Curved surface scattering antennas

Abstract
Surface scattering antennas on curved manifolds provide adjustable radiation fields by adjustably coupling scattering elements along a wave-propagating structure.
Description

If the listings of applications provided above are inconsistent with the listings provided via an ADS, it is the intent of the Applicant to claim priority to each application that appears in the Domestic Benefit/National Stage Information section of the ADS and to each application that appears in the Priority Applications section of this application.


All subject matter of the Priority Applications and of any and all applications related to the Priority Applications by priority claims (directly or indirectly), including any priority claims made and subject matter incorporated by reference therein as of the filing date of the instant application, is incorporated herein by reference to the extent such subject matter is not inconsistent herewith.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 depicts curved surface antennas.



FIG. 2 depicts a fabrication of a curved surface antenna.



FIG. 3 depicts a piecewise linear approach for a curved surface antenna.



FIG. 4 depicts a simulation of the piecewise linear approach.



FIGS. 5A-5C depict a curved antenna optimized to direct a beam at a 45° angle from broadside.



FIGS. 6A-6C depict a curved antenna optimized to direct a beam at a 60° angle from broadside.



FIG. 7 depicts a system block diagram.





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.


The embodiments relate to curved or conformal surface scattering antennas. Surface scattering antennas are described, for example, in U.S. Patent Application Publication No. 2012/0194399 (hereinafter “Bily I”), with improved surface scattering antennas being further described in U.S. Patent Application Publication No. 2014/0266946 (hereinafter “Bily II”). Surface scattering antennas that include adjustable radiative elements loaded with lumped elements are described in U.S. application Ser. No. 14/506,432 (hereinafter “Chen I”), while various holographic modulation pattern approaches are described in U.S. patent application Ser. No. 14/549,928 (“hereinafter Chen II”). All of these patent applications are herein incorporated by reference in their entirety.


Turning now to a consideration of the curved or conformal embodiments, it is to be appreciated that any of the various approaches described in the above-mentioned patent applications can be implemented in a non-planar fashion. Thus, for example, the circuit board assemblies of Chen I's FIGS. 9A-12B may be implemented with a semirigid or flexible laminate process, the resultant assembly being then bent or flexed to conform to a particular nonplanar geometry, such as a curved surface of a vehicle (e.g. the curved body of an automobile, the curved wing or fuselage of an aerial vehicle). FIG. 1 depicts an example of such a conformal antenna, comprising a semirigid or flexible circuit board assembly 100 mounted on a mandril 110 providing varying degrees of curvature 101-107 corresponding to arcs spanning 0° (i.e. zero curvature), 15°, 30°, 45°, 60°, 75°, and 90°, respectively. The semirigid or flexible circuit board assembly 100 can be, for example, a semirigid microwave laminate PCB such as a ROGERS 4000 SERIES laminate; or a flexible circuit board assembly of polyimide copper clad laminates such as DUPONT PYRALUX™ or KAPTON™ or liquid crystal polymer (LCP) dielectric films such as ROGERS ULTRALAM™.


In one approach, the antenna includes a one-dimensional waveguide that is bent to conform to general one-dimensional manifold. In another approach, the antenna includes a plurality of parallel one-dimensional waveguides (e.g. as depicted in Chen I's FIG. 5) that are bent to conform to two-dimensional manifold having a curvature in only one direction (e.g. a cylinder or corrugated surface). In yet another approach, the antenna includes a plurality of one-dimensional waveguides that are bent and laid down adjacently to conform to a general two-dimensional manifold having curvatures in two directions (e.g. where the one-dimensional waveguides are placed along lines of latitude or longitude on a section of a sphere or ellipsoid).


In some approaches, the scattering elements of the curved or conformal antenna may be evenly spaced where the distances between elements are measured along direction(s) locally parallel to the one- or two-dimensional manifold on which the scattering elements reside. For example, for a curved one-dimensional manifold, the scattering elements may be positioned as if they were equally spaced along an inelastic string that is laid down to coincide with the manifold. In other approaches, the scattering elements of the conformal antenna may be evenly spaced when the distances between elements are measured along a some fixed direction, e.g. a direction perpendicular to a “broadside” beam direction of the antenna. For example, for a curved one-dimensional manifold defined by a function y=ƒ(x), the scattering elements may be equally spaced along the one-dimensional manifold with x coordinates x0, x0+a, x0+2a, etc. In yet other approaches, the scattering elements are positioned randomly or pseudo-randomly along the manifold.


In some embodiments, the curved antenna includes a plurality of lumped elements that are electrically connected to a semirigid or flexible curved circuit board. For example, a curved circuit board may implement a waveguide (e.g. a substrate-integrated waveguide, microstrip waveguide, or stripline waveguide) that is coupled to a plurality of subwavelength radiative elements such as patches or slots, and the patches or slots are loaded with lumped elements that are mounted to an upper surface of the circuit board. Various approaches may be used, alone or in combination, to preserve electrical connectivity between the lumped elements and the circuit board despite the bending or flexion of the board. In a first approach, the lumped elements are connected to an upper surface of the circuit board with an elastomeric conductive compound. In a second approach, the lumped elements are connected to an upper surface of the circuit board with flexible electrical contacts. For example, the lumped elements may have flexible metal feet that maintain a connection to the board despite flexion; or the lumped elements may be installed in sockets which are in turn electrically connected to the board, the sockets providing the desired flexion tolerance.


In a third approach, depicted in FIG. 2, the lumped elements are placed on a flat circuit board, and the board is then bent prior to solder reflow. The exemplary fabrication process begins with a flat circuit board 200 implementing the antenna waveguide with a plurality of subwavelength radiative elements to which lumped elements are to be attached. In a first manufacturing step, solder paste 210 is applied to the flat circuit board, e.g. using a solder stencil, to prepare the board for placement of the lumped elements. In a second manufacturing step, the lumped elements 220 are placed on the board, e.g. using a pick-and-place machine. In a third manufacturing step, prior to solder reflow, the board is bent to conform to a desired curvature, for example by attaching the board to a mandril or other rigid structure 230. In a final manufacturing step, the bent board 201 is placed in a solder reflow oven to provide reflowed solder connections 211. The final board may be kept on the mandril or other rigid structure (or placed on a similarly-shaped support structure) until final installation of the antenna, to avoid unintended flexion of the baked board, e.g. during antenna system assembly or during transit to the installation site. It will be appreciated that the various manufacturing steps described above may be carried out by a single party or by any combination of multiple parties. Thus, for example, various embodiments provide methods of receiving a board in a first state of completion of the fabrication process (including a state of zero completion), performing one or more of the above manufacturing steps, and delivering the board in a later state of completion (including a state of total completion).


Some embodiments provide methods of selecting or identifying an antenna configuration to provide a desired antenna radiation pattern. As discussed in the patent applications cited above, the guided wave or surface wave may be represented by a complex scalar input wave Ψin that is a function of position along the wave-propagating structure. To produce an output wave that may be represented by another complex scalar wave Ψout, a pattern of adjustments of the scattering elements may be selected that corresponds to a hologram function, i.e. an interference pattern of the input and output waves along the wave-propagating structure. For example, the scattering elements may be adjusted to provide couplings to the guided wave or surface wave that are functions of (e.g. are proportional to, or binary/grayscale step-functions of) an interference term given by Re[ΨoutΨ*in]. To determine the pattern of adjustment of the scattering elements, therefore, it may be desirable to know the input wave Ψin.


In some approaches, the input wave Ψin may be analytically determinable. For example, for a linear waveguide with constant propagation characteristics along its length, the input wave may be an exponential function Ψin˜exp(−nωx/c)exp(−αx) of distance x along the waveguide, where n is an effective refractive index of the waveguide and α is an attenuation coefficient of the waveguide. When a radius of curvature of the curved antenna is much larger than a wavelength of the guided wave or surface wave, a linear or planar solution for the input wave Ψin may provide a good approximation of the input wave Ψin on the slightly curved manifold. Alternatively, in some approaches the input wave Ψin may be analytically expressed as a perturbation series in powers of a small parameter representing the small curvature of the manifold.


In other approaches, the input wave Ψin may be numerically determinable. For example, for a given waveguide geometry corresponding to a curved manifold, a full-wave simulator such as CST MICROWAVE STUDIO may be used to calculate the input wave Ψin as a function of position on the curved manifold.


In yet other approaches, the input wave Ψin may be experimentally determinable. For example, the scattering elements may be adjusted for maximal coupling to the input wave, and an evanescent probe may be scanned along the physical aperture of the antenna to measure the response of each scattering element and thereby determine the amplitude and phase of the input wave Ψin at the location of the scattering element. Alternatively, the curved antenna may be placed in a test environment with a measurement antenna in a proximity (near field or far field) of the curved antenna, and the signal received at the measurement antenna may be recorded for a series of adjustment patterns of the scattering elements. This series of adjustment patterns could be, for example, a “walking ones” pattern where each of the scattering elements is successively turned “on” (with all the other scattering elements “off”), or some other set of patterns. From this set of measurements with the measurement antenna, the input wave Ψin can be reconstructed.


In some approaches, the pattern of adjustments of the scattering elements may be determined by approximating the curved manifold of the antenna as a collection of piecewise linear or piecewise planar sections. Then, to obtain a desired far field radiation pattern R(θ, φ) , each section is configured as if it were a separate antenna providing that same radiation pattern, but taking into account the particular orientation of the section. For example, as shown in FIG. 3, a curved one-dimensional antenna 300 can be treated as a series of piecewise linear sections 310; then, to beam radiation in direction 320, each section is adjusted to cast a “forward,” “backward,” or “broadside” beam, depending on the local normal vector 330 of the segment. A simulation of this piecewise approach is shown in FIG. 4, which depicts three adjustment patterns 410, 420, and 430 corresponding to beam directions −30°, +30°, and 0° (broadside), respectively, for an antenna that is a 30° arc segment. In this simulation, the set of elements was divided into six zones, and each zone was treated as a piecewise linear sub-antenna. The resultant radiation patterns 411, 421, and 431 are shown in the right panel, showing that the intended beam steering is accomplished.


In some approaches, the identifying of an antenna configuration includes applying one or more algorithms to reduce artifacts attributable to the discretization of the hologram function on the curved antenna. The antenna configuration may be regarded as a discretization of the hologram function because the adjustable scattering elements are positioned at a discrete plurality of locations and/or because each adjustable scattering element each has a discrete set of adjustments (i.e. a “binary” set of adjustments or a “grayscale” set of adjustments) used to approximate the function values of the hologram function. It will be appreciated that most or all of the approaches described in Chen II can be applied in the context of a curved antenna to reduce the discretization artifacts. For example, the locations of the scattering elements along the curved antenna may be actually or virtually dithered; the antenna configuration may be updated according to an error diffusion algorithm; the antenna configuration may be selected by exploring a neighborhood of beam directions and/or phases for a desired beam direction; the antenna configuration can be selected to optimize a desired cost function; etc.


An example illustrating the utility of an optimization approach is depicted in FIGS. 5A-6C. The figures provide simulation and optimization results for a model antenna 500 that spans a 90° arc having a broadside in the +y direction. For modelling purposes, the antenna rests on a perfectly-matched layer that is an entire cylinder 501, but this modelling choice is not intended to be limiting. In FIGS. 5A-5C, the antenna has been configured to direct a beam at a +45° angle from broadside; in FIGS. 6A-6C, the antenna has been configured to direct a beam at a +60° angle from broadside. FIGS. 5A and 6A depict the radiated field between an inner PML 501 and an outer PML 502; FIGS. 5B and 6B depict polar plots of the far-field radiation pattern, showing beams directed at +45° and +60° from broadside, respectively; and FIGS. 5C and 6C show the real part of the optimized current distributions along the antenna aperture, here discretized as 20 arc segments of approximately 4.5°. The discretized current distributions here represent a product of the input wave times the hologram function imposed on the aperture, so knowledge of the input wave would allow the antenna designer to “back out” the appropriate optimized hologram functions to provide the beam patterns shown. It is noteworthy that the curved antenna allows a high-quality beam even at extreme angles from broadside (e.g. at 60° from broadside as shown) by virtue of the fact that the curvature provides a “local” broadside for a wider range of angles than a flat antenna.


With reference now to FIG. 7, an illustrative embodiment is depicted as a system block diagram. The system includes a curved surface scattering antenna 700 coupled to control circuitry 710 operable to adjust the curved antenna to any particular antenna configuration. The system optionally includes a storage medium 720 on which is written a set of pre-calculated antenna configurations. For example, the storage medium may include a look-up table of antenna configurations indexed by some relevant operational parameter of the antenna, such as beam direction, each stored antenna configuration being previously calculated according to one or more of the approaches described above (and/or in Chen II). Then, the control circuitry 710 would be operable to read an antenna configuration from the storage medium and adjust the antenna to the selected, previously-calculated antenna configuration. Alternatively, the control circuitry 710 may include circuitry operable to calculate an antenna configuration according to one or more of the approaches described above (and/or in Chen II), and then to adjust the antenna for the presently-calculated antenna configuration.


In some approaches the curved antenna 700 may be a flexible curved antenna, i.e. an antenna capable of having a time-variable curvature, such as an antenna implemented with a flexible PCB laminate process. In these approaches the antenna optionally includes a set of strain gauges 701 mechanically coupled to the antenna to provide a readout of the instantaneous curvature of the antenna. The strain gauges 701 may in turn be coupled to the control circuitry 710, the control circuitry then being operable to provide an antenna configuration that depends upon the instantaneous curvature. For example, the control circuitry may include circuitry operable to calculate an antenna configuration according to one or more of the approaches described above, taking into account the instantaneous curvature of the flexible antenna. Alternatively, the storage medium may include a look-up table of antenna configurations that is further indexed by antenna curvature, the control circuitry then being operable to read an antenna configuration from the storage medium corresponding to the instantaneous antenna curvature.


The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.).


In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.


All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in any Application Data Sheet, are incorporated herein by reference, to the extent not inconsistent herewith.


One skilled in the art will recognize that the herein described components (e.g., steps), devices, and objects and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are within the skill of those in the art. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar herein is also intended to be representative of its class, and the non-inclusion of such specific components (e.g., steps), devices, and objects herein should not be taken as indicating that limitation is desired.


With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.


While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. Furthermore, it is to be understood that the invention is defined by the appended claims. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”


With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. With respect to context, even terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.


While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims
  • 1. An antenna, comprising: a waveguide configured to propagate a guided wave along a curved manifold; anda plurality of adjustable subwavelength radiators positioned along the curved manifold and coupled to the waveguide;wherein the adjustable subwavelength radiators are configured to define a holographic function on the curved manifold;wherein the guided wave has a propagation direction, and the subwavelength radiators have inter-element spacings along the propagation direction substantially less than a free-space wavelength corresponding to an operating frequency of the antenna; andwherein each of the plurality of subwavelength radiators includes an adjustable surface mount component connected to a surface of the curved circuit board.
  • 2. The antenna of claim 1, wherein the curved manifold corresponds to a curved circuit board that supports the waveguide.
  • 3. The antenna of claim 2, wherein the curved circuit board is a semirigid PCB that has been bent to conform to the curved manifold.
  • 4. The antenna of claim 3, wherein the semirigid PCB is a microwave laminate PCB.
  • 5. The antenna of claim 4, wherein the microwave laminate PCB is a PTFE laminate PCB.
  • 6. The antenna of claim 2, wherein the curved circuit board is a flexible PCB.
  • 7. The antenna of claim 6, wherein the flexible PCB is a polyimide laminate PCB.
  • 8. The antenna of claim 6, wherein the flexible PCB is a liquid crystal polymer laminate PCB.
  • 9. The antenna of claim 2, wherein the waveguide is a substrate-integrated waveguide.
  • 10. The antenna of claim 2, wherein the waveguide is a stripline or microstrip waveguide.
  • 11. The antenna of claim 1, wherein each surface mount component is connected to the surface of the curved circuit board with an elastomeric conductive compound.
  • 12. The antenna of claim 1, wherein each surface mount component is connected to the surface of the curved circuit board with flexible contacts.
  • 13. A method of making a curved antenna, comprising: identifying a desired curvature for the curved antenna;obtaining a circuit board that includes a waveguide and a plurality of adjustable subwavelength radiators coupled to the waveguide; andbending the circuit board to conform to the desired curvature;wherein the adjustable subwavelength radiators are configured to define a holographic function for the desired curvature;wherein the waveguide has a propagation direction, and the adjustable subwavelength radiators have inter-element spacings along the propagation direction substantially less than a free-space wavelength corresponding to an operating frequency of the antenna; andwherein the obtaining of the circuit board includes, prior to the bending: selectively applying solder paste to an upper surface of the circuit board; andplacing a plurality of adjustable surface mount components on the circuit board to form connections via the selectively applied solder paste, the plurality of adjustable surface mount components corresponding to the plurality of adjustable subwavelength radiators.
  • 14. The method of claim 13, wherein the selectively applying of the solder paste is an applying of the solder paste with a solder screen.
  • 15. The method of claim 13, wherein the placing of the plurality of surface mount components is a placing with a pick-and-place machine.
  • 16. The method of claim 13, wherein the obtained circuit board is a circuit board with unbaked solder paste, and the method further comprises: after the bending, baking the obtained circuit board in a solder reflow oven.
  • 17. A curved antenna fabricated by a method that includes: identifying a desired curvature for the curved antenna;obtaining a circuit board that includes a waveguide and a plurality of adjustable subwavelength radiators coupled to the waveguide; andbending the circuit board to conform to the desired curvature;wherein the adjustable subwavelength radiators are configured to define a holographic function for the desired curvature;wherein the waveguide has a propagation direction, and the adjustable subwavelength radiators have inter-element spacings along the propagation direction substantially less than a free-space wavelength corresponding to an operating frequency of the antenna; andwherein the obtaining of the circuit board includes, prior to the bending: selectively applying solder paste to an upper surface of the circuit board; andplacing a plurality of surface mount components on the circuit board to form connections via the selectively applied solder paste, the plurality of surface mount components corresponding to the plurality of adjustable subwavelength radiators.
  • 18. The curved antenna of claim 17, wherein the selectively applying of the solder paste is an applying of the solder paste with a solder screen.
  • 19. The curved antenna of claim 17, wherein the placing of the plurality of surface mount components is a placing with a pick-and-place machine.
  • 20. The curved antenna of claim 17, wherein the obtained circuit board is a circuit board with unbaked solder paste, and the method further comprises: after the bending, baking the obtained circuit board in a solder reflow oven.
CROSS-REFERENCE TO RELATED APPLICATIONS

If an Application Data Sheet (ADS) has been filed on the filing date of this application, it is incorporated by reference herein. Any applications claimed on the ADS for priority under 35 U.S.C. §§ 119, 120, 121, or 365(c), and any and all parent, grandparent, great-grandparent, etc. applications of such applications, are also incorporated by reference, including any priority claims made in those applications and any material incorporated by reference, to the extent such subject matter is not inconsistent herewith. The present application claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the “Priority Applications”), if any, listed below (e.g., claims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC § 119(e) for provisional patent applications, for any and all parent, grandparent, great-grandparent, etc. applications of the Priority Application(s)). Priority Applications: The present application constitutes a continuation-in-part of U.S. patent application Ser. No. 14/506,432, entitled SURFACE SCATTERING ANTENNAS WITH LUMPED ELEMENTS, naming Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Jay McCandless, Milton Perque, David R. Smith, and Yaroslav A. Urzhumov as inventors, filed 3, Oct. 2014, which is currently co-pending or is an application of which a currently co-pending application is entitled to the benefit of the filing date, and which is a non-provisional of U.S. Patent Application Ser. No. 61/988,023, entitled SURFACE SCATTERING ANTENNAS WITH LUMPED ELEMENTS, naming Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Jay McCandless, Milton Perque, David R. Smith, and Yaroslav A. Urzhumov as inventors, filed 2, May 2014. The present application constitutes a continuation-in-part of U.S. patent application Ser. No. 14/549,928, entitled MODULATION PATTERNS FOR SURFACE SCATTERING ANTENNAS, naming Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, Yaroslav Urzhumov as inventors, filed 21, Nov. 2014, which is currently co-pending or is an application of which a currently co-pending application is entitled to the benefit of the filing date, and which is a non-provisional of U.S. Patent Application No. 62/015,293, entitled MODULATION PATTERNS FOR SURFACE SCATTERING ANTENNAS, naming Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Milton Perque, Jr., David R. Smith, Yaroslav Urzhumov as inventors, filed 20, Jun. 2014. The present application claims benefit of priority of U.S. Provisional Patent Application No. 61/992,699, entitled CURVED SURFACE SCATTERING ANTENNAS, naming Pai-Yen Chen, Tom Driscoll, Siamak Ebadi, John Desmond Hunt, Nathan Ingle Landy, Melroy Machado, Milton Perque, David R. Smith, and Yaroslav A. Urzhumov as inventors, filed 13, May 2014, which was filed within the twelve months preceding the filing date of the present application or is an application of which a currently co-pending priority application is entitled to the benefit of the filing date.

US Referenced Citations (155)
Number Name Date Kind
3001193 Marie Sep 1961 A
3388396 Rope et al. Jun 1968 A
3604012 Lindley Sep 1971 A
3714608 Barnes et al. Jan 1973 A
3757332 Tricoles Sep 1973 A
3887923 Hendrix Jun 1975 A
4150382 King Apr 1979 A
4195262 King Mar 1980 A
4229745 Kruger Oct 1980 A
4291312 Kaloi Sep 1981 A
4305153 King Dec 1981 A
4489325 Bauck et al. Dec 1984 A
4509209 Itoh et al. Apr 1985 A
4672378 Drabowitch et al. Jun 1987 A
4701762 Apostolos Oct 1987 A
4780724 Sharma et al. Oct 1988 A
4832429 Nagler May 1989 A
4874461 Sato et al. Oct 1989 A
4920350 McGuire et al. Apr 1990 A
4947176 Inatsune et al. Aug 1990 A
4978934 Saad Dec 1990 A
5043738 Shapiro et al. Aug 1991 A
5198827 Seaton Mar 1993 A
5455590 Collins et al. Oct 1995 A
5512906 Speciale Apr 1996 A
5734347 McEligot Mar 1998 A
5841543 Guldi et al. Nov 1998 A
5889599 Takemori Mar 1999 A
6031506 Cooley et al. Feb 2000 A
6061023 Daniel et al. May 2000 A
6061025 Jackson et al. May 2000 A
6075483 Gross Jun 2000 A
6084540 Yu Jul 2000 A
6114834 Parise Sep 2000 A
6166690 Lin et al. Dec 2000 A
6198453 Chew Mar 2001 B1
6211823 Herring Apr 2001 B1
6232931 Hart May 2001 B1
6236375 Chandler et al. May 2001 B1
6275181 Kitayoshi Aug 2001 B1
6313803 Manasson Nov 2001 B1
6366254 Sievenpiper et al. Apr 2002 B1
6384797 Schaffner et al. May 2002 B1
6396440 Chen May 2002 B1
6469672 Marti-Canales et al. Oct 2002 B1
6545645 Wu Apr 2003 B1
6552696 Sievenpiper et al. Apr 2003 B1
6633026 Tuominen Oct 2003 B2
6636179 Woo et al. Oct 2003 B1
6985107 Anson et al. Jan 2006 B2
7068234 Sievenpiper Jun 2006 B2
7151499 Avakian et al. Dec 2006 B2
7154451 Sievenpiper Dec 2006 B1
7162250 Misra Jan 2007 B2
7253780 Sievenpiper Aug 2007 B2
7295146 McMakin et al. Nov 2007 B2
7307596 West Dec 2007 B1
7339521 Scheidemann et al. Mar 2008 B2
7428230 Park Sep 2008 B2
7456787 Manasson et al. Nov 2008 B2
7609223 Manasson et al. Oct 2009 B2
7667660 Manasson et al. Feb 2010 B2
7830310 Sievenpiper et al. Nov 2010 B1
7834795 Dudgeon et al. Nov 2010 B1
7864112 Manasson et al. Jan 2011 B2
7911407 Fong et al. Mar 2011 B1
7929147 Fong et al. Apr 2011 B1
7995000 Manasson et al. Aug 2011 B2
8009116 Peichl et al. Aug 2011 B2
8014050 McGrew Sep 2011 B2
8040586 Smith et al. Oct 2011 B2
8059051 Manasson et al. Nov 2011 B2
8134521 Herz et al. Mar 2012 B2
8179331 Sievenpiper May 2012 B1
8212739 Sievenpiper Jul 2012 B2
8339320 Sievenpiper Dec 2012 B2
8456360 Manasson et al. Jun 2013 B2
9231303 Edelmann et al. Jan 2016 B2
9268016 Smith et al. Feb 2016 B2
9385435 Bily et al. Jul 2016 B2
9389305 Boufounos Jul 2016 B2
9450310 Bily et al. Sep 2016 B2
9634736 Mukherjee et al. Apr 2017 B2
20020039083 Taylor et al. Apr 2002 A1
20020167456 McKinzie, III Nov 2002 A1
20030214443 Bauregger et al. Nov 2003 A1
20040227668 Sievenpiper Nov 2004 A1
20040242272 Aiken et al. Dec 2004 A1
20040263408 Sievenpiper et al. Dec 2004 A1
20050031295 Engheta et al. Feb 2005 A1
20050088338 Masenten et al. Apr 2005 A1
20060065856 Diaz et al. Mar 2006 A1
20060114170 Sievenpiper Jun 2006 A1
20060116097 Thompson Jun 2006 A1
20060132369 Robertson et al. Jun 2006 A1
20060187126 Sievenpiper Aug 2006 A1
20070085757 Sievenpiper Apr 2007 A1
20070103381 Upton May 2007 A1
20070159395 Sievenpiper et al. Jul 2007 A1
20070159396 Sievenpiper et al. Jul 2007 A1
20070182639 Sievenpiper et al. Aug 2007 A1
20070200781 Ahn et al. Aug 2007 A1
20070229357 Zhang et al. Oct 2007 A1
20080020231 Yamada et al. Jan 2008 A1
20080165079 Smith et al. Jul 2008 A1
20080180339 Yagi Jul 2008 A1
20080224707 Wisler et al. Sep 2008 A1
20080259826 Struhsaker Oct 2008 A1
20080268790 Shi et al. Oct 2008 A1
20080316088 Pavlov et al. Dec 2008 A1
20090002240 Sievenpiper et al. Jan 2009 A1
20090045772 Cook et al. Feb 2009 A1
20090109121 Herz et al. Apr 2009 A1
20090147653 Waldman et al. Jun 2009 A1
20090195361 Smith Aug 2009 A1
20090251385 Xu et al. Oct 2009 A1
20100066629 Sievenpiper Mar 2010 A1
20100073261 Sievenpiper Mar 2010 A1
20100079010 Hyde et al. Apr 2010 A1
20100109972 Xu et al. May 2010 A2
20100134370 Oh et al. Jun 2010 A1
20100156573 Smith et al. Jun 2010 A1
20100157929 Karabinis Jun 2010 A1
20100188171 Mohajer-Iravani et al. Jul 2010 A1
20100279751 Pourseyed et al. Nov 2010 A1
20100328142 Zoughi et al. Dec 2010 A1
20110065448 Song et al. Mar 2011 A1
20110098033 Britz et al. Apr 2011 A1
20110117836 Zhang May 2011 A1
20110128714 Terao et al. Jun 2011 A1
20110151789 Viglione et al. Jun 2011 A1
20110267664 Kitamura et al. Nov 2011 A1
20120026068 Sievenpiper Feb 2012 A1
20120038317 Miyamoto et al. Feb 2012 A1
20120112543 van Wageningen et al. May 2012 A1
20120194399 Bily et al. Aug 2012 A1
20120219249 Pitwon Aug 2012 A1
20120268340 Capozzoli et al. Oct 2012 A1
20120274147 Stecher et al. Nov 2012 A1
20120280770 Abhari et al. Nov 2012 A1
20120326660 Lu et al. Dec 2012 A1
20130069865 Hart Mar 2013 A1
20130082890 Wang Apr 2013 A1
20130237272 Prasad Sep 2013 A1
20130249310 Hyde et al. Sep 2013 A1
20130278211 Cook et al. Oct 2013 A1
20130288617 Kim et al. Oct 2013 A1
20130324076 Harrang Dec 2013 A1
20130343208 Sexton et al. Dec 2013 A1
20140128006 Hu May 2014 A1
20140266946 Bily et al. Sep 2014 A1
20150189568 Stanze et al. Jul 2015 A1
20150280444 Smith et al. Oct 2015 A1
20170098961 Harpham Apr 2017 A1
20170250746 Wang et al. Aug 2017 A1
Foreign Referenced Citations (19)
Number Date Country
103222109 Jul 2013 CN
52-13751 Feb 1977 JP
06-090110 Mar 1994 JP
2007-081825 Mar 2007 JP
2008-054146 Mar 2008 JP
2008054146 Mar 2008 JP
2010147525 Jul 2010 JP
2010-187141 Aug 2010 JP
2012085145 Apr 2012 JP
10-1045585 Jun 2011 KR
WO 0173891 Oct 2001 WO
WO 2008-007545 Jan 2008 WO
WO 2008059292 May 2008 WO
WO 2009103042 Aug 2009 WO
WO 20100021736 Feb 2010 WO
WO 2012050614 Apr 2012 WO
PCTUS2013212504 May 2013 WO
WO 2013147470 Oct 2013 WO
WO 2014018052 Jan 2014 WO
Non-Patent Literature Citations (108)
Entry
Ayob et al. “A Survey of Surface Mount Device Placement Machine Optimisation: Machine Classification”, Computer Science Technical Report No. NOTTCS-TR-2005-8, Sep. 2005.
Abdalla et al.; “A Planar Electronically Steerable Patch Array Using Tunable PRI/NRI Phase Shifters”; IEEE Transactions on Microwave Theory and Techniques; Mar. 2009; p. 531-541; vol. 57, No. 3; IEEE.
Amineh et al.; “Three-Dimensional Near-Field Microwave Holography for Tissue Imaging”; International Journal of Biomedical Imaging; Bearing a date of Dec. 21, 2011; pp. 1-11; vol. 2012, Article ID 291494: Hindawi Publishing Corporation.
“Array Antenna with Controlled Radiation Pattern Envelope Manufacture Method”; ESA; Jan. 8, 2013; pp. 1-2; http://www.esa.int/Our_Activities/Technology/Array_antenna_with_controlled_radiation_pattern_envelope_manufacture_method.
Belloni, Fabio; “Channel Sounding”; S-72.4210 PG Course in Radio Communications; Bearing a date of Feb. 7, 2006; pp. 1-25.
Chen, Robert; Liquid Crystal Displays, Wiley, New Jersey 2011 (not provided).
Chin, J.Y. et al.; “An efficient broadband metamaterial wave retarder”; Optics Express; vol. 17, No. 9; p. 7640-7647; 2009.
Chu, R. S. et al.; “Analytical Model of a Multilayered Meaner-Line Polarizer Plate with Normal and Oblique Plane-Wave Incidence”; IEEE Trans. Ant. Prop.; vol. AP-35, No. 6; p. 652-661; Jun. 1987.
Colburn et al.; “Adaptive Artificial Impedance Surface Conformal Antennas”; in Proc. IEEE Antennas and Propagation Society Int. Symp.; 2009; p. 1-4.
Courreges et al.; “Electronically Tunable Ferroelectric Devices for Microwave Applications”; Microwave and Millimeter Wave Technologies from Photonic Bandgap Devices to Antenna and Applications; ISBN 978-953-7619-66-4; Mar. 2010; p. 185-204; InTech.
Cristaldi et al., Chapter 3 “Passive LCDs and Their Addressing Techniques” and Chapter 4 “Drivers for Passive-Matrix LCDs”; Liquid Crystal Display Drivers: Techniques and Circuits; ISBN 9048122546; Apr. 8, 2009; p. 75-143; Springer.
Den Boer, Wilem; Active Matrix Liquid Crystal Displays; Elsevier, Burlington, MA, 2009 (not provided).
Diaz, Rudy; “Fundamentals of EM Waves”; Bearing a date of Apr. 4, 2013; 6 total pages, located at: http://www.microwaves101.com/encycolpedia/absorbingradar1.cfm.
Elliott, R.S.; “An Improved Design Procedure for Small Arrays of Shunt Slots”; Antennas and Propagation, IEEE Transaction on; Jan. 1983; p. 297-300; vol. 31, Issue: 1; IEEE.
Elliott, Robert S. and Kurtz, L.A.; “The Design of Small Slot Arrays”; Antennas and Propagation, IEEE Transactions on; Mar. 1978; p. 214-219; vol. AP-26, Issue 2; IEEE.
European Patent Office, Supplementary European Search Report, pursuant to Rule 62 EPC; App. No. EP 11 83 2873; dated May 15, 2014; 7 pages.
Evlyukhin, Andrey B. and Bozhevolnyi, Sergey I.; “Holographic evanescent-wave focusing with nanoparticle arrays”; Optics Express; Oct. 27, 2008; p. 17429-17440; vol. 16, No. 22; OSA.
Fan, Yun-Hsing et al.; “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators”; Applied Physics Letters; Feb. 23, 2004; p. 1233-1235; vol. 84, No. 8; American Institute of Physics.
Fong, Bryan H. et al.; “Scalar and Tensor Holographic Artificial Impedance Surfaces” IEEE Transactions on Antennas and Propagation; Oct. 2010; p. 3212-3221; vol. 58, No. 10; IEEE.
Frenzel, Lou; “What's the Difference Between EM Near Field and Far Field?”; Electronic Design; Bearing a date of Jun. 8, 2012; 7 total pages; located at: http://electronicdesign.com/energy/what-s-difference-between-em-field-and-far-field.
Grbic, Anthony; “Electrical Engineering and Computer Science”; University of Michigan; Create on Mar. 18, 2014, printed on Jan. 27, 2014; pp. 1-2; located at http;//sitemaker.umich.edu/agrbic/projects.
Grbic et al.; “Metamaterial Surfaces for Near and Far-Field Applications”; 7th European Conference on Antennas and Propagation (EUCAP 2013); Bearing a date of 2013, Created on Mar. 18, 2014; pp. 1-5.
Hand, Thomas H. et al.; “Characterization of complementary electric field coupled resonant surfaces”; Applied Physics Letters; published on Nov. 26, 2008; pp. 212504-1-212504-3; vol. 93; Issue 21; American Institute of Physics.
Imani et al.; “A Concentrically Corrugated Near-Field Plate”; Bearing a date of 2010; Created on Mar. 18, 2014; pp. 1-4; IEEE.
Imani et al.; “Design of a Planar Near-Field Plate”; Bearing at date of 2012, Created on Mar. 18, 2014; pp. 102, IEEE.
Imani et al.; “Planar Near-Field Plates”; Bearing a date of 2013, Create on Mar. 18, 2014; pp. 1-10; IEEE.
Islam et al.; “A Wireless Channel Sounding System for Rapid Propagation Measurements”; Bearing a date of Nov. 21, 2012, 7 total pages.
Kaufman, D.Y. et al.; “High-Dielectric-Constant Ferroelectric Thin Film and Bulk Ceramic Capacitors for Power Electronics”; Proceedings of the Power Systems World/Power Conversion and Intelligent Motion '99 Conference; Nov. 6-12, 1999; p. 1-9; PSW/PCIM; Chicago, IL.
Kim, David Y.; “A Design Procedure for Slot Arrays Fed by Single-Ridge Waveguide”; IEEE Transactions on Antennas and Propagation; Nov. 1988; p. 1531-1536; vol. 36, No. 11; IEEE.
Kirschbaum, H.S. et al.; “A Method of Producing Broad-Band Circular Polarization Employing an Anisotropic Dielectric”; IRE Trans. Micro. Theory. Tech.; vol. 5, No. 3; p. 199-203; 1957.
Kokkinos, Titos et al.; “Periodic FDTD Analysis of Leaky-Wave Structures and Applications to the Analysis of Negative-Refractive-Index Leaky-Wave Antennas”; IEEE Transactions on Microwave Theory and Techniques; 2006; p. 1-12; ; IEEE.
Konishi, Yohei; “Channel Sounding Technique Using MIMO Software Radio Architecture”; 12th MCRG Joint Seminar: Bearing a date of Nov. 18, 2010; 28 total pages.
Kuki, Takao et al., “Microwave Variable Delay Line using a Membrane Impregnated with Liquid Crystal”; Microwave Symposium Digest; ISBN 0-7803-7239-5; Jun. 2-7, 2002; p. 363-366; IEEE MTT-S International.
Leveau et al.; “Anti-Jam Protection by Antenna”; GPS World; Feb. 1, 2013; pp. 1-11; North Coast Media LLC; http://gpsworld.com/anti-jam-protection-by_-antenna/.
Lipworth et al.; “Magnetic Metamaterial Superlens for Increase Range Wireless Power Transfer”; Scientific Reports; Bearing a date of January 101, 2014; pp. 1-6; vol. 4, No. 3642.
Luo et al.; “Hig-directivity antenna with small antenna aperture”; Applied Physics Letters; 2009; pp. 193506-1-193506-3; vol. 95; American Institute of Physics.
Manasson et al.; “Electronically Reconfigurable Aperture (ERA): A New Approach for Beam-Steering Technology”; Bearing dates of Oct. 12-15, 2010; pp. 673-679; IEEE.
McLean et al.; “Interpreting Antenna Performance Parameters for EMC Applications: Part 2: Radiation Patter, Gain, and Directivity”; Created on Apr. 1, 2014; pp. 7-17; TDK RF Solutions Inc.
Mitri, F.G.; “Quasi-Gaussian Electromagnetic Beams”; Physical Review A.; Bearing a date of Mar. 11, 2013; p. 1; vol. 87, No. 035804; (Abstract Only).
Ovi et al.; “Symmetrical Slot Loading in Elliptical Microstrip Patch antennas Partially Filled with Mue Negative Metamaterials”; PIERS Proceedings, Moscow, Russia; Aug. 19-23, 2012; pp. 542-545.
PCT International Search Report; International App. No. PCT/US2014/017454; dated Aug. 28, 2014; pp. 1-4.
PCT International Search Report; International App. No. PCT/US2011/001755; dated Mar. 22, 2012; pp. 1-5.
Poplavlo, Yuriy et al.; “Tunable Dielectric Microwave Devices with Electromechanical Control”; Passive Microwave Components and Antennas; ISBN 978-953-307-083-4; Apr. 2010; p. 367-382; InTech.
Rengarajan, Sembiam R. et al.; “Design, Analysis, and Development of a Large Ka-Band Slot Array for Digital Beam-Forming Application”; IEEE Transactions on Antennas and Propagation; Oct. 2009; p. 3103-3109; vol. 57, No. 10; IEEE.
Sakakibara, Kunio; “High-Gain Millimeter-Wave Planar Array Antennas with Traveling-Wave Excitation”; Radar Technology; Bearing a date of Dec. 2009; pp. 319-340.
Sandell et al.; “Joint Data Detection and Channel Sounding for TDD Systems with Antenna Selection”; Bearing a date of 2011, Created on Mar. 18, 2014; pp. 1-5; IEEE.
“Satellite Navigation”; Crosslink; The Aerospace Corporation magazine of advances in aerospace technology; Summer 2002; vol. 3, No. 2; pp. 1-56; The Aerospace Corporation.
Sato, Kazuo et al.; “Electronically Scanned Left-Handed Leaky Wave Antenna for Millimeter-Wave Automotive Applications”; Antenna Technology Small Antennas and Novel Metamaterials; 2006; p. 420-423; IEEE.
Siciliano et al.; “25. Multisensor Data Fusion”; Springer Handbook of Robotics; Bearing a date of 2008, Created on Mar. 18, 2014; 27 total pages; Springer.
Sievenpiper, Dan et al.; “Holographic Artificial Impedance Surfaces for Conformal Antennas”; Antennas and Propagation Society International Symposium; 2005; p. 256-259; vol. 1B; IEEE, Washington D.C.
Sievenpiper, Daniel F. et al.; “Two-Dimensional Beam Steering Using an Electrically Tunable Impedance Surface”; IEEE Transactions on Antennas and Propagation; Oct. 2003; p. 2713-2722; vol. 51, No. 10; IEEE.
Smith, David R.; “Recent Progress in Metamaterial and Transformation Optical Design”; NAVAIR Nano/Meta Workshop; Feb. 2-3, 2011; pp. 1-32.
Soper, Taylor; “This startup figured out how to charge devices wirelessly through walls from 40 feet away”; GeekWire; bearing a date of Apr. 22, 2014 and printed on Apr. 24, 2014; pp. 1-12; located at http://www.geekwire.com/2014/ossia-wireless-charging/#disqus_thread.
“Spectrum Analyzer”; Printed on Aug. 12, 2013; pp. 1-2; http://www.gpssource.com/faqs15; GPS Source.
Sun et al.; “Maximum Signal-to-Noise Ratio GPS Anti-Jam Receiver with Subspace Tracking”; ICASSP; 2005; pp. IV-1085-IV-1088; IEEE.
Thoma et al.; “MIMO Vector Channel Sounder Measurement for Smart Antenna System Evaluation”; Created on Mar. 18, 2014; pp. 1-12.
Umenei, A.E.; “Understanding Low Frequency Non-Radiative Power Transfer”; Bearing a date of Jun. 2011; 7 total pages; Fulton Innovation LLC.
Utsumi, Yozo et al.; “Increasing the Speed of Microstrip-Line-Type Polymer-Dispersed Liquid-Crystal Loaded Variable Phase Shifter”; IEEE Transactions on Microwave Theory and Techniques; Nov. 2005, p. 3345-3353; vol. 53, No. 11; IEEE.
Wallace, John; “Flat ‘Metasurface’ Becomes Aberration-Free Lens”; Bearoing a date of Aug. 28, 2012; 4 total pages; located at: http://www.laserfocusworld.com/articles/2012/08/flat-metasurface-becomes-aberration-free-lens.html.
“Wavenumber”; Microwave Encyclopedia; bearing a date of Jan. 12, 2008; pp. 1-2 P-N Designs, Inc.
Weil, Carsten et al.; “Tunable Inverted-Microstrip Phase Shifter Device Using Nematic Liquid Crystals”; IEEE MTT-S Digest; 2002; p. 367-370; IEEE.
Yan, Dunbao et al.; “A Novel Polarization Convert Surface Based on Artificial Magnetic Conductor”; Asia-Pacific Microwave Conference Proceedings, 2005.
Yee, Hung Y.; “Impedance of a Narrow Longitudinal Shunt Slot in a Slotted Waveguide Array”; IEEE Transactions on Antennas and Propagation; Jul. 1974; p. 589-592; IEEE.
Yoon et al.; “Realizing Efficient Wireless Power Transfer in the Near-Field Region Using Electrically small Antennas”; Wireless Power Transfer; Principles and Engineering Explorations: Bearing a date of Jan. 25, 2012; pp. 151-172.
Young et al.; “Meander-Line Polarizer”; IEEE Trans. Ant. Prop.; p. 376-378; May 1973.
Zhong, S.S. et al.; “Compact ridge waveguide slot antenna array fed by convex waveguide divider”; Electronics Letters; Oct. 13, 2005; p. 1-2; vol. 41, No. 21; IEEE.
Canadian Intellectual Property Office, Canadian Examination Search Report, Pursuant to Subsection 30(2); App. No. 2,814,635; dated Dec. 1, 2016; pp. 1-3.
Chinese State Intellectual Property Office, Notification of Fourth Office Action, App. No. 2011/80055705.8 (Based on PCT Patent Application No. PCT/US2011/001755); dated May 20, 2016; pp. 1-4 (machine translation only).
PCT International Search Report; International App. No. PCT/US2015/028781; dated Jul. 27, 2015; pp. 1-3.
PCT International Search Report; International App. No. PCT/US2014/061485; dated Jul. 27, 2015; pp. 1-3.
PCT International Search Report; International App. No. PCT/US2014/070650; dated Mar. 27, 2015; pp. 1-3.
PCT International Search Report; International App. No. PCT/US2014/070645; dated Mar. 16, 2015; pp. 1-3.
The State Intellectual Property Office of P.R.C, Fifth Office Action, App. No. 2011/80055705.8 (Based on PCT Patent Application No. PCT/US2011/001755); dated Nov. 16, 2016; pp. 1-3 (machine translation, as provided).
European Search Report; European App. No. EP 11 832 873.1; dated Sep. 21, 2016; pp. 1-6.
PCT International Search Report; International App. No. PCT/US2016/037667; dated Sep. 7, 2016; pp. 1-3
The State Intellectual Property Office of P.R.C.; Application No. 201180055705.8; dated Nov. 4, 2015; pp. 1-11.
PCT International Search Report; International App. No. PCT/US2014/069254; dated Nov. 27, 2015; pp. 1-4.
Patent Office of the Russian Federation (Rospatent) Office Action; Application No. 2013119332/28(028599); dated Oct. 13, 2015; machine translation; pp. 1-5.
Definition from Merriam-Webster Online Dictionary; “Integral”; Merriam-Webster Dictionary; printed by Examiner on Dec. 8, 2015; pp. 1-5; located at: http://www.merriam-webster.com/dictionary/integral.
Varlamos et al.; “Electronic Beam Steering Using Switched Parasitic Smart Antenna Arrays”; Progress in Electromagnetics Research; PIER 36; bearing a date of 2002; pp. 101-119.
Fan, Guo-Xin et al.; “Scattering from a Cylindrically Conformal Slotted Waveguide Array Antenna”; IEEE Transactions on Antennas and Propagation; Jul. 1997; pp. 1150-1159; vol. 45, No. 7; IEEE.
Jiao, Yong-Chang et al.; A New Low-Side-Lobe Pattern Synthesis Technique for Conformal Arrays; IEEE Transactions on Antennas and Propagation; Jun. 1993; pp. 824-831, vol. 41, No. 6; IEEE.
The State Intellectual Property Office of P.R.C.; Application No. 201180055705.8; May 6, 2015; pp. 1-11.
Intellectual Property Office of Singapore Examination Report; Application No. 2013027842; dated Feb. 27, 2015; pp. 1-12.
PCT International Search Report; International App. No. PCT/US2015/036638; dated Oct. 19, 2015; pp. 1-4.
Extended European Search Report; European App. No. EP 14 77 0686; dated Oct. 14, 2016; pp. 1-7.
IP Australia Patent Examination Report No. 1; Patent Application No. 2011314378; dated Mar. 4, 2016; pp. 1-4.
European Patent Office, Supplementary European Search Report, Pursuant to Rule 62 EPC; App. No. EP 14891152; dated Jul. 20, 2017; pp. 1-4.
Supplementary European Search Report, Pursuant to Rule 62 EPC; App. No. EP 14 87 2595; dated Jul. 3, 2017; pp. 1-16.
Supplementary European Search Report, Pursuant to Rule 62 EPC; App. No. EP 14 87 2874; dated Jul. 3, 2017; pp. 1-15.
“Aperture”, Definition of Aperture by Merriam-Webster; located at http://www.merriam-webster.com/dictionary/aperture; printed by Examiner on Nov. 30, 2016; pp. 1-9; Merriam-Webster, Incorporated.
PCT International Preliminary Report on Patentability; International App. No. PCT/US2014/070645; dated Jun. 21, 2016; pp. 1-12.
European Patent Office, Supplementary European Search Report, Pursuant to Rule 62 EPC; App. No. EP 15 80 8884 ; dated Jan. 9, 2018; pp. 1-12.
Japan Patent Office, Office Action, App. No. 2016-500314 (based on PCT Patent Application No. PCT/US2014/017454); dated Mar. 6, 2018; pp. 1-4.
European Patent Office, Communication Pursuant to Article 94(3) EPC; App. No. 14770686.5; dated Mar. 28, 2019; pp. 1-22.
Checcacci et al.; “A Holographic VHF Antenna”; IEEE Transactions on Antennas and propagation; Mar. 1971; pp. 278-279.
Elsherbiny et al.; “Holographic Antenna Concept, Analysis, and Parameters”; IEEE Transactions on Antennas and Propagation; Mar. 2004; pp. 830-839; vol. 52; No. 3; 2004 IEEE.
Iizuka et al.; “Volume-Type Holographic Antenna”; IEEE Transactions on Antennas and Propagation; Nov. 1975; pp. 807-810.
Sazonov, Dimitry M; “Computer Aided Design of Holographic Antennas”; IEEE 1999; pp. 738-741
Chinese State Intellectual Property Office, Notification of the First Office Action, App. No. 201580042227.5 (based on PCT Patent Application No. PCT/US2015/036638); dated Sep. 30, 2018; (machine translation provided, 5 pages total).
European Patent Office, Extended European Search Report, Pursuant to Rule 62 EPC; App. No. EP 16812357; dated Dec. 3, 2018; pp. 1-7.
Smith et al.; “Composite Medium with Simultaneously Negative Permeability and Permitivity”; Physical Review Letters; May 1, 2000; pp. 4184-4187; vol. 84, No. 18; American Physical Society.
European Patent Office, Communication Pursuant to Article 94(3) EPC; App. No. EP 14872874.4; dated Jul. 16, 2018; pp. 1-8.
European Patent Office, Communication Pursuant to Article 94(3) EPC; App. No. EP 14872595.5; dated Jul. 16, 2018; pp. 1-7.
Korean Intellectual Property Office, Notice of Preliminary Rejection; dated Oct. 15, 2018 (machine translation provided); pp. 1-5.
Chinese State Intellectual Property Office, First Office Action, App. No. 2015/80036356.3 (based on PCT Patent Application No. PCT/US2015/028781); dated Sep. 5, 2018; machine translation provided, 6 pages total.
Chen, Hou-Tong; “A review of metasurfaces; physics and applications”; Reports on Progress in Physics; Mar. 9, 2016: pp. 1-60; IOP Publishing Ltd. 2016.
Chinese State Intellectual Property Office, First Office Action, App. No. 201480074759.2 (based on PCT Patent Application No. PCT/US2014/069254); dated Jul. 2, 2018; pp. 1-14 (machine translation provided).
Related Publications (1)
Number Date Country
20150318620 A1 Nov 2015 US
Provisional Applications (3)
Number Date Country
61992699 May 2014 US
61988023 May 2014 US
62015293 Jun 2014 US
Continuation in Parts (2)
Number Date Country
Parent 14506432 Oct 2014 US
Child 14711569 US
Parent 14549928 Nov 2014 US
Child 14506432 US