cooling assembly 308 may include a heat sink 312, a thermally conductive interface member 309, and a thermoelectric cooler 314 disposed between the heat sink 312 and the interface member 309. The thermoelectric cooler 314 may be connected to an external power supply (not shown) via connection terminals 316. In the illustrated embodiment, the heat sink 312 includes a U-shaped fluid conduit 310 at least partially embedded in a thermally conductive portion 313 of the heat sink 312. The fluid conduit 310 includes fluid ports 138a-b that may be coupled to a circulating fluid source (not shown) via the fluid lines 108a-b. In other embodiments, the heat sink 312 may include a plate-type heat exchanger, a tube and shell heat exchanger, and/or other types of heat exchanging device. The interface member 309 may include a plate constructed from a metal, a metal alloy, and/or other types of thermally conductive material. The thermoelectric cooler 314 may be a single Peltier-type element or an array of Peltier-type elements. One suitable thermoelectric cooler is a Peltier-type heat exchanging element (model # CP-2895) produced by TE Technology, Inc. in Traverse City, Michigan.


Individual retention devices 318 may include a plate 330 and a plurality of fasteners 306 extending through a plurality of apertures 332 (two are shown for illustrative purposes) of the plate 330. In the illustrated embodiment, the fasteners 306 are screws that may be received by the housing 302. In other embodiments, the fasteners 306 may include bolts, clamps, clips, nails, pins, rings, rivets, straps, and/or other suitable fasteners. During assembly, the cooling assembly 308 is first at least partially disposed in the internal space 303 of the housing 302. Then, the retention devices 318 are positioned proximate to the cooling assembly 308, and the fasteners 306 are extended through the apertures 332 of the plate 330 to engage the housing 302. The fasteners 306, the plates 330, and the housing 302 cooperate to hold the cooling assembly 308 together.


By applying power to the thermoelectric cooler 314, heat may be effectively removed from the skin of the subject to a circulating fluid in the fluid conduit 310. For example, applying a current to the thermoelectric cooler 314 may achieve a temperature generally below 37° C. on the first side 315a of the thermoelectric cooler 314 to remove heat from the subject via the interface member 309. The thermoelectric cooler 314 transfers the heat from the first side 315a to the second side 315b. The heat is then transferred to the circulating fluid in the fluid conduit 310.



FIG. 10 is an isometric and exploded view of a vibrator 322 disposed in the treatment device 104 of FIG. 9. The vibrator 322 may include a frame 324, a motor 325 carried by the frame 324, a rotating member 328 operatively coupled to the motor 325, and a plurality of fasteners 326 (e.g., screws) for fixedly attaching the frame 324 to the housing 302. In the illustrated embodiment, the motor 325 has an output shaft (not shown) generally centered about a body axis 327 of the motor 325. One suitable motor is a direct current motor (model # Pittman 8322S008-R1) manufactured by Ametek, Inc., of Harleysville, Pa. The rotating member 328 has a generally cylindrical shape and is off-centered from the body axis 327. In other embodiments, the motor 325 may have an off-centered shaft that is operatively coupled to the rotating member 328.


In operation, applying electricity to the motor 325 may cause the rotating member 328 to rotate around the body axis 327 of the motor 325. The off-centered rotating member 328 causes the vibrator 322 to be off-balanced about the body axis 327, and vibration in the frame 324 and the housing 302 may result.


The disclosures of U.S. patent application Ser. No. 11/741,271, U.S. patent application Ser. No. 11/750,953, and U.S. Provisional Application No. 60/795,799, are incorporated herein by reference in their entireties.


J. EXAMPLES

The applicants conducted experiments to cool subcutaneous lipid-rich cells in a pig using a treatment device as shown in FIG. 9 and a cryoprotectant. A first cryoprotectant composition used in the experiments included about 30% polypropylene glycol, about 30% glycerin, and about 40% ethanol (cryoprotectant I). A second cryoprotectant composition used in the experiments included about 40% propylene glycol, about 0.8% hydroxyethylcellulose, and about 59.2% water (cryoprotectant II). Skin surface temperatures investigated include −11° C., −12° C., −14° C., −16° C., and −20° C.


Each testing site was cleaned and shaved, and a surface thermocouple was placed on the skin of the pig to control the treatment device. A number of 3″×3″ squares of Webril® Undercast Padding #3175, supplied by Tyco Healthcare of Mansfield Mass. (“Webril”), were soaked with 8 milliliters of either cryoprotectant I or cryoprotectant II. The soaked Webril squares were then placed on the test sites for 5 minutes, and the treatment device was then applied to the Webril squares to achieve a desired surface temperature. Once the desired surface temperature was achieved, the surface temperature was maintained for a treatment period of up to about 30 minutes. After the treatment period, the skin of the pig was inspected for freezing.


The results of several experiments indicate that both cryoprotectant I and cryoprotectant II significantly lowered the freezing point of the skin of the pig. In particular, when the surface temperature was between about −12° C. to about −16° C., limited or no skin freezing was observed.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number, respectively. When the claims use the word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


The above detailed descriptions of embodiments of the invention are not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art may recognize. For example, while steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may be combined to provide further embodiments.


In general, the terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above detailed description explicitly defines such terms. While certain aspects of the invention are presented below in certain claim forms, the inventors contemplate the various aspects of the invention in any number of claim forms. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the invention.

Claims
  • 1. A system for selectively destroying subcutaneous lipid rich cells of a target region of a subject with skin, comprising: a thermoelectric treatment device having a fluid-cooled heat-exchanger,a thermoelectric cooler having a backside substantially covered by the fluid-cooled heat-exchanger,a heat exchanging element having a first side in thermal communication with a heat exchanging surface and a second side opposite the first side in thermal communication with a front side of the thermoelectric cooler, the heat exchanging element being configured to reduce a temperature of the target region for up to about 30 minutes such that lipid rich cells in the region are affected while preserving non-lipid rich cells proximate to the heat exchanging surface;a housing having an opening configured to receive the fluid-cooled heat-exchanger and thermoelectric cooler such that a sidewall of housing surrounds the fluid-cooled heat-exchanger and thermoelectric cooler;at least one fluid line extending though an opening in the housing and in fluid communication with the fluid-cooled heat-exchanger, andan absorbent configured to be positioned at least partially between the heat exchanging surface and the subject's skin and is configured to be thermally coupled to the treatment device, the absorbent being preloaded with an excess of cryoprotectant to continually supply the excess of cryoprotectant from the absorbent to the subject's skin during the up to about 30 minutes the temperature of the target region is reduced, wherein the cryoprotectant comprises about 40% propylene glycol and further comprises about 0.8% hydroxyethylcellulose.
  • 2. The system of claim 1, wherein the heat exchanging element reaches a temperature of about −20° C.
  • 3. The system of claim 1, wherein the absorbent is a cotton pad or a gauze to continually supply the cryoprotectant.
  • 4. The system of claim 1, wherein the cryoprotectant includes a viscosity that is in the range of about 1 cP to about 4,000 cP.
  • 5. The system of claim 1, wherein the absorbent is configured to substantially cover an interface between the treatment device and the skin, wherein the absorbent is configured to contact at least one of the treatment device and the skin.
  • 6. The system of claim 5, wherein the cryoprotectant further comprises a pH buffer to maintain the pH in the range of about 3 to about 11.
  • 7. The system of claim 5, wherein the cryoprotectant is water-soluble.
  • 8. The system of claim 5, wherein the cryoprotectant includes a viscosity in the range of about 1 cP to about 10,000 cP.
  • 9. The system of claim 5, wherein the cryoprotectant has a freezing point below about −10° C.
  • 10. The system of claim 1, wherein the excess of cryoprotectant preloaded onto the absorbent is configured to continually supply the cryoprotectant from the absorbent to the subject's skin during the up to about 30 minutes the temperature of the target region is reduced in light of absorption of the cryoprotectant by the skin.
  • 11. The system of claim 1, wherein the cryoprotectant has a freezing point below about −20° C.
  • 12. A system for removing heat from subcutaneous lipid rich cells of a target region of a subject having skin, comprising: a treatment device having a housing and a thermal mass in thermal communication with a heat exchanging surface, the thermal mass being configured to reduce a temperature of the target region for up to about 30 minutes such that lipid rich cells in the target region are affected while preserving non-lipid rich cells proximate to the heat exchanging surface;an absorbent configured to be positioned at least partially between the heat exchanging surface and the subject's skin, the absorbent being preloaded with an excess of a cryoprotectant to continually supply the excess of cryoprotectant from the absorbent to the subject's skin during the up to about 30 minutes the temperature of the target region is reduced, wherein the cryoprotectant comprises about 40% propylene glycol and further comprises 0.8% hydroxyethylcellulose.
  • 13. The system of claim 12, wherein the absorbent is configured to substantially cover an interface between the treatment device and the skin, wherein the absorbent is configured to contact at least one of the treatment device and the skin.
  • 14. The system of claim 13 wherein the cryoprotectant further comprises a pH buffer to maintain the pH in the range of about 3 to about 11.
  • 15. The system of claim 13 wherein the cryoprotectant is water-soluble.
  • 16. The system of claim 13 wherein the cryoprotectant includes a viscosity in the range of about 1 cP to about 10,000 cP.
  • 17. The system of claim 13 wherein the cryoprotectant has a freezing point below about −10° C.
  • 18. The system of claim 12, wherein the heat exchanging surface reaches a temperature of about −20° C.
  • 19. The system of claim 12, wherein the absorbent is a cotton pad or a gauze to continually supply the cryoprotectant.
  • 20. The system of claim 12, wherein the cryoprotectant includes a viscosity that is in the range of about 1 cP to about 4,000 cP.
  • 21. The system of claim 12, wherein the cryoprotectant has a freezing point below about −20° C.
  • 22. The system of claim 12, wherein the excess of cryoprotectant preloaded onto the absorbent is configured to continually supply the cryoprotectant from the absorbent to the subject's skin during the up to about 30 minutes the temperature of the target region is reduced in light of absorption of the cryoprotectant by the skin.
  • 23. A system for selectively destroying subcutaneous lipid rich cells of a target region of a subject with skin, comprising: a thermoelectric treatment device comprising: a fluid-cooled heat-exchanger;a thermoelectric cooler having a backside substantially covered by the fluid-cooled heat-exchanger; anda heat exchanging element having a first side in thermal communication with a heat exchanging surface and a second side opposite the first side in thermal communication with a front side of the thermoelectric cooler, the heat exchanging element being configured to reduce a temperature of the target region for up to about 30 minutes such that lipid rich cells in the region are affected while preserving non-lipid rich cells proximate to the heat exchanging surface; andan absorbent configured to be positioned at least partially between the heat exchanging surface and the subject's skin and is configured to be thermally coupled to the thermoelectric treatment device, the absorbent being preloaded with an excess of cryoprotectant to continually supply the excess of cryoprotectant from the absorbent to the subject's skin during the up to about 30 minutes the temperature of the target region is reduced, wherein the cryoprotectant comprises about 40% propylene glycol and further comprises about 0.8% hydroxyethylcellulose.
  • 24. A system for selectively destroying subcutaneous lipid rich cells of a target region of a subject with skin, comprising: a thermoelectric treatment device comprising a heat exchanging element having a first side in thermal communication with a heat exchanging surface and a second side opposite the first side in thermal communication with a thermoelectric cooler, the heat exchanging element being configured to reduce a temperature of the target region for up to about 30 minutes such that lipid rich cells in the region are affected while preserving non-lipid rich cells proximate to the heat exchanging surface; andan absorbent configured to be positioned at least partially between the heat exchanging surface and the subject's skin and is configured to be thermally coupled to the thermoelectric treatment device, the absorbent being preloaded with an excess of cryoprotectant to continually supply the excess of cryoprotectant from the absorbent to the subject's skin during the up to about 30 minutes the temperature of the target region is reduced, wherein the cryoprotectant comprises about 40% propylene glycol and further comprises about 0.8% hydroxyethylcellulose.
CROSS-REFERENCE TO RELATED APPLICATION(S)

The present application is a continuation of U.S. patent application Ser. No. 13/747,161, filed on Jan. 22, 2013, which is a continuation of U.S. patent application Ser. No. 11/741.271, filed on Apr. 27, 2007, which claims the benefit and priority to U.S. Provisional Patent Application No. 60/795,799, filed on Apr. 28, 2006, the entireties of each of the foregoing which are incorporated herein by reference.

US Referenced Citations (762)
Number Name Date Kind
681806 Mignault et al. Sep 1901 A
889810 Robinson et al. Jun 1908 A
1093868 Leighty Apr 1914 A
2516491 Swastek Jul 1950 A
2521780 Dodd et al. Sep 1950 A
2726658 Chessey Dec 1955 A
2766619 Tribus et al. Oct 1956 A
2851602 Cramwinckel et al. Sep 1958 A
3093135 Hirschhorn Jun 1963 A
3132688 Nowak May 1964 A
3133539 William et al. May 1964 A
3282267 Eidus Nov 1966 A
3341230 Louis Sep 1967 A
3502080 Hirschhorn Mar 1970 A
3566871 Richter et al. Mar 1971 A
3587577 Zubkov et al. Jun 1971 A
3591645 Selwitz Jul 1971 A
3692338 Didier Sep 1972 A
3702114 Zacarian Nov 1972 A
3703897 Mack et al. Nov 1972 A
3710784 Taylor Jan 1973 A
3786814 Armao Jan 1974 A
3827436 Andera et al. Aug 1974 A
3942519 Shock Mar 1976 A
3948269 Zimmer Apr 1976 A
3986385 Johnston et al. Oct 1976 A
3993053 Grossan Nov 1976 A
4002221 Buchalter Jan 1977 A
4008910 Roche Feb 1977 A
4026299 Sauder May 1977 A
4140130 Storm Feb 1979 A
4149529 Copeland et al. Apr 1979 A
4178429 Scheffer Dec 1979 A
4202336 Van Gerven May 1980 A
4266043 Fujii et al. May 1981 A
4269068 Molina May 1981 A
D260173 Wiebe Aug 1981 S
4381009 Del Bon Apr 1983 A
4396011 Mack et al. Aug 1983 A
4459854 Richardson et al. Jul 1984 A
4470263 Lehovec et al. Sep 1984 A
4483341 Witteles Nov 1984 A
4528979 Marchenko et al. Jul 1985 A
4531524 Mioduski Jul 1985 A
4548212 Leung Oct 1985 A
4555313 Duchane et al. Nov 1985 A
4585002 Kissin Apr 1986 A
4603076 Bowditch et al. Jul 1986 A
4614191 Perler et al. Sep 1986 A
4644955 Mioduski Feb 1987 A
4664110 Schanzlin May 1987 A
4700701 Montaldi Oct 1987 A
4718429 Smidt Jan 1988 A
4741338 Miyamae May 1988 A
4758217 Gueret Jul 1988 A
4764463 Mason Aug 1988 A
4802475 Weshahy Feb 1989 A
4832022 Tjulkov et al. May 1989 A
4841969 Donnerhack et al. Jun 1989 A
4846176 Golden Jul 1989 A
4850340 Onishi Jul 1989 A
4869250 Bitterly Sep 1989 A
4880564 Abel et al. Nov 1989 A
4905697 Heggs et al. Mar 1990 A
4906463 Cleary et al. Mar 1990 A
4930317 Klein Jun 1990 A
4935345 Guilbeau et al. Jun 1990 A
4961422 Marchosky et al. Oct 1990 A
4962761 Golden Oct 1990 A
4990144 Blott et al. Feb 1991 A
5007433 Hermsdoerffer et al. Apr 1991 A
5018521 Campbell et al. May 1991 A
5024650 Hagiwara et al. Jun 1991 A
5065752 Sessions et al. Nov 1991 A
5069208 Noppel et al. Dec 1991 A
5084671 Miyata et al. Jan 1992 A
5108390 Potocky et al. Apr 1992 A
5119674 Nielsen Jun 1992 A
5139496 Hed Aug 1992 A
5143063 Fellner Sep 1992 A
5148804 Hill et al. Sep 1992 A
5158070 Dory Oct 1992 A
5160312 Voelkel Nov 1992 A
5169384 Bosniak et al. Dec 1992 A
5197466 Marchosky et al. Mar 1993 A
5207674 Hamilton May 1993 A
5209227 Deutsch May 1993 A
5221726 Dabi et al. Jun 1993 A
5264234 Windhab et al. Nov 1993 A
5277030 Miller Jan 1994 A
5288469 Skalla Feb 1994 A
5314423 Seney et al. May 1994 A
5327886 Chiu Jul 1994 A
5330745 Mcdow et al. Jul 1994 A
5333460 Lewis et al. Aug 1994 A
5334131 Omandam et al. Aug 1994 A
5336616 Livesey et al. Aug 1994 A
5339541 Owens Aug 1994 A
5342617 Gold et al. Aug 1994 A
5351677 Kami et al. Oct 1994 A
5358467 Milstein et al. Oct 1994 A
5362966 Rosenthal et al. Nov 1994 A
5363347 Nguyen Nov 1994 A
5372608 Johnson Dec 1994 A
5386837 Sterzer Feb 1995 A
5411541 Bell et al. May 1995 A
5427772 Hagan et al. Jun 1995 A
5433717 Rubinsky et al. Jul 1995 A
D362091 Tomasiak et al. Sep 1995 S
5456703 Beeuwkes et al. Oct 1995 A
5472416 Blugerman et al. Dec 1995 A
5486207 Mahawili Jan 1996 A
5497596 Zatkulak Mar 1996 A
5501655 Rolt et al. Mar 1996 A
5505726 Meserol Apr 1996 A
5505730 Edwards et al. Apr 1996 A
5507790 Weiss Apr 1996 A
5513629 Johnson May 1996 A
5514105 Goodman, Jr. et al. May 1996 A
5514170 Mauch May 1996 A
5516505 McDow May 1996 A
5531742 Barken Jul 1996 A
5558376 Woehl Sep 1996 A
5562604 Yablon et al. Oct 1996 A
5571801 Segall et al. Nov 1996 A
5575812 Owens et al. Nov 1996 A
5603221 Maytal Feb 1997 A
5628769 Saringer May 1997 A
5634890 Morris Jun 1997 A
5634940 Panyard Jun 1997 A
5647051 Neer Jul 1997 A
5647868 Chinn Jul 1997 A
5650450 Lovette et al. Jul 1997 A
5651773 Perry et al. Jul 1997 A
5654279 Rubinsky et al. Aug 1997 A
5654546 Lindsay et al. Aug 1997 A
5660836 Knowlton et al. Aug 1997 A
5665053 Jacobs Sep 1997 A
5672172 Zupkas Sep 1997 A
5700284 Owens et al. Dec 1997 A
5725483 Podolsky Mar 1998 A
5733280 Avitall Mar 1998 A
5741248 Stern et al. Apr 1998 A
5746702 Gelfgat et al. May 1998 A
5746736 Tankovich May 1998 A
5755663 Larsen et al. May 1998 A
5755753 Knowlton et al. May 1998 A
5755755 Panyard May 1998 A
5759182 Varney et al. Jun 1998 A
5759764 Polovina et al. Jun 1998 A
5764794 Perlin Jun 1998 A
5769879 Richards et al. Jun 1998 A
5785955 Fischer Jul 1998 A
5792080 Ookawa et al. Aug 1998 A
5800490 Patz et al. Sep 1998 A
5802865 Strauss Sep 1998 A
5814040 Nelson et al. Sep 1998 A
D399493 Nakajima et al. Oct 1998 S
5817050 Klein et al. Oct 1998 A
5817145 Augustine et al. Oct 1998 A
5817149 Owens et al. Oct 1998 A
5817150 Owens et al. Oct 1998 A
5830208 Muller et al. Nov 1998 A
5833685 Tortal et al. Nov 1998 A
5844013 Kenndoff et al. Dec 1998 A
5853364 Baker et al. Dec 1998 A
5865841 Kolen et al. Feb 1999 A
5871524 Knowlton Feb 1999 A
5871526 Gibbs et al. Feb 1999 A
5885211 Eppstein et al. Mar 1999 A
5891617 Watson et al. Apr 1999 A
5895418 Saringer Apr 1999 A
5901707 Goncalves May 1999 A
5902256 Benaron May 1999 A
5919219 Knowlton et al. Jul 1999 A
5944748 Mager et al. Aug 1999 A
5948011 Knowlton et al. Sep 1999 A
5952168 Wowk et al. Sep 1999 A
5954680 Augustine et al. Sep 1999 A
5962477 Mak Oct 1999 A
5964092 Tozuka et al. Oct 1999 A
5964749 Eckhouse et al. Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5980561 Kolen et al. Nov 1999 A
5986167 Arteman et al. Nov 1999 A
5989286 Owens et al. Nov 1999 A
5992158 Goddard et al. Nov 1999 A
5997530 Nelson et al. Dec 1999 A
6017337 Pira Jan 2000 A
6023932 Johnston Feb 2000 A
6031525 Perlin Feb 2000 A
6032675 Rubinsky Mar 2000 A
6039694 Larson et al. Mar 2000 A
6041787 Rubinsky Mar 2000 A
6047215 McClure et al. Apr 2000 A
6049927 Thomas et al. Apr 2000 A
6051159 Hao et al. Apr 2000 A
D424699 Allen May 2000 S
6071239 Cribbs et al. Jun 2000 A
6074415 Der Ovanesian Jun 2000 A
6093230 Johnson et al. Jul 2000 A
6102885 Bass Aug 2000 A
6104952 Tu et al. Aug 2000 A
6104959 Spertell et al. Aug 2000 A
6106517 Zupkas Aug 2000 A
6113558 Rosenschein et al. Sep 2000 A
6113559 Klopotek Sep 2000 A
6113626 Clifton et al. Sep 2000 A
6120519 Weber et al. Sep 2000 A
6139544 Mikus et al. Oct 2000 A
6139545 Utley et al. Oct 2000 A
6150148 Nanda et al. Nov 2000 A
6151735 Koby et al. Nov 2000 A
6152952 Owens et al. Nov 2000 A
6171301 Nelson et al. Jan 2001 B1
6176869 Mason et al. Jan 2001 B1
6180867 Hedengren et al. Jan 2001 B1
6224617 Saadat et al. May 2001 B1
6226996 Weber et al. May 2001 B1
6241753 Knowlton Jun 2001 B1
6264649 Whitcroft et al. Jul 2001 B1
6273884 Altshuler et al. Aug 2001 B1
6290988 Van Vilsteren et al. Sep 2001 B1
6311090 Knowlton Oct 2001 B1
6311497 Chung Nov 2001 B1
6312453 Stefanile et al. Nov 2001 B1
6319510 Yates Nov 2001 B1
6350276 Knowlton Feb 2002 B1
6354297 Eiseman Mar 2002 B1
6357907 Cleveland et al. Mar 2002 B1
6375673 Clifton et al. Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6387380 Knowlton May 2002 B1
6395467 Fahy et al. May 2002 B1
6401722 Krag Jun 2002 B1
6405090 Knowlton Jun 2002 B1
6413255 Stern Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6426445 Young et al. Jul 2002 B1
6430446 Knowlton Aug 2002 B1
6430956 Haas et al. Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6438954 Goetz et al. Aug 2002 B1
6438964 Giblin Aug 2002 B1
6453202 Knowlton Sep 2002 B1
6458888 Hood et al. Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6471693 Carroll et al. Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6478811 Dobak, III et al. Nov 2002 B1
6494844 Van Bladel et al. Dec 2002 B1
6497721 Ginsburg et al. Dec 2002 B2
6508831 Kushnir Jan 2003 B1
6514244 Pope et al. Feb 2003 B2
6519964 Bieberich Feb 2003 B2
6523354 Tolbert Feb 2003 B1
D471982 Cheng Mar 2003 S
6527765 Kelman et al. Mar 2003 B2
6527798 Ginsburg et al. Mar 2003 B2
6544248 Bass Apr 2003 B1
6547811 Becker et al. Apr 2003 B1
6548297 Kuri-Harcuch et al. Apr 2003 B1
6551255 Van Bladel et al. Apr 2003 B2
6551341 Boylan et al. Apr 2003 B2
6551348 Blalock et al. Apr 2003 B1
6551349 Lasheras et al. Apr 2003 B2
6569189 Augustine et al. May 2003 B1
6585652 Lang et al. Jul 2003 B2
6592577 Abboud et al. Jul 2003 B2
6605080 Altshuler et al. Aug 2003 B1
6607498 Eshel Aug 2003 B2
6620187 Carson et al. Sep 2003 B2
6620188 Ginsburg et al. Sep 2003 B1
6620189 Machold et al. Sep 2003 B1
6623430 Slayton et al. Sep 2003 B1
6626854 Friedman et al. Sep 2003 B2
6632219 Baranov et al. Oct 2003 B1
6635053 Lalonde et al. Oct 2003 B1
6643535 Damasco et al. Nov 2003 B2
6645162 Friedman et al. Nov 2003 B2
6645229 Matsumura et al. Nov 2003 B2
6645232 Carson Nov 2003 B2
6648904 Altshuler et al. Nov 2003 B2
6656208 Grahn et al. Dec 2003 B2
6660027 Gruszecki et al. Dec 2003 B2
6662054 Kreindel et al. Dec 2003 B2
6682524 Elbrecht et al. Jan 2004 B1
6682550 Clifton et al. Jan 2004 B2
6685731 Kushnir et al. Feb 2004 B2
6694170 Mikus et al. Feb 2004 B1
6695874 Machold et al. Feb 2004 B2
6697670 Chornenky Feb 2004 B2
6699237 Weber et al. Mar 2004 B2
6699266 Lachenbruch et al. Mar 2004 B2
6699267 Voorhees et al. Mar 2004 B2
6718785 Bieberich Apr 2004 B2
6741895 Gafni et al. May 2004 B1
6743222 Durkin et al. Jun 2004 B2
6746474 Saadat Jun 2004 B2
6749624 Knowlton Jun 2004 B2
6753182 Kadkade et al. Jun 2004 B1
6764493 Weber et al. Jul 2004 B1
6764502 Bieberich Jul 2004 B2
6789545 Littrup et al. Sep 2004 B2
6795728 Chornenky et al. Sep 2004 B2
6820961 Johnson Nov 2004 B2
6821274 McHale et al. Nov 2004 B2
6840955 Ein Jan 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6878144 Altshuler et al. Apr 2005 B2
6889090 Kreindel May 2005 B2
6892099 Jaafar et al. May 2005 B2
6904956 Noel Jun 2005 B2
6918903 Bass Jul 2005 B2
6927316 Faries, Jr. et al. Aug 2005 B1
6942022 Blangetti et al. Sep 2005 B2
6945942 Van Bladel et al. Sep 2005 B2
6948903 Ablabutyan et al. Sep 2005 B2
6969399 Schock et al. Nov 2005 B2
7005558 Johansson et al. Feb 2006 B1
7006874 Knowlton et al. Feb 2006 B2
7022121 Stern et al. Apr 2006 B2
7037326 Lee May 2006 B2
7054685 Dimmer et al. May 2006 B2
7060061 Altshuler et al. Jun 2006 B2
D525592 Nguyen Jul 2006 S
7077858 Fletcher et al. Jul 2006 B2
7081111 Svaasand et al. Jul 2006 B2
7083612 Littrup et al. Aug 2006 B2
7096204 Chen et al. Aug 2006 B1
7112712 Ancell Sep 2006 B1
7115123 Knowlton et al. Oct 2006 B2
7141049 Stern et al. Nov 2006 B2
7183360 Daniel et al. Feb 2007 B2
7189252 Krueger Mar 2007 B2
7192426 Baust et al. Mar 2007 B2
7204832 Altshuler et al. Apr 2007 B2
7220778 Anderson et al. May 2007 B2
7229436 Stern et al. Jun 2007 B2
D546949 Green Jul 2007 S
7258674 Cribbs et al. Aug 2007 B2
D550362 Olivera et al. Sep 2007 S
7267675 Stern et al. Sep 2007 B2
7276058 Altshuler et al. Oct 2007 B2
7318821 Lalonde et al. Jan 2008 B2
7331951 Eshel et al. Feb 2008 B2
7347855 Eshel et al. Mar 2008 B2
D568258 Adam May 2008 S
7367341 Anderson et al. May 2008 B2
7532201 Quistgaard et al. May 2009 B2
7572268 Babaev Aug 2009 B2
7604632 Howlett et al. Oct 2009 B2
7613523 Eggers et al. Nov 2009 B2
7615016 Barthe et al. Nov 2009 B2
7713266 Elkins et al. May 2010 B2
7780656 Tankovich Aug 2010 B2
7799018 Goulko Sep 2010 B2
7824437 Saunders Nov 2010 B1
7828831 Tanhehco et al. Nov 2010 B1
7850683 Elkins et al. Dec 2010 B2
7854754 Ting et al. Dec 2010 B2
7862558 Elkins et al. Jan 2011 B2
RE42277 Jaafar et al. Apr 2011 E
7938824 Chornenky et al. May 2011 B2
7959657 Harsy et al. Jun 2011 B1
7963959 Da Silva et al. Jun 2011 B2
7967763 Deem et al. Jun 2011 B2
7993330 Goulko Aug 2011 B2
7998137 Elkins et al. Aug 2011 B2
RE42835 Chornenky et al. Oct 2011 E
RE43009 Chornenky et al. Dec 2011 E
8133180 Slayton et al. Mar 2012 B2
8133191 Rosenberg et al. Mar 2012 B2
8192474 Levinson Jun 2012 B2
8246611 Paithankar et al. Aug 2012 B2
8247221 Fawcett Aug 2012 B2
8275442 Allison Sep 2012 B2
8285390 Levinson et al. Oct 2012 B2
8333700 Barthe et al. Dec 2012 B1
8337539 Ting et al. Dec 2012 B2
8366622 Slayton et al. Feb 2013 B2
8372130 Young et al. Feb 2013 B2
8397518 Vistakula et al. Mar 2013 B1
8414631 Quisenberry et al. Apr 2013 B2
8433400 Prushinskaya et al. Apr 2013 B2
8506486 Slayton et al. Aug 2013 B2
8523775 Barthe et al. Sep 2013 B2
8523791 Castel Sep 2013 B2
8523927 Levinson et al. Sep 2013 B2
8535228 Slayton et al. Sep 2013 B2
8603073 Allison Dec 2013 B2
8636665 Slayton et al. Jan 2014 B2
8641622 Barthe et al. Feb 2014 B2
8663112 Slayton et al. Mar 2014 B2
8672848 Slayton et al. Mar 2014 B2
8676332 Fahey Mar 2014 B2
8690778 Slayton et al. Apr 2014 B2
8690779 Slayton et al. Apr 2014 B2
8690780 Slayton et al. Apr 2014 B2
8702774 Baker et al. Apr 2014 B2
8758215 Legendre et al. Jun 2014 B2
8764693 Graham et al. Jul 2014 B1
8834547 Anderson et al. Sep 2014 B2
9132031 Levinson et al. Sep 2015 B2
9149322 Knowlton Oct 2015 B2
9375345 Levinson et al. Jun 2016 B2
9581942 Shippert Feb 2017 B1
20010005791 Ginsburg et al. Jun 2001 A1
20010007952 Shimizu Jul 2001 A1
20010023364 Ahn Sep 2001 A1
20010031459 Fahy et al. Oct 2001 A1
20010039439 Elkins et al. Nov 2001 A1
20010045104 Bailey, Sr. et al. Nov 2001 A1
20010047196 Ginsburg et al. Nov 2001 A1
20020026226 Ein Feb 2002 A1
20020032473 Kushnir et al. Mar 2002 A1
20020042607 Palmer et al. Apr 2002 A1
20020049483 Knowlton Apr 2002 A1
20020058975 Bieberich May 2002 A1
20020062142 Knowlton May 2002 A1
20020068338 Nanda et al. Jun 2002 A1
20020068874 Zuckerwar et al. Jun 2002 A1
20020082668 Ingman Jun 2002 A1
20020103520 Latham Aug 2002 A1
20020107558 Clifton et al. Aug 2002 A1
20020117293 Campbell Aug 2002 A1
20020120315 Furuno et al. Aug 2002 A1
20020128648 Weber et al. Sep 2002 A1
20020151830 Kahn Oct 2002 A1
20020151887 Stern et al. Oct 2002 A1
20020156509 Cheung Oct 2002 A1
20020161357 Anderson et al. Oct 2002 A1
20020188286 Quijano et al. Dec 2002 A1
20020198518 Mikus et al. Dec 2002 A1
20030032900 Ella Feb 2003 A1
20030044764 Soane et al. Mar 2003 A1
20030055414 Altshuler et al. Mar 2003 A1
20030062040 Lurie et al. Apr 2003 A1
20030069618 Smith, III et al. Apr 2003 A1
20030077326 Newton et al. Apr 2003 A1
20030077329 Kipp Apr 2003 A1
20030079488 Bieberich May 2003 A1
20030100936 Altshuler et al. May 2003 A1
20030109908 Lachenbruch et al. Jun 2003 A1
20030109910 Lachenbruch et al. Jun 2003 A1
20030109911 Lachenbruch et al. Jun 2003 A1
20030109912 Joye et al. Jun 2003 A1
20030114885 Nova et al. Jun 2003 A1
20030120268 Bertolero et al. Jun 2003 A1
20030125649 McIntosh et al. Jul 2003 A1
20030187488 Kreindel et al. Oct 2003 A1
20030199226 Sommer et al. Oct 2003 A1
20030199859 Altshuler et al. Oct 2003 A1
20030220594 Halvorson et al. Nov 2003 A1
20030220635 Knowlton et al. Nov 2003 A1
20030220674 Anderson et al. Nov 2003 A1
20030236487 Knowlton Dec 2003 A1
20040002705 Knowlton et al. Jan 2004 A1
20040006328 Anderson Jan 2004 A1
20040009936 Tang Jan 2004 A1
20040024437 Machold et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040034341 Altshuler et al. Feb 2004 A1
20040039312 Hillstead et al. Feb 2004 A1
20040044384 Leber et al. Mar 2004 A1
20040049178 Abboud et al. Mar 2004 A1
20040073079 Altshuler et al. Apr 2004 A1
20040074629 Noel Apr 2004 A1
20040077977 Ella et al. Apr 2004 A1
20040082886 Timpson Apr 2004 A1
20040093042 Altshuler et al. May 2004 A1
20040102768 Cluzeau et al. May 2004 A1
20040104012 Zhou et al. Jun 2004 A1
20040106867 Eshel et al. Jun 2004 A1
20040133251 Altshuler et al. Jul 2004 A1
20040159109 Harvie Aug 2004 A1
20040162596 Altshuler et al. Aug 2004 A1
20040176667 Mihai et al. Sep 2004 A1
20040186535 Knowlton Sep 2004 A1
20040199226 Shadduck Oct 2004 A1
20040206365 Knowlton Oct 2004 A1
20040210214 Knowlton Oct 2004 A1
20040210287 Greene Oct 2004 A1
20040215294 Littrup et al. Oct 2004 A1
20040249427 Nabilsi et al. Dec 2004 A1
20040259855 Anderson et al. Dec 2004 A1
20040260209 Ella et al. Dec 2004 A1
20040260210 Ella et al. Dec 2004 A1
20040260211 Maalouf Dec 2004 A1
20040267339 Yon et al. Dec 2004 A1
20050010197 Lau et al. Jan 2005 A1
20050033957 Enokida Feb 2005 A1
20050038422 Maurice Feb 2005 A1
20050049526 Baer Mar 2005 A1
20050049543 Anderson et al. Mar 2005 A1
20050049661 Koffroth Mar 2005 A1
20050065531 Cohen Mar 2005 A1
20050113725 Masuda May 2005 A1
20050143781 Carbunaru et al. Jun 2005 A1
20050145372 Noel Jul 2005 A1
20050149153 Nakase et al. Jul 2005 A1
20050154314 Quistgaard Jul 2005 A1
20050154431 Quistgaard et al. Jul 2005 A1
20050159986 Breeland et al. Jul 2005 A1
20050177075 Meunier et al. Aug 2005 A1
20050182462 Chornenky et al. Aug 2005 A1
20050187495 Quistgaard et al. Aug 2005 A1
20050187502 Krempel et al. Aug 2005 A1
20050187597 Vanderschuit Aug 2005 A1
20050203446 Takashima Sep 2005 A1
20050215987 Slatkine Sep 2005 A1
20050222565 Manstein Oct 2005 A1
20050251117 Anderson et al. Nov 2005 A1
20050251120 Anderson Nov 2005 A1
20050261753 Littrup et al. Nov 2005 A1
20050277859 Carlsmith et al. Dec 2005 A1
20050281789 Rao et al. Dec 2005 A1
20050283144 Shiono et al. Dec 2005 A1
20060030778 Mendlein et al. Feb 2006 A1
20060035380 Saint-Leger Feb 2006 A1
20060036300 Kreindel Feb 2006 A1
20060041704 Choi Feb 2006 A1
20060074313 Slayton et al. Apr 2006 A1
20060079852 Bubb et al. Apr 2006 A1
20060094988 Tosaya et al. May 2006 A1
20060106836 Masugi et al. May 2006 A1
20060111613 Boutillette et al. May 2006 A1
20060122509 Desilets Jun 2006 A1
20060188832 McCarren Aug 2006 A1
20060189964 Anderson et al. Aug 2006 A1
20060195168 Dunbar et al. Aug 2006 A1
20060200063 Munro et al. Sep 2006 A1
20060206040 Greenberg et al. Sep 2006 A1
20060206110 Knowlton et al. Sep 2006 A1
20060234899 Nekmard et al. Oct 2006 A1
20060259102 Slatkine Nov 2006 A1
20060265032 Hennings et al. Nov 2006 A1
20060270745 Hunt et al. Nov 2006 A1
20060293734 Scott et al. Dec 2006 A1
20070010811 Stern et al. Jan 2007 A1
20070010861 Anderson et al. Jan 2007 A1
20070032561 Lin et al. Feb 2007 A1
20070038156 Rosenberg Feb 2007 A1
20070055156 Desilets et al. Mar 2007 A1
20070055173 DeLonzor et al. Mar 2007 A1
20070055179 Deem et al. Mar 2007 A1
20070055180 Deem et al. Mar 2007 A1
20070055181 Deem et al. Mar 2007 A1
20070073367 Jones et al. Mar 2007 A1
20070078502 Weber et al. Apr 2007 A1
20070088413 Weber et al. Apr 2007 A1
20070100398 Sloan May 2007 A1
20070106342 Schumann May 2007 A1
20070123962 Grahn et al. May 2007 A1
20070129441 Koulen Jun 2007 A1
20070129714 Elkins Jun 2007 A1
20070135876 Weber Jun 2007 A1
20070141265 Thomson Jun 2007 A1
20070179482 Anderson Aug 2007 A1
20070193278 Polacek et al. Aug 2007 A1
20070198071 Ting et al. Aug 2007 A1
20070219540 Masotti et al. Sep 2007 A1
20070233226 Kochamba et al. Oct 2007 A1
20070239062 Chopra et al. Oct 2007 A1
20070239075 Rosenberg et al. Oct 2007 A1
20070239150 Zvuloni et al. Oct 2007 A1
20070249519 Guha et al. Oct 2007 A1
20070255187 Branch Nov 2007 A1
20070255274 Stern et al. Nov 2007 A1
20070255362 Levinson et al. Nov 2007 A1
20070265585 Joshi et al. Nov 2007 A1
20070265614 Stern et al. Nov 2007 A1
20070270925 Levinson Nov 2007 A1
20070282249 Quisenberry et al. Dec 2007 A1
20070282318 Spooner et al. Dec 2007 A1
20080014627 Merchant et al. Jan 2008 A1
20080046047 Jacobs Feb 2008 A1
20080058784 Manstein et al. Mar 2008 A1
20080077201 Levinson et al. Mar 2008 A1
20080077202 Levinson Mar 2008 A1
20080077211 Levinson et al. Mar 2008 A1
20080097207 Cai et al. Apr 2008 A1
20080139901 Altshuler et al. Jun 2008 A1
20080140061 Toubia et al. Jun 2008 A1
20080140371 Warner Jun 2008 A1
20080160480 Ruddle et al. Jul 2008 A1
20080161892 Mercuro et al. Jul 2008 A1
20080183164 Elkins et al. Jul 2008 A1
20080188915 Mills et al. Aug 2008 A1
20080195036 Merchant et al. Aug 2008 A1
20080248554 Merchant et al. Oct 2008 A1
20080269851 Deem et al. Oct 2008 A1
20080287839 Rosen et al. Nov 2008 A1
20080300529 Reinstein Dec 2008 A1
20080312651 Pope et al. Dec 2008 A1
20090012434 Anderson Jan 2009 A1
20090016980 Tsivkin et al. Jan 2009 A1
20090018623 Levinson et al. Jan 2009 A1
20090018624 Levinson et al. Jan 2009 A1
20090018625 Levinson et al. Jan 2009 A1
20090018626 Levinson et al. Jan 2009 A1
20090018627 Levinson et al. Jan 2009 A1
20090024023 Welches et al. Jan 2009 A1
20090076488 Welches et al. Mar 2009 A1
20090112134 Avni Apr 2009 A1
20090118722 Ebbers et al. May 2009 A1
20090149929 Levinson et al. Jun 2009 A1
20090149930 Schenck Jun 2009 A1
20090171253 Davenport Jul 2009 A1
20090171334 Elkins et al. Jul 2009 A1
20090209886 Tudico Aug 2009 A1
20090221938 Rosenberg et al. Sep 2009 A1
20090226424 Hsu Sep 2009 A1
20090276018 Brader Nov 2009 A1
20090281464 Cioanta et al. Nov 2009 A1
20090299234 Cho et al. Dec 2009 A1
20090306749 Mulindwa Dec 2009 A1
20090312676 Rousso et al. Dec 2009 A1
20090312693 Thapliyal et al. Dec 2009 A1
20090326621 El-Galley Dec 2009 A1
20100015190 Hassler Jan 2010 A1
20100028969 Mueller et al. Feb 2010 A1
20100030306 Edelman et al. Feb 2010 A1
20100036295 Altshuler et al. Feb 2010 A1
20100042087 Goldboss et al. Feb 2010 A1
20100047360 Klaveness et al. Feb 2010 A1
20100049178 Deem et al. Feb 2010 A1
20100081971 Allison Apr 2010 A1
20100087806 Da Silva et al. Apr 2010 A1
20100152824 Allison Jun 2010 A1
20100168726 Brookman Jul 2010 A1
20100179531 Nebrigic et al. Jul 2010 A1
20100198064 Perl et al. Aug 2010 A1
20100198204 Rogers Aug 2010 A1
20100217349 Fahey et al. Aug 2010 A1
20100241023 Gilbert Sep 2010 A1
20100268220 Johnson et al. Oct 2010 A1
20100280582 Baker et al. Nov 2010 A1
20110009860 Chornenky et al. Jan 2011 A1
20110040235 Castel Feb 2011 A1
20110040299 Kim et al. Feb 2011 A1
20110046523 Altshuler et al. Feb 2011 A1
20110060242 Hausman et al. Mar 2011 A1
20110060323 Baust et al. Mar 2011 A1
20110066083 Tosaya et al. Mar 2011 A1
20110066216 Ting et al. Mar 2011 A1
20110077557 Wing et al. Mar 2011 A1
20110077723 Parish et al. Mar 2011 A1
20110112405 Barthe et al. May 2011 A1
20110112520 Kreindel May 2011 A1
20110144631 Elkins et al. Jun 2011 A1
20110152849 Baust et al. Jun 2011 A1
20110172651 Altshuler et al. Jul 2011 A1
20110189129 Qiu et al. Aug 2011 A1
20110196395 Maschke Aug 2011 A1
20110196438 Mnozil et al. Aug 2011 A1
20110202048 Nebrigic et al. Aug 2011 A1
20110238050 Allison et al. Sep 2011 A1
20110238051 Levinson et al. Sep 2011 A1
20110257642 Griggs, III Oct 2011 A1
20110288537 Halaka Nov 2011 A1
20110300079 Martens et al. Dec 2011 A1
20110301585 Goulko Dec 2011 A1
20110313411 Anderson et al. Dec 2011 A1
20110313412 Kim et al. Dec 2011 A1
20120010609 Deem et al. Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120022518 Levinson Jan 2012 A1
20120022622 Johnson et al. Jan 2012 A1
20120035475 Barthe et al. Feb 2012 A1
20120035476 Barthe et al. Feb 2012 A1
20120041525 Karni Feb 2012 A1
20120046547 Barthe et al. Feb 2012 A1
20120053458 Barthe et al. Mar 2012 A1
20120065629 Elkins et al. Mar 2012 A1
20120083862 Altshuler et al. Apr 2012 A1
20120101549 Schumann Apr 2012 A1
20120109041 Munz May 2012 A1
20120158100 Schomacker Jun 2012 A1
20120209363 Williams, III et al. Aug 2012 A1
20120233736 Tepper et al. Sep 2012 A1
20120239123 Weber et al. Sep 2012 A1
20120253416 Erez et al. Oct 2012 A1
20120259322 Fourkas et al. Oct 2012 A1
20120277674 Clark, III et al. Nov 2012 A1
20120310232 Erez Dec 2012 A1
20130018236 Altshuler et al. Jan 2013 A1
20130019374 Schwartz Jan 2013 A1
20130035680 Ben-haim et al. Feb 2013 A1
20130066309 Levinson Mar 2013 A1
20130073017 Liu et al. Mar 2013 A1
20130079684 Rosen et al. Mar 2013 A1
20130116758 Levinson et al. May 2013 A1
20130116759 Levinson et al. May 2013 A1
20130150844 Deem et al. Jun 2013 A1
20130158440 Allison Jun 2013 A1
20130158636 Ting et al. Jun 2013 A1
20130166003 Johnson et al. Jun 2013 A1
20130190744 Avram et al. Jul 2013 A1
20130238062 Ron Edoute et al. Sep 2013 A1
20130245507 Khorassani Zadeh Sep 2013 A1
20130253384 Anderson et al. Sep 2013 A1
20130253493 Anderson et al. Sep 2013 A1
20130253494 Anderson et al. Sep 2013 A1
20130253495 Anderson et al. Sep 2013 A1
20130253496 Anderson et al. Sep 2013 A1
20130303904 Barthe et al. Nov 2013 A1
20130303905 Barthe et al. Nov 2013 A1
20130331914 Lee et al. Dec 2013 A1
20140005759 Fahey et al. Jan 2014 A1
20140005760 Levinson et al. Jan 2014 A1
20140067025 Levinson et al. Mar 2014 A1
20140142469 Britva et al. May 2014 A1
20140200487 Ramdas et al. Jul 2014 A1
20140200488 Seo et al. Jul 2014 A1
20140222121 Spence et al. Aug 2014 A1
20140277219 Nanda Sep 2014 A1
20140277302 Weber et al. Sep 2014 A1
20140277303 Biser et al. Sep 2014 A1
20140303697 Anderson et al. Oct 2014 A1
20150112412 Anderson et al. Apr 2015 A1
20150141797 Turnquist et al. May 2015 A1
20150209174 Abreu Jul 2015 A1
20150216719 DeBenedictis et al. Aug 2015 A1
20150216720 DeBenedictis et al. Aug 2015 A1
20150216816 O′Neil et al. Aug 2015 A1
20150223975 Anderson et al. Aug 2015 A1
20150283022 Lee et al. Oct 2015 A1
20150328077 Levinson Nov 2015 A1
20150328478 McDaniel Nov 2015 A1
20150335468 Rose et al. Nov 2015 A1
20150342780 Levinson et al. Dec 2015 A1
20160051308 Pennybacker et al. Feb 2016 A1
20160051401 Yee et al. Feb 2016 A1
20160135985 Anderson May 2016 A1
20160220849 Knowlton Aug 2016 A1
20160324684 Levinson et al. Nov 2016 A1
20170007309 DeBenedictis et al. Jan 2017 A1
20170065323 Rosen et al. Mar 2017 A1
20170079833 Frangineas, Jr. et al. Mar 2017 A1
20170105869 Frangineas, Jr. et al. Apr 2017 A1
20170165105 Anderson et al. Jun 2017 A1
20170196731 DeBenedictis et al. Jul 2017 A1
20170239079 Root et al. Aug 2017 A1
20170319378 Anderson et al. Nov 2017 A1
20170325992 DeBenedictis et al. Nov 2017 A1
20170325993 Jimenez Lozano et al. Nov 2017 A1
20170326042 Zeng et al. Nov 2017 A1
20170326346 Jimenez Lozano et al. Nov 2017 A1
20180185081 O′neil et al. Jul 2018 A1
20180185189 Weber et al. Jul 2018 A1
20180263677 Hilton et al. Sep 2018 A1
20180271767 Jimenez Lozano et al. Sep 2018 A1
20180310950 Yee et al. Nov 2018 A1
20190000663 Anderson et al. Jan 2019 A1
20190125424 DeBenedictis et al. May 2019 A1
20190142493 Debenedictis et al. May 2019 A1
20190224042 Ting et al. Jul 2019 A1
Foreign Referenced Citations (186)
Number Date Country
2011253768 Jun 2012 AU
2441489 Mar 2005 CA
2585214 Oct 2007 CA
333982 Nov 1958 CH
86200604 Oct 1987 CN
2514795 Oct 2002 CN
2514811 Oct 2002 CN
2617189 May 2004 CN
1511503 Jul 2004 CN
1741777 Mar 2006 CN
1817990 Aug 2006 CN
2843367 Dec 2006 CN
2850584 Dec 2006 CN
2850585 Dec 2006 CN
200970265 Nov 2007 CN
101259329 Sep 2008 CN
101309657 Nov 2008 CN
101351167 Jan 2009 CN
101489541 Jul 2009 CN
532976 Sep 1931 DE
2851602 Jun 1980 DE
4213584 Nov 1992 DE
4224595 Jan 1994 DE
4238291 May 1994 DE
4445627 Jun 1996 DE
19800416 Jul 1999 DE
263069 Apr 1988 EP
0397043 Nov 1990 EP
0406244 Jan 1991 EP
560309 Sep 1993 EP
0598824 Jun 1994 EP
1030611 Aug 2000 EP
1201266 May 2002 EP
0573573 Jul 2003 EP
1568395 Aug 2005 EP
2260801 Dec 2010 EP
2289598 Mar 2011 EP
2527005 Nov 2012 EP
2904986 Aug 2015 EP
854937 Apr 1940 FR
2744358 Aug 1997 FR
2745935 Sep 1997 FR
2767476 Feb 1999 FR
2776920 Oct 1999 FR
2789893 Aug 2000 FR
2805989 Sep 2001 FR
387960 Feb 1933 GB
578157 Jun 1946 GB
2120944 Dec 1983 GB
2202447 Sep 1988 GB
2248183 Apr 1992 GB
2263872 Aug 1993 GB
2286660 Aug 1995 GB
2323659 Sep 1998 GB
S50-33039 Sep 1975 JP
58187454 Nov 1983 JP
S6094113 Jun 1985 JP
62082977 Apr 1987 JP
63076895 Apr 1988 JP
01223961 Sep 1989 JP
03051964 Mar 1991 JP
03259975 Nov 1991 JP
04093597 Mar 1992 JP
06261933 Sep 1994 JP
07194666 Aug 1995 JP
07268274 Oct 1995 JP
09164163 Jun 1997 JP
10216169 Aug 1998 JP
10223961 Aug 1998 JP
3065657 Feb 2000 JP
2000503154 Mar 2000 JP
3065657 Jul 2000 JP
2001046416 Feb 2001 JP
2002125993 May 2002 JP
2002224051 Aug 2002 JP
2002282295 Oct 2002 JP
2002290397 Oct 2002 JP
2002543668 Dec 2002 JP
2003190201 Jul 2003 JP
2004013600 Jan 2004 JP
2004073812 Mar 2004 JP
2004159666 Jun 2004 JP
2005039790 Feb 2005 JP
2005065984 Mar 2005 JP
2005110755 Apr 2005 JP
2005509977 Apr 2005 JP
3655820 Jun 2005 JP
2005520608 Jul 2005 JP
2005237908 Sep 2005 JP
2005323716 Nov 2005 JP
2006026001 Feb 2006 JP
2006130055 May 2006 JP
2006520949 Sep 2006 JP
2007270459 Oct 2007 JP
2008532591 Aug 2008 JP
2009515232 Apr 2009 JP
2009189757 Aug 2009 JP
200173222 Dec 1999 KR
10-2004-0094508 Nov 2004 KR
20090000258 Jan 2009 KR
1020130043299 Apr 2013 KR
1020140038165 Mar 2014 KR
2036667 Jun 1995 RU
532976 Nov 1978 SU
0476644 Feb 2002 TW
8503216 Aug 1985 WO
9114417 Oct 1991 WO
9300807 Jan 1993 WO
9404116 Mar 1994 WO
9623447 Aug 1996 WO
9626693 Sep 1996 WO
9636293 Nov 1996 WO
9637158 Nov 1996 WO
9704832 Feb 1997 WO
9705828 Feb 1997 WO
9722262 Jun 1997 WO
9724088 Jul 1997 WO
9725798 Jul 1997 WO
9748440 Dec 1997 WO
9829134 Jul 1998 WO
9831321 Jul 1998 WO
9841156 Sep 1998 WO
9841157 Sep 1998 WO
9909928 Mar 1999 WO
9916502 Apr 1999 WO
9938469 Aug 1999 WO
9949937 Oct 1999 WO
0044346 Aug 2000 WO
0044349 Aug 2000 WO
0065770 Nov 2000 WO
0067685 Nov 2000 WO
0100269 Jan 2001 WO
0113989 Mar 2001 WO
0114012 Mar 2001 WO
0134048 May 2001 WO
0205736 Jan 2002 WO
02102921 Dec 2002 WO
03007859 Jan 2003 WO
03078596 Sep 2003 WO
03079916 Oct 2003 WO
2004000098 Dec 2003 WO
2004080279 Sep 2004 WO
2004090939 Oct 2004 WO
WO-2005018433 Mar 2005 WO
WO-2005023200 Mar 2005 WO
2005033957 Apr 2005 WO
2005046540 May 2005 WO
2005060354 Jul 2005 WO
2005096979 Oct 2005 WO
2005112815 Dec 2005 WO
2006066226 Jun 2006 WO
2006094348 Sep 2006 WO
2006106836 Oct 2006 WO
2006116603 Nov 2006 WO
2006127467 Nov 2006 WO
2007012083 Jan 2007 WO
2007028975 Mar 2007 WO
2007041642 Apr 2007 WO
2007101039 Sep 2007 WO
2007127924 Nov 2007 WO
2007145421 Dec 2007 WO
2007145422 Dec 2007 WO
2008006018 Jan 2008 WO
2008039556 Apr 2008 WO
2008039557 Apr 2008 WO
2008055243 May 2008 WO
2008143678 Nov 2008 WO
2009011708 Jan 2009 WO
2009026471 Feb 2009 WO
2010077841 Jul 2010 WO
2010127315 Nov 2010 WO
2012012296 Jan 2012 WO
2012103242 Aug 2012 WO
2013013059 Jan 2013 WO
2013075006 May 2013 WO
2013075016 May 2013 WO
2013190337 Dec 2013 WO
2014151872 Sep 2014 WO
2014191263 Dec 2014 WO
2015117001 Aug 2015 WO
2015117005 Aug 2015 WO
2015117026 Aug 2015 WO
2015117032 Aug 2015 WO
2015117036 Aug 2015 WO
2016028796 Feb 2016 WO
2016048721 Mar 2016 WO
Non-Patent Literature Citations (96)
Entry
Aguilar et al., “Modeling Cryogenic Spray Temperature and Evaporation Rate Based on Single-Droplet Analysis,” Eighth International Conference on Liquid Atomization and Spray Systems, Pasadena, CA, USA, Jul. 2000, 7 pages.
Al-Sakere, B. et al. “Tumor Ablation with Irreversible Electroporation,” PLOS One, Issue 11, Nov. 2007, 8 pages.
Alster, T. et al., “Cellulite Treatment Using a Novel Combination Radiofrequency, Infrared Light, and Mechanical Tissue Manipulation Device,” Journal of Cosmetic and Laser Therapy, vol. 7, 2005, pp. 81-85.
Ardevol, A. et al., “Cooling Rates of Tissue Samples During Freezing with Liquid Nitrogen,” Journal of Biochemical and Biophysical Methods, vol. 27, 1993, pp. 77-86.
Arena, C. B. et al., “High-Frequency Irreversible Electroporation (H-FIRE) for Non-Thermal Ablation Without Muscle Contraction,” BioMedical Engineering OnLine 2011, 10:102, Nov. 21, 2011, 21 pgs.
Becker, S. M. et al. “Local Temperature Rises Influence In Vivo Electroporation Pore Development: A Numerical Stratum Corneum Lipid Phase Transition Model,” Journal of Biomechanical Engineering, vol. 129, Oct. 2007, pp. 712-721.
Bohm, T. et al., “Saline-Enhanced Radiofrequency Ablation of Breast Tissue: an in Vitro Feasibility Study,” Investigative Radiology, vol. 35 (3), 2000, pp. 149-157.
Bondei, E. et al., “Disorders of Subcutaneous Tissue (Cold Panniculitis),” Dermatology in General Medicine, Fourth Edition, vol. 1, Chapter 108, 1993, Section 16, pp. 1333-1334.
Burge, S.M. et al., “Hair Follicle Destruction and Regeneration in Guinea Pig Skin after Cutaneous Freeze Injury,” Cryobiology, 27(2), 1990, pp. 153-163.
Coban, Y. K. et al., “Ischemia-Reperfusion Injury of Adipofascial Tissue: An Experimental Study Evaluating Early Histologic and Biochemical Alterations in Rats,” Mediators of Inflammation, 2005, 5, pp. 304-308.
Del Pino, M. E. et al. “Effect of Controlled Volumetric Tissue Heating with Radiofrequency on Cellulite and the Subcutaneous Tissue of the Buttocks and Thighs,” Journal of Drugs in Dermatology, vol. 5, Issue 8, Sep. 2006, pp. 714-722.
Donski, P. K. et al., “The Effects of Cooling no Experimental Free Flap Survival,” British Journal of Plastic Surgery, vol. 33, 1980, pp. 353-360.
Duck, F. A., Physical Properties of Tissue, Academic Press Ltd., chapters 4 & 5, 1990, pp. 73-165.
Duncan, W. C. et al., “Cold Panniculitis,” Archives of Dermatology, vol. 94, Issue 6, Dec. 1966, pp. 722-724.
Epstein, E. H. et al., “Popsicle Panniculitis,” The New England Journal of Medicine, 282(17), Apr. 23, 1970, pp. 966-967.
Fournier, L. et al. “Lattice Model for the Kinetics of Rupture of Fluid Bilayer Membranes,” Physical Review, vol. 67, 2003, pp. 051908-1-051908-11.
Gabriel, S. et al., “The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHZ,” Physics in Medicine and Biology, vol. 41, 1996, pp. 2251-2269.
Gage, A. “Current Progress in Cryosurgery,” Cryobiology 25, 1988, pp. 483-486.
Gatto, H. “Effects of Thermal Shocks on Interleukin-1 Levels and Heat Shock Protein 72 (HSP72) Expression in Normal Human Keratinocytes,” PubMed, Archives of Dermatological Research, vol. 284, Issue 7, 1992: pp. 414-417 [Abstract].
Hale, H. B. et al., “Influence of Chronic Heat Exposure and Prolonged Food Deprivation on Excretion of Magnesium, Phosphorus, Calcium, Hydrogen Ion & Ketones,” Aerospace Medicine, vol. 39—No. 9, Sep. 1968, pp. 919-926.
Heller Page, E. et al., “Temperature-dependent skin disorders,” Journal of the American Academy of Dermatology, vol. 18, No. 5, Pt 1, May 1988, pp. 1003-1019.
Hemmingsson, A. et al. “Attenuation in Human Muscle and Fat Tissue in Vivo and in Vitro,” Acra Radiologica Diagnosis, vol. 23, No. 2, 1982, pp. 149-151.
Henry, F. et al., “Les Dermatoses Hivernales,” Rev Med Liege, 54:11, 1999, pp. 864-866. [Abstract Attached].
Hernan, P. et al., “Study for the evaluation of the efficacy of Lipocryolysis (EEEL)”, Nov. 30, 2011.
Hernan, R. P., “A Study to Evaluate the Action of Lipocryolysis”, 33(3) CryoLellers, 2012, pp. 176-180.
Holland, DB. et al. “Cold shock induces the synthesis of stress proteins in human keratinocytes,” PubMed Journal of Investigative Dermatology; 101(2): Aug. 1993, pp. 196-199.
Holman, W. L. et al., “Variation in Cryolesion Penetration Due to Probe Size and Tissue Thermal Conductivity,” The Annals of Thoracic Surgery, vol. 53, 1992, pp. 123-126.
Hong, J.S. et al., “Patterns of Ice Formation in Normal and Malignant Breast Tissue,” Cryobiology 31, 1994, pp. 109-120.
Huang et al. “Comparative Proteomic Profiling of Murine Skin,” Journal of Investigative Dermatology, vol. 121(1), Jul. 2003, pp. 51-64.
Isambert, H. “Understanding the Electroporation of Cells and Artificial Bilayer Membranes,” Physical Review Letters, vol. 80, No. 15, 1998, pp. 3404-3707.
Jalian, H. R. et al., “Cryolipolysis: A Historical Perspective and Current Clinical Practice”, 32(1) Semin. Cutan. Med. Surg., 2013, pp. 31-34.
Kellum, R. E. et al., “Sclerema Neonatorum: Report of Case and Analysis of Subcutaneous and Epidermal-Dermal Lipids by Chromatographic Methods,” Archives of Dermatology, vol. 97, Apr. 1968, pp. 372-380.
Koska, J. et al., “Endocrine Regulation of Subcutaneous Fat Metabolism During Cold Exposure in Humans,” Annals of the New York Academy of Sciences, vol. 967, 2002,pp. 500-505.
Kundu, S. K. et al., “Breath Acetone Analyzer: Diagnostic Tool to Monitor Dietary Fat Loss,” Clinical Chemistry, vol. 39, Issue (1), 1993, pp. 87-92.
Kundu, S. K. et al., “Novel Solid-Phase Assay of Ketone Bodies in Urine,” Clinical Chemistry, vol. 37, Issue (9), 1991, pp. 1565-1569.
Kuroda, S. et al. “Thermal Distribution of Radio-Frequency Inductive Hyperthermia Using an Inductive Aperture-Type Applicator: Evaluation of the Effect of Tumor Size and Depth”, Medical and Biological Engineering and Computing, vol. 37, 1999, pp. 285-290.
Laugier, P. et al., “In Vivo Results with a New Device for Ultrasonic Monitoring of Pig Skin Cryosurgery: The Echographic Cryprobe,” The Society for Investigative Dermatology, Inc., vol. 111, No. 2, Aug. 1998, pp. 314-319.
Levchenko et al., “Effect of Dehydration on Lipid Metabolism” Ukrainskii Biokhimicheskii Zhurnal, vol. 50, Issue 1, 1978, pp. 95-97.
Lidagoster, MD et al., “Comparison of Autologous Fat Transfer in Fresh, Refrigerated, and Frozen Specimens: An Animal Model,” Annals of Plastic Surgery, vol. 44, No. 5, May 2000, pp. 512-515.
Liu, A. Y.-C et al., “Transient Cold Shock Induces the Heat Shock Response upon Recovery at 37 C in Human Cells,” Journal of Biological Chemistry, , 269(20), May 20, 1994, pp. 14768-14775.
L'Vova, S.P. “Lipid Levels and Lipid Peroxidation in Frog Tissues During Hypothermia and Hibernation” Ukrainskii Biokhimicheskii Zhurnal, vol. 62, Issue 1, 1990, pp. 65-70.
Maize, J.C. “Panniculitis,” Cutaneous Pathology, Chapter 13, 1998, 327-344.
Malcolm, G. T. et al., “Fatty Acid Composition of Adipose Tissue in Humans: Differences between Subcutaneous Sites,” The American Journal of Clinical Nutrition, vol. 50, 1989, pp. 288-291.
Manstein, D. et al. “A Novel Cryotherapy Method of Non-invasive, Selective Lipolysis,” LasersSurg.Med 40:S20, 2008, p. 104.
Manstein, D. et al. “Selective Cryolysis: A Novel Method of Non-Invasive Fat Removal,” Lasers in Surgery and Medicine: The Official Journal of the ASLMS, vol. 40, No. 9, Nov. 2008, pp. 595-604.
Mayoral, “Case Reports: Skin Tightening with a Combined Unipolar and Bipolar Radiofrequency Device,” Journal of Drugs in Dermatology, 2007, pp. 212-215.
Mazur, P. “Cryobiology: The Freezing of Biological Systems,” Science, 68, 1970, pp. 939-949.
Merrill, T. “A Chill to the Heart: A System to Deliver Local Hypothermia Could One Day Improve the Lives of Heart-Attack Patients,” Mechanical Engineering Magazine, Oct. 2010, 10 pages.
Miklavcic, D. et al. “Electroporation-Based Technologies and Treatments,” The Journal of Membrane Biology (2010) 236:1-2, 2 pgs.
Moschella, S. L. et al., “Diseases of the Subcutaneous Tissue,” in Dermatology, Second Edition, vol. 2, 1985 Chapter 19, Section II (W.B. Saunders Company, 1980) pp. 1169-1181.
Murphy, J. V. et al., “Frostbite: Pathogenesis and Treatment” The Journal of Trauma: Injury, Infection, and Critical Care, vol. 48, No. 1, Jan. 2000, pp. 171-178.
Nagao, T. et al., “Dietary Diacylglycerol Suppresses Accumulation of Body Fat Compared to Triacylglycerol in Men a Double-Blind Controlled Trial,” The Journal of Nutrition, vol. 130, Issue (4), 2000, pp. 792-797.
Nagle, W. A. et al. “Cultured Chinese Hamster Cells Undergo Apoptosis After Exposure to Cold but Nonfreezing Temperatures,” Cryobiology 27, 1990, pp. 439-451.
Nagore, E. et al., “Lipoatrophia Semicircularis-a Traumatic Panniculitis: Report of Seven Cases and Review of the Literature,” Journal of the American Academy of Dermatology, vol. 39, Nov. 1998, pp. 879-881.
Nanda, G.S. et al., “Studies on electroporation of thermally and chemically treated human erythrocytes,” Bioelectrochemistry and Bioenergetics, 34, 1994, pp. 129-134, 6 pgs.
Narins, D.J. et al. “Non-Surgical Radiofrequency Facelift”, The Journal of Drugs in Dermatology, vol. 2, Issue 5, 2003, pp. 495-500.
Nielsen, B. “Thermoregulation in Rest and Exercise,” Acta Physiologica Scandinavica Supplementum, vol. 323 (Copenhagen 1969), pp. 7-74.
Nishikawa, H. et al. “Ultrastructural Changes and Lipid Peroxidation in Rat Adipomusculocutaneous Flap Isotransplants after Normothermic Storage and Reperfusion,” Transplantation, vol. 54, No. 5,1992, pp. 795-801.
Nurnberger, F. “So-Called Cellulite: An Invented Disease,” Journal of Dermatologic Surgery and Oncology, Mar. 1978, pp. 221-229.
Pease, G. R. et al., “An Integrated Probe for Magnetic Resonance Imaging Monitored Skin Cryosurgery,” Journal of Biomedical Engineering, vol. 117, Feb. 1995, pp. 59-63.
Pech, P. et al., “Attenuation Values, Volume Changes and Artifacts in Tissue Due to Freezing,” Acta Radiologica , vol. 28, Issue 6, 1987, pp. 779-782.
Peterson, L. J. et al., “Bilateral Fat Necrosis of the Scrotum,” Journal of Urology, vol. 116, 1976, pp. 825-826.
Phinney, S. D. et al., “Human Subcutaneous Adipose Tissue Shows Site-Specific Differences in Fatty Acid Composition,” The American Journal of Clinical Nutrition, vol. 60, 1994, pp. 725-729.
Pierard, G.E. et al., “Cellulite: From Standing Fat Herniation to Hypodermal Stretch Marks,” The American Journal of Dermatology, vol. 22, Issue 1, 2000, pp. 34-37, [Abstract].
Pope, K. et al. “Selective Fibrous Septae Heating: An Additional Mechanism of Action for Capacitively Coupled Monopolar Radiofrequency” Thermage, Inc. Article, Feb. 2005, 6pgs.
Quinn, P. J. “A Lipid-Phase Separation Model of Low-Temperature Damage to Biological Membranes,” Cryobiology, 22, 1985, 128-146.
Rabi, T. et al., “Metabolic Adaptations in Brown Adipose Tissue of the Hamster in Extreme Ambient Temperatures,” American Journal of Physiology, vol. 231, Issue 1, Jul. 1976, pp. 153-160.
Renold, A.E. et al. “Adipose Tissue” in Handbook of Physiology, Chapter 15, (Washington, D.C., 1965) pp. 169-176.
Rossi, A. B. R. et al. “Cellulite: a Review,” European Academy of Dermatology and Venercology, 2000, pp. 251-262, 12 pgs.
Rubinsky, B. “Principles of Low Temperature Cell Preservation,” Heart Failure Reviews, vol. 8, 2003, pp. 277-284.
Rubinsky, B. et al., “Cryosurgery: Advances in the Application of low Temperatures to Medicine,” International Journal of Refrigeration, vol. 14, Jul. 1991, pp. 190-199.
Saleh, K.Y. et al., “Two-Dimensional Ultrasound Phased Array Design for Tissue Ablation for Treatment of Benign Prostatic Hyperplasia,” International Journal of Hyperthermia, vol. 20, No. 1, Feb. 2004, pp. 7-31.
Schoning, P. et al., “Experimental Frostbite: Freezing Times, Rewarming Times, and Lowest Temperatures of Pig Skin Exposed to Chilled Air,” Cryobiology 27, 1990, pp. 189-193.
Shephard, R. J. “Adaptation to Exercise in the Cold,” Sports Medicine, vol. 2, 1985, pp. 59-71.
Sigma-Aldrich “Poly(ethylene glycol) and Poly(ethylene oxide),” http://www.sigmaaldrich.com/materials-science/materialscience-;products.htmi?TablePage=2020411 0, accessed Oct. 19, 2012.
Smalls, L. K. et al. “Quantitative Model of Cellulite: Three Dimensional Skin Surface Topography, Biophysical Characterization, and Relationship to Human Perception,” International Journal of Cosmetic Science, vol. 27, Issue 5, Oct. 2005, 17 pgs.
Thermage, News Release, “Study Published in Facial Plastic Surgery Journal Finds Selective Heating of Fibrous Septae Key to Success and Safety of Thermage ThermaCool System,” Jun. 20, 2005, 2 pages.
“ThermaCool Monopolar Capacitive Radiofrequency, the one choice for nonablative tissue tightening and contouring”, Thermage, Inc. Tech Brochure, Nov. 30, 2005, 8 pgs.
Vallerand et al. “Cold Stress Increases Lipolysis, FFA Ra and TG/FFA Cycling in Humans,” Aviation, Space, and Environmental Medicine 70(1), 1999, pp. 42-50.
Wang, X. et al., “Cryopreservation of Cell/Hydrogel Constructs Based on a new Cell-Assembling Technique,” Sep. 5, 2009, 40 pages.
Wharton, D. A. et al., “Cold Acclimation and Cryoprotectants in a Freeze-Tolerant Antarctic Nematode, Panagrolaimus Davidi,”, Journal of Comparative Physiology, vol. 170, No. 4, Mar. 2000, 2 pages.
Winkler, C. et al., “Gene Transfer in Laboratory Fish: Model Organisms for the Analysis of Gene Function,” in Transgenic Animals, Generation and Use (The Netherlands 1997), pp. 387-395.
Young, H. E. et al. “Isolation of Embryonic Chick Myosatellite and Pluripotent Stem Cells” The Journal of Tissue Culture Methods, vol. 14, Issue 2, 1992, pp. 85-92.
Zelickson, B. et al., “Cryolipolysis for Noninvasive Fat Cell Destruction: Initial Results from a Pig Model”, 35 Dermatol. Sug., 2009, pp. 1-9.
Zouboulis, C. C. et al., “Current Developments and Uses of Cryosurgery in the Treatment of Keloids and Hypertrophic Scars,” Wound Repair and Regeneration, vol. 10, No. 2, 2002, pp. 98-102.
European Search Report, European Patent Application No. EP 07761461.8; Applicant: Zeltiq Aesthetics, Inc., Mailing Date: Apr. 25, 2012, 9 pages.
International Search Report and Written Opinion for PCT/US2007/067638; Applicant: Juniper Medical, Inc.; Date of Mailing: Jan. 10, 2008, 11 pages.
Brazilian Examination Report for Brazilian Application No. PI 0706055-6; Applicant Zeltiq Aesthetics, Inc.; Date of Mailing: Nov. 19, 2019, 18 pages.
U.S. Appl. No. 13/747,161, filed Jan. 22, 2013, obtained Feb. 11, 2020; 483 pages.
Gao, D. “A Study of Physical and Biological Mechanisms of Cryoinjury and Cryoprotection of Human Erythrocytes in Freezing Preservation” Department of Mechanical Engineering Thesis, Concordia University, Mar. 1991. 253 pages.
Disclosure re: “Method and Apparatus for Regional Fat Reduction Using Controlled and Sustained Cooling of Skin Surface.” Oct. 12, 2006. 7 pages.
Beise, R.D. et al. (Jan. 1, 1998). “Psychophysical study of stinging pain evoked by brief freezing of superficial skin and ensuing short-lasting changes in sensations of cool and cold pain.” Pain, vol. 74, Jan. 1, 1998 (Jan. 1, 1998), pp. 275-286, XP055620108, DOI: 10.1016/S0304-3959(97)00179-6.
Cohen, ML. (1977). “Measurement of The Thermal Properties of Human Skin. A review.” J. Invest. Dermatol., 69, pp. 333-338.
Golstein, P. et al. (2007). “Cell death by necrosis: Towards a molecular definition.” Trends Biochem Sci. 32:1 37-43.
Petersen, A., et al. “A new approach for freezing of aqueous solutions under active control of the nucleation temperature”, Cryobiology 53 (2006) 248-257.
Vuraki, K.A. et al. (1989). “A device for cryovacuurn treatment.” Med tech, Jan.-Feb. 1989, (1):46-9 (extracted from PUBMED on Dec. 6, 2016). English translation. 7 pages.
Related Publications (1)
Number Date Country
20200155215 A1 May 2020 US
Provisional Applications (1)
Number Date Country
60795799 Apr 2006 US
Continuations (2)
Number Date Country
Parent 13747161 Jan 2013 US
Child 16595466 US
Parent 11741271 Apr 2007 US
Child 13747161 US