The present disclosure relates generally to the processing and culturing of biological cells using microfluidic devices.
As the field of microfluidics continues to progress, microfluidic devices have become convenient platforms for processing and manipulating micro-objects, such as biological cells. Even so, the full potential of microfluidic devices, particularly as applied to the biological sciences, has yet to be realized. For example, while microfluidic devices have been applied to the analysis of biological cells, the culturing of such cells continues to be performed in tissue culture plates, which is time consuming and requires relatively large amounts of costly cell culturing media, disposable plastic dishes, microtiter plates, and the like.
In accordance with the exemplary embodiments disclosed herein, a station for culturing biological cells in a microfluidic device is provided. The station includes one or more thermally conductive mounting interfaces (e.g., one, two, three, four, five, six, or more, mounting interfaces), each mounting interface configured for having a microfluidic device detachably mounted thereon. The station further includes a thermal regulation system configured for controlling a temperature of microfluidic devices detachably mounted on each of the one or more mounting interfaces, and a media perfusion system configured to controllably and selectively dispense flowable culturing media into microfluidic devices detachably mounted on each of the one or more mounting interfaces.
In various embodiments, the media perfusion system includes a pump having an input fluidically connected to a source of culturing media and an output, which may be the same as or different than the input. Perfusion of media (or other fluids or gases) can be performed by a perfusion network that fluidically connects the pump output with one or more perfusion lines, each perfusion line associated with a respective one of the one or more mounting interfaces. The perfusion lines can be configured to be fluidically connected to a fluid ingress port of a microfluidic device mounted on the respective mounting interface. A control system is configured to selectively operate the pump and the perfusion network to thereby selectively cause culturing media from the culturing media source to flow through a respective perfusion line at a controlled flow rate for a controlled period of time. In various embodiments, the control system is (or may be) programmed or otherwise configured to provide an intermittent flow of culturing media through a respective perfusion line according to an on-off duty cycle and a flow rate, which may optionally be based at least in part on input received through a user interface. In some embodiments, the control system is (or may be) programmed or otherwise configured to provide a flow of culturing media through no more than a single perfusion line at any one time. In other embodiments, the control system is (or may be) programmed or otherwise configured to provide a flow of culturing media through two or more perfusion lines at the same time.
In various embodiments, the culturing station further includes respective microfluidic device covers associated with each mounting interface, the device covers being configured to partially or fully enclose a microfluidic device mounted on the respective mounting interface. A perfusion line associated with the respective mounting interface can have a distal end coupled to the device cover, configured in conjunction with a configuration of the device cover so that the distal end of the perfusion line may be fluidically connected to a fluid ingress port on the microfluidic device when the device cover is enclosing (e.g., positioned over) the microfluidic device. For example, the device covers can include one or more features configured to form a pressure fit, a frictional fit, or another type of fluid tight connection between the distal end of the perfusion line and the fluid ingress port of the microfluidic device in order to fluidically connect the perfusion line to the microfluidic device.
One or more waste lines may also be associated with a respective one of the one or more mounting interfaces. For example, the respective waste lines can be coupled to each of the one or more device covers, each waste line having a proximal end coupled to the respective device cover and configured in conjunction with a configuration of the cover so that the proximal end of the waste line may be fluidically connected to a fluid egress port on the microfluidic device when the device cover is enclosing (e.g., positioned over) the microfluidic device. The device covers can include one or more features configured to form a pressure fit, a frictional fit, or another type of fluid tight connection between the proximal end of the waste line and the fluid egress port of the microfluidic device in order to fluidically connect the waste line to the microfluidic device.
In various embodiments, each mounting interface can comprise a generally planar metallic substrate having a top surface configured to thermally couple with a generally planar metallic bottom surface of a microfluidic device mounted thereon. The substrate can further comprise a bottom surface configured to thermally couple with a heating element, such as a resistive heater, a Peltier thermoelectric device, or the like. The substrate can comprise a copper alloy, such as brass or bronze.
The thermal regulation system can include one or more temperature sensors. Such sensors can be coupled to and/or embedded within each mounting interface substrate. Alternatively, or in addition, the thermal regulation system can be configured to receive temperature data from one or more temperature sensors coupled to and/or embedded within each microfluidic device mounted on a mounting interface. In one embodiment, the thermal regulation system can include one or more resistive heaters thermally coupled to the one or more mounting interfaces, optionally with each of the one or more resistive heaters being thermally coupled to a respective one of the one or more mounting interfaces or a metallic substrate thereof. In an alternate embodiment, the thermal regulation system can include one or more Peltier thermoelectric heating/cooling devices, optionally with each of the one or more Peltier devices being thermally coupled to a respective one of the one or more mounting interfaces or a metallic substrate thereof.
The thermal regulation system can comprising one or more printed circuit boards (PCBs) configured to monitor and regulate the temperature of the one or more mounting interfaces. Thus, the one or more PCBs can obtain temperature data from the one or more temperature sensors (whether coupled to and/or mounted on a mounting interface and/or a microfluidic device mounted thereon) and use such data to regulate the temperature of the one or more mounting interfaces and/or microfluidic devices mounted thereon. The one or more PCBs can comprise a resistive heater (e.g., a metal lead on the surface of the PCB that heats up when current is passed through) of can be coupled to a heating element, such as a resistive heater or a Peltier device. Each of the one or more printed circuit boards (PCBs) can be associated with a respective one of the one or more mounting interfaces. Thus, each of the one or more mounting interfaces can be independently monitored and regulated with regard to temperature.
In various embodiments, a respective adjustable clamp is provided at each mounting interface and configured to secure a microfluidic device to the respective mounting interface. For example, in embodiments in which device covers are provided at the mounting interfaces, the clamps may be configured to apply a force against the respective device cover associated with the mounting interface such that the device cover secures a microfluidic device at least partially enclosed by (e.g., positioned under) the device cover to the respective mounting surface. In other embodiments, one or more compression springs are provided at each mounting interfaces and configured to apply a force against a respective device cover associated with the mounting interface, such that the device cover secures a microfluidic device at least partially enclosed by the device cover to the respective mounting surface.
In various embodiments, the culturing station further comprises a support for the one or more mounting interfaces, the support being configured to rotate about a defined axis and thereby allow the one or more mounting interfaces to be tilted relative to a plane that is normal to the gravitational force acting upon the culturing station. In such embodiments, the culturing station can further include a level, which can indicate when the one or more mounting interfaces is/are tilted at a pre-determined degree relative to the normal plane, thus allowing microfluidic devices mounted on the mounting interfaces to be held at a desired angle. For example, the pre-determined degree of tilt can be within the range of about 0.5° to about 135° (e.g., about 1°, 2°, 3°, 4°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, 90°, 95°, 100°, 105°, 110°, 115°, 120°, 125°, 130°, or 135°.
In various embodiments, the culturing station is further configured to record in a memory respective perfusion and/or temperature histories of microfluidic devices mounted to the one or more mounting interfaces. By way of non-limiting example, the memory can be incorporated into or otherwise coupled with the respective microfluidic device. The culturing station may further be equipped with an imaging and/or detecting apparatus coupled to or otherwise operatively associated with the culturing station and configured for viewing and/or imaging and/or detecting biological activity in a microfluidic device mounted to a mounting interface.
In accordance with another aspect of the disclosed embodiments, an exemplary method for culturing biological cells in a microfluidic device includes (i) mounting a microfluidic device on a mounting interface of a culturing station, the microfluidic device defining a microfluidic circuit including a flow region and a plurality of growth chambers, the microfluidic device comprising a fluid ingress port in fluid communication with a first end region of the microfluidic circuit, and a fluid egress port in fluid communication with a second end region of the microfluidic circuit; (ii) fluidically connecting a perfusion line associated with the mounting interface to the fluid ingress port to thereby fluidically connect the perfusion line with the first end region of the microfluidic circuit; (iii) fluidically connecting a waste line associated with the mounting interface to the fluid egress port to thereby fluidically connect the waste line with the second end region of the microfluidic circuit; and (iv) flowing a culturing media through the perfusion line, fluid ingress port, flow region of the microfluidic circuit, and fluid egress port, respectively, at a flow rate adequate to perfuse one or more biological cells sequestered in the plurality of growth chambers.
In various embodiments, an intermittent flow of culturing media is provided through the flow region of the microfluidic circuit. By way of example, the culturing media can be flowed through the flow region of the microfluidic circuit according to a predetermined and/or operator selected on-off duty cycle, which may (without limitation), last for about 5 minutes to about 30 minutes (e.g., about 5 minutes to about 10 minutes, about 6 minutes to about 15 minutes, about 7 minutes to about 20 minutes, about 8 minutes to about 25 minutes, about 15 minutes to about 20, 25, or 30 minutes, about 17.5 minutes to about 20, 25, or 30 minutes. In some embodiments, culturing media is flowed periodically, each time (by way of example and not limitation) for about 10 seconds to about 120 seconds (e.g., about 20 seconds to about 100 seconds, or about 30 seconds to about 80 seconds). In some embodiments, flow of culturing media in the flow region of the microfluidic circuit is stopped periodically (by way of example and not limitation) for about 5 seconds to about 60 minutes (e.g., about 30 seconds to about 1, 2, 3, 4, 5, or 30 minutes, about 1 minute to about 2, 3, 4, 5, 6, or 35 minutes, about 2 minutes to about 4, 5, 6, 7, 8, or 40 minutes, about 3 minutes to about 6, 7, 8, 9, 10, or 45 minutes, about 4 minutes to about 8, 9, 10, 11, 12, or 50 minutes, about 5 minutes to about 10, 15, 20, 25, 30, or 60 minutes, about 10 minutes to about 20, 30, 40, 50, or 60 minutes, etc.). The culturing media can be flowed through the flow region of the microfluidic circuit according to a predetermined and/or operator selected flow rate. By way of non-limiting example, in one embodiment, the flow rate is about 0.01 microliters/sec to about 5.0 microliters/sec. In various embodiments, the flow region of the microfluidic circuit comprises two or more flow channels, wherein the culturing media is flowed through each of the two or more flow channels at an average rate of (again, by way of example and not limitation) about 0.005 microliters/sec to about 2.5 microliters/sec. In alternative embodiments, a continuous flow of culturing media is provided through the microfluidic circuit.
In various embodiments, the method further includes controlling a temperature of the microfluidic device using at least one heating element (e.g., a resistive heater, a Peltier thermoelectric device, or the like) that is thermally coupled to the mounting interface. For example, the heating element can be activated based on a signal output by a temperature sensor embedded in or otherwise coupled to the mounting interface.
In various embodiments, the method further includes recording perfusion and/or temperature histories of the microfluidic device while it is mounted to the mounting interface. By way of non-limiting example, the perfusion and/or temperature histories can be recorded in a memory that is incorporated into or otherwise coupled to the microfluidic device.
Other and further aspects and features of embodiments of the disclosed inventions will become apparent from the ensuing detailed description in view of the accompanying figures.
This specification describes exemplary embodiments and applications of the invention. The invention, however, is not limited to these exemplary embodiments and applications or to the manner in which the exemplary embodiments and applications operate or are described herein. Moreover, the Figures may show simplified or partial views, and the dimensions of elements in the Figures may be exaggerated or otherwise not in proportion for clarity. In addition, as the terms “on,” “attached to,” or “coupled to” are used herein, one element (e.g., a material, a layer, a substrate, etc.) can be “on,” “attached to,” or “coupled to” another element regardless of whether the one element is directly on, attached, or coupled to the other element or there are one or more intervening elements between the one element and the other element. Also, directions (e.g., above, below, top, bottom, side, up, down, under, over, upper, lower, horizontal, vertical, “x,” “y,” “z,” etc.), if provided, are relative and provided solely by way of example and for ease of illustration and discussion and not by way of limitation. In addition, where reference is made to a list of elements (e.g., elements a, b, c), such reference is intended to include any one of the listed elements by itself, any combination of less than all of the listed elements, and/or a combination of all of the listed elements.
Section divisions in the specification are for ease of review only and do not limit any combination of elements discussed.
As used herein, “substantially” means sufficient to work for the intended purpose. The term “substantially” thus allows for minor, insignificant variations from an absolute or perfect state, dimension, measurement, result, or the like such as would be expected by a person of ordinary skill in the field but that do not appreciably affect overall performance. When used with respect to numerical values or parameters or characteristics that can be expressed as numerical values, “substantially” means within ten percent. The term “ones” means more than one.
As used herein, the term “micro-object” can encompass one or more of the following: inanimate micro-objects such as microparticles, microbeads (e.g., polystyrene beads, Luminex™ beads, or the like), magnetic beads, paramagnetic beads, microrods, microwires, quantum dots, and the like; biological micro-objects such as cells (e.g., embryos, oocytes, sperms, cells dissociated from a tissue, blood cells, immunological cells, such as macrophages, NK cells, T cells, B cells, dendritic cells (DCs), and the like, hybridomas, cultured cells, cells dissociated from a tissue, cells from a cell line, such as CHO cells, cancer cells, circulating tumor cells (CTCs), infected cells, transfected and/or transformed cells, reporter cells, and the like), liposomes (e.g., synthetic or derived from membrane preparations), lipid nanorafts, and the like; or a combination of inanimate micro-objects and biological micro-objects (e.g., microbeads attached to cells, liposome-coated micro-beads, liposome-coated magnetic beads, or the like). Lipid nanorafts have been described, e.g., in Ritchie et al. (2009) “Reconstitution of Membrane Proteins in Phospholipid Bilayer Nanodiscs,” Methods Enzymol., 464:211-231.
As used herein, the term “cell” refers to a biological cell, which can be a plant cell, an animal cell (e.g., a mammalian cell), a bacterial cell, a fungal cell, or the like. A mammalian cell can be, for example, from a human, a mouse, a rat, a horse, a goat, a sheep, a cow, a primate, or the like.
As used herein, the term “maintaining (a) cell(s)” refers to providing an environment comprising both fluidic and gaseous components and, optionally a surface, that provides the conditions necessary to keep the cells viable and/or expanding.
A “component” of a fluidic medium is any chemical or biochemical molecule present in the medium, including solvent molecules, ions, small molecules, antibiotics, nucleotides and nucleosides, nucleic acids, amino acids, peptides, proteins, sugars, carbohydrates, lipids, fatty acids, cholesterol, metabolites, or the like.
As used herein in reference to a fluidic medium, “diffuse” and “diffusion” refer to thermodynamic movement of a component of the fluidic medium down a concentration gradient.
The phrase “flow of a medium” means bulk movement of a fluidic medium primarily due to any mechanism other than diffusion. For example, flow of a medium can involve movement of the fluidic medium from one point to another point due to a pressure differential between the points. Such flow can include a continuous, pulsed, periodic, random, intermittent, or reciprocating flow of the liquid, or any combination thereof. When one fluidic medium flows into another fluidic medium, turbulence and mixing of the media can result.
The phrase “substantially no flow” refers to a rate of flow of a fluidic medium that, averaged over time, is less than the rate of diffusion of components of a material (e.g., an analyte of interest) into or within the fluidic medium. The rate of diffusion of components of such a material can depend on, for example, temperature, the size of the components, and the strength of interactions between the components and the fluidic medium.
As used herein in reference to different regions within a microfluidic device, the phrase “fluidically connected” means that, when the different regions are substantially filled with fluid, such as fluidic media, the fluid in each of the regions is connected so as to form a single body of fluid. This does not mean that the fluids (or fluidic media) in the different regions are necessarily identical in composition. Rather, the fluids in different fluidically connected regions of a microfluidic device can have different compositions (e.g., different concentrations of solutes, such as proteins, carbohydrates, ions, or other molecules) which are in flux as solutes move down their respective concentration gradients and/or fluids flow through the device.
In some embodiments, a microfluidic device can comprise “swept” regions and “unswept” regions. An unswept region can be fluidically connected to a swept region, provided the fluidic connections are structured to enable diffusion but substantially no flow of media between the swept region and the unswept region. The microfluidic device can thus be structured to substantially isolate an unswept region from a flow of medium in a swept region, while enabling substantially only diffusive fluidic communication between the swept region and the unswept region.
A “microfluidic channel” or “flow channel” as used herein refers to flow region of a microfluidic device having a length that is significantly longer than both the horizontal and vertical dimensions. For example, the flow channel can be at least 5 times the length of either the horizontal or vertical dimension, e.g., at least 10 times the length, at least 25 times the length, at least 100 times the length, at least 200 times the length, at least 300 times the length, at least 400 times the length, at least 500 times the length, or longer. In some embodiments, the length of a flow channel is in the range of from about 20,000 microns to about 100,000 microns, including any range therebetween. In some embodiments, the horizontal dimension is in the range of from about 100 microns to about 300 microns (e.g., about 200 microns) and the vertical dimension is in the range of from about 25 microns to about 150 microns, e.g., from about 30 to about 100 microns, or about 40 to about 60 microns. It is noted that a flow channel may have a variety of different spatial configurations in a microfluidic device, and thus is not restricted to a perfectly linear element. For example, a flow channel may be, or include one or more sections having, the following configurations: curve, bend, spiral, incline, decline, fork (e.g., multiple different flow paths), and any combination thereof. In addition, a flow channel may have different cross-sectional areas along its path, widening and constricting to provide a desired fluid flow therein.
In certain embodiments, a flow channel of a micro-fluidic device is an example of a swept region (defined above) while an isolation region (described in further detail below) of a microfluidic device is an example of an unswept region.
The capability of biological micro-objects (e.g., biological cells) to produce specific biological materials (e.g., proteins, such as antibodies) can be assayed in such a microfluidic device. For example, sample material comprising biological micro-objects (e.g., cells) to be assayed for production of an analyte of interest can be loaded into a swept region of the microfluidic device. Ones of the biological micro-objects (e.g., mammalian cells, such as human cells) can be selected for particular characteristics and disposed in unswept regions. The remaining sample material can then be flowed out of the swept region and an assay material flowed into the swept region. Because the selected biological micro-objects are in unswept regions, the selected biological micro-objects are not substantially affected by the flowing out of the remaining sample material or the flowing in of the assay material. The selected biological micro-objects can be allowed to produce the analyte of interest, which can diffuse from the unswept regions into the swept region, where the analyte of interest can react with the assay material to produce localized detectable reactions, each of which can be correlated to a particular unswept region. Any unswept region associated with a detected reaction can be analyzed to determine which, if any, of the biological micro-objects in the unswept region are sufficient producers of the analyte of interest.
System including a microfluidic device.
The microfluidic device 100 comprises an enclosure 102 enclosing the microfluidic circuit 132, which can contain one or more fluidic media. Although the device 100 can be physically structured in different ways, in the embodiment shown in
The support structure 104 can be at the bottom and the cover 122 at the top of the device 100 as illustrated in
The microfluidic circuit structure 112 can define or otherwise accommodate circuit elements of the microfluidic circuit 132, or other types of circuits located within the enclosure 102. In the embodiment illustrated in
The support structure 104 can comprise a substrate or a plurality of interconnected substrates. For example, the support structure 104 can comprise one or more interconnected semiconductor substrates, printed circuit boards (PCB), or the like, and combinations thereof (e.g. a semiconductor substrate mounted on a PCB). The frame 114 can partially or completely enclose the microfluidic circuit material 116. The frame 114 can be, for example, a relatively rigid structure substantially surrounding the microfluidic circuit material 116. For example the frame 114 can comprise a metal material.
The microfluidic circuit material 116 can be patterned with cavities or the like to define microfluidic circuit elements and interconnections of the microfluidic circuit 132. The microfluidic circuit material 116 can comprise a flexible material (e.g. a rubber, plastic, elastomer, silicone or organosilicone polymer, such as polydimethylsiloxane (“PDMS”), or the like), which can be gas permeable. Other examples of materials that can compose microfluidic circuit material 116 include molded glass, an etchable material such as silicone (e.g. photo-patternable silicone), photo-resist (e.g., an epoxy-based photo-resist, such as SU8), or the like. In some embodiments, such materials—and thus the microfluidic circuit material 116—can be rigid and/or substantially impermeable to gas. Regardless of the material(s) used, the microfluidic circuit material 116 is disposed on the support structure 104, within the frame 114.
The cover 122 can be an integral part of the frame 114 and/or the microfluidic circuit material 116. Alternatively, the cover 122 can be a structurally distinct element (as illustrated in
The cover 122 may also include at least one material that is gas permeable, including but not limited to PDMS.
Other system components.
The control module 172 includes a controller 174 and a memory 176. The controller 174 can be, for example, a digital processor, computer, or the like, and the memory 176 can be, for example, a non-transitory digital memory for storing data and machine executable instructions (e.g., software, firmware, microcode, or the like) as non-transitory data or signals. The controller 174 can be configured to operate in accordance with such machine executable instructions stored in the memory 176. Alternatively or in addition, the controller 174 can comprise hardwired digital circuitry and/or analog circuitry. The control module 172 can thus be configured to perform (either automatically or based on user-directed input) any process useful in the methods described herein, step of such a process, function, act, or the like discussed herein.
The control/monitoring equipment 180 can comprise any of a number of different types of devices for controlling or monitoring the microfluidic device 100 and processes performed with the microfluidic device 100. For example, the control/monitoring equipment 180 can include power sources (not shown) for providing power to the microfluidic device 100; fluidic media sources (not shown) for providing fluidic media to or removing media from the microfluidic device 100; motive modules such as, by way of non-limiting example, a selector control module (described below) for controlling selection and movement of micro-objects (not shown) in the microfluidic circuit 132; image capture mechanisms such as, by way of non-limiting example, a detector (described below) for capturing images (e.g., of micro-objects) inside the microfluidic circuit 132; stimulation mechanisms such as, by way of non-limiting example, the below-described light source 320 of the embodiment illustrated in
More particularly, an image capture detector can include one or more image capture devices and/or mechanisms for detecting events in the flow regions, including but not limited to flow channel 134 of the embodiments shown in
Examples of suitable imaging devices that the detector can comprise include digital cameras or photosensors such as charge coupled devices and complementary metal-oxide-semiconductor (CMOS) imagers. Images can be captured with such devices and analyzed (e.g., by the control module 172 and/or a human operator).
A flow controller can be configured to control a flow of the fluidic medium in the flow regions/flow channels/swept regions of the respective illustrated microfluidic devices 100, 300, and 400. For example, the flow controller can control the direction and/or velocity of the flow. Non-limiting examples of such flow control elements of the flow controller include pumps and fluid actuators. In some embodiments, the flow controller can include additional elements such as one or more sensors for sensing, for example, the velocity of the flow and/or the pH of the medium in the flow region/flow channel/swept region.
The control module 172 can be configured to receive signals from and control the selector control module, the detector, and/or the flow controller.
Referring in particular to the embodiment shown in
Motive modules for selecting and moving micro-objects including biological cells. As described above, the control/monitoring equipment 180 can comprise motive modules for selecting and moving micro-objects (not shown) in the microfluidic circuit 132. A variety of motive mechanisms can be utilized. For example, dielectrophoresis (DEP) mechanisms can be utilized to select and move micro-objects (not shown) in the microfluidic circuit. The support structure 104 and/or cover 122 of the microfluidic device 100 of
One example of a microfluidic device having a DEP configuration that comprises support structure 104 and cover 122 is the microfluidic device 300 illustrated in
As seen in
In certain embodiments, the microfluidic device 300 illustrated in
In the example illustrated in
With the power source 312 activated, the foregoing creates an electric field gradient in the medium 202 between the respective illuminated DEP electrode regions 314a and adjacent dark DEP electrode regions 314, which in turn creates localized DEP forces that attract or repel nearby micro-objects (not shown) in the fluid medium 202. In this manner, DEP electrodes that attract or repel micro-objects in the medium 202 can be selectively activated and deactivated in order to manipulate, i.e., move, the micro-objects within the flow region 240 by changing the light patterns 322 projected from the light source 320 into the microfluidic device 300. The light source 320 can be, for example, a laser or other type of structured light source, such as a projector. Whether the DEP forces attract or repel nearby micro-objects can depend on parameters such as, without limitation, the frequency of the power source 312 and the dielectric properties of the medium 202 and/or micro-objects (not shown).
The square pattern 322′ of illuminated DEP electrode regions 314a illustrated in
In some embodiments, the electrode activation substrate 308 can be a photoconductive material, and the rest of the inner surface 242 can be featureless. For example, the photoconductive material can be made from amorphous silicon, and can form a layer having a thickness of about 500 nm to about 2 μm in thickness (e.g. substantially 1 micron in thickness). In such embodiments, the DEP electrode regions 314 can be created anywhere and in any pattern on the inner surface 242 of the flow region 240 in accordance with the light pattern 322 (e.g., light pattern 322′ shown in
In other embodiments, the electrode activation substrate 308 can comprise a substrate comprising a plurality of doped layers, electrically insulating layers, and electrically conductive layers that form semiconductor integrated circuits such as is known in semiconductor fields. For example, the electrode activation substrate 308 can comprise an array of photo-transistors. In such embodiments, electric circuit elements can form electrical connections between the DEP electrode regions 314 at the inner surface 242 of the flow region 240 and the second electrode 310 that can be selectively activated by the respective light patterns 322. When not activated, the electrical impedance through each electrical connection (i.e., from a corresponding DEP electrode region 314 on the inner surface 242, through the electrical connection, to the second electrode 310) can be greater than the impedance through the medium 202 (i.e., from the first electrode 304, through the medium 202, to the corresponding DEP electrode region 314 on the inner surface 242). When activated by light in the light pattern 322, however, the electrical impedance though the illuminated electrical connections (i.e., from each illuminated DEP electrode region 314a, through the electrical connection, to the second electrode 310) can be reduced to an amount less than the electrical impedance through the medium 202 (i.e., from the first electrode 304, through the medium 202, to the corresponding illuminated DEP electrode region 314a), thereby activating a DEP electrode at the corresponding DEP electrode region 314 as discussed above. DEP electrodes that attract or repel micro-objects (not shown) in the medium 202 can thus be selectively activated and deactivated at many different DEP electrode regions 314 at the inner surface 242 of the flow region 240 by the light pattern 322. Non-limiting examples of such configurations of the electrode activation substrate 308 include the phototransistor-based device 300 illustrated in
In other embodiments, the electrode activation substrate 308 can comprise a substrate comprising a plurality of electrodes, which may be photo-actuated. Non-limiting examples of such configurations of the electrode activation substrate 308 include the photo-actuated devices 200, 400, 500, and 600 illustrated and described in U.S. Patent Application Publication No. 2014/0124370. In still other embodiments, a DEP configuration of the support structure 104 and/or cover 122 does not rely upon light activation of DEP electrodes at the inner surface of the microfluidic device, but uses selectively addressable and energizable electrodes positioned opposite to a surface including at least one electrode, such as described in U.S. Pat. No. 6,942,776.
In some embodiments of a DEP configured device, the first electrode 304 can be part of a first wall 302 (or cover) of the housing 102, and the electrode activation substrate 308 and second electrode 310 can be part of a second wall 306 (or base) of the housing 102, generally as illustrated in
When used with the optically-actuated DEP configurations of microfluidic device 300 of
Growth chamber configurations. Non-limiting examples of growth chambers 136, 138, and 140 of device 100 are shown in
As is known, a flow of fluidic medium 202 (indicated by directional arrow 212) in the microfluidic flow channel 134 past a proximal opening 152 of the growth chamber 136 can cause a secondary flow of the medium 202 (indicated by directional arrow 214) into and/or out of the growth chamber 136. To isolate the micro-objects 222 in the isolation region 144 of the growth chamber 136 from the secondary flow 214, the length Lcon of the connection region 142 from the proximal opening 152 to the distal opening 154 is preferably greater than a maximum penetration depth Dp of the secondary flow 214 into the connection region 142 when the velocity of the flow 212 in the flow channel 134 is at a maximum (Vmax). As long as the flow 212 in the flow channel 134 does not exceed the maximum velocity Vmax, the flow 212 and resulting secondary flow 214 are limited to the respective flow channel 134 and connection region 142, and kept out of the isolation region 144 of the growth chamber 136. The flow 212 in the flow channel 134 will thus not draw micro-objects 222 out of the isolation region 144 of growth chamber 136.
Moreover, the flow 212 will not move miscellaneous particles (e.g., microparticles and/or nanoparticles) that may be located in the flow channel 134 into the isolation region 144 of the growth chamber 136. Having the length Lcon of the connection region 142 be greater than the maximum penetration depth Dp can thus prevent contamination of the growth chamber 136 with miscellaneous particles from the flow channel 134 or from another growth chamber 138, 140.
Because the flow channel 134 and the connection regions 142 of the growth chambers 136, 138, 140 can be affected by the flow 212 of medium 202 in the flow channel 134, the flow channel 134 and connection regions 142 can be deemed swept (or flow) regions of the microfluidic circuit 132. The isolation regions 144 of the growth chambers 136, 138, 140, on the other hand, can be deemed unswept (or non-flow) regions. For example, components (not shown) in a first medium 202 in the flow channel 134 can mix with a second medium 204 in the isolation region 144 substantially only by diffusion of the components of the first medium 202 from the flow channel 134 through the connection region 142 and into the second medium 204 in the isolation region 144. Similarly, components of the second medium 204 (not shown) in the isolation region 144 can mix with the first medium 202 in the flow channel 134 substantially only by diffusion of the components of the second medium 204 from the isolation region 144 through the connection region 142 and into the first medium 202 in the flow channel 134. It should be appreciated that the first medium 202 can be the same medium or a different medium than the second medium 204. Moreover, the first medium 202 and the second medium 204 can start out being the same, then become different, e.g., through conditioning of the second medium by one or more cells in the isolation region 144, or by changing the medium flowing through the flow channel 134.
The maximum penetration depth Dp of the secondary flow 214 caused by the flow 212 in the flow channel 134 can depend on a number of parameters. Examples of such parameters include (without limitation) the shape of the flow channel 134 (e.g., the channel can direct medium into the connection region 142, divert medium away from the connection region 142, or simply flow past the connection region 142); a width Wch (or cross-sectional area) of the flow channel 134 at the proximal opening 152; a width Wcon (or cross-sectional area) of the connection region 142 at the proximal opening 152; the maximum velocity Vmax of the flow 212 in the flow channel 134; the viscosity of the first medium 202 and/or the second medium 204, and the like.
In some embodiments, the dimensions of the flow channel 134 and/or growth chambers 136, 138, 140 are oriented as follows with respect to the flow 212 in the flow channel 134: the flow channel width Wch (or cross-sectional area of the flow channel 134) can be substantially perpendicular to the flow 212; the width Wcon (or cross-sectional area) of the connection region 142 at the proximal opening 152 can be substantially parallel to the flow 212; and the length Lcon of the connection region can be substantially perpendicular to the flow 212. The foregoing are examples only, and the dimensions of the flow channel 134 and growth chambers 136, 138, 140 can be in additional and/or further orientations with respect to each other.
As illustrated in
As also illustrated in
In some embodiments, the maximum velocity Vmax of a flow 212 in the flow channel 134 is substantially the same as the maximum velocity that the flow channel 134 can maintain without causing a structural failure in the respective microfluidic device (e.g., device 100) in which the flow channel is located. In general, the maximum velocity that a flow channel can maintain depends on various factors, including the structural integrity of the microfluidic device and the cross-sectional area of the flow channel. For the exemplary microfluidic devices disclosed and described herein, a maximum flow velocity Vmax in a flow channel having a cross-sectional area of about 3,500 to 10,000 square microns, is about 1.5 to 15 microliters/sec. Alternatively, the maximum velocity Vmax of a flow in a flow channel can be set so as to ensure that isolation regions are isolated from the flow in the flow channel. In particular, based on the width Wcon of the proximal opening of a connection region of a growth chamber, Vmax can be set so as to ensure that the depth of penetration Dp of a secondary flow into the connection region is less than Lcon. For example, for a growth chamber having a connection region with a proximal opening having a width Wcon of W about 40 to 50 microns and Lcon of about 50 to 100 microns, Vmax can be set at or about 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, or 2.5 microliters/sec.
In some embodiments, the sum of the length Lcon of the connection region 142 and a corresponding length of the isolation region 144 of a growth chamber 136, 138, 140 can be sufficiently short for relatively rapid diffusion of components of a second medium 204 contained in the isolation region 144 to a first medium 202 flowing or otherwise contained in the flow channel 134. For example, in some embodiments, the sum of (1) the length Lcon of the connection region 142 and (2) the distance between a biological micro-object located in isolation region 144 of a growth chamber 136, 138, 140 and the distal opening 154 of the connection region can be one of the following ranges: from about 40 microns to 500 microns, 50 microns to 450 microns, 60 microns to 400 microns, 70 microns to 350 microns, 80 microns to 300 microns, 90 microns to 250 microns, 100 microns to 200 microns, or any range including one of the foregoing end points. The rate of diffusion of a molecule (e.g., an analyte of interest, such as an antibody) is dependent on a number of factors, including (without limitation) temperature, viscosity of the medium, and the coefficient of diffusion D0 of the molecule. For example, the D0 for an IgG antibody in aqueous solution at about 20° C. is about 4.4×10−7 cm2/sec, while the kinematic viscosity of cell culturing medium is about 9×10−4 m2/sec. Thus, an antibody in cell culturing medium at about 20° C. can have a rate of diffusion of about 0.5 microns/sec. Accordingly, in some embodiments, a time period for diffusion from a biological micro-object located in isolation region 144 into the flow channel 134 can be about 10 minutes or less (e.g., about 9, 8, 7, 6, 5 minutes, or less). The time period for diffusion can be manipulated by changing parameters that influence the rate of diffusion. For example, the temperature of the media can be increased (e.g., to a physiological temperature such as about 37° C.) or decreased (e.g., to about 15° C., 10° C., or 4° C.) thereby increasing or decreasing the rate of diffusion, respectively. Alternatively, or in addition, the concentrations of solutes in the medium can be increased or decreased.
The physical configuration of the growth chamber 136 illustrated in
As another example, the growth chamber 136 is shown in
As yet another example, the connection region 142 and the isolation region 144 are illustrated in
As still another example, the connection region 142 and the isolation region 144 are illustrated in
The growth chamber 336 includes a connection region 342 and an isolation structure 346 comprising an isolation region 344. The connection region 342 has a proximal opening 352 to the flow channel 134 and a distal opening 354 to the isolation region 344. In the embodiment illustrated in
For example, the flow channel 134 and the growth chamber 336 can be configured so that the maximum penetration depth Dp of the secondary flow 214 extends into the connection region 342, but not into the isolation region 344. The length Lcon of the connection region 342 can thus be greater than the maximum penetration depth Dp, generally as discussed above with respect to the connection regions 142 shown in
The microfluidic device 400 of
Each growth chamber 436 can comprise an isolation structure 446, an isolation region 444 within the isolation structure 446, and a connection region 442. From a proximal opening 472 at the flow channel 434 to a distal opening 474 at the isolation structure 436, the connection region 442 fluidically connects the flow channel 434 to the isolation region 444. Generally in accordance with the above discussion of
As illustrated in
As illustrated in
In various embodiments of growth chambers 136, 138, 140, 336, or 436, the isolation region of the growth chamber may have a volume configured to support no more than about 1×103, 5×102, 4×102, 3×102, 2×102, 1×102, 50, 25, 15, or 10 cells in culture. In other embodiments, the isolation region of the growth chamber has a volume to support up to and including about 1×103, 1×104, or 1×105 cells.
In various embodiments of growth chambers 136, 138, 140, 336, or 436, the width Wch of the flow channel 134 at a proximal opening 152 (growth chambers 136, 138, or 14); the width Wch of the flow channel 134 at a proximal opening 352 (growth chambers 336); or the width Wch of the flow channel 434 at a proximal opening 472 (growth chambers 436) can be any of the following ranges: from about 50-1000 microns, 50-500 microns, 50-400 microns, 50-300 microns, 50-250 microns, 50-200 microns, 50-150 microns, 50-100 microns, 70-500 microns, 70-400 microns, 70-300 microns, 70-250 microns, 70-200 microns, 70-150 microns, 90-400 microns, 90-300 microns, 90-250 microns, 90-200 microns, 90-150 microns, 100-300 microns, 100-250 microns, 100-200 microns, 100-150 microns, and 100-120 microns. The foregoing are examples only, and the width Wch of the flow channel 134 or 434 can be in other ranges (e.g., a range defined by any of the endpoints listed above).
In various embodiments of growth chambers 136, 138, 140, 336, or 436, the height Hch of the flow channel 134 at a proximal opening 152 (growth chambers 136, 138, or 140), the flow channel 134 at a proximal opening 352 (growth chambers 336), or the flow channel 434 at a proximal opening 472 (growth chambers 436) can be any of the following ranges: from about 20-100 microns, 20-90 microns, 20-80 microns, 20-70 microns, 20-60 microns, 20-50 microns, 30-100 microns, 30-90 microns, 30-80 microns, 30-70 microns, 30-60 microns, 30-50 microns, 40-100 microns, 40-90 microns, 40-80 microns, 40-70 microns, 40-60 microns, or 40-50 microns. The foregoing are examples only, and the height Hch of the flow channel 134 or 434 can be in other ranges (e.g., a range defined by any of the endpoints listed above).
In various embodiments of growth chambers 136, 138, 140, 336, or 436, a cross-sectional area of the flow channel 134 at a proximal opening 152 (growth chambers 136, 138, or 140), the flow channel 134 at a proximal opening 352 (growth chambers 336), or the flow channel 434 at a proximal opening 472 (growth chambers 436) can be any of the following ranges: from about 500-50,000 square microns, 500-40,000 square microns, 500-30,000 square microns, 500-25,000 square microns, 500-20,000 square microns, 500-15,000 square microns, 500-10,000 square microns, 500-7,500 square microns, 500-5,000 square microns, 1,000-25,000 square microns, 1,000-20,000 square microns, 1,000-15,000 square microns, 1,000-10,000 square microns, 1,000-7,500 square microns, 1,000-5,000 square microns, 2,000-20,000 square microns, 2,000-15,000 square microns, 2,000-10,000 square microns, 2,000-7,500 square microns, 2,000-6,000 square microns, 3,000-20,000 square microns, 3,000-15,000 square microns, 3,000-10,000 square microns, 3,000-7,500 square microns, or 3,000 to 6,000 square microns. The foregoing are examples only, and the cross-sectional area of the flow channel 134 at a proximal opening 152, the flow channel 134 at a proximal opening 352, or the flow channel 434 at a proximal opening 472 can be in other ranges (e.g., a range defined by any of the endpoints listed above).
In various embodiments of growth chambers 136, 138, 140, 336, or 436, the length of the connection region Lcon can be any of the following ranges: from about 1-200 microns, 5-150 microns, 10-100 microns, 15-80 microns, 20-60 microns, 20-500 microns, 40-400 microns, 60-300 microns, 80-200 microns, and 100-150 microns. The foregoing are examples only, and length Lcon of a connection region 142 (growth chambers 136, 138, or 140), connection region 342 (growth chambers 336), or connection region 442 (growth chambers 436) can be in a different ranges than the foregoing examples (e.g., a range defined by any of the endpoints listed above).
In various embodiments of growth chambers 136, 138, 140, 336, or 436, the width Wcon of a connection region 142 at a proximal opening 152 (growth chambers 136, 138, or 140, connection region 342 at a proximal opening 352 (growth chambers 336), or a connection region 442 at a proximal opening 472 (growth chambers 436) can be any of the following ranges: from about 20-500 microns, 20-400 microns, 20-300 microns, 20-200 microns, 20-150 microns, 20-100 microns, 20-80 microns, 20-60 microns, 30-400 microns, 30-300 microns, 30-200 microns, 30-150 microns, 30-100 microns, 30-80 microns, 30-60 microns, 40-300 microns, 40-200 microns, 40-150 microns, 40-100 microns, 40-80 microns, 40-60 microns, 50-250 microns, 50-200 microns, 50-150 microns, 50-100 microns, 50-80 microns, 60-200 microns, 60-150 microns, 60-100 microns, 60-80 microns, 70-150 microns, 70-100 microns, and 80-100 microns. The foregoing are examples only, and the width Wcon of a connection region 142 at a proximal opening 152; connection region 342 at a proximal opening 352; or a connection region 442 at a proximal opening 472 can be different than the foregoing examples (e.g., a range defined by any of the endpoints listed above).
In various embodiments of growth chambers 136, 138, 140, 336, or 436, the width Wcon of a connection region 142 at a proximal opening 152 (growth chambers 136, 138, or 140), a connection region 342 at a proximal opening 352 (growth chambers 336), or a connection region 442 at a proximal opening 472 (growth chambers 436) can be any of the following ranges: from about 2-35 microns, 2-25 microns, 2-20 microns, 2-15 microns, 2-10 microns, 2-7 microns, 2-5 microns, 2-3 microns, 3-25 microns, 3-20 microns, 3-15 microns, 3-10 microns, 3-7 microns, 3-5 microns, 3-4 microns, 4-20 microns, 4-15 microns, 4-10 microns, 4-7 microns, 4-5 microns, 5-15 microns, 5-10 microns, 5-7 microns, 6-15 microns, 6-10 microns, 6-7 microns, 7-15 microns, 7-10 microns, 8-15 microns, and 8-10 microns. The foregoing are examples only, and the width Wcon of a connection region 142 at a proximal opening 152, a connection region 342 at a proximal opening 352, or a connection region 442 at a proximal opening 472 can be different than the foregoing examples (e.g., a range defined by any of the endpoints listed above).
In various embodiments of growth chambers 136, 138, 140, 336, or 436, a ratio of the length Lcon of a connection region 142 to a width W of the connection region 142 at the proximal opening 152 (growth chambers 136, 138; 140), a ratio of the length Lcon of a connection region 342 to a width Wcon of the connection region 342 at the proximal opening 352 (growth chambers 336), or a ratio of the length Lcon of a connection region 442 to a width Wcon of the connection region a connection region 442 to a width W of the connection region 442 at the proximal opening 472 (growth chambers 436) can be greater than or equal to any of the following ratios: about 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, or more. The foregoing are examples only, and the ratio of the length Lcon of a connection region 142 to a width Wcon of the connection region 142 at the proximal opening 152, the ratio of the length Lcon of a connection region 342 to a width Wcon the connection region 342 at the proximal opening 372; or the ratio of the length Lcon of a connection region 442 to a width Wcon of the connection region 442 at the proximal opening 472 can be different than the foregoing examples.
In various embodiments of microfluidic devices having growth chambers 136, 138, 140, 336, or 436, Vmax can be set at about 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, or 2.5 microliters/sec, or higher (e.g., about 3.0, 4.0, 5.0 microliters/sec, or more).
In various embodiments of microfluidic devices having growth chambers 136, 138, 140, 336, or 436, the volume of an isolation region 144 (growth chambers 136, 138, or 140), 344 (growth chambers 336) or 444 (growth chambers 436) can be, for example, at least about 3×103, 6×103, 9×103, 1×104, 2×104, 4×104, 8×104, 1×105, 2×105, 4×105, 8×105, 1×106, 2×106, 4×106, 6×106 cubic microns, or more.
In some embodiments, the microfluidic device has growth chambers 136, 138, 140, 336, or 436, wherein no more than about 1×102 biological cells may be maintained, and the volume of the growth chambers may be no more than about 2×106 cubic microns.
In some embodiments, the microfluidic device has growth chambers 136, 138, 140, 336, or 436, wherein no more than about 1×102 biological cells may be maintained, and the volume of the growth chambers may be no more than about 4×105 cubic microns.
In yet other embodiments, the microfluidic device has growth chambers 136, 138, 140, 336, or 436, wherein no more than about 50 biological cells may be maintained, and the volume of the growth chambers may be no more than about 4×105 cubic microns.
In various embodiment, the microfluidic device has growth chambers configured as in any of the embodiments discussed herein where the microfluidic device has about 100 to about 500 growth chambers; about 200 to about 1000 growth chambers, about 500 to about 1500 growth chambers, about 1000 to about 2000 growth chambers, or about 1000 to about 3500 growth chambers.
In some other embodiments, the microfluidic device has growth chambers configured as in any of the embodiments discussed herein where the microfluidic device has about 1500 to about 3000 growth chambers, about 2000 to about 3500 growth chambers, about 2000 to about 4000 growth chambers, about 2500 to about 4000 growth chambers, or about 3000 to about 4500 growth chambers.
In some embodiments, the microfluidic device has growth chambers configured as in any of the embodiments discussed herein where the microfluidic device has about 3000 to about 4500 growth chambers, about 3500 to about 5000 growth chambers, about 4000 to about 5500 chambers, about 4500 to about 6000 growth chambers or about 5000 to about 6500 chambers.
In further embodiments, the microfluidic device has growth chambers configured as in any of the embodiments discussed herein, where the microfluidic device has about 6000 to about 7500 growth chambers, about 7000 to about 8500 growth chambers, about 8000 to about 9500 growth chambers, about 9000 to about 10,500 growth chambers, about, about 10, 000 to about 11,500 growth chambers, about 11,000 to about 12,500 growth chambers, about 12,000 to about 13,500 growth chambers, about 13,000 to about 14,500 growth chambers about 14,000 to about 15,500 growth chambers, about 15,000 to about 16,500 growth chambers, about 16,000 to about 17,500 growth chambers, about 17,000 to about 18,500 growth chambers.
In various embodiments, the microfluidic device has growth chambers configured as in any of the embodiments discussed herein, where the microfluidic device has about 18,000 to about 19,500 growth chambers, about 18,500 to about 20,000 growth chambers, about 19,000 to about 20,500 growth chambers, about 19,500 to about 21,000 growth chambers, or about 20,000 to about 21,500 growth chambers.
Other properties of the growth chambers. Although the barriers of microfluidic circuit material 116 (
In some other embodiments, respective growth chambers 136, 138, 140, 336 and 436 can be shielded from illumination (e.g., by the detector and/or the selector control module directing the light source 320), or can be only selectively illuminated for brief periods of time. Cells and other biological micro-objects contained in the growth chambers can thus be protected from further (i.e., possibly hazardous) illumination after being moved into the growth chambers 136, 138, 140, 336 and 436.
Fluidic medium. With regard to the foregoing discussion about microfluidic devices having a flow channel and one or more growth chambers, a fluidic medium (e.g., a first medium and/or a second medium) can be any fluid that is capable of maintaining a biological micro-object in a substantially assayable state. The assayable state will depend on the biological micro-object and the assay being performed. For example, if the biological micro-object is a cell that is being assayed for the secretion of a protein of interest, the cell would be substantially assayable provided that the cell is viable and capable of expressing and secreting proteins. Alternatively, the fluidic medium can be any fluid that is capable of expanding the cells or maintaining the cells in a state such that they are still capable of expanding (i.e., increasing in number due to mitotic cell division). Many different types of fluidic medium, particularly cell culturing medium, are known in the art, and what is a suitable medium will typically depend on the types of cells being cultured. In certain embodiments, the cell culturing medium will include mammalian serum, such as fetal bovine serum (FBS) or calf serum. In other embodiments, the cell culturing medium may be serum free. In either case, the cell culturing medium may be supplemented with various nutrients, such as vitamins, minerals, and/or antibiotics.
Culturing Station.
Each media perfusion system 1300 includes a pump 1310 having an input fluidically connected to a source of culturing media 1320 and a multi-position valve 1330 that selectively and fluidically connects an output of the pump 1310 with a perfusion line 1334. The perfusion line 1334 is associated with a respective mounting interface 1100 and configured to be fluidically connected to a fluid ingress port 124 of a microfluidic device 100 mounted on the respective mounting interface 1100 (the ingress port 124 on the microfluidic device 100 shown in
With additional reference to
A waste line 1344 can also be associated with the mounting interface 1100. For example, as shown in
With additional reference to
As best seen in
With additional reference to
The thermal regulation system 1200 can further include one or more temperature sensors 1210 and, optionally, a temperature monitor 1250 (not shown) configured to display the temperature of the mounting interface 1100 or a microfluidic device 100 mounted thereon. The temperature sensors 1210 can be, for example, thermistors. The one or more temperature sensors 1210 can monitor the temperature of a microfluidic device 100 indirectly, by monitoring the temperature of a mounting interface 1100 on which the microfluidic device 100 is securely mounted. Thus, for example, the temperature sensor 1210 can be embedded in or otherwise thermally coupled to the metallic substrate 1150 of the mounting interface 1100. Alternatively, the temperature sensor 1210 can directly monitor the temperature of a microfluidic device 100, for example, by thermally coupling with a surface of the microfluidic device 100. As shown in
Culturing stations such as culturing station 1000 shown in
Culturing stations such as culturing station 1000 shown in
In various embodiments, the flow of culturing media to the flow region of the microfluidic circuit 134 of a microfluidic device 100 mounted on a mounting interface 1100 of an exemplary culturing station (e.g., culturing station 1000/1001/1002) preferably occurs periodically for about 10 seconds to about 120 seconds. Other “flow ON” time periods may also be used, including the following ranges: from about 10 seconds to about 20 seconds; from about 10 seconds to about 30 seconds; from about 10 seconds to about 40 seconds; from about 20 seconds to about 30 seconds; from about 20 seconds to about 40 seconds; from about 20 seconds to about 50 seconds; from about 30 seconds to about 40 seconds; from about 30 seconds to about 50 seconds; from about 30 seconds to about 60 seconds; from about 45 seconds to about 60 seconds; from about 45 seconds to about 75 seconds; from about 45 seconds to about 90 seconds, from about 60 seconds to about 75 seconds; from about 60 seconds to about 90 seconds; from about 60 seconds to about 105 seconds; from about 75 seconds to about 90 seconds; from about 75 seconds to about 105 seconds; from about 75 seconds to about 120 seconds; from about 90 seconds to about 120 seconds; from about 90 seconds to about 150 seconds; from about 90 seconds to about 180 seconds; from about 2 minutes to about 3 minutes; from about 2 minutes to about 5 minutes; from about 2 minutes to about 8 minutes; from about 5 minutes to about 8 minutes; from about 5 minutes to about 10 minutes; from about 5 minutes to about 15 minutes; from about 10 minutes to about 15 minutes; from about 10 minutes to about 20 minutes; from about 10 minutes to about 30 minutes; from about 20 minutes to about 30 minutes; from about 20 minutes to about 40 minutes; from about 20 minutes to about 50 minutes; from about 30 minutes to about 40 minutes; from about 30 minutes to about 50 minutes; from about 30 minutes to about 60 minutes; from about 45 minutes to about 60 minutes; from about 45 minutes to about 75 minutes; from about 45 minutes to about 90 minutes; from about 60 minutes to about 75 minutes; from about 60 minutes to about 90 minutes; from about 60 minutes to about 105 minutes; from about 75 minutes to about 90 minutes; from about 75 minutes to about 105 minutes; from about 75 minutes to about 120 minutes; from about 90 minutes to about 120 minutes; from about 90 minutes to about 150 minutes; from about 90 minutes to about 180 minutes; from about 120 minutes to about 180 minutes; and from about 120 minutes to about 240 minutes.
In other embodiments, the flow of culturing media to the flow region of the microfluidic circuit 134 of a microfluidic device 100 mounted on a mounting interface 1100 of an exemplary culturing e station (e.g., culturing station 1000/1001/1002) is stopped periodically for about 5 seconds to about 60 minutes. Other possible “flow OFF” ranges include: from about 5 minutes to about 10 minutes; from about 5 minutes to about 20 minutes; from about 5 minutes to about 30 minutes; from about 10 minutes to about 20 minutes; from about 10 minutes to about 30 minutes; from about 10 minutes to about 40 minutes; from about 20 minutes to about 30 minutes; from about 20 minutes to about 40 minutes; from about 20 minutes to about 50 minutes; from about 30 minutes to about 40 minutes; from about 30 minutes to about 50 minutes; from about 30 minutes to about 60 minutes; from about 45 minutes to about 60 minutes; from about 45 minutes to about 75 minutes; from about 45 minutes to about 90 minutes; from about 60 minutes to about 75 minutes; from about 60 minutes to about 90 minutes; from about 60 minutes to about 105 minutes; from about 75 minutes to about 90 minutes; from about 75 minutes to about 105 minutes; from about 75 minutes to about 120 minutes; from about 90 minutes to about 120 minutes; from about 90 minutes to about 150 minutes; from about 90 minutes to about 180 minutes; from about 120 minutes to about 180 minutes; from about 120 minutes to about 240 minutes; and from about 120 minutes to about 360 minutes.
In some embodiments, the control system of the media perfusion system 1300 can be programmed to perform a multi-step process comprising the steps of: providing culturing medium (or “perfusing”) a first microfluidic device 100 securely mounted on a mounting interface 1100 for a first period of time while providing no culturing medium for a second and a third microfluidic device 100, each also securely mounted on a mounting interface 1100; perfusing the second microfluidic device 100 for a second period of time (which can be equal to the first period of time) while providing no culturing medium to the first and third microfluidic devices 100; perfusing the third microfluidic device 100 for a third period of time (which can be equal to the first and/or second period of time) while providing no culturing medium for the first and second microfluidic devices 100; and repeating the foregoing set of steps n times, wherein n equals 0 or a positive integer. Each time the first three steps are performed can be considered a “cycle” or “duty cycle” during which each of the first, second, and third microfluidic devices 100 experience a period of “flow ON” and a period of “flow OFF.” If each of the first, second, and third time periods are all equal to 60 seconds, then each microfluidic device 100 will experience a duty cycle of 33% for a duration of 3 minutes. As the number of microfluidic being perfused by a single pump 1310 of the media perfusion system 1300 increases, the duty cycle will decrease and the duration will increase. In some embodiments, the on-off duty cycle may have a total duration of about 3 minutes to about 60 minutes (e.g., about 3 minutes to about 6 minutes, about 4 minutes to about 8 minutes, about 5 minutes to about 10 minutes, about 6 minutes to about 12 minutes, about 7 minutes to about 14 minutes, about 8 minutes to about 16 minutes, about 9 minutes to about 18 minutes, about 10 minutes to about 20 minutes, about 15 minutes to about 20, 25, or 30 minutes, or about 30 minutes to about 40, 50, or 60 minutes). In alternate embodiments, the on-off duty cycle can vary anywhere from about 5 minutes to about 4 hours. In some embodiments, the foregoing process can be performed for n=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, or more repetitions. Thus, the total duration of the process can take hours or days, depending upon the total duration of each duty cycle. Furthermore, the process, once finished, can be immediately started with a new duty cycle. For example, a first duty cycle could include a relatively slow rate of perfusion (e.g., about 0.001 microliters/sec to about 0.01 microliters/sec) and a second duty cycle could include a relative fast rate of perfusion (e.g., greater than about 0.1 microliters/sec). Such alternate duty cycles could be performed repeatedly (e.g., cycle 1 followed by cycle 2, then repeat).
Culturing medium can be flowed through the flow region of a microfluidic device 100 according to a predetermined and/or operator selected flow rate, wherein the flow rate is about 0.01 microliters/sec to about 5.0 microliters/sec. Other possible ranges include about 0.001 microliters/sec to about 1.0 microliters/sec, about 0.005 microliters/sec to about1.0 microliters/sec, about 0.01 microliters/sec to about 1.0 microliters/sec, about 0.02 microliters/sec to about 2.0 microliters/sec, about 0.05 microliters/sec to about1.0 microliters/sec, about 0.08 microliters/sec to about 1.0 microliters/sec, about 0.1 microliters/sec to about 1.0 microliters/sec, about 0.1 microliters/sec to about 2.0 microliters/sec, about 0.2 microliters/sec to about 2.0 microliters/sec, about 0.5 microliters/sec to about 2.0 microliters/sec, about 0.8 microliters/sec to about 2.0 microliters/sec, about 1.0 microliters/sec to about 2.0 microliters/sec, about 1.0 microliters/sec to about 5.0, about 1.5 microliters/sec to about 5.0 microliters/sec, about 2.0 microliters/sec to about 5.0 microliters/sec, about 2.5 microliters/sec to about 5.0 microliters/sec, about 2.5 microliters/sec to about 10.0 microliters/sec, about 3.0 microliters/sec to about 10.0 microliters/sec, about 4.0 microliters/sec to about 10.0 microliters/sec, about 5.0 microliters/sec to about 10.0 microliters/sec, about 7.5 microliters/sec to about 10.0 microliters/sec, about 7.5 microliters/sec to about 12.5 microliters/sec, about 7.5 microliters/sec to about 15.0 microliters/sec, about 10.0 microliters/sec to about 15.0 microliters/sec, about 10.0 microliters/sec to about 20.0 microliters/sec, about 10.0 microliters/sec to about 25.0 microliters/sec, about 15.0 microliters/sec to about 20.0 microliters/sec, about 15.0 microliters/sec to about 25.0 microliters/sec, about 15.0 microliters/sec to about 30.0 microliters/sec, about 20.0 microliters/sec to about 30.0 microliters/sec, about 20.0 microliters/sec to about 40.0 microliters/sec, about 20.0 microliters/sec to about 50.0 microliters/sec microliters/sec.
As discussed above, the flow region of the microfluidic circuit in a microfluidic device 100 can comprises two or more flow channels. Thus, the rate of flow of medium through each individual channel is expected to be about 1/m the rate of flow of medium through the entire microfluidic device, wherein m=the number of channels in the microfluidic device 100. In certain embodiments, culturing medium can be flowed through each of the two or more flow channels an average rate of about 0.005 microliters/sec to about 2.5 microliters/sec. Additional ranges are possible and can be, for example, readily calculated as 1/m times the endpoints of the ranges disclosed herein.
With reference to the culturing station embodiments shown in
A respective waste line 1344 can be associated with each mounting interface 1100. For example, each waste line 1344 can be connected to a respective microfluidic device cover 1110b via a proximal end connector 1144. Thus, the waste lines 1344 can be configured, in conjunction with a configuration of the microfluidic device covers 1110b, so that the proximal ends of the waste lines 1440 are fluidically connected to a fluid egress port 124 (obscured by the cover 1110b in
With additional reference to
With further reference to
Each mounting interface 1100 can further comprise additional alignment features. As shown in
Those skilled in the art will appreciate that various arrangements and configurations of the alignment pin 1154 and/or the engagement pins 1152 of the mounting interface 1100, the orientation element 1111 and engagement openings 1112 of the microfluidic device cover 1110b, and the engagement openings 113 of the microfluidic device 100 can be used to achieve the goal of facilitating proper alignment of the microfluidic device 100 and/or the microfluidic device cover 1110b. By way of example, the alignment pin 1154 and the engagement pins 1152 can have a variety of shapes including but not limited to: a circular, oval, rectangular, cylindrical (as shown), or multi-sided shape, or irregular shapes and/or angles that are adapted to meet and engage with the corresponding orientation element 1111 and engagement openings 1112 and 113, respectively.
It will be appreciated that, when in use, the thermally regulated mounting interfaces 1110b of
Each culturing station 1000 of the invention can additionally be configured to record in a memory respective perfusion and/or temperature histories of microfluidic devices 100 mounted to the one or more mounting interfaces 1100. For example, the culturing station may include a processor and memory, either or both of which may be integrated into a printed circuit board. Alternatively, the memory may be incorporated into or otherwise coupled with the respective microfluidic device 100. The culturing stations 1000 may additionally (optionally) including an imaging and/or detecting apparatus (not shown) coupled to or otherwise operatively associated with the culturing stations 1000 and configured for viewing and/or imaging micro-objects within a microfluidic device 100 and/or detecting biological activity in the microfluidic device 100 mounted to one of the mounting interfaces 1100. The resulting data may be processed and/or stored in memory located within the culturing station 1000 and/or the microfluidic device 100, as discussed above.
An exemplary culturing station, such as culturing station 1000, can also be configured to allow mounting interfaces 1100 to be tilted upon an axis, such that a microfluidic device 100 mounted on the mounting interface 1100 can be optimally positioned for culturing. In some embodiments, a microfluidic device 100 can be tilted, for example, relative to a plane that is normal to the force of gravity acting upon the culturing station 1000, by about 1° to about 10° (e.g., about 1° to about 5° , or about 1° to about 2°). Alternatively, the mounting interfaces 1100 can be configured to be tilted to at least about 45°, 60°, 75°, 90°, or ever further (e.g., at least about 105°, 120°, or) 135°. In some embodiments, a plurality of mounting interfaces 1100 can be tilted simultaneously upon a common access. For example, the support 1140a/1140b of any of
While embodiments have been shown and described, various modifications may be made without departing from the scope of the inventive concepts disclosed herein. The invention(s), therefore, should not be limited, except as defined in the following claims.
The present application claims the benefit under 35 U.S.C. §119 to U.S. provisional patent application Ser. No. 62/178,960, filed Apr. 22, 2015. The foregoing application is hereby incorporated by reference into the present application in its entirety.
Number | Date | Country | |
---|---|---|---|
62178960 | Apr 2015 | US |