This application is entitled to the benefit of Japanese Patent Application No. 2001-356199 filed on Nov. 21, 2001.
1. Field of the Invention
The present invention relates to a cutter structure for a shield machine which advances by boring through the tunnel wall of an existing tunnel.
2. Description of the Related Art
The present inventors have cited the device shown in
As is illustrated in the figure, this shield machine a is one in which a cylindrical advancing section ring c, which is mounted on the advance opening part of an existing tunnel b, and a cylindrical advancing seal e which is slidably fitted over a shield frame d, are connected, whereupon the shield machine a is propelled upward by a propelling jack g which is under a reaction force to an advancing stand f. Then, as shown in
In the cutter structure of this shield machine a, the shape of the cutter h itself is flat, and the excavating surface, which is formed from bits j and mounted on the cutter h, is also flat. Hence, when the shield machine a bores through the excavatable wall with an arc-shaped cross section using the cutter h, the outer circumference portion of the cutter h precedes the central portion such that the excavatable wall i is cut into but the central portion remains intact.
Moreover, as the cutter h continues to excavate upward, the portion connecting the central portion to the existing tunnel b gradually becomes smaller. Hence, the central portion becomes prone to collapse due to light outside pressure (earth pressure) and may also collapse prior to cutting by the bits j, whereby lumps of earth may be taken into the cutter chamber inside the shield frame d. Lumps of earth taken into a cutter chamber cannot be discharged by an earth discharging device which is designed in order to discharge regular earth and sand, and therefore block the earth discharging device.
An object of the present invention is to provide a cutter structure for a shield machine in which a tunnel wall can be excavated diametrically outward from the central portion of the cutter, and in which portions not to be excavated can be prevented from entering the cutter chamber as lumps of earth.
In order to achieve this object, the present invention is a cutter structure for a shield machine which advances by boring through a tunnel wall in the interior of an existing tunnel, wherein the shape of the excavating surface on the work face formed by the cutter is set so as to have a smaller curvature than or an equal curvature to the curve of the surface to be excavated on the outer face of the tunnel wall to be excavated.
According to the shape of the excavating surface on the work face formed by the cutter of the present invention, the shape of the tunnel wall to be excavated is cylindrical, and therefore, during advance by boring through this tunnel wall, the tunnel wall can be cut into by opening a hole which extends diametrically outward from the central portion of the cutter. As a result, the portions that are not cut into remain connected to the existing tunnel so that lumps of earth do not enter the cutter chamber.
Furthermore, it is preferable that the cutter comprise a plurality of cutter spokes which extend radially from the rotational center of the cutter at a rearward incline in respect of the direction of advance and a plurality of bits which are mounted on the work face of the cutter spokes. In so doing, the cutter spokes themselves incline rearward, whereby the aforementioned excavating surface shape can be obtained without altering the height of each bit to any large extent.
a is a sectional view of a cutter spoke of the cutter, illustrating a main bit.
b is a sectional view of a cutter spoke of the cutter, illustrating a preceding bit.
a is a top view illustrating the excavation condition of an excavatable wall by the cutter and bits.
b is a sectional view (front sectional view) of line b—b in
a is a top view showing a continuation of
b is a sectional view (front sectional view) of line b—b in
a is a top view showing a continuation of
b is a sectional view (front sectional view) of line b-b in
An embodiment of the present invention will be explained based on the attached drawings.
As is illustrated in
In more detail, the partition wall 7 is formed in a conical shape having an earth discharging port 10 in its central portion. Annular rotating bodies 11 are rotatably supported between the partition wall 7 and the shield frame 6. The cutter 8 is mounted on the upper surface of the rotating bodies 11 via support posts 12, and a ring gear 13 is provided on the lower surface of the rotating bodies 11. The ring gear 13 is axially supported by bearings 14 and meshed with a pinion 15 of the motor 9 so as to be rotationally driven. According to this constitution, the motor 9 is driven, whereby the cutter 8 rotates via the rotating bodies 11 such that the excavatable wall 2 or earth and sand from a piece of ground is excavated.
The excavatable wall 2 or earth and sand excavated by the cutter 8 is taken into a cutter chamber 16 on the upper side of the partition wall 7 and discharged downward by an earth discharging device 17 which is connected to the earth discharging port 10. The earth discharging device 17 is equipped with an earth discharging pipe 18 which is connected to the earth discharging port 10 and extends downward. The earth discharging pipe 18 is provided with an elastic film-type valve 19 which opens and closes the earth discharging pipe 18 by expanding and contracting diametrically by means of fluid pressure in air, water or the like.
The elastic film-type valve 19 is equipped with a tubular elastic film 20 (rubber film or the like) which is disposed at a point in the earth discharging pipe 18, a tubular casing 22 which is disposed so as to surround the elastic film 20 and forms a pressurizing chamber 21 with the peripheral surface of the elastic film 20, and a supply and discharge port 23 which is opened in the casing 22 for supplying and discharging fluid (air, water, etc.) into the pressurizing chamber 21. The elastic film-type valve 19 manages adjustments in the earth pressure at the work face by supplying and discharging fluid into and out of the pressurizing chamber 21 through the supply and discharge port 23 to cause the elastic film 20 to expand and contract diametrically, thus altering the sectional area of the space through which earth and sand pass so that the amount of earth to be discharged is adjusted during upward advance.
A bracket 24 which extends diametrically inward is provided in the earth discharging pipe 18 below the elastic film-type valve 19, and a center rod 25 which extends upward is attached to the bracket 24. The top of the center rod 25 is rotatably inserted into the central portion 26 of the cutter 8. A channel 27 for mud-forming agent is formed inside the bracket 24, center rod 25 and cutter 8. The mud-forming agent that is injected through an inlet 28 formed in the earth discharging pipe 18 passes through this channel 27 so as to be supplied to the work face from an outlet 29 formed in the cutter 8.
A gate mechanism 30 is provided in the earth discharging pipe 18 below the center rod 25. The gate mechanism 30 is equipped with a pair of gate plates 31, which are positioned close to each other with a space therebetween, and adjusts the sectional area of the space in the earth discharging pipe 18 through which the earth and sand pass. The gate mechanism 30 causes a substantially uniform earth pressure to act on the entire elastic film 20 by appropriately narrowing the sectional area of the space through which the earth and sand pass to cause a slight blockage in the earth and sand on the downstream side of the elastic film-type valve 19 and thereby raise the earth pressure. As a result, the elastic film 20 expands in a substantially uniform manner regardless of the drilling depth or type of soil being excavated, and thus earth pressure control at the work face can be securely performed.
The cutter 8 is rotationally driven by the aforementioned motor 9 so as to cut into the excavatable wall 2 when advancing from the existing tunnel 1 and so as to bore through the earth while advancing. As is illustrated in
The bits 34 are comprised of main bits 34a and preceding bits 34b. The preceding bits 34b are formed in a tabular and elongated fashion along the direction of rotation of the cutter 8 and, as is illustrated in
As is illustrated in
As is illustrated in
In the example in the drawings, the height of both the preceding bits 34b and the main bits 34a is set so as to form the excavating surface 36 (more specifically, the main bits 34a are slightly lower). This is so that the excavatable wall 2 is excavated little by little, and with good balance, by the bits 34a and 34b. However, the height of only the preceding bits 34b may be set so as to form the excavating surface 36. This is because the preceding bits 34b, which advance ahead of the main bits 34a, may be considered to cut into the excavatable wall 2 most substantially. It should be kept in mind, however, that in such a case the cutting load on the preceding bits 34b will increase.
The operation of the present embodiment will now be described.
As is shown in
Here, since the excavating surface 36 of the work face formed by the rotation of the cutter 8 has a curved shape, the excavatable wall 2 to be excavated takes a cylindrical form, and therefore, as the machine 3 advances by boring through the excavatable wall 2, the bits 34a and 34b mounted on the cutter 8 cut into the excavatable wall 2 by opening an elliptical hole (shown by shading in the drawings) extending diametrically outward from the central portion of the cutter 8. As a result, as is shown in
In other words, by means of the aforementioned cutter 8 and bits 34, the excavatable wall i does not collapse in large lumps of earth which enter the cutter chamber 16, unlike the machine type shown in
More specifically, in the machine type shown in
Furthermore in this embodiment, as is shown in
Note that in this embodiment, a case was described in which the shield machine 3 advanced upward from within a lateral existing tunnel 1. However, the present invention can also be applied to cases in which the shield machine 3 advances laterally or downward. The present invention can also be applied to a case in which the shield machine 3 is caused to advance laterally from an existing vertical shaft. In short, the present invention is applicable as long as the shape of the excavating surface on the work face which is formed by the bits of the cutter is sharper than the curve of the surface to be excavated on the outer face of the tunnel wall to be excavated.
As described above, according to the cutter structure for a shield machine pertaining to the present invention, when the shield machine 3 advances by boring through the tunnel wall (excavatable wall 2) from within the existing tunnel 1, the tunnel wall 2 can be cut diametrically outward from the central portion of the cutter 8, whereby lumps of earth from the portion which is not cut into can be prevented from entering the cutter chamber 16. As a result, blockage of the earth discharging device 17 can be prevented.
Note that the present invention is not limited to or by the aforementioned embodiment, and may be implemented in modified form within the scope of the patent claims.
Number | Date | Country | Kind |
---|---|---|---|
2001-356199 | Nov 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4171848 | Ono | Oct 1979 | A |
5032039 | Hagimoto et al. | Jul 1991 | A |
5697676 | Kashima et al. | Dec 1997 | A |
6382732 | Tanaka et al. | May 2002 | B1 |
Number | Date | Country |
---|---|---|
02-061291 | Mar 1990 | JP |
Number | Date | Country | |
---|---|---|---|
20030094311 A1 | May 2003 | US |