Current measuring shunt with circuitry mounted thereon

Information

  • Patent Grant
  • 6646430
  • Patent Number
    6,646,430
  • Date Filed
    Wednesday, December 27, 2000
    24 years ago
  • Date Issued
    Tuesday, November 11, 2003
    21 years ago
Abstract
A current sensor which has a rigid metallic link member having two end portions of conductive material and an intermediate portion of resistive material interconnecting the end portions. An integrated circuit analog to digital converter is mounted on the link member. The converter has analog input terminals for connection to respective ones of the two end portions of the link member and digital output terminals for connection to a processing apparatus.
Description




This invention relates to a current sensor intended for use in an electrical apparatus such as a residual current detection device, a current meter or a power meter.




BACKGROUND OF THE INVENTION




It is an object of the present invention to provide a current sensor in an economical form.




SUMMARY OF THE INVENTION




In accordance with the invention there is provided a current sensor comprising a metallic link member having two end portions of conductive material and an intermediate portion interconnecting the end portions, said intermediate portion being formed of a resistive material, and an integrated circuit analog to digital converter mounted on said link member, said converter having analog input terminals connected to respective ones of said two end portions and digital output terminals for connection to a processing apparatus.




Conveniently, the converter is attached to the intermediate portion by a layer of electrically insulative adhesive material and the analog input terminals of the converter are connected to the end portions by wire bonds.




The converter preferably includes a delta-sigma modulator which provides a high frequency one-bit digital data. One or more decimation filtering stages may be included in the converter.




The converter may also have a voltage reference terminal for connection to a reference voltage source, the converter operating to provide digital output signals respectively representing the current flowing through said intermediate portion and digital output signals representing the voltage on one of said end portions.











BRIEF DESCRIPTION OF THE DRAWINGS




In the accompanying drawings:





FIG. 1

is a perspective view of one example of a current detector in accordance with the invention,





FIG. 2

a sectional view of the detector,





FIG. 3

is an elevation of the detector,





FIG. 4

is a block diagram of a simple form of an electronic circuit for the detector, and





FIG. 5 and 6

are block diagrams of more complex forms of electronic circuits.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The detector shown in

FIGS. 1

to


3


includes a rigid composite conductor strip having two end portions


13


of copper and an intermediate portion


14


of a resistive material such as manganin. The strips are formed by slicing up a sandwich formed by electron beam welding of the copper bars to opposite sides of a manganin bar. The shunts formed by the resistive portions


14


manufactured by this method may have a nominal resistance of 0.2 mΩ to a tolerance of less than 5%. The resistance of adjacent slices from the sandwich may differ by as little as 2%.




A signal pre-processing ASIC


15


is mounted on the manganin portion


14


by means of a layer of electrically insulating adhesive


16


. Wire leads


17


connect two analog input terminals of the ASIC to respective ones of the copper end portions


13


. Further leads connect terminals on the ASIC to conductors of a lead frame


18


parts of which are shown. As shown in

FIG. 3

the ASIC, the manganin portion, the wire leads and the lead frame conductors are all enclosed within a block


19


of electrically insulating encapsulation material for the protection thereof. Opposite ends of the copper end portions


13


project from the encapsulation block


19


.




Turning now to

FIG. 4

, it will be seen that the main block within the ASIC


15


consists of a single delta-sigma modulator


20


. There is also an analog input circuit which has its input terminals connected to the copper end portions


13


. The output of the ASIC


15


in this case consists of a high frequency one-bit data signal train. In use, the ASIC output is connected via a transformer or other isolation barrier


22


to a processor


23


. The processor in this arrangement is configured to carry out one or more decimation filtering operations to convert the one-bit signal stream into a multi-bit digital valve at a lower frequency.




The processor


23


may typically be configured to receive signals from a plurality of the detectors and to sum these signals to ascertain whether the current flows through the detectors are balanced. Such an arrangement can be used for residual current correction allowing an actuator to trip a switch if an unbalanced condition is found to exist.




The processor


23


may alternatively or additionally compare the instantaneous current level with a trip level so that overcurrent tripping can be controlled.




In the alternative embodiment shown in

FIG. 5

, the ASIC is more complex and includes one or more of the decimation filtration stages


24


and a serial output driver


25


to transmit the bits of the multi-bit digital signal produced by the filtration stage


24


serially to the processor. With this arrangement, the configuration of the processor can be simplified as part or all of the decimation filtration operation is carried out in the ASIC.




In the arrangement shown in

FIG. 6

the ASIC has a further analog input which can be connected to a reference voltage source. Two analog input stages


21




a


and


21




b


are present and these feed signals to two independent delta-sigma modulators


20




a


,


20




b


. As shown, there are two independent decimation filtration stages


22




a


,


22




b


for the two one-bit digital signal streams. The outputs of the stages


22




a


,


22




b


may, as shown, be connected to a common serial output stage or (not shown) separate serial output stages may be provided.




It will be appreciated that the arrangement of

FIG. 6

may be modified by the omission of the two filtration stages


22




a


,


22




b


where all filtration is to be carried out by the processor.




Where voltage as well as current is monitored by the processor, precise calibration of the shunts can be achieved. This allows more accurate determination of the current balance in residual current detection (RCD) applications. Moreover, as voltage and current are both being monitored to a high level of precision, accurate power consumption metering can be obtained.




Where the devices of the invention are used in RCD and overcurrent trip systems, the processor can be programmed to recognise the transients which may occur when loads are switched in and out of circuit to avoid false tripping. Many other convenient functions can be programmed into the processor, made possible by the high precision of the current measurements capable of being carried out.



Claims
  • 1. A current sensor comprising a rigid metallic link member having two end portions of conductive material and an intermediate portion interconnecting the end portions, said intermediate portion being formed of a resistive material, and an integrated circuit analog to digital converter mounted on said link member, said converter having analog input terminals connected to respective ones of said two end portions and digital output terminals for connection to a processing apparatus.
  • 2. A current sensor as claimed in claim 1 in which the converter is attached to the link member by means of a layer of electrically insulating adhesive.
  • 3. A current sensor as claimed in claim 2 in which the converter is attached to the intermediate portion.
  • 4. A current sensor as claimed in claim 3 in which the analog input terminals of the converter are connected to the end portions by means of wire bonds.
  • 5. A current sensor as claimed in claim 1 in which the converter has a voltage reference terminal for connection to a reference voltage source and said converter operates to provide digital output signals representing the current through said intermediate portion and digital output signals representing the voltage on one of the end portions.
  • 6. A current sensor as claimed in claim 1 in which said converter includes a delta-sigma modulator which provides a high frequency one-bit digital data stream.
  • 7. A current sensor as claimed in claim 6 in which the converter also includes at least one decimation filter stage.
  • 8. A current measurement apparatus including at least one current sensor as claimed in claim 1 and a processor circuit connected to receive and process digital signals received from said current sensor.
  • 9. A current measurement apparatus as claimed in claim 8 in which the processor circuit is configured to carry out one or more decimation filtering operations on the received digital signals.
Priority Claims (1)
Number Date Country Kind
9813982 Jun 1998 GB
PCT Information
Filing Document Filing Date Country Kind
PCT/GB99/02053 WO 00
Publishing Document Publishing Date Country Kind
WO00/00833 1/6/2000 WO A
US Referenced Citations (24)
Number Name Date Kind
1257514 Meyer Feb 1918 A
1807852 MacGahan Jun 1931 A
3428896 Schweitzer Feb 1969 A
4009477 Rozylowicz Feb 1977 A
4823075 Alley Apr 1989 A
4922606 Alexander et al. May 1990 A
5041780 Ripple Aug 1991 A
5083081 Barrault et al. Jan 1992 A
5287107 Gampell et al. Feb 1994 A
5426416 Jefferies et al. Jun 1995 A
5436858 Staver Jul 1995 A
5463569 Staver et al. Oct 1995 A
5483173 Pellegrini Jan 1996 A
5589766 Frank et al. Dec 1996 A
5650951 Staver Jul 1997 A
5677845 Staver et al. Oct 1997 A
5701253 Mayell et al. Dec 1997 A
5867054 Kotowski Feb 1999 A
5875087 Spencer et al. Feb 1999 A
5929609 Joy et al. Jul 1999 A
6023160 Coburn Feb 2000 A
6034521 Eckardt Mar 2000 A
6058354 Adame et al. May 2000 A
6233532 Boudreau et al. May 2001 B1
Foreign Referenced Citations (4)
Number Date Country
0445048 Feb 1991 EP
0612081 Feb 1994 EP
0848258 Dec 1997 EP
2318002 Aug 1998 GB