The present invention relates generally to a CT scanner including a gantry that can be manually rotated about an axis of rotation when a sensor is activated.
A CT scanner takes a plurality of x-ray images of a part of a patient to create a three dimensional CT image. The CT scanner includes a gantry that supports and houses components of the CT scanner. The gantry includes a cross-bar section, a first arm that houses an x-ray source that generates x-rays and a second arm that houses a complementary flat-panel detector. During a CT scan, a motor rotates the gantry around the patient about an axis of rotation, and the detector takes a plurality of x-ray images at a plurality of rotational positions. In prior CT scanners, the gantry is locked and cannot rotate about the axis of rotation when the CT scanner is not taking a CT scan.
A CT scanner includes a gantry, a handle, and a sensor located on or connected to the handle. The sensor can be activated by touch or by detecting the presence of an operator.
A motor rotates the gantry about an axis of rotation. During operation of the CT scanner, a control provides a signal to the motor to rotate the gantry. When the CT scanner is not taking a CT scan, a locking mechanism locks the gantry to prevent rotation of the gantry.
When the sensor is activated by detecting an operator, the control provides a signal to release or disengage the locking mechanism, allowing the gantry to freely rotate about the axis of rotation. The operator can then manually rotate the gantry. When the sensor no longer detects the presence of the operator, the control sends a signal to lock the locking mechanism and the gantry in the current position, preventing rotation of the gantry.
These and other features of the present invention will be best understood from the following specification and drawings.
As shown schematically in
Returning to
The CT scanner 10 includes a control 90 that controls the motor 50 and the rotation of the gantry 12. During operation of the CT scanner 10, the control 90 provides an operation signal to the motor 50 to rotate the gantry 12 about the axis of rotation X. When the CT scanner 10 is not being operated or taking a CT scan, a locking mechanism 78 locks the gantry 12 and prevents rotation of the gantry 12 about the axis of rotation X. For example, the locking mechanism 78 can be a series of gears, a motor, a clutch, a solenoid brake or any type of locking mechanism. Alternatively, the motor 50 could lock the gantry 12 in place or a brake or a clutch could be applied.
The sensor 74 also communicates with the control 90. When the sensor 74 is activated, such as by detection of the hand of the operator or by touch, the control 90 provides a signal to release or disengage the locking mechanism 78, allowing the gantry 12 to freely rotate about the axis of rotation X. The operator can then use the handle 84 and manually rotate the gantry 12 about the axis of rotation X.
For example, if the CT scanner 10 is moved to a new location, the operator can activate the sensor 74 by touching the sensor 74 or by waving a hand near the sensor 74. When the sensor 74 detects the operator, the control 90 sends the signal to release the locking mechanism 78. The operator can then grab the handle to manually rotate the gantry 12 about the axis of rotation X. The operator can rotate the gantry 12 to ensure that the gantry 12 does not hit the patient P or anything in the room and that no objects prevent the gantry 12 from rotating during the CT scan. Therefore, the operator can ensure that the gantry 12 can safely rotate when the CT scanner 10 operates during a CT scan.
After the CT scanner 10 is manually rotated about the axis of rotation X by the operator, the operator releases the gantry 12. The sensor 74 no longer detects the operator's hand or touch, and the control 90 sends a signal to lock the locking mechanism 78 and lock the gantry 12 in the current position. The gantry 12 is then prevented from freely rotating about the axis of rotation X. Once the locking mechanism 78 is locked, the gantry 12 is again locked and can only be rotated about the axis of rotation X by the motor 50 during a CT scan.
The foregoing description is only exemplary of the principles of the invention. Many modifications and variations are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than using the example embodiments which have been specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.
This application claims priority to U.S. Provisional Patent Application No. 60/889,613 filed Feb. 13, 2007.
Number | Date | Country | |
---|---|---|---|
60889613 | Feb 2007 | US |