The present invention relates to curable compositions. The present invention also relates to curable compositions used in the manufacture of abrasive articles.
Polyurethanes (i.e., polymers containing urethane and/or urea linkages in the backbone chain) are widely used as binder materials for many applications due to their physical properties (e.g., strength, elongation, and/or toughness). Many polyurethane binders are formed by curing (i.e., at least partially polymerizing and/or crosslinking) polyurethane precursors.
For some applications in which polyurethane binders are used (e.g., applications in which the polyurethane may rub against a workpiece), it is desirable to reduce the coefficient of friction of the binder to prevent wear of the binder and/or transfer of the binder to a workpiece (i.e., smearing). The reduction of smearing may be particularly important in the manufacture and use of abrasive articles.
It would be desirable to have curable compositions that are useful as binder precursors. Alternatively, or in addition, it would also be desirable if such curable compositions could be cured to provide binders having one or more physical properties of polyurethanes while having a low coefficient of friction and/or tendency to smear.
In one aspect, the present invention provides a curable composition comprising:
In another aspect, the present invention provides a curable composition preparable from components comprising:
In another aspect, the present invention provides a composition comprising a polymerized reaction product of components comprising:
In another aspect, the present invention provides a composition comprising a polymerized reaction product of a curable composition preparable from components comprising:
In another aspect, the present invention provides a method for making a curable composition comprising mixing components comprising:
In another aspect, the present invention provides an abrasive article comprising abrasive particles and a polymerized reaction product of a curable composition according to the present invention.
In another aspect, the present invention provides a method of abrading a workpiece comprising:
providing an abrasive article comprising:
frictionally contacting at least one abrasive particle with at least a portion of the surface of the workpiece; and
moving at least one of the at least one abrasive particle or the workpiece relative to the other to abrade at least a portion of the surface.
In another aspect, the present invention provides an abrasive article comprising abrasive particles and a polymerized reaction product of a curable composition according to the present invention.
Curable compositions prepared in accordance with the present invention may typically be cured to form binders having one or more physical properties of polyurethanes while having a low coefficient of friction and/or tendency to smear. Useful abrasive articles, which may be made with curable compositions according to the present invention, include, for example, coated abrasive articles, nonwoven abrasive articles, and bonded abrasive articles.
a is a perspective view of an exemplary nonwoven abrasive article according to the present invention;
b is an enlarged view of a region of the nonwoven abrasive article shown in
Curable compositions according to present invention comprise blocked polyisocyanate, curative, and a crosslinked copolymer of monomers comprising a free-radically polymerizable carboxylic acid and at least one of an alkyl or alkaryl (meth)acrylate, wherein at least one of the alkyl or alkaryl(meth)acrylate has from 11 carbon atoms to 34 carbon atoms.
As used herein, the term “blocked polyisocyanate” refers to either a single blocked polyisocyanate or a mixture of two or more blocked polyisocyanates; the term “curative” refers to either a single curative or a mixture of two or more curatives; and the term “(meth)acryl” encompasses “acryl” and/or “methacryl” (e.g., “(meth)acrylate” encompasses acrylate and/or methacrylate). Further, numerical ranges recited herein are inclusive of their endpoints, unless otherwise specified.
Useful blocked polyisocyanates include polyisocyanates (sometimes referred to in the art as “urethane prepolymers”) wherein at least some (e.g., substantially all) of the isocyanate groups have been reacted (i.e., blocked) with a compound (i.e., blocking agent) that forms an adduct with isocyanate groups. Typically, the adduct is substantially unreactive to isocyanate reactive compounds (e.g., amines, alcohols, thiols, etc.) under ambient conditions (e.g., temperatures in a range of from about 20° C. to about 25° C.), but upon application of sufficient thermal energy in the presence of curative, the adduct typically reacts with the curative to form a covalent bond. Procedures and materials for blocking polyisocyanates are well known in the art, and are described, for example, by D. A. Wicks and Z. W. Wicks, Jr. in “Blocked isocyanates III: Part A. Mechanisms and chemistry”, Progress in Organic Coatings, vol. 36(1999), Elsevier Science, New York, pages 148-172;and in “Blocked isocyanates III Part B: Uses and applications of blocked isocyanates”, Progress in Organic Coatings, vol. 41(2001), Elsevier Science, New York, pages 1-83, the disclosures of which are incorporated herein by reference.
Exemplary blocking agents include ketoximes (e.g., 2-butanone oxime); lactams (e.g., epsiloncaprolactam); malonic esters (e.g., dimethyl malonate and diethyl malonate); pyrazoles (e.g., 3,5-dimethylpyrazole); alcohols including tertiary alcohols (e.g., t-butanol or 2,2-dimethylpentanol), phenols (e.g., alkylated phenols), and mixtures of alcohols as described, for example in U.S. Pat. No. 6,288,176B1 (Hsieh et al.), the disclosure of which is incorporated herein by reference.
Useful polyisocyanates include, for example, aliphatic polyisocyanates (e.g., hexamethylene diisocyanate or trimethylhexamethylene diisocyanate); alicyclic polyisocyanates (e.g., hydrogenated xylylene diisocyanate or isophorone diisocyanate); aromatic polyisocyanates (e.g., tolylene diisocyanate or 4,4′-diphenylmethane diisocyanate); adducts of any of the foregoing polyisocyanates with a polyhydric alcohol (e.g., a diol, low molecular weight hydroxyl group-containing polyester resin, water, etc.); adducts of the foregoing polyisocyanates (e.g., isocyanurates, biurets); and mixtures thereof.
Useful commercially available polyisocyanates include, for example, those available under the trade designation “ADIPRENE” from Uniroyal Chemical Company, Middlebury, Connecticut (e.g., “ADIPRENE L 0311”, “ADIPRENE L 100”, “ADIPRENE L 167”, “ADIPRENE L 213”, “ADIPRENE L 315”, “ADIPRENE L 680”, “ADIPRENE LF 1800A”, “ADIPRENE LF 600D”, “ADIPRENE LFP 1950A”, “ADIPRENE LFP 2950A”, “ADIPRENE LFP 590D”, “ADIPRENE LW 520”, and “ADIPRENE PP 1095”); polyisocyanates available under the trade designation “MONDUR” from Bayer Corporation, Pittsburgh, Pennsylvania (e.g., “MONDUR 1437”, “MONDUR MP-095”, or “MONDUR 448”); and polyisocyanates available under the trade designations “AIRTHANE” and “VERSATHANE” from Air Products and Chemicals, Allentown, Pa. (e.g., “AIRTHANE APC-504”, “AIRTHANE PST-95A”, “AIRTHANE PST-85A”, “AIRTHANE PET-91A”, “AIRTHANE PET-75D”, “VERSATHANE STE-95A”, “VERSATHANE STE-P95”, “VERSATHANE STS-55”, “VERSATHANE SME-90A”, and “VERSATHANE MS-90A”).
Exemplary useful commercially available blocked polyisocyanates include those marketed by Uniroyal Chemical Company under the trade designations “ADIPRENE BL 11”, “ADIPRENE BL 16”, “ADIPRENE BL 31”, “ADIPRENE BL 40”, “ADIPRENE BL 45”, “ADIPRENE BL 46”, “ADIPRENE BLM 500”, “ADIPRENE BLP 60”, or “ADIPRENE BLP 65”, and blocked polyisocyanates marketed by Baxenden Chemicals, Ltd., Accrington, England available under the trade designation “TRIXENE” (e.g., “TRIXENE BI 7986”, “TRIXENE BI 7985”, “TRIXENE BI 7951”, “TRIXENE BI 7950”, “TRIXENE BI 7960”, or “TRIXENE BI 7770”).
In some embodiments according to the present invention, the blocked isocyanate may have the formula:
wherein n is an integer greater than or equal to 1, for example, n may be in a range of from 7to 25, although higher and lower values of n may also be useful. Blocked isocyanates described by this formula include, for example, those marketed under the trade designation “ADIPRENE BL 11”, “ADIPRENE BL 16”, “ADIPRENE BL 31” by Uniroyal Chemical Company.
Typically, the amount of blocked isocyanate is in a range of from 5 percent by weight to 90 percent by weight, based on the total weight of the curable composition, although higher and lower other amounts may be used. For example, blocked isocyanate may be present in an amount in a range of from 10 percent by weight to 80 percent by weight, and/or in a range of from about 40 percent by weight to about 80 percent by weight, based on the total weight of the curable composition.
Typically, a curative is a substance having a plurality of active hydrogen sites such as may be provided by —OH, —NH2, —SH groups, or the like. Useful curatives include, for example, polyamines (e.g., 4,4′-methylenedianiline, 3-aminomethyl-3,5,5-trimethylcyclohexylamine (i.e., isophoronediamine), trimethylene glycol di-p-aminobenzoate, bis(o-aminophenylthio)ethane, and 4,4′-methylenebis(dimethyl anthranilate)), and polyols (e.g., 1,4-butanediol, 1,6-hexanediol, pentaerythritol). Mixtures of polyamines, polyols, and/or mixtures of polyamines with polyols may be useful, for example, to modify reaction rates as required by the intended use.
The curative may comprise an aromatic diamine such as for example bis(4-amino-3-ethylphenyl)methane (marketed under the trade designation “KAYAHARD AA” by Nippon Kayaku Company, Ltd., Tokyo, Japan) or bis(4-amino-3,5-diethylphenyl)methane (marketed under the trade designation “LONZACURE M-DEA” by Lonza, Ltd., Basel, Switzerland). Typically, curative should be present in an amount effective (i.e., an effective amount) to cure the blocked polyisocyanate to the degree required by the intended application; for example, in a stoichiometric ratio of curative to blocked isocyanate in a range of from 0.75 to 1.25 and/or in a range of from 0.95 to 1.190, although stoichiometric ratios outside this range may also be used.
Useful free-radically polymerizable carboxylic acids have at least one carboxyl group covalently bonded to a polymerizable carbon-carbon double bond. As used herein, the term “carboxylic acid” encompasses the corresponding conjugate base (i.e., carboxylate). Exemplary free-radically polymerizable carboxylic acids include itaconic acid, (meth)acrylic acid, maleic acid, fumaric acid, salts of the foregoing, and mixtures thereof. The phrase “copolymer of monomers comprising” is refers to the structure of the copolymer rather than any particular method of preparing the copolymer. For example, the copolymer may be prepared using a monomer (e.g., maleic anhydride) that on hydrolysis (before or after co-polymerization) results in a free-radically polymerizable carboxylic acid. In order to ensure good swellability of the crosslinked copolymer with water, the acid content typically falls in a range of from about 40 percent to about 90 percent by weight (e.g., in a range of from 50 to 70 percent by weight) of the crosslinked copolymer, although acid content values outside this range may also by useful.
Useful alkyl and alkaryl(meth)acrylates have from 11 carbon atoms to 34 carbon atoms, and may be linear or branched. Examples of useful alkyl and alkaryl (meth)acrylates include octyl(meth)acrylate, isooctyl(meth)acrylate, octadecyl (meth)acrylate, tridecyl(meth)acrylate, and nonylphenyl acrylate.
Optionally, additional co-monomers (e.g., (meth)acrylamide, butyl(meth)acrylate) may be included in the crosslinked copolymer.
Crosslinking is typically accomplished by inclusion of a monomer having multiple free-radically polymerizable groups (i.e., polyfunctional monomer) in the monomer mixture prior to copolymerization, although other methods may be used. Useful polyfunctional monomers are well known and include, for example, pentaerythritol trivinyl ether, ethylene glycol divinyl ether, and 1,6-hexanediol diacrylate. The amount of crosslinking desired will determine the amount of polyfunctional monomer used. In order to ensure good swellability with water, the crosslink density should typically be kept at very low level, with value of Mc the average molecular weight of segments between crosslinks of greater than 1000g/mole, greater than 2000 g/mole, and/or greater than 3000 g/mole.
Examples of useful commercially available crosslinked copolymers include, for example, those marketed by Noveon, Inc., Cleveland, Ohio under the trade designations “CARBOPOL” and “PEMULEN” (e.g., “CARBOPOL 674 POLYMER”, “CARBOPOL 676 POLYMER”, “° CARBOPOL 934 POLYMER”, “CARBOPOL 940 POLYMER”, “CARBOPOL 941 POLYMER”, “CARBOPOL 980 POLYMER ”, “CARBOPOL 981 POLYMER”, “CARBOPOL 1342 POLYMER”, “CARBOPOL 1610 POLYMER”, “PEMULEN 1621 RESIN ”, “PEMULEN 1622 RESIN”, “CARBOPOL 1623 POLYMER”, “CARBOPOL 2984 POLYMER”, and “CARBOPOL 5984 POLYMER”).
The crosslinked copolymer may be present in the curable composition and/or cured composition in an amount of from at least 0.001 percent by weight, at least 0.1 percent by weight, at least 1 percent by weight, at least 5 percent by weight, up to about 10 percent by weight, 20 percent by weight, 30 percent by weight, 40 percent by weight, or even higher, based on the total weight of the curable composition.
Typically, the crosslinked copolymer is in the form of particles, for example having an average dry (i.e., non-swelled) particle size in a range of from about 0.1 micrometers to about 10 micrometers, or in a range of from about 2 micrometers to about 7 micrometers, although larger and smaller particles may also be used.
Optionally, curable compositions according to the present invention may contain at least one organic solvent. The amount of organic solvent is typically chosen based on considerations such as, for example, the desired viscosity of the curable composition. Exemplary classes of organic solvents include alkanes, alcohols, ketones, esters, and ethers
In some embodiments according to the present invention, curable compositions are free of added filler and/or grinding aid. Such curable compositions may be useful, for example, for preparing abrasive articles that exhibit abrasive properties comparable to commercially available abrasive articles with binders that include fillers and/or grinding aids. As used herein, the term “free of added filler and/or grinding aid” means that such materials are either wholly absent or present in sufficiently small amounts that they do not exhibit a change of more than five percent in mechanical (i.e., tensile stress and elongation) or abrasive properties (i.e., cut and wear) of the cured composition.
Curable compositions according to the present invention may optionally include at least one, optionally curable, additional polymer or polymer precursor. Exemplary optional additional polymers and/or polymer precursors include phenolic resins, urea-formaldehyde resins, melamine-formaldehyde resins, urethane resins, acrylate resins, polyester resins, aminoplast resins having pendant alpha, beta-unsaturated carbonyl groups, epoxy resins, acrylated urethanes, acrylated epoxies, and combinations thereof.
Optionally, curable compositions may be mixed with and/or include one or more additives. Exemplary additives include fillers, coupling agents, plasticizers, surfactants, lubricants, colorants (e.g., pigments), bactericides, fungicides, grinding aids, and antistatic agents.
Curable compositions according to the present invention may be prepared, for example, by heating, individually or in combination, blocked polyisocyanate and curative to a temperature in a range of from about 50° C. to about 70° C., and combining them. The exact temperature is not critical as long as the combination of blocked polyisocyanate and curative forms a reasonably uniform mixture. If using low viscosity components, the curable composition may be prepared without heating, although heating may be used.
The blocked polyisocyanate, acidic copolymer, and optional components (e.g., organic solvent, curative, other additives) may be combined using well-known mixing techniques (e.g., a motorized mixer having a propeller blade).
In some aspects according to the present invention, abrasive particles may be added to curable compositions of the present invention.
Curable compositions according to the invention may be applied to a substrate by any method known for applying a composition including spraying, roll coating, gravure coating, dip coating, curtain coating, die coating, and the like.
Once applied to a substrate, curable compositions according to the present invention may be at least partially dried to remove optional organic solvent. Drying may be accomplished, for example, by evaporation, preferably at elevated temperature (i.e., above ambient temperature, for example, in a range of from about 50° C. to about 120° C.). After sufficient optional organic solvent has been removed, the remaining components are typically at least partially cured by application of thermal energy (e.g., at a temperature greater than about 120° C., although other curing temperatures may be utilized). Typically, drying and curing may be performed sequentially, or as a single process step. Exemplary useful sources of thermal energy includes ovens, heated rolls, and/or infrared lamps. If desired, further application of thermal energy (e.g., by heating to a higher temperature) may also be desirable to improve binder properties.
Curable compositions according to the present invention may be used to prepare protective coatings, binders (e.g., for nonwoven articles), and the like. Further, curable compositions according to the present invention may be used to prepare abrasive articles such as, for example, coated abrasive articles, nonwoven abrasive articles, bonded abrasive articles, and/or abrasive brushes.
In general, coated abrasive articles have abrasive particles secured to a backing. More typically, coated abrasive articles comprise a backing having two major opposed surfaces and an abrasive coat secured to a major surface. The abrasive coat is typically comprised of abrasive particles and a binder, wherein the binder serves to secure the abrasive particles to the backing.
Suitable abrasive particles include any abrasive particles known in the abrasive art. Exemplary useful abrasive particles include fused aluminum oxide based materials such as aluminum oxide, ceramic aluminum oxide (which may include one or more metal oxide modifiers and/or seeding or nucleating agents), and heat-treated aluminum oxide, silicon carbide, co-fused alumina-zirconia, diamond, ceria, titanium diboride, cubic boron nitride, boron carbide, garnet, flint, emery, sol-gel derived abrasive particles, and blends thereof. Preferably, the abrasive particles comprise fused aluminum oxide, heat-treated aluminum oxide, ceramic aluminum oxide, silicon carbide, alumina zirconia, garnet, diamond, cubic boron nitride, sol-gel derived abrasive particles, or mixtures thereof.
The abrasive particles may be in the form of, for example, individual particles, abrasive composite particles, agglomerates (including erodible agglomerates), and mixtures thereof (e.g., having the same or different size and/or composition).
The abrasive particles typically have an average diameter of from about 0.1 micrometers to about 2000 micrometers, more preferably from about 1 micrometers to about 1300 micrometers, although other particles having other diameters can be used. Coating weights for the abrasive particles may depend on, for example, the type of abrasive article (e.g., coated abrasive article or nonwoven abrasive article), the process for applying the abrasive particles, and the size of the abrasive particles, but typically range from about 5 grams per square meter (g/m2) to about 1350 g/m2.
In one exemplary embodiment of a coated abrasive article, the abrasive coat may comprise a make coat, optional size coat, and abrasive particles. Referring now to
In making such a coated abrasive article, a make coat comprising a first binder precursor is applied to a major surface of the backing. Abrasive particles are then at least partially embedded into the make coat (e.g., by electrostatic coating), and the first binder precursor is at least partially cured to secure the particles to the make coat. If utilized, an optional size coat comprising a second binder precursor (which may be the same or different from the first binder precursor) is then applied over the make coat and abrasive particles, followed by curing the binder precursors.
Optionally, coated abrasive articles may further comprise, for example, a backsize (i.e., a coating on the major surface of the backing opposite the major surface having the abrasive coat), a presize or a tie layer (i.e., a coating between the abrasive coat and the major surface to which the abrasive coat is secured), and/or a saturant which coats both major surfaces of the backing. Coated abrasive articles may further comprise a supersize covering the abrasive coat. If present, the supersize typically includes grinding aids and/or anti-loading materials.
In another exemplary embodiment of a coated abrasive article according to the present invention, the abrasive coat may comprise a cured slurry of a binder precursor and abrasive particles. Referring to
In making such a coated abrasive article, a slurry comprising a first binder precursor and abrasive particles is typically applied to a major surface of the backing, and the binder precursor is then at least partially cured. Curable compositions according to the present invention may be included in binder precursors used to prepare one or more of the abovementioned layers and coatings of coated abrasive articles.
Coated abrasive articles according to the present invention may be converted, for example, into belts, rolls, discs (including perforated discs), and/or sheets. For belt applications, two free ends of the abrasive sheet may be joined together using known methods to form a spliced belt.
Further description of techniques and materials for making coated abrasive articles may be found in, for example, U.S. Pat. No. 4,314,827 (Leitheiser et al.); U.S. Pat. No. 4,518,397 (Leitheiser et al.); U.S. Pat. No. 4,588,419 (Caul et al.); U.S. Pat. No. 4,623,364 (Cottringer et al.); U.S. Pat. No. 4,652,275 (Bloecher et al.); U.S. Pat. No. 4,734,104 (Broberg); U.S. Pat. No. 4,737,163 (Larkey); U.S. Pat. No. 4,744,802 (Schwabel); U.S. Pat. No. 4,751,137 (Tumey et al.); U.S. Pat. No. 4,770,671 (Monroe et al.); U.S. Pat. No. 4,799,939 (Bloecher et al.); U.S. Pat. No. 4,881,951 (Wood et al.); U.S. Pat. No. 4,927,431 (Buchanan et al.); 5,498,269 (Larmie); U.S. Pat. No. 5,011,508 (Wald et al.); U.S. Pat. No. 5,078,753 (Broberg et al.); U.S. Pat. No. 5,090,968 (Pellow); U.S. Pat. No. 5,108,463 (Buchanan et al.); U.S. Pat. No. 5,137,542 (Buchanan et al.); U.S. Pat. No. 5,139,978 (Wood); U.S. Pat No. 5,152,917 (Pieper et al.); U.S. Pat. No. 5,201,916 (Berg et al.); U.S. Pat. No. 5,203,884 (Buchanan et al.); U.S. Pat. No. 5,227,104 (Bauer); U.S. Pat. No. 5,328,716 (Buchanan); U.S. Pat. No. 5,366,523 (Rowenhorst et al.); U.S. Pat. No. 5,378,251 (Culler et al.); U.S. Pat. No. 5,417,726 (Stout et al.); U.S. Pat. No. U.S. Pat. No. 5,429,647 (Larmie); U.S. Pat. No. 5,436,063 (Follett et al.); U.S. Pat. No. 5,490,878 (Peterson et al.); U.S. Pat. No. 5,492,550 (Krishnan et al.); U.S. Pat. No. 5,496,386 (Broberg et al.); U.S. Pat. No. 5,520,711 (Helmin); 5,549,962 (Holmes et al.); U.S. Pat. No. 5,551,963 (Larmie); U.S. Pat. No. 5,556,437 (Lee et al.); U.S. Pat. No. 5,560,753 (Buchanan et al.); U.S. Pat. No. 5,573,619 (Benedict et al.); U.S. Pat. No. 5,609,706 (Benedict et al.); U.S. Pat. No. 5,672,186 (Chesley et al.); U.S. Pat. No. 5,700,302 (Stoetzel et al.); U.S. Pat. No. 5,942,015 (Culler et al.); 5,954,844 (Law et al.); U.S. Pat. No 5,961,674 (Gagliardi et al.); U.S. Pat. No. 5,975,988 (Christianson); U.S. Pat. No. 6,059,850 (Lise et al.); and U.S. Pat. No. 6,261,682 (Law), the disclosures of which are incorporated herein by reference.
Nonwoven abrasive articles typically include a porous (e.g., a lofty open porous) polymer filament structure having abrasive particles bonded thereto by a binder. An exemplary embodiment of a nonwoven abrasive article according to the present invention is shown in
The fiber web may comprise continuous filaments (e.g., a spunbond fiber web) and/or staple fibers that may be crimped and/or entangled with one another. Exemplary fibers include polyester fibers, polyamide fibers, and polyaramid fibers.
The fiber web may, optionally, be affixed (i.e., secured) to a backing, for example, by needletacking, stitchbonding, and/or adhesive bonding (e.g., using glue or a hot melt adhesive).
Binders and binder precursors (including curable compositions according to the present invention), backings, abrasive particles, optional additives, and optional layers set forth hereinabove for inclusion in coated abrasive articles may also be utilized in nonwoven abrasives according to the present invention.
Nonwoven abrasive articles according to the invention may be converted to a variety of useful forms including, for example, sheets, discs, belts, rolls, wheels, hand pads, cleaning brushes, and blocks.
Further description of techniques and materials for making nonwoven abrasive articles may be found in, for example, U.S. Pat. No. 2,958,593 (Hoover et al.); U.S. Pat. No. 4,018,575 (Davis et al.); U.S. Pat. No. 4,227,350 (Fitzer); U.S. Pat. No. 4,331,453 (Dau et al.); U.S. Pat. 4,609,380 (Barnett et al.); U.S. Pat. No. 4,991,362 (Heyer et al.); U.S. Pat. No. 5,554,068 (Carr et al.); U.S. Pat. No. 5,712,210 (Windisch et al.); U.S. Pat. No. 5,591,239 (Edblom et al.); U.S. Pat. No. 5,681,361 (Sanders); U.S. Pat. No. 5,858,140 (Berger et al.); U.S. Pat. No. 5,928,070 (Lux); U.S. Pat. No. 6,017,831 (Beardsley et al.); U.S. Pat. No. 6,207,246 (Moren et al.); and U.S. Pat. No. 6,302,930 (Lux), the disclosures of which are incorporated herein by reference.
Bonded abrasive articles typically include a shaped mass of abrasive particles held together by a binder. Referring now to
In one method, bonded abrasive articles may be formed by preparing a mixture of abrasive particles in a binder precursor, shaping the mixture (e.g., using a mold), and curing the binder precursor to form a binder. In one embodiment according to the present invention (e.g., a vitreous bonded abrasive article), the binder may be subsequently removed by pyrolysis.
Bonded abrasive articles according to the present invention may have any form useful as an abrasive article such as, for example, a wheel (e.g., grinding wheel, polishing wheel, cutoff wheel), a honing stone, a belt, mounted points, or other conventional bonded abrasive shape.
Further details regarding bonded abrasive articles may be found in, for example, U.S. Pat. No. 4,800,685 (Haynes et al.); U.S. Pat. No. 4,898,597 (Hay et al.); U.S. Pat. No. 4,933,373 (Moren); U.S. Pat. No. 5,282,875 (Wood et al.), the disclosures of which are incorporated herein by reference.
Curable compositions according to the present invention are also useful as binder precursors for the preparation of abrasive brushes such as flap brushes as described, for example, in U.S. Pat. No. 5,554,068 (Carr et al.), and unitary brushes as described, for example, in U.S. Pat. Publication 2002/0065031A1 (Chou et al.), published May 30, 2002, the disclosures of which are incorporated herein by reference.
One exemplary embodiment of a unitary brush according to the present invention is illustrated in FIG. 5. Referring to
Another exemplary embodiment of a unitary brush according to the present invention is illustrated in FIG. 6. Referring to
To enhance the life of unitary brushes, binders according to the present invention that are in contact with bristles may have a flexural modulus, as measured according to ASTM Test Method D790-02 “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials” (2002), that is similar to (e.g., within 20 percent of) the flexural modulus of the bristles.
Curable compositions according to the present invention may be foamed and used to prepare foraminous abrasive articles as described in, for example, U.S. Pat. No. 6,007,590 (Sanders), the disclosure of which is incorporated herein by reference.
Abrasive articles according to the present invention are useful for abrading a workpiece. Methods for abrading with abrasive articles according to the present invention range from snagging (i.e., high pressure high stock removal) to polishing (e.g., polishing medical implants with coated abrasive belts), wherein the latter is typically done with finer grades (e.g., less ANSI 220 and finer) of abrasive particles. One such method includes the step of frictionally contacting an abrasive article (e.g., a coated abrasive article, a nonwoven abrasive article, or a bonded abrasive article) with a surface of the workpiece, and moving at least one of the abrasive article or the workpiece relative to the other to abrade at least a portion of the surface.
Examples of workpiece materials include metal, metal alloys, exotic metal alloys, ceramics, glass, wood, wood-like materials, composites, painted surfaces, plastics, reinforced plastics, stone, and/or combinations thereof. The workpiece may be flat or have a shape or contour associated with it. Exemplary workpieces include metal components, plastic components, particleboard, camshafts, crankshafts, furniture, and turbine blades. The applied force during abrading typically ranges from about 1 kilogram to about 100 kilograms.
Abrasive articles according to the present invention may be used by hand and/or used in combination with a machine. At least one or both of the abrasive article and the workpiece is moved relative to the other when abrading.
Abrading may be conducted under wet or dry conditions. Exemplary liquids for wet abrading include water, water containing conventional rust inhibiting compounds, lubricant, oil, soap, and cutting fluid. The liquid may also contain defoamers, degreasers, and/or the like.
The present invention will be more fully understood with reference to the following non-limiting examples in which all parts, percentages, ratios, and so forth, are by weight unless otherwise indicated.
Unless otherwise noted, all reagents used in the examples were obtained, or are available from, general chemical suppliers such as Aldrich Chemical Co., Milwaukec, Wis., or may be synthesized by known methods.
The following abbreviations are used throughout the Examples:
Tensile Test
Tensile properties were evaluated according to ASTM Test Method D 638-02, “Standard Test Method for Tensile Properties of Plastics”, the disclosure of which is incorporated herein by reference, and which gives a comprehensive listing of tensile properties, testing procedures, and property calculations. Five Dumbbell-shaped specimens of dimensions W=0.125 inch (3.8 mm)×LO=2.062 inches (52.4 mm)×WO =0.562 inch (14.3 mm) were die-cut from each film sample, where W is the width of the narrow section of the dumbbell, LO is the overall length of the specimen, and WO is the overall length of the specimen. Each dumbbell was clamped into a constant rate of extension tensile testing machine having the trade designation “SINTECH 2 ” and equipped with a 200 lb load cell available from MTS Systems Corporation, Cary, N.C. Data acquisition, tensile property calculations, and machine control was performed using software available from MTS Systems Corporation, Cary, N.C. under the trade designation “TESTWORKS VERSION 2.1”. The gage length was 1.0 inch (2.54 cm), the strain rate was set to 1.0 inch/minute (2.54 cm/min), and the specimen gripping surface was serrated and 2 inches (5 cm) wide×1.5 inches (3.8 cm) long. Test results reported are the statistical average of 10 measurements of a single film.
General Method for Film Preparation—Friction Test
Films for subsequent friction testing were prepared on steel plates (phosphate coated, 4 inches×12 inches×0.030 inch (10.1×30.5 cm×0.76 mm)). Each film was prepared by knife coating the specified composition at a wet thickness of 0.010 inch (0.25 mm), allowing it to air dry for 2 hours, and then placing it in a convection oven at 250 ° F. (121 ° C.) for 18 hours. Each film was then allowed to cool to room temperature prior to friction measurements at various temperatures.
Friction Test
Coefficients of friction were determined using a Thwing-Albert Friction/Peel Tester Model No. 225-1 (Thwing-Albert Instrument Company, Philadelphia, Pa.) that was equipped with a 2000-gram load cell and a variable temperature platen cooled to 15 ° C.). Measurements were made by pulling a steel bar weighing 500 grams (g) and having a 2 inch×2 inch (5.1 cm×5.1 cm) sliding contact face across a film specimen at 2.1 inches/min (5.6 cm/min). Three measurements of coefficient of static friction (i.e., SF), and coefficient of kinetic friction (i.e., KF), were made for each specimen and reported as an average value.
Cut and Wear Test
Abrasive articles comprising the inventive compositions were tested according to the Cut and Wear test. Each test specimen consisted of three 10-inch (25.4 cm) diameter discs with 2-inch (5.08 cm) diameter center holes that were cut from the nonwoven abrasive article to be tested. The three discs were mounted on a 2-inch (5.08) diameter driven shaft with spacers (6 inches (15.24 cm) outer diameter×2 inches (5.08 cm) inner diameter×½ inch (1.27 cm) thick) between each pair of discs. Three such test specimens were prepared for each nonwoven abrasive article to be tested. Each test specimen was evaluated for abrasiveness against an 11 inch (28 cm)×4 inch (10 cm)×0.056 inch (1.4 mm) perforated carbon steel screen workpiece ( 5/32 inch (0.40 cm) hole diameter on 7/32 inch (0.56 cm)) centers staggered pattern on 1008 cold rolled steel, stock pattern 401 obtained from Harrington & King Company, Chicago, Ill. Test specimens were rotated at 6000 ft/min (1829 m/min) and urged against a workpiece at 20 psi (0.14 MPa) force for one minute. A new workpiece was mounted and the abrading cycle was repeated. The before-test weight and the after-test weight of both the test specimen and the two workpieces were recorded. Test specimen weight loss was recorded as “wear”. The combined weight loss of both workpieces was recorded as “cut”.
The compositions of Examples 1-8 and Comparative Examples A-D were prepared by combining, in the amounts indicated in Table 1 (below), PU1 and solvent borne curative (i.e., C1 or C2 dissolved in Solvent 1), which were stirred until completely dissolved, then nonionic surfactant (S1) and/or crosslinked copolymer (PAA 1), if specified, were finally added.
Films were prepared from the compositions of Examples 1-8 and Comparative Examples A-D according to the General Method for Film Preparation—Friction Test, and test specimens of the prepared films were evaluated according to the Friction Test. Friction Test results are shown in Table 2 (below).
A continuous filament nonwoven web was made according to the procedure of Example 1 of U.S. Pat. No. 4,227,350 (Fitzer), the disclosure of which is incorporated herein by reference. Polycaprolactam (available commercially under the trade designation “ULTRAMID B3 ” from BASF Corporation, Polymers Division, Mount Olive, N.J.) was extruded at a pressure of 2800 psi (19 MPa) through a 60-inch (1.5 meter) long spinneret nominally having 2890 counter sunk, counter bored openings arranged in eight equal rows spaced 0.080 inch (0.2 cm) apart in a hexagonal close packed array, each opening having a diameter of 0.016 inch (0.4 mm), and having a land length of 0.079 inch (2.0 mm). The spinneret was heated to about 248° C. and positioned 12 inches (30 cm) above the surface of a quench bath, which was continuously filled and flushed with tap water at the rate of 0.5 gallon per minute (2 liters/min). Filaments extruded from the spinneret were permitted to fall into the quench bath, where they undulated and coiled between two 4-inch (10 cm) diameter by 60-inch (1.5 m) long smooth-surfaced rolls. Both rolls were positioned in the bath with their axes of rotation about 2 inches (5 cm) below the surface of the bath, and the rolls were rotated in opposite directions at a rate of about 9 ft/min (2.7 m/min) surface speed. The rolls were spaced to lightly compress the surfaces of the resultant extruded web, providing a flattened surface on both sides. The polycaprolactam was extruded at a rate of about 700 pounds per hour (320 kg/hr), producing a web that was 59 inches (1.5 m) wide×0.66 inch (17 mm) thick. The web had eight rows of coiled, undulated filaments. The resulting coiled web had a basis weight of 14.2 grams/24 square inches (0.875 kg/m2), and had a void volume of 92.6 percent by volume. The filament diameter averaged about 15 mils (0.38 mm). The web was carried from the quench bath around one of the rolls and excess water was removed from the web by drying at room temperature (i.e., 20 ° C. to 24° C.) using forced air.
The nonwoven web prepared above was used to make Examples 9-12 and Comparative Examples E-H by sequentially applying a make coat, mineral coat, and size coat, as described below.
A make coat, obtained by combining the ingredients shown in Table 3 (below), was applied to the nonwoven web using a 2-roll coater.
The indicated make coat was applied at a dry add-on weight of 6.5 g/24 in2 (0.420 kg/m2). Grade 36 SiC abrasive granules (2.6 kg/m2) were then applied to the coated web via a drop coater. The web was agitated to encourage penetration of the granules into the interstitial spaces of the web. The particle-coated web was then heated by passing it through a 90 ft (27 m) long oven. A size coat consisting of 9.6 parts C1, 27.5 parts PU1, 27.5 parts PU2, 1.2 parts lampblack, 0.7 parts silane, 19.3 parts Solvent 2, and 4.7 parts LiSt was then sprayed on the upper side of the web, which was then heated in an oven. The web was inverted and the other side was sprayed with an identical amount of the size coating and heated in an oven under the same conditions. The final size coat dry add-on was 7.78 g/24 in2 (0.503 kg/m2). Discs ((10-inch (25.4mm) outer diameter, 2-inch (5.1mm) inner diameter) were cut from the resulting nonwoven abrasive articles and were tested according to the Wear Test. Curing conditions used for the make and size coatings, and Wear Test results are reported in Table 4 (below).
Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention, and it should be understood that this invention is not to be unduly limited to the illustrated embodiments set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
2958593 | Hoover et al. | Nov 1960 | A |
3225916 | Field et al. | Dec 1965 | A |
3971745 | Carlson et al. | Jul 1976 | A |
4018575 | Davis et al. | Apr 1977 | A |
4190567 | Ohmura et al. | Feb 1980 | A |
4227350 | Fitzer | Oct 1980 | A |
4306998 | Wenzel et al. | Dec 1981 | A |
4314827 | Leitheiser et al. | Feb 1982 | A |
4331453 | Dau et al. | May 1982 | A |
4355489 | Heyer et al. | Oct 1982 | A |
4357441 | Hamamura et al. | Nov 1982 | A |
4486200 | Heyer et al. | Dec 1984 | A |
4518397 | Leitheiser et al. | May 1985 | A |
4522851 | Rosthauser | Jun 1985 | A |
4524104 | Hagio et al. | Jun 1985 | A |
4588419 | Caul et al. | May 1986 | A |
4609380 | Barnett et al. | Sep 1986 | A |
4623364 | Cottringer et al. | Nov 1986 | A |
4652275 | Bloecher et al. | Mar 1987 | A |
4734104 | Broberg | Mar 1988 | A |
4737163 | Larkey | Apr 1988 | A |
4744802 | Schwabel | May 1988 | A |
4751137 | Halg et al. | Jun 1988 | A |
4770671 | Monroe et al. | Sep 1988 | A |
4799939 | Bloecher et al. | Jan 1989 | A |
4800685 | Haynes, Jr. | Jan 1989 | A |
4826894 | Markusch et al. | May 1989 | A |
4835210 | Chin et al. | May 1989 | A |
4842619 | Fritz et al. | Jun 1989 | A |
4881951 | Wood et al. | Nov 1989 | A |
4898597 | Hay et al. | Feb 1990 | A |
4927431 | Buchanan et al. | May 1990 | A |
4933373 | Moren | Jun 1990 | A |
4991362 | Heyer et al. | Feb 1991 | A |
5011508 | Wald et al. | Apr 1991 | A |
5078753 | Broberg et al. | Jan 1992 | A |
5090968 | Pellow | Feb 1992 | A |
5108463 | Buchanan | Apr 1992 | A |
5137542 | Buchanan et al. | Aug 1992 | A |
5139978 | Wood | Aug 1992 | A |
5152917 | Pieper et al. | Oct 1992 | A |
5201916 | Berg et al. | Apr 1993 | A |
5203884 | Buchanan et al. | Apr 1993 | A |
5227104 | Bauer | Jul 1993 | A |
5273558 | Nelson et al. | Dec 1993 | A |
5282875 | Wood et al. | Feb 1994 | A |
5290903 | Hsu et al. | Mar 1994 | A |
5306319 | Krishnan et al. | Apr 1994 | A |
5328716 | Buchanan | Jul 1994 | A |
5342888 | Sudo | Aug 1994 | A |
5366523 | Rowenhorst et al. | Nov 1994 | A |
5378251 | Culler et al. | Jan 1995 | A |
5378252 | Follensbee | Jan 1995 | A |
5417726 | Stout et al. | May 1995 | A |
5429647 | Larmie | Jul 1995 | A |
5436063 | Follett et al. | Jul 1995 | A |
5482756 | Berger et al. | Jan 1996 | A |
5490878 | Peterson et al. | Feb 1996 | A |
5492550 | Krishnan et al. | Feb 1996 | A |
5496386 | Broberg et al. | Mar 1996 | A |
5498269 | Larmie | Mar 1996 | A |
5520711 | Helmin | May 1996 | A |
5549962 | Holmes et al. | Aug 1996 | A |
5551963 | Larmie | Sep 1996 | A |
5554068 | Carr et al. | Sep 1996 | A |
5556437 | Lee et al. | Sep 1996 | A |
5560753 | Schnabel et al. | Oct 1996 | A |
5563193 | Abel et al. | Oct 1996 | A |
5573619 | Benedict et al. | Nov 1996 | A |
5578096 | Christianson et al. | Nov 1996 | A |
5584897 | Christianson et al. | Dec 1996 | A |
5591239 | Larson et al. | Jan 1997 | A |
5609706 | Benedict et al. | Mar 1997 | A |
5672186 | Chesley et al. | Sep 1997 | A |
5681361 | Sanders, Jr. | Oct 1997 | A |
5681612 | Benedict et al. | Oct 1997 | A |
5700302 | Stoetzel et al. | Dec 1997 | A |
5712210 | Windisch et al. | Jan 1998 | A |
5807913 | Mikuni et al. | Sep 1998 | A |
5852120 | Bederke et al. | Dec 1998 | A |
5858140 | Berger et al. | Jan 1999 | A |
5919549 | Van et al. | Jul 1999 | A |
5924917 | Benedict et al. | Jul 1999 | A |
5928070 | Lux | Jul 1999 | A |
5942015 | Culler et al. | Aug 1999 | A |
5954844 | Law et al. | Sep 1999 | A |
5961674 | Gagliardi et al. | Oct 1999 | A |
5975988 | Christianson | Nov 1999 | A |
6007590 | Sanders, Jr. | Dec 1999 | A |
6017831 | Beardsley et al. | Jan 2000 | A |
6059850 | Lise et al. | May 2000 | A |
6066188 | Benedict et al. | May 2000 | A |
6117931 | Rehfuss et al. | Sep 2000 | A |
6207246 | Moren et al. | Mar 2001 | B1 |
6210840 | Usami et al. | Apr 2001 | B1 |
6261682 | Law | Jul 2001 | B1 |
6288176 | Hsieh et al. | Sep 2001 | B1 |
6302930 | Lux | Oct 2001 | B1 |
6328773 | Beardsley et al. | Dec 2001 | B1 |
6635314 | William et al. | Oct 2003 | B1 |
20020065031 | Chou et al. | May 2002 | A1 |
Number | Date | Country |
---|---|---|
2013860 | Sep 1970 | DE |
42 23 183 | Jul 1993 | DE |
0 653 468 | May 1995 | EP |
51086593 | Jul 1976 | JP |
53033251 | Mar 1978 | JP |
S 56-74144 | Jun 1981 | JP |
S 62-151419 | Jul 1987 | JP |
11-207639 | Aug 1999 | JP |
WO 9426468 | Nov 1994 | WO |
WO 0039181 | Jul 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040101680 A1 | May 2004 | US |