This application is a U.S. National Phase Patent Application based on International Application Serial No. PCT/EP2020/056703, filed Mar. 12, 2020, which claims priority to DE 10 2019 108 002.9, filed on Mar. 28, 2019, the entire disclosures of which are hereby explicitly incorporated by reference herein.
The invention relates to a cutting roller bearing part, a cutting roller holder with a cutting roller bearing part, a cutting wheel with a cutting roller holder, and a tunnel boring machine with a cutting wheel.
One known cutting roller bearing part is disclosed in DE 10 2014 105 014 A1, which discloses an associated cutting roller holder, an associated cutting wheel and an associated tunnel boring machine. This previously known cutting roller bearing part for a cutting roller holder for a cutting wheel of a tunnel boring machine is equipped with a number of load measuring units and with a receiving space assembly, in which the load measuring units are arranged. In the case of this cutting roller bearing part, the load measuring units are embodied as sleeves having at least one load-sensitive element attached thereon, wherein the sleeves are arranged in form-fitting sleeve receiving holes of the receiving space assembly in at least the radial direction. The load-sensitive elements attached to the sleeves are connected via a sensor line guided out of the cutting roller bearing part to an external analysis unit, with which the signals being output from the load-sensitive elements can be processed further in particular for determining the loads acting on the cutting roller bearing part.
The present invention provides a cutting roller bearing part as well as an associated cutting roller holder, an associated cutting wheel and an associated tunnel boring machine, with which the loads acting on the cutting roller bearing part can be determined in a relatively precise manner that is stable over the long term.
Due to the fact that, in the case of the cutting roller bearing part according to the invention, the or each load measuring unit has a strain gauge assembly as a load sensor, which is arranged on the base of a specially aligned sensor receiving space of the receiving assembly, and that the signal processing electronics assembly is arranged hermetically encapsulated in a region of the receiving space assembly connected to the or each sensor receiving space, the or each load measuring unit and the signal processing electronics assembly are hermetically sealed against the external atmosphere, in particular in the sense of being gas-, vapor- and water-tight, as well as being able to be directly connected with each other. This produces, with adequate sensitivity, a high reproducibility as well as a high durability with the measurement of loads acting on the cutting roller bearing part, which allows reliable conclusions to be drawn about the loads acting on a cutting roller, which is held by a cutting roller holder comprising the cutting roller bearing part according to the invention.
In one form thereof, the present invention provides a cutting roller bearing part for a cutting roller holder for a cutting wheel of a tunnel boring machine with a load measuring unit and with a receiving space assembly, which is set up to receive the load measuring unit, characterized in that the load measuring unit has, as at least one load sensor, a strain gauge assembly, which is arranged at a base of at least one sensor receiving space of the receiving space assembly configured in the cutting roller bearing part, that the load measuring unit is equipped with a signal processing electronics assembly, which is arranged in an electronics receiving space of the receiving space assembly, that the receiving space assembly has a transition channel for connecting the or each sensor receiving space to the electronics receiving space, that the or each sensor receiving space, the transition channel and the electronics receiving space are hermetically sealed on the outside and that the electronics receiving space is hermetical sealed on the inside against the external atmosphere with a sealing element that has through-lines.
Other expedient embodiments and advantages of the invention are disclosed by the following description of exemplary embodiments making reference to the figures in the drawing.
They show:
Furthermore, the depiction according to
Configured in the measuring side piece 409, as will be explained in more detail further below, is a receiving space assembly, which receives components of a load measuring unit, which are also explained in more detail further below. To close the receiving space assembly, there are: a transition channel closure 509 on the front side at the free end of the measuring side piece 409; on the two lateral surfaces of the measuring side piece 409, a first sensor receiving space closure 512, which faces the viewer in the depiction according to
Moreover, in the exemplary embodiment according to
A first load sensor 612 is attached at the base of the first sensor receiving space 603 and a second load sensor 615 is attached at the base of the second sensor receiving space 606, wherein, as components of a load measuring unit, the load sensors 612, 615 are respectively configured with four strain gauge grids applied to a strain gauge carrier film according to a strain gauge assembly configured like a type of Wheatstone full bridge circuit. This circuitry yields a relatively large, extensively strain-proportional electrical signal transverse to the principle strain direction that lies in the direction of the base section 415.
The receiving space assembly also has a transition channel 618, a main section of which extends between the second sensor receiving space 606 and the electronics receiving space 621, wherein a secondary section that is opposite from the main section extends away from the second sensor receiving space 606 in the direction of the front side of the free end of the measuring side piece 409 and is sealed outwardly by the transition channel closure 509.
Arranged in the electronics receiving space 621, as a further component of the load measuring unit, is a signal processing electronics assembly 624, which is electrically connected to the first load sensor 612 and the second load sensor 615 via sensor connecting cables 627, 630, which run in the main section of the transition channel 618 and in the sensor receiving space connection channel 609. The output signals of the load sensors 612, 615 can be converted into a digital flow of data with the signal processing electronics assembly 624.
The receiving space assembly is furthermore configured with a catcher space 633, which is sealed outwardly by the catcher space closure 518. On the side opposite from the catcher space closure 518, the catcher space 633 borders the electronics receiving space 621, wherein there is a sealing element 636 between the electronics receiving space 621 and the catcher space 633, which is hermetically sealed and is thereby in particular gas-, vapor- and water-tight.
The sealing element 636 is constructed of an exterior-side metal wall, which is welded with the wall of the receiving space assembly in the transition region between the electronics receiving space 621 and the catcher space 633, with an interior glass body, through which a number of connecting pins 639 are guided as through-lines. As a result, the electronics receiving space 621, the transition channel 618 and the sensor receiving spaces 603, 606 with the sensor receiving space connection channel 609 extending between them are hermetically separated from the external atmosphere, and thereby in particular gas-, vapor- and water-tight, whereby a precise functionality that is stable over the long term of the load sensors 612, 615 and of the signal processing electronics assembly 624 is yielded.
On the side facing the electronics receiving space 621, the connecting pins 639 are connected to the signal processing electronics assembly 624 via enameled wires 642, whereas, on the side facing the catcher space 633, the connecting pins 639 are likewise connected via enameled wires 645 to the multi-strand connection cable 503 located in a connecting channel 648 of the receiving space assembly extending at a right angle to the sectional plane according to
The cable feedthrough closure 524 is for example a closure that is known per se with an outward hollow screw 706 positioned rotatably in the measuring side piece 409, which hollow screw surrounds an axially internally widening conical sleeve 709 and encompasses the conical sleeve 709 on the axial exterior side with a shoulder projecting radially inwardly. The conical sleeve 709 rests in turn on the radial interior side at a complementarily formed conical seal 712, which on the axial end side hits against a guide sleeve 715, which, by abutting an annular step located in front of the connection cable receiving space 703, blocks a shifting of the cable feedthrough closure 524 in the connection cable receiving space 703. When the hollow screw 706 is screwed in, the conical sleeve 709 consequently experiences an axial movement inwardly in the direction of the connection cable receiving space 703, whereby, due to the wedge-like form fit between the conical sleeve 709 and the conical seal 712, the conical seal 712 presses on the connection cable 503 in a sealing manner.
Furthermore, the depiction according to
A second induction coupling unit 812 integrated in a receiving body 809 is present to collect the digital flow of data.
It is understood that the receiving spaces 603, 606, 621, 633, 648, 703 and the transition channel 618 of the receiving space assembly can also be arranged mirror-inverted as compared to the exemplary embodiments according to the invention that were explained on the basis of
The exemplary embodiment according to
Number | Date | Country | Kind |
---|---|---|---|
102019108002.9 | Mar 2019 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/056703 | 3/12/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/193164 | 10/1/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4079795 | Sackmann | Mar 1978 | A |
9845677 | Lenaburg | Dec 2017 | B2 |
10539017 | Lenaburg | Jan 2020 | B2 |
10641093 | Okada et al. | May 2020 | B2 |
20090297273 | Lindbergh et al. | Dec 2009 | A1 |
20140232167 | Edelmann | Aug 2014 | A1 |
20170122103 | Barwart | May 2017 | A1 |
Number | Date | Country |
---|---|---|
203772472 | Aug 2014 | CN |
202012103593 | Nov 2012 | DE |
102011114830 | Mar 2013 | DE |
102014105014 | Oct 2015 | DE |
102018113788 | Dec 2019 | DE |
2015-124467 | Jul 2015 | JP |
2016-130407 | Jul 2016 | JP |
Entry |
---|
International Search Report and Written Opinion, issued by the European Patent Office, dated Jun. 17, 2020, for International Application No. PCT/EP2020/056703; 11 pages. |
Number | Date | Country | |
---|---|---|---|
20220145758 A1 | May 2022 | US |