The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Oct. 19, 2016, is named 48054-702_301_SL.txt and is 372,896 bytes in size.
Protein function assignment has been benefited from genetic methods, such as target gene disruption, RNA interference, and genome editing technologies, which selectively disrupt the expression of proteins in native biological systems. Chemical probes offer a complementary way to perturb proteins that have the advantages of producing graded (dose-dependent) gain- (agonism) or loss- (antagonism) of-function effects that are introduced acutely and reversibly in cells and organisms. Small molecules present an alternative method to selectively modulate proteins and to serve as leads for the development of novel therapeutics.
Disclosed herein, in certain embodiments, is a method of identifying a cysteine containing protein as a binding target for a small molecule fragment, comprising: (a) obtaining a set of cysteine-reactive probe-protein complexes from a sample treated with a cysteine-reactive probe wherein the cysteine-reactive probe comprises a reactive moiety capable of forming a covalent bond with a cysteine residue located on the cysteine containing protein; (b) analyzing the set of cysteine-reactive probe-protein complexes by a proteomic analysis means; (c) based on step b), identifying a cysteine containing protein as the binding target for the small molecule fragment. In some embodiments, the method further comprises assigning a value to each of the cysteine containing protein from the set of cysteine-reactive probe-protein complexes for identifying a cysteine containing protein as the binding target for the small molecule fragment, wherein the value is determined based on the proteomic analysis means of step b) In some embodiments, the sample comprises a first cell solution and a second cell solution. In some embodiments, the method further comprises contacting the first cell solution with a small molecule fragment for an extended period of time prior to incubating the first cell solution with a first cysteine-reactive probe to generate a first group of cysteine-reactive probe-protein complexes. In some embodiments, the extended period of time is about 5, 10, 15, 20, 30, 60, 90, 120 minutes or longer. In some embodiments, the method further comprises contacting the second cell solution with a second cysteine-reactive probe to generate a second group of cysteine-reactive probe-protein complexes. In some embodiments, the first cysteine-reactive probe and the second cysteine-reactive probe are the same. In some embodiments, the first group and the second group of cysteine-reactive probe-protein complexes comprise the set of cysteine-reactive probe-protein complexes. In some embodiments, cells from the second cell solution are grown in a media (e.g., an isotopically enriched media). In some embodiments, cells from the first cell solution are grown in a media (e.g., an isotopically enriched media). In some embodiments, cells from both the first cell solution and the second cell solution are grown in two different isotopically enriched media so that cells from the first cell solution is distinguishable from cells obtained from the second cell solution. In other embodiments, cells from only one of the cell solutions (e.g., either the first cell solution or the second cell solution) are grown in an isotopically enriched media. In some embodiments, the method further comprises contacting the first cell solution with a first set of small molecule fragments and a complementing set of cysteine-reactive probes wherein each small molecule fragment competes with its complementing cysteine-reactive probe for binding with a cysteine residue, and wherein each small molecule fragment and each complementing cysteine-reactive probe are different within each respective set. In some embodiments, the method further comprises contacting the second cell solution with a second set of cysteine-reactive probes wherein the second set of cysteine-reactive probes is the same as the complementing set of cysteine-reactive probes, and wherein each cysteine-reactive probe is different within the set. In some embodiments, the first set of cysteine-reactive probes generates a third group of cysteine-reactive probe-protein complexes and the second set of cysteine-reactive probes generates a fourth group of cysteine-reactive probe-protein complexes. In some embodiments, the cysteine containing protein comprises a biologically active cysteine residue. In some embodiments, the biologically active cysteine site is a cysteine residue that is located about 10 Å or less to an active-site ligand or residue. In some embodiments, the cysteine residue that is located about 10 Å or less to the active-site ligand or residue is an active site cysteine. In some embodiments, the biologically active cysteine site is an active site cysteine. In some embodiments, the biologically active cysteine site is a cysteine residue that is located greater than 10 Å from an active-site ligand or residue. In some embodiments, the cysteine residue that is located greater than 10 Å from the active-site ligand or residue is a non-active site cysteine. In some embodiments, the biologically active cysteine site is a non-active site cysteine. In some embodiments, the small molecule fragment that covalently interacts with the biologically active cysteine impairs and/or inhibits activity of the cysteine containing protein. In some embodiments, the cysteine containing protein exists in an active form. In some embodiments, the small molecule fragment and/or the cysteine-reactive probe interact with the active form of the cysteine containing protein. In some embodiments, the cysteine containing protein exists in a pro-active form. In some embodiments, the small molecule fragment and/or the cysteine-reactive probe interact with the pro-active form of the cysteine containing protein. In some embodiments, the structural environment of the biologically active cysteine residue modulates the reactivity of the cysteine residue. In some embodiments, the structural environment is a hydrophobic environment or a hydrophilic environment. In some embodiments, the structural environment is a charged environment. In some embodiments, the structural environment is a nuclcophilic environment. In some embodiments, the cysteine containing protein is an enzyme, a transporter, a receptor, a channel protein, an adaptor protein, a chaperone, a signaling protein, a plasma protein, transcription related protein, translation related protein, mitochondrial protein, or cytoskeleton related protein. In some embodiments, the cysteine containing protein is an enzyme, a transporter, a receptor, a channel protein, an adaptor protein, a chaperone, a signaling protein, transcription related protein, or translation related protein. In some embodiments, the enzyme comprises kinases, proteases, or deubiquitinating enzymes. In some embodiments, the protease is a cysteine protease. In some embodiments, the cysteine protease comprises caspases. In some embodiments, the signaling protein comprises vascular endothelial growth factor. In some embodiments, the signaling protein comprises a redox signaling protein. In some embodiments, the cysteine containing protein is a protein illustrated in Table 1. In some embodiments, the cysteine containing protein is a protein illustrated in Table 2. In some embodiments, the cysteine containing protein is a protein illustrated in Table 3. In some embodiments, the cysteine containing protein comprises a cysteine residue denoted in Table 3. In some embodiments, the cysteine containing protein is a protein illustrated in Table 8. In some embodiments, the cysteine containing protein is a protein illustrated in Table 9. In some embodiments, the cysteine containing protein is a protein illustrated in Table 10A, Table 10B, Table 10C, Table 10D or Table 10E. In some embodiments, the small molecule fragment is a small molecule fragment of Formula (I):
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue; and F is a small molecule fragment moiety. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments, F is obtained from a compound library. In some embodiments, the compound library comprises ChemBridge fragment library, Pyramid Platform Fragment-Based Drug Discovery, Maybridge fragment library, FRGx from AnalytiCon. TCI-Frag from AnCoreX, Bio Building Blocks from ASINEX, BioFocus 3D from Charles River, Fragments of Life (FOL) from Emerald Bio, Enamine Fragment Library, IOTA Diverse 1500, BIONET fragments library, Life Chemicals Fragments Collection, OTAVA fragment library. Prestwick fragment library, Selcia fragment library, TimTec fragment-based library. Allium from Vitas-M Laboratory, or Zenobia fragment library. In some embodiments, F is a small molecule fragment moiety illustrated in
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond to the thiol group of a cysteine residue; and AHM is an affinity handle moiety. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments, the affinity handle moiety comprises an affinity handle and a binding moiety that facilitates covalent interaction of the cysteine-reactive probe to a cysteine residue of a cysteine-containing protein. In some embodiments, the binding moiety is a small molecule fragment obtained from a compound library. In some embodiments, the compound library comprises ChemBridge fragment library, Pyramid Platform Fragment-Based Drug Discovery, Maybridge fragment library, FRGx from AnalytiCon, TCI-Frag from AnCoreX, Bio Building Blocks from ASINEX, BioFocus 3D from Charles River, Fragments of Life (FOL) from Emerald Bio, Enamine Fragment Library, IOTA Diverse 1500, BIONET fragments library, Life Chemicals Fragments Collection, OTAVA fragment library. Prestwick fragment library, Selcia fragment library, TimTec fragment-based library, Allium from Vitas-M Laboratory, or Zenobia fragment library. In some embodiments, the affinity handle is a bioorthogonal affinity handle. In some embodiments, the affinity handle comprises a carbodiimide, N-hydroxysuccinimide (NHS) ester, imidoester, pentafluorophenyl ester, hydroxymnethyl phosphine, maleimide, haloacetyl, pyridyl disulfide, thiosulfonate, vinylsulfone, hydrazide, alkoxyamine, alkyne, azide, or isocyanate group. In some embodiments, the affinity handle comprises an alkyne or an azide group. In some embodiments, the affinity handle is further conjugated to an affinity ligand. In some embodiments, the affinity ligand comprises a chromophore, a labeling group, or a combination thereof. In some embodiments, the chromophore comprises fluorochrome, non-fluorochrome chromophore, quencher, an absorption chromophore, fluorophore, organic dye, inorganic dye, metal chelate, or a fluorescent enzyme substrate. In some embodiments, the fluorophore comprises rhodamine, rhodol, fluorescein, thiofluorescein, aminofluorescein, carboxyfluorescein, chlorofluorescein, methylfluorescein, sulfofluorescein, aminorhodol, carboxyrhodol, chlororhodol, methylrhodol, sulforhodol, aminorhodamine, carboxyrhodamine, chlororhodamine, methylrhodamine, sulforhodamine, thiorhodamine, cyanine, indocarbocyanine, oxacarbocyanine, thiacarbocyanine, merocyanine, cyanine 2, cyanine 3, cyanine 3.5, cyanine 5, cyanine 5.5, cyanine 7, oxadiazole derivatives, pyridyloxazole, nitrobenzoxadiazole, benzoxadiazole, pyren derivatives, cascade blue, oxazine derivatives, Nile red, Nile blue, cresyl violet, oxazine 170, acridine derivatives, proflavin, acridine orange, acridine yellow, arylmethine derivatives, auramine, crystal violet, malachite green, tetrapyrrole derivatives, porphin, phtalocyanine, bilirubin 1-dimethylaminonaphthyl-5-sulfonate, 1-anilino-8-naphthalene sulfonate, 2-p-touidinyl-6-naphthalene sulfonate, 3-phenyl-7-isocyanatocoumarin, N-(p-(2-bcnzoxazolyl)phenyl)maleimide, stilbenes, pyrenes, 6-FAM (Fluorescein), 6-FAM (NHS Ester), 5(6)-FAM, 5-FAM, Fluorescein dT, 5-TAMRA-cadavarine, 2-aminoacridone, HEX, JOE (NHS Ester), MAX, TET, ROX, TAMRA, TARMA™ (NHS Ester), TEX 615, ATTO™ 488. ATTO™ 532, ATTO™ 550, ATTO™ 565, ATTO™ Rho101, ATTO™ 590. ATTO™ 633, ATTO™ 647N, TYE™ 563, TYE™ 665, or TYE™ 705. In some embodiments, the labeling group is biotin moiety, streptavidin moiety, bead, resin, a solid support, or a combination thereof. In some embodiments, the affinity handle moiety further comprises a chromophore. In some embodiments, the cysteine-reactive probe is a cysteine-reactive probe illustrated in
Disclosed herein, in certain embodiments, is a method of screening a small molecule fragment for interaction with a cysteine containing protein, comprising: (a) harvesting a set of cysteine-reactive probe-protein complexes from a sample treated with a cysteine-reactive probe wherein the cysteine-reactive probe comprises a reactive moiety capable of forming a covalent bond with a cysteine residue located on the cysteine containing protein; (b) analyzing the set of cysteine-reactive probe-protein complexes by a proteomic analysis means; and (c) based on step b), identifying the small molecule fragment as interacting with the cysteine containing protein. In some embodiments, the method further comprises assigning a value to each of the cysteine containing protein from the set of cysteine-reactive probe-protein complexes prior to identifying the small molecule fragment as interacting with the cysteine containing protein, wherein the value is determined based on the proteomic analysis means of step b). In some embodiments, the sample comprises a first cell solution and a second cell solution. In some embodiments, the method further comprises contacting the first cell solution with a small molecule fragment for an extended period of time prior to incubating the first cell solution with a first cysteine-reactive probe to generate a first group of cysteine-reactive probe-protein complexes. In some embodiments, the extended period of time is about 5, 10, 15, 20, 30, 60, 90, 120 minutes or longer. In some embodiments, the method further comprises contacting the second cell solution with a second cysteine-reactive probe to generate a second group of cysteine-reactive probe-protein complexes. In some embodiments, the first cysteine-reactive probe and the second cysteine-reactive probe are the same. In some embodiments, the first group and the second group of cysteine-reactive probe-protein complexes comprise the set of cysteine-reactive probe-protein complexes. In some embodiments, cells from the second cell solution are grown in a media (e.g., an isotopically enriched media). In some embodiments, cells from the first cell solution are grown in a media (e.g., an isotopically enriched media). In some embodiments, cells from both the first cell solution and the second cell solution are grown in two different isotopically enriched media so that cells from the first cell solution is distinguishable from cells obtained from the second cell solution. In other embodiments, cells from only one of the cell solutions (e.g., either the first cell solution or the second cell solution) are grown in an isotopically enriched media. In some embodiments, the method further comprises contacting the first cell solution with a first set of small molecule fragments and a complementing set of cysteine-reactive probes wherein each small molecule fragment competes with its complementing cysteine-reactive probe for binding with a cysteine residue, and wherein each small molecule fragment and each complementing cysteine-reactive probe are different within each respective set. In some embodiments, the method further comprises contacting the second cell solution with a second set of cysteine-reactive probes wherein the second set of cysteine-reactive probes is the same as the complementing set of cysteine-reactive probes, and wherein each cysteine-reactive probe is different within the set. In some embodiments, the first set of cysteine-reactive probes generates a third group of cysteine-reactive probe-protein complexes and the second set of cysteine-reactive probes generates a fourth group of cysteine-reactive probe-protein complexes. In some embodiments, the cysteine containing protein comprises a biologically active cysteine residue. In some embodiments, the biologically active cysteine site is a cysteine residue that is located about 10 Å or less to an active-site ligand or residue. In some embodiments, the cysteine residue that is located about 10 Å or less to the active-site ligand or residue is an active site cysteine. In some embodiments, the biologically active cysteine site is an active site cysteine. In some embodiments, the biologically active cysteine site is a cysteine residue that is located greater than 10 Å from an active-site ligand or residue. In some embodiments, the cysteine residue that is located greater than 10 Å from the active-site ligand or residue is a non-active site cysteine. In some embodiments, the biologically active cysteine site is a non-active site cysteine. In some embodiments, the small molecule fragment that covalently interacts with the biologically active cysteine impairs and/or inhibits activity of the cysteine containing protein. In some embodiments, the cysteine containing protein exists in an active form. In some embodiments, the small molecule fragment and/or the cysteine-reactive probe interact with the active form of the cysteine containing protein. In some embodiments, the cysteine containing protein exists in a pro-active form. In some embodiments, the small molecule fragment and/or the cysteine-reactive probe interact with the pro-active form of the cysteine containing protein. In some embodiments, the structural environment of the biologically active cysteine residue modulates the reactivity of the cysteine residue. In some embodiments, the structural environment is a hydrophobic environment or a hydrophilic environment. In some embodiments, the structural environment is a charged environment. In some embodiments, the structural environment is a nucleophilic environment. In some embodiments, the cysteine containing protein is selected from an enzyme, a transporter, a receptor, a channel protein, an adaptor protein, a chaperone, a signaling protein, a plasma protein, transcription related protein, translation related protein, mitochondrial protein, or cytoskeleton related protein. In some embodiments, the cysteine containing protein is selected from an enzyme, a transporter, a receptor, a channel protein, an adaptor protein, a chaperone, a signaling protein, transcription related protein, or translation related protein. In some embodiments, the enzyme comprises kinases, proteases, or deubiquitinating enzymes. In some embodiments, the protease is a cysteine protease. In some embodiments, the cysteine protease comprises caspases. In some embodiments, the signaling protein comprises vascular endothelial growth factor. In some embodiments, the signaling protein comprises a redox signaling protein. In some embodiments, the cysteine containing protein is selected from Table 1. In some embodiments, the cysteine containing protein is a protein illustrated in Table 2. In some embodiments, the cysteine containing protein is a protein illustrated in Table 3. In some embodiments, the cysteine containing protein comprises a cysteine residue denoted in Table 3. In some embodiments, the cysteine containing protein is a protein illustrated in Table 8. In some embodiments, the cysteine containing protein is a protein illustrated in Table 9. In some embodiments, the cysteine containing protein is a protein illustrated in Table 10A, Table 10B, Table 10C, Table 10D or Table 10E. In some embodiments, the cysteine containing protein is TIGAR. IMPDH2, IDH1, IDH2, BTK, ZAK, TGM2, Map2k7, XPO1, Casp5, Casp8, ERCC3, Park 7 (Toxoplasma DJ-1), GSTO1, ALDH2, CTSZ, STAT1, STAT3, SMAD2, RBPJ, FOXK1, IRF4, IRF8, GTF3C1, or TCERG1. In some embodiments, the small molecule fragment is a small molecule fragment of Formula (I):
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue; and F is a small molecule fragment moiety. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments, F is obtained from a compound library. In some embodiments, the compound library comprises ChemBridge fragment library, Pyramid Platform Fragment-Based Drug Discovery, Maybridge fragment library, FRGx from AnalytiCon, TCI-Frag from AnCoreX, Bio Building Blocks from ASINEX, BioFocus 3D from Charles River, Fragments of Life (FOL) from Emerald Bio, Enamine Fragment Library, IOTA Diverse 1500, BIONET fragments library, Life Chemicals Fragments Collection, OTAVA fragment library, Prestwick fragment library, Selcia fragment library, TimTec fragment-based library, Allium from Vitas-M Laboratory, or Zenobia fragment library. In some embodiments, F is a small molecule fragment moiety illustrated in
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond to the thiol group of a cysteine residue; and AHM is an affinity handle moiety. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments, the affinity handle moiety comprises an affinity handle and a binding moiety that facilitates covalent interaction of the cysteine-reactive probe to a cysteine residue of a cysteine-containing protein. In some embodiments, the binding moiety is a small molecule fragment obtained from a compound library. In some embodiments, the compound library comprises ChemBridge fragment library, Pyramid Platform Fragment-Based Drug Discovery, Maybridge fragment library, FRGx from AnalytiCon, TCI-Frag from AnCoreX, Bio Building Blocks from ASINEX, BioFocus 3D from Charles River. Fragments of Life (FOL) from Emerald Bio, Enamine Fragment Library, IOTA Diverse 1500, BIONET fragments library, Life Chemicals Fragments Collection, OTAVA fragment library, Prestwick fragment library, Selcia fragment library, TimTec fragment-based library, Allium from Vitas-M Laboratory, or Zenobia fragment library. In some embodiments, the affinity handle is a bioorthogonal affinity handle. In some embodiments, the affinity handle comprises a carbodiimide, N-hydroxysuccinimide (NHS) ester, imidoester, pentafluorophenyl ester, hydroxymethyl phosphine, maleimide, haloacetyl, pyridyl disulfide, thiosulfonate, vinylsulfone, hydrazide, alkoxyamine, alkyne, azide, or isocyanate group. In some embodiments, the affinity handle comprises an alkyne or an azide group. In some embodiments, the affinity handle is further conjugated to an affinity ligand. In some embodiments, the affinity ligand comprises a chromophore, a labeling group, or a combination thereof. In some embodiments, the chromophore comprises fluorochrome, non-fluorochrome chromophore, quencher, an absorption chromophore, fluorophore, organic dye, inorganic dye, metal chelate, or a fluorescent enzyme substrate. In some embodiments, the fluorophore comprises rhodamine, rhodol, fluorescein, thiofluorescein, aminofluorescein, carboxyfluorescein, chlorofluorescein, methylfluorescein, sulfofluorescein, aminorhodol, carboxyrhodol, chlororhodol, methylrhodol, sulforhodol, aminorhodamine, carboxyrhodamine, chlororhodamine, methylrhodamine, sulforhodamine, thiorhodamine, cyanine, indocarbocyanine, oxacarbocyanine, thiacarbocyanine, merocyanine, cyanine 2, cyanine 3, cyanine 3.5, cyanine 5, cyanine 5.5, cyanine 7, oxadiazole derivatives, pyridyloxazole, nitrobenzoxadiazole, benzoxadiazole, pyren derivatives, cascade blue, oxazine derivatives, Nile red, Nile blue, cresyl violet, oxazine 170, acridine derivatives, proflavin, acridine orange, acridine yellow, arylmethine derivatives, auramine, crystal violet, malachite green, tetrapyrrole derivatives, porphin, phtalocyanine, bilirubin 1-dimethylaminonaphthyl-5-sulfonate, 1-anilino-8-naphthalene sulfonate, 2-p-touidinyl-6-naphthalene sulfonate, 3-phenyl-7-isocyanatocoumarin, N-(p-(2-benzoxazolyl)phenyl)maleimide, stilbenes, pyrenes, 6-FAM (Fluorescein), 6-FAM (NHS Ester), 5(6)-FAM, 5-FAM, Fluorescein dT, 5-TAMRA-cadavarine, 2-aminoacridone, HEX, JOE (NHS Ester), MAX, TET, ROX, TAMRA, TARMA™ (NHS Ester), TEX 615, ATTO™ 488, ATTO™ 532, ATTO™550, ATTO™ 565, ATTO™ Rho101, ATTO™ 590, ATTO™ 633, ATTO™ 647N, TYE™ 563, TYE™ 665, or TYE™ 705. In some embodiments, the labeling group is biotin moiety, streptavidin moiety, bead, resin, a solid support, or a combination thereof. In some embodiments, the affinity handle moiety further comprises a chromophore. In some embodiments, the cysteine-reactive probe is a cysteine-reactive probe illustrated in
Disclosed herein, in certain embodiments, is a method of mapping a biologically active cysteine site on a protein, comprising (a) harvesting a set of cysteine-reactive probe-protein complexes from a sample treated with a cysteine-reactive probe wherein the cysteine-reactive probe comprises a reactive moiety capable of forming a covalent bond with a cysteine residue located on the cysteine containing protein; (b) analyzing the set of cysteine-reactive probe-protein complexes by a proteomic analysis means; and (c) based on step b), mapping the biologically active cysteine site on the protein. In some embodiments, the sample comprises a first cell solution and a second cell solution. In some embodiments, the method further comprises contacting the first cell solution with a small molecule fragment for an extended period of time prior to incubating the first cell solution with a first cysteine-reactive probe to generate a first group of cysteine-reactive probe-protein complexes. In some embodiments, the extended period of time is about 5, 10, 15, 20, 30, 60, 90, 120 minutes or longer. In some embodiments, the method further comprises contacting the second cell solution with a second cysteine-reactive probe to generate a second group of cysteine-reactive probe-protein complexes. In some embodiments, the first cysteine-reactive probe and the second cysteine-reactive probe are the same. In some embodiments, the biologically active cysteine site is a cysteine residue that is located about 10 Å or less to an active-site ligand or residue. In some embodiments, the cysteine residue that is located about 10 Å or less to the active-site ligand or residue is an active site cysteine. In some embodiments, the biologically active cysteine site is an active site cysteine. In some embodiments, the biologically active cysteine site is a cysteine residue that is located greater than 10 Å from an active-site ligand or residue. In some embodiments, the cysteine residue that is located greater than 10 Å from the active-site ligand or residue is a non-active site cysteine. In some embodiments, the biologically active cysteine site is a non-active site cysteine. In some embodiments, the small molecule fragment that covalently interacts with the biologically active cysteine impairs and/or inhibits activity of the cysteine containing protein. In some embodiments, the cysteine containing protein exists in an active form. In some embodiments, the small molecule fragment and/or the cysteine-reactive probe interact with the active form of the cysteine containing protein. In some embodiments, the cysteine containing protein exists in a pro-active form. In some embodiments, the small molecule fragment and/or the cysteine-reactive probe interact with the pro-active form of the cysteine containing protein. In some embodiments, the structural environment of the biologically active cysteine residue modulates the reactivity of the cysteine residue. In some embodiments, the structural environment is a hydrophobic environment or a hydrophilic environment. In some embodiments, the structural environment is a charged environment. In some embodiments, the structural environment is a nucleophilic environment. In some embodiments, the protein is an enzyme, a transporter, a receptor, a channel protein, an adaptor protein, a chaperone, a signaling protein, a plasma protein, transcription related protein, translation related protein, mitochondrial protein, or cytoskeleton related protein. In some embodiments, the protein is an enzyme, a transporter, a receptor, a channel protein, an adaptor protein, a chaperone, a signaling protein, transcription related protein, or translation related protein. In some embodiments, the enzyme comprises kinases, proteases, or deubiquitinating enzymes. In some embodiments, the protease is a cysteine protease. In some embodiments, the cysteine protease comprises caspases. In some embodiments, the signaling protein comprises vascular endothelial growth factor. In some embodiments, the signaling protein comprises a redox signaling protein. In some embodiments, the protein is a protein illustrated in Table 1. In some embodiments, the cysteine containing protein is a protein illustrated in Table 2. In some embodiments, the cysteine containing protein is a protein illustrated in Table 3. In some embodiments, the cysteine containing protein comprises a cysteine residue denoted in Table 3. In some embodiments, the cysteine containing protein is a protein illustrated in Table 8. In some embodiments, the cysteine containing protein is a protein illustrated in Table 9. In some embodiments, the cysteine containing protein is a protein illustrated in Table 10A. Table 10B. Table 10C, Table 10D or Table 10E. In some embodiments, the small molecule fragment is a small molecule fragment of Formula (I):
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue, and F is a small molecule fragment moiety. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments, F is obtained from a compound library. In some embodiments, the compound library comprises ChemBridge fragment library, Pyramid Platform Fragment-Based Drug Discovery, Maybridge fragment library, FRGx from AnalytiCon, TCI-Frag from AnCoreX, Bio Building Blocks from ASINEX, BioFocus 3D from Charles River. Fragments of Life (FOL) from Emerald Bio, Enamine Fragment Library, IOTA Diverse 1500, BIONET fragments library, Life Chemicals Fragments Collection, OTAVA fragment library, Prestwick fragment library, Selcia fragment library, TimTec fragment-based library, Allium from Vitas-M Laboratory. or Zenobia fragment library. In some embodiments, F is a small molecule fragment moiety illustrated in
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond to the thiol group of a cysteine residue; and AHM is an affinity handle moiety. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments, the affinity handle moiety comprises an affinity handle and a binding moiety that facilitates covalent interaction of the cysteine-reactive probe to a cysteine residue of a cysteine-containing protein. In some embodiments, the binding moiety is a small molecule fragment obtained from a compound library. In some embodiments, the compound library comprises ChemBridge fragment library, Pyramid Platform Fragment-Based Drug Discovery, Maybridge fragment library, FRGx from AnalytiCon. TCI-Frag from AnCoreX, Bio Building Blocks from ASINEX, BioFocus 3D from Charles River. Fragments of Life (FOL) from Emerald Bio, Enamine Fragment Library, IOTA Diverse 1500, BIONET fragments library, Life Chemicals Fragments Collection, OTAVA fragment library, Prestwick fragment library, Selcia fragment library, TimTec fragment-based library, Allium from Vitas-M Laboratory, or Zenobia fragment library. In some embodiments, the affinity handle is a bioorthogonal affinity handle. In some embodiments, the affinity handle comprises a carbodiimide, N-hydroxysuccinimide (NHS) ester, imidoester, pentafluorophenyl ester, hydroxymethyl phosphine, maleimide, haloacetyl, pyridyl disulfide, thiosulfonate, vinylsulfone, hydrazide, alkoxyamine, alkyne, azide, or isocyanate group. In some embodiments, the affinity handle comprises an alkyne or an azide group. In some embodiments, the affinity handle is further conjugated to an affinity ligand. In some embodiments, the affinity ligand comprises a chromophore, a labeling group, or a combination thereof. In some embodiments, the chromophore comprises fluorochrome, non-fluorochrome chromophore, quencher, an absorption chromophore, fluorophore, organic dye, inorganic dye, metal chelate, or a fluorescent enzyme substrate. In some embodiments, the fluorophore comprises rhodamine, rhodol, fluorescein, thiofluorescein, aminofluorescein, carboxyfluorescein, chlorofluorescein, methylfluorescein, sulfofluorescein, aminorhodol, carboxyrhodol, chlororhodol, methylrhodol, sulforhodol, aminorhodamine, carboxyrhodamine, chlororhodamine, methylrhodamine, sulforhodamine, thiorhodamine, cyanine, indocarbocyanine, oxacarbocyanine, thiacarbocyanine, merocyanine, cyanine 2, cyanine 3, cyanine 3.5, cyanine 5, cyanine 5.5, cvanine 7, oxadiazole derivatives, pyridyloxazole, nitrobenzoxadiazole, benzoxadiazole, pyren derivatives, cascade blue, oxazine derivatives, Nile red, Nile blue, cresyl violet, oxazine 170, acridine derivatives, proflavin, acridine orange, acridine yellow, arylmethine derivatives, auramine, crystal violet, malachite green, tetrapyrrole derivatives, porphin, phtalocyanine, bilirubin 1-dimethylaminonaphthyl-5-sulfonate, 1-anilino-8-naphthalene sulfonate, 2-p-touidinyl-6-naphthalene sulfonate, 3-phenyl-7-isocyanatocoumarin, N-(p-(2-benzoxazolyl)phenyl)maleimide, stilbenes, pyrenes, 6-FAM (Fluorescein), 6-FAM (NHS Ester), 5(6)-FAM, 5-FAM, Fluorescein dT, 5-TAMRA-cadavarine, 2-aminoacridone, HEX, JOE (NHS Ester), MAX, TET, ROX, TAMRA, TARMA™ (NHS Ester), TEX 615, ATTO™ 488, ATTO™ 532, ATTO™ 550, ATTO™ 565, ATTO™ Rho101 ATTO™ 590, ATTO™ 633, ATTO™ 647N, TYE™ 563, TYE™ 665, or TYE™ 705. In some embodiments, the labeling group is biotin moiety, streptavidin moiety, bead, resin, a solid support, or a combination thereof. In some embodiments, the affinity handle moiety further comprises a chromophore. In some embodiments, the cysteine-reactive probe is a cysteine-reactive probe illustrated in
Disclosed herein, in certain embodiments, is a composition comprising: a small molecule fragment of Formula (I):
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue; and F is a small molecule fragment moiety; and a cysteine containing protein wherein the cysteine containing protein is covalently bond to the small molecule fragment. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments, F is obtained from a compound library. In some embodiments, F is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a composition comprising: a cysteine-reactive probe of Formula (II):
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond to the thiol group of a cysteine residue; and AHM is an affinity handle moiety; and a cysteine containing protein wherein the cysteine containing protein is covalently bond to the cysteine-reactive probe. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments, the affinity handle moiety comprises an affinity handle and a binding moiety that facilitates covalent interaction of the cysteine-reactive probe to a cysteine residue of a cysteine-containing protein. In some embodiments, the binding moiety is a small molecule fragment obtained from a compound library. In some embodiments, the affinity handle is a bioorthogonal affinity handle. In some embodiments, the affinity handle comprises a carbodiimide, N-hydroxysuccinimide (NHS) ester, imidoester, pentafluorophenyl ester, hydroxymethyl phosphine, maleimide, haloacetyl, pyridyl disulfide, thiosulfonate, vinylsulfone, hydrazide, alkoxyamine, alkyne, azide, or isocyanate group. In some embodiments, the affinity handle is further conjugated to an affinity ligand. In some embodiments, the affinity handle moiety further comprises a chromophore. In some embodiments, the cysteine-reactive probe is a cysteine-reactive probe illustrated in
Disclosed herein, in certain embodiments, is a composition comprising: an isolated sample wherein the isolated sample is an isolated cell or a tissue sample; and a cysteine-reactive probe to be assayed for its ability to interact with a cysteine containing protein expressed in the isolated sample. In some embodiments, the composition further comprises contacting the isolated sample with a small molecule fragment for an extended period of time prior to incubating the isolated sample with the cysteine-reactive probe to generate a cysteine-reactive probe-protein complex. In some embodiments, the extended period of time is about 5, 10, 15, 20, 30, 60, 90, 120 minutes or longer.
Disclosed herein, in certain embodiments, is an isolated treated cell comprising a cysteine-reactive probe covalently attached to a cysteine containing protein. In some embodiments, the isolated treated cell further comprises a set of cysteine-reactive probes wherein each of the cysteine-reactive probes is covalently attached to a cysteine containing protein.
Disclosed herein, in certain embodiments, is an isolated treated cell comprising a small molecule fragment covalently attached to a cysteine containing protein. In some embodiments, the isolated treated cell further comprises a set of small molecule fragments wherein each of the small molecule fragments is covalently attached to a cysteine containing protein. In some embodiments, the isolated treated cell further comprises a cysteine-reactive probe. In some embodiments, the isolated treated cell further comprises a set of cysteine-reactive probes.
Disclosed herein, in certain embodiments, is an isolated treated population of cells comprising a set of cysteine-reactive probes covalently attached to cysteine containing proteins. Also disclosed herein, in certain embodiments, is an isolated treated population of cells comprising a set of small molecule fragments covalently attached to cysteine containing proteins. In some embodiments, the isolated treated population of cells further comprises a set of cysteine-reactive probes.
Disclosed herein, in certain embodiments, is an isolated and purified polypeptide comprising at least 90% sequence identity to at least seven contiguous amino acids of an amino acid sequence selected from Tables 1-3 or 8-9. In some embodiments, the isolated and purified polypeptide comprising at least 95% sequence identity to at least seven contiguous amino acids of an amino acid sequence selected from Tables 1-3 or 8-9. In some embodiments, the isolated and purified polypeptide comprising 100% sequence identity to at least seven contiguous amino acids of an amino acid sequence selected from Tables 1-3 or 8-9. In some embodiments, the isolated and purified polypeptide consisting 100% sequence identity to the full length of an amino acid sequence selected from Tables 1-3 or 8-9. In some embodiments, the isolated and purified polypeptide is at most 50 amino acids in length. A polypeptide probe for screening a small molecule fragment comprising an isolated and purified polypeptide described herein.
Further disclosed herein, in certain embodiments, is a nucleic acid encoding a polypeptide comprising at least 90% sequence identity at least seven contiguous amino acids of an amino acid sequence selected from Tables 1-3 or 8-9. In some embodiments, the nucleic acid encoding a polypeptide comprising at least 95% sequence identity at least seven contiguous amino acids of an amino acid sequence selected from Tables 1-3 or 8-9. In some embodiments, the nucleic acid encoding a polypeptide comprising 100% sequence identity at least seven contiguous amino acids of an amino acid sequence selected from Tables 1-3 or 8-9. In some embodiments, the nucleic acid encoding a polypeptide consisting 100% sequence identity to the full length of an amino acid sequence selected from Tables 1-3 or 8-9.
Disclosed herein, in certain embodiments, is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, wherein the small molecule fragment is a small molecule fragment of Formula (I):
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue; and F is a small molecule fragment moiety. In some embodiments, the cysteine containing protein is a protein illustrated in Table 1. In some embodiments, the cysteine containing protein is a protein illustrated in Table 2. In some embodiments, the cysteine containing protein is a protein illustrated in Table 3. In some embodiments, the cysteine containing protein comprises a cysteine residue denoted in Table 3. In some embodiments, the cysteine containing protein is a protein illustrated in Table 8. In some embodiments, the cysteine containing protein is a protein illustrated in Table 9. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments, F is obtained from a compound library. In some embodiments, F is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, wherein the small molecule fragment has a molecular weight of about 150 Dalton or higher. In some embodiments, the small molecule fragment has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the molecular weight of the small molecule fragment is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, the cysteine containing protein is about 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000 amino acid residues in length or more. In some embodiments, the cysteine containing protein is a protein illustrated in Table 1. In some embodiments, the cysteine containing protein is a protein illustrated in Table 2. In some embodiments, the cysteine containing protein is a protein illustrated in Table 3. In some embodiments, the cysteine containing protein comprises a cysteine residue denoted in Table 3. In some embodiments, the cysteine containing protein is a protein illustrated in Table 8. In some embodiments, the cysteine containing protein is a protein illustrated in Table 9. In some embodiments, the small molecule fragment is a small molecule fragment of Formula (I):
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue; and F is a small molecule fragment moiety. In some embodiments, the small molecule fragment of Formula (I) has a molecular weight of about 150, 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments, F is obtained from a compound library. In some embodiments, F is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a cysteine containing protein-small molecule fragment complex produced by a process comprising contacting a cell solution with a small molecule fragment of Formula (I):
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue, and F is a small molecule fragment moiety; and wherein the contacting time is between about 5 minutes and about 2 hours. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments, F is obtained from a compound library. In some embodiments, F is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a modified cysteine containing protein comprising a cysteine-reactive probe having a covalent bond to a cysteine residue of a cysteine containing protein, wherein the cysteine-reactive probe is a cysteine-reactive probe of Formula (II):
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond to the thiol group of a cysteine residue; and AHM is an affinity handle moiety. In some embodiments, the cysteine containing protein is a protein illustrated in Table 1. In some embodiments, the cysteine containing protein is a protein illustrated in Table 2. In some embodiments, the cysteine containing protein is a protein illustrated in Table 8. In some embodiments, the cysteine containing protein is a protein illustrated in Table 9. In some embodiments, the cysteine containing protein is a protein illustrated in Table 10A, Table 10B, Table 10C, Table 10D or Table 10E. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments, the affinity handle moiety comprises an affinity handle and a binding moiety that facilitates covalent interaction of the cysteine-reactive probe to a cysteine residue of a cysteine-containing protein. In some embodiments, the binding moiety is a small molecule fragment obtained from a compound library. In some embodiments, the affinity handle is a bioorthogonal affinity handle. In some embodiments, the affinity handle comprises a carbodiimide, N-hydroxysuccinimide (NHS) ester, imidoester, pentafluorophenyl ester, hydroxymethyl phosphine, maleimide, haloacetyl, pyridyl disulfide, thiosulfonate, vinylsulfone, hydrazide, alkoxyamine, alkyne, azide, or isocyanate group. In some embodiments, the affinity handle is further conjugated to an affinity ligand. In some embodiments, the affinity handle moiety further comprises a chromophore. In some embodiments, the cysteine-reactive probe is a cysteine-reactive probe illustrated in
Disclosed herein, in certain embodiments, is a cysteine-reactive probe of Formula (II):
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond to the thiol group of a cysteine residue, and AHM is an affinity handle moiety. In some embodiments, the cysteine-reactive probe covalently binds to a cysteine residue on a cysteine containing protein. In some embodiments, cysteine containing protein is a protein illustrated in Table 1. In some embodiments, the cysteine containing protein is a protein illustrated in Table 2. In some embodiments, the cysteine containing protein is a protein illustrated in Table 3. In some embodiments, the cysteine containing protein comprises a cysteine residue denoted in Table 3. In some embodiments, the cysteine containing protein is a protein illustrated in Table 8. In some embodiments, the cysteine containing protein is a protein illustrated in Table 9. In some embodiments, the cysteine containing protein is a protein illustrated in Table 10A, Table 10B, Table 10C, Table 10D or Table 10E. In some embodiments, the cysteine-reactive probe binds irreversibly to the cysteine containing protein. In some embodiments, the cysteine-reactive probe binds reversibly to the cysteine containing protein.
Disclosed herein, in certain embodiments, is a compound capable of covalently binding to a cysteine containing protein identified, using the method comprising: (a) obtaining a set of cysteine-reactive probe-protein complexes from a sample wherein the cysteine-reactive probe comprises a reactive moiety capable of forming a covalent bond with a cysteine residue located on the cysteine containing protein; (b) analyzing the set of cysteine-reactive probe-protein complexes by a proteomic analysis means; (c) based on step b), identifying a cysteine containing protein as the binding target for the compound. In some embodiments, the compound is a small molecule fragment. In some embodiments, the small molecule fragment is a small molecule fragment of Formula (I):
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue; and F is a small molecule fragment moiety. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments, F is obtained from a compound library. In some embodiments, the compound library comprises ChemBridge fragment library, Pyramid Platform Fragment-Based Drug Discovery, Maybridge fragment library, FRGx from AnalytiCon, TCI-Frag from AnCoreX, Bio Building Blocks from ASINEX, BioFocus 3D from Charles River, Fragments of Life (FOL) from Emerald Bio, Enamine Fragment Library, IOTA Diverse 1500, BIONET fragments library, Life Chemicals Fragments Collection, OTAVA fragment library, Prestwick fragment library, Selcia fragment library, TimTec fragment-based library, Allium from Vitas-M Laboratory. or Zenobia fragment library. In some embodiments, F is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a derivative of a cysteine-containing protein having the structure of Formula (I),
wherein, the derivation occurs at a cysteine residue; R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is a small molecule fragment moiety. In some embodiments, F′ has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the molecular weight of F′ is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, F′ is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a derivative of IDH1 protein having the structure of Formula (I),
wherein, the derivation occurs at IDH1 cysteine residue position 269 based on SEQ ID NO: 1; R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl, and F′ is a small molecule fragment moiety. In some embodiments, F′ has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the molecular weight of F′ is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, F′ is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a derivative of IDH2 protein having the structure of Formula (I),
wherein the derivation occurs at IDH2 cysteine residue position 308 based on SEQ ID NO: 2; R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is a small molecule fragment moiety. In some embodiments, F′ has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the molecular weight of F′ is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, F′ is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a derivative of caspase-8 protein having the structure of Formula (I)
wherein the derivation occurs at caspase-8 cysteine residue position 360 based on SEQ ID NO: 3; R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is a small molecule fragment moiety. In some embodiments, F′ has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the molecular weight of F′ is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, F′ is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a derivative of caspase-10 protein having the structure of Formula (I),
wherein the derivation occurs at caspase-10 cysteine residue position 401 based on SEQ ID NO: 4; R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is a small molecule fragment moiety. In some embodiments, F′ has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the molecular weight of F′ is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, F′ is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a derivative of PRMT-1 protein having the structure of Formula (I),
wherein the derivation occurs at PRMT-1 cysteine residue position 109 based on SEQ ID NO: 5; R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is a small molecule fragment moiety. In some embodiments, F′ has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the molecular weight of F′ is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, F′ is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a derivative of ZAK protein having the structure of Formula (I),
wherein the derivation occurs at ZAK cysteine residue position 22 based on SEQ ID NO: 6; R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is a small molecule fragment moiety. In some embodiments, F′ has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the molecular weight of F′ is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, F′ is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a derivative of IMPDH2 protein having the structure of Formula (I),
wherein the derivation occurs at IMPDH2 cysteine residue position 140 based on SEQ ID NO: 7; R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is a small molecule fragment moiety. In some embodiments, F′ has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the molecular weight of F′ is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, F′ is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a derivative of IMPDH2 protein having the structure of Formula (I),
wherein the derivation occurs at IMPDH2 cysteine residue position 331 based on SEQ ID NO: 7; R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is a small molecule fragment moiety. In some embodiments, F′ has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the molecular weight of F′ is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, F′ is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a derivative of TIGAR protein having the structure of Formula (I),
wherein the derivation occurs at TIGAR cysteine residue position 114 based on SEQ ID NO: 8; R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is a small molecule fragment moiety. In some embodiments, F′ has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton. or higher. In some embodiments, the molecular weight of F′ is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, F′ is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a derivative of TIGAR protein having the structure of Formula (I),
wherein the derivation occurs at TIGAR cysteine residue position 161 based on SEQ ID NO: 8; R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is a small molecule fragment moiety. In some embodiments, F′ has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the molecular weight of F′ is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, F′ is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a derivative of PKCθ protein having the structure of Formula (I),
wherein the derivation occurs at PKCθ cysteine residue position 14 based on SEQ ID NO: 9; R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is a small molecule fragment moiety. In some embodiments, F′ has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the molecular weight of F′ is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, F′ is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a derivative of PKCθ protein having the structure of Formula (I),
wherein the derivation occurs at PKCθ cysteine residue position 17 based on SEQ ID NO: 9; R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is a small molecule fragment moiety. In some embodiments, F′ has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the molecular weight of F′ is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, F′ is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a method of identifying a cysteine containing protein as a binding target for a small molecule fragment, comprising: (a) obtaining a set of cysteine-reactive probe-protein complexes from a sample comprising a first cell solution treated with a small molecule fragment and a cysteine reactive probe wherein the cysteine-reactive probe comprises a reactive moiety capable of forming a covalent bond with a cysteine residue located on the cysteine containing protein; (b) analyzing the set of cysteine-reactive probe-protein complexes by a proteomic analysis means; and (c) based on step b), identifying a cysteine containing protein as the binding target for the small molecule fragment. In some embodiments, the method further comprises determining a value of each of the cysteine containing protein from the set of cysteine-reactive probe-protein complexes for identifying a cysteine containing protein as the binding target for the small molecule fragment, wherein the value is determined based on the proteomic analysis means of step b). In some embodiments, the sample further comprises a second cell solution. In some embodiments, the method further comprises contacting the first cell solution with a small molecule fragment for an extended period of time prior to incubating the first cell solution with a first cysteine-reactive probe to generate a first group of cysteine-reactive probe-protein complexes. In some embodiments, the extended period of time is about 5, 10, 15, 20, 30, 60, 90, 120 minutes or longer. In some embodiments, the method further comprises contacting the second cell solution with a second cysteine-reactive probe to generate a second group of cysteine-reactive probe-protein complexes. In some embodiments, the first cysteine-reactive probe and the second cysteine-reactive probe are the same. In some embodiments, the first group and the second group of cysteine-reactive probe-protein complexes comprise the set of cysteine-reactive probe-protein complexes. In some embodiments, the cysteine containing protein is an enzyme, a transporter, a receptor, a channel protein, an adaptor protein, a chaperone, a signaling protein, a plasma protein, transcription related protein, translation related protein, mitochondrial protein, or cytoskeleton related protein. In some embodiments, the cysteine containing protein is a protein illustrated in Table 3. In some embodiments, the cysteine containing protein is a protein illustrated in Table 1, Table 2, Table 8. Table 9, Table 10A, Table 10B, Table 10C, Table 10D or Table 10E. In some embodiments, the small molecule fragment is a small molecule fragment of Formula (I):
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue; and F is a small molecule fragment moiety. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments. F is obtained from a compound library. In some embodiments, the compound library comprises ChemBridge fragment library, Pyramid Platform Fragment-Based Drug Discovery, Maybridge fragment library, FRGx from AnalytiCon. TCI-Frag from AnCoreX, Bio Building Blocks from ASINEX, BioFocus 3D from Charles River, Fragments of Life (FOL) from Emerald Bio, Enamine Fragment Library, IOTA Diverse 1500, BIONET fragments library, Life Chemicals Fragments Collection, OTAVA fragment library, Prestwick fragment library, Selcia fragment library, TimTec fragment-based library, Allium from Vitas-M Laboratory, or Zenobia fragment library. In some embodiments, F is a small molecule fragment moiety illustrated in
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond to the thiol group of a cysteine residue; and AHM is an affinity handle moiety. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments, the affinity handle moiety comprises an affinity handle and a binding moiety that facilitates covalent interaction of the cysteine-reactive probe to a cysteine residue of a cysteine-containing protein. In some embodiments, the binding moiety is a small molecule fragment obtained from a compound library. In some embodiments, the affinity handle comprises a carbodiimide, N-hydroxysuccinimide (NHS) ester, imidoester, pentafluorophenyl ester, hydroxymethyl phosphine, maleimide, haloacetyl, pyridyl disulfide, thiosulfonate, vinylsulfone, hydrazide, alkoxyamine, alkyne, azide, or isocyanate group. In some embodiments, the affinity handle is further conjugated to an affinity ligand. In some embodiments, the affinity ligand comprises a chromophore, a labeling group, or a combination thereof. In some embodiments, the chromophore comprises non-fluorochrome chromophore, quencher, an absorption chromophore, fluorophore, organic dye, inorganic dye, metal chelate, or a fluorescent enzyme substrate. In some embodiments, the labeling group is a biotin moiety, a streptavidin moiety, bead, resin, a solid support, or a combination thereof. In some embodiments, the cysteine-reactive probe is a cysteine-reactive probe illustrated in
Disclosed herein, modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, wherein the small molecule fragment has a molecular weight of about 150 Dalton or higher. In some embodiments, the cysteine containing protein comprises a cysteine residue site denoted in Table 3. In some embodiments, the cysteine containing protein comprises a protein sequence illustrated in Table 1, Table 2. Table 8, Table 9, Table 10A, Table 10B, Table 10C, Table 10D or Table 10E. In some embodiments, the cysteine containing protein is about 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000 amino acid residues in length or more. In some embodiments, the cysteine residue of the modified cysteine containing protein has the structure SR, wherein R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is the small molecule fragment moiety. In some embodiments, the small molecule fragment has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the modified cysteine containing protein is selected from IDH2, caspase-8, caspase-10 or PRMT1. In some embodiments, IDH2 is modified at cysteine position 308. In some embodiments, caspase-8 is modified at cysteine position 360. In some embodiments, caspase-10 exist in the proform and is modified at cysteine position 401. In some embodiments, PRMT1 is modified at cysteine position 109. In some embodiments, the small molecule fragment is a small molecule fragment of Formula (I):
wherein: RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue; and F is a small molecule fragment moiety. In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some embodiments. F is obtained from a compound library. In some embodiments, F is a small molecule fragment moiety illustrated in
Disclosed herein, in certain embodiments, is a method of screening a small molecule fragment for interaction with a cysteine containing protein, comprising: (a) harvesting a set of cysteine-reactive probe-protein complexes from a sample comprising a first cell solution treated with a small molecule fragment and a cysteine reactive probe wherein the cysteine-reactive probe comprises a reactive moiety capable of forming a covalent bond with a cysteine residue located on the cysteine containing protein; (b) analyzing the set of cysteine-reactive probe-protein complexes by a proteomic analysis means; and (c) based on step b), identifying the small molecule fragment as interacting with the cysteine containing protein. In some embodiments, the method further comprises determining a value of each of the cysteine containing protein from the set of cysteine-reactive probe-protein complexes prior to identifying the small molecule fragment as interacting with the cysteine containing protein, wherein the value is determined based on the proteomic analysis means of step b). In some embodiments, the cysteine containing protein is a protein illustrated in Table 3. In some embodiments, the cysteine containing protein is a protein illustrated in Table 1. Table 2, Table 8, Table 9, Table 10A, Table 10B, Table 10C, Table 10D or Table 10E.
Various aspects of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
Cysteine containing proteins encompass a large repertoire of proteins that participate in numerous cellular functions such as mitogenesis, proliferation, apoptosis, gene regulation, and proteolysis. These proteins include enzymes, transporters, receptors, channel proteins, adaptor proteins, chaperones, signaling proteins, plasma proteins, transcription related proteins, translation related proteins, mitochondrial proteins, or cytoskeleton related proteins. Dysregulated expression of a cysteine containing protein, in many cases, is associated with or modulates a disease, such as an inflammatory related disease, a neurodegenerative disease, or cancer. As such, identification of a potential agonist/antagonist to a cysteine containing protein aids in improving the disease condition in a patient.
In some instances, potential constrains exist in drug screening due to the structurally complex compound and the inability of some of the structurally complexed compound to interact with the protein. As such, small molecule fragments are employed in some instances to serve as launching point for structure-guided elaboration of an initial interaction into a high-affinity drug. In some instances, one method of identifying a small molecule fragment that interacts with a cysteine containing protein is through monitoring their interaction under an in vitro environment. However in some cases, the in vitro environment does not mimic the native condition of the cysteine containing protein. In other cases, the in vitro environment lacks additional helper proteins to facilitate interaction with the small molecule fragment. Further still, in some instances, difficulties arise during the expression and/or purification stage of the cysteine-containing protein.
Described herein is another method of identifying small molecule fragments for interaction with a cysteine containing protein. In some instances, this method allows for mapping of small molecule fragments for interaction with a cysteine containing protein under native conditions, thereby allows for an accurate mapping of interaction with potential small molecule fragments. In some instances, this method also allows for identification of novel cysteine containing protein targets as this method eliminates the need of recombinant expression and purification.
In some embodiments, also described herein are compositions, cells, cell populations, assays, probes, and service related to the method of identifying a small molecule fragment for interaction with a cysteine containing protein.
In some embodiments, the methods described herein utilize a small molecule fragment and a cysteine-reactive probe for competitive interaction with a cysteine-containing protein. In some embodiments, the method is as described in
In some embodiments, cells from the second cell solution are grown in an enriched media (e.g., an isotopically enriched media). In some cases, cells from the first cell solution are grown in an enriched media (e.g., an isotopically enriched media). In some instances, cells from both the first cell solution and the second cell solution are grown in two different enriched media (e.g., two different isotopically enriched media) so that a protein obtained from cells grown in the first cell solution is distinguishable from a protein obtained from cells grown in the second cell solution. In other embodiments, cells from only one of the cell solutions (e.g., either the first cell solution or the second cell solution) are grown in an enriched media (e.g., isotopically enriched media). In such cases, a protein obtained from the enriched cells (e.g., isotopically enriched cells) is distinguishable from a protein obtained from cells that have not been enriched (e.g., isotopically enriched).
As illustrated in
In some instants, cells from the second cell solution are ae-further treated with a buffer. In some cases, the buffer is DMSO. In some cases, cells from the second cell solution are not treated with a small molecule fragment and the second cell solution acts as a control.
In some instances, a first group of cysteine-reactive probe-protein complexes and a second group of cysteine-reactive probe-protein complexes are harvested separately and combined to generate a set of cysteine-reactive probe-protein complexes which is further processed by a proteomic analysis means. In some cases, either the first group of cysteine-reactive probe-protein complexes or the second group of cysteine-reactive probe-protein complexes contain labeled proteins obtained from cells grown in an enriched media (e.g., isotopically enriched media). In some cases, both groups of cysteine-reactive probe-protein complexes contain labeled proteins obtained from cells grown in two different enriched media (e.g., two different isotopically enriched media). In other cases, either the first group of cysteine-reactive probe-protein complexes, the second group of cysteine-reactive probe-protein complexes, or both groups of cysteine-reactive probe-protein complexes contain labeled proteins in which the proteins have been labeled after harvesting from a cell.
In some instances, a first group of cysteine-reactive probe-protein complexes and a second group of cysteine-reactive probe-protein complexes are harvested separately and the proteins from one of the two groups of cysteine-reactive probe-protein complexes are subsequently labeled (e.g., by methylation). In some cases, first group of cysteine-reactive probe-protein complexes and a second group of cysteine-reactive probe-protein complexes are then combined and subjected to proteomic analysis means.
In other instances, a first group of cysteine-reactive probe-protein complexes and a second group of cysteine-reactive probe-protein complexes are harvested separately and both groups are subjected to proteomic analysis means. In some cases, data obtained from a proteomic analysis means is then combined for further analysis.
In some embodiments, the proteomic analysis means comprises a mass spectroscopy method. In some instances, the mass spectroscopy method is a liquid-chromatography-mass spectrometry (LC-MS) method. In some cases, the proteomic analysis means further comprise analyzing the results from the mass spectroscopy method by an algorithm for protein identification. In some cases, the algorithm combines the results from the mass spectroscopy method with a protein sequence database for protein identification. In some cases, the algorithm comprises ProLuCID algorithm, Probity, Scaffold, SEQUEST, or Mascot. In some cases, the mass spectroscopy method is a MALDI-TOF based method.
In some embodiments, a value is assigned to each of the cysteine binding protein from the cysteine-reactive probe-protein complexes after proteomic analysis, in which the value is determined from the proteomic analysis. In some cases, the value assigned to each of the cysteine containing protein is obtained from a mass spectroscopy analysis. In some instances, the value is an area-under-the curve from a plot of signal intensity as a function of mass-to-charge ratio. In some embodiments, a first value is assigned to a cysteine binding protein from the first group of cysteine-reactive probe-protein complex of the first cell solution and a second value of the same cysteine binding protein from the second group of cysteine-reactive probe-protein complex of the second cell solution. In some instances, a ratio is then calculated between the two values, the first value and the second value, and assigned to the same cysteine binding protein. In some instances, a ratio of greater than 2 indicates that the cysteine binding protein is a candidate for interacting with the small molecule fragment. In some instances, the ratio is greater than 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, or 10. In some cases, the ratio is at most 20. In some instances, the same small molecule fragment interacts with a number of cysteine binding proteins in the presence of a cysteine-reactive probe. In some instances, the small molecule modulates the interaction of a cysteine-reactive probe with its cysteine binding protein partners. In some instances, the spectrum of ratios for a small molecule fragment with its interacting protein partners in the presence of a cysteine-reactive probe indicates the specificity of the small molecule fragment toward the protein. In some instances, the spectrum of ratio indicates whether the small molecule fragment is a specific inhibitor to a protein or a pan inhibitor.
In some embodiments, the cysteine containing protein identified by the above method comprises a biologically active cysteine residue. In some instances, the biologically active cysteine site is a cysteine residue that is located about 10 Å or less to an active-site ligand or residue. In some cases, the cysteine residue that is located about 10 Å or less to the active-site ligand or residue is an active site cysteine. In some cases, the biologically active cysteine site is an active site cysteine. In some embodiments, the biologically active cysteine site is a cysteine residue that is located greater than 10 Å from an active-site ligand or residue. In some cases, the cysteine residue that is located greater than 10 Å from the active-site ligand or residue is a non-active site cysteine. In some instances, the biologically active cysteine site is a non-active site cysteine.
In some embodiments, the small molecule fragment that covalently interacts with the biologically active cysteine impairs and/or inhibits activity of the cysteine containing protein. In some instances, the cysteine containing protein exists in an active form. In some embodiments, the small molecule fragment and/or the cysteine-reactive probe interact with the active form of the cysteine containing protein. In some instances, the cysteine containing protein exists in a pro-active form. In some embodiments, the small molecule fragment and/or the cysteine-reactive probe interact with the pro-active form of the cysteine containing protein.
In some embodiments, the structural environment of the biologically active cysteine residue modulates the reactivity of the cysteine residue. In some embodiments, the structural environment is a hydrophobic environment or a hydrophilic environment. In some embodiments, the structural environment is a charged environment. In some embodiments, the structural environment is a nucleophilic environment.
In some embodiments, the cysteine containing protein is an enzyme, a transporter, a receptor, a channel protein, an adaptor protein, a chaperone, a signaling protein, a plasma protein, transcription related protein, translation related protein, mitochondrial protein, or cytoskeleton related protein. In some instances, the cysteine containing protein is an enzyme, a transporter, a receptor, a channel protein, an adaptor protein, a chaperone, a signaling protein, transcription related protein, or translation related protein. In some embodiments, the cysteine containing protein is a protein illustrated in Tables 1, 2, 3, 8 or 9. In some instances, the cysteine residue of the cysteine-containing proteins illustrated in Tables 1, 2, 3, 8 or 9 is denoted by (*) in Tables 1, 2, 3, 8 or 9.
In some instances, a set of cysteine-reactive probes are added to the cell solutions. For example, a first set of cysteine-reactive probes are added to the first cell solution and a second set of cysteine-reactive probes are added to the second cell solution. In some cases, each cysteine-reactive probe is different within the set. In some instances, the first set of cysteine-reactive probes is the same as the second set of cysteine-reactive probes. In some cases, the first set of cysteine-reactive probes generate a third group of cysteine-reactive probe-protein complexes and the second set of cysteine-reactive probes generate a fourth group of cysteine-reactive probe-protein complexes. In some instances, the set of cysteine-reactive probes further facilitates identification of cysteine containing proteins.
In some embodiments, the sample is a cell sample. In other instances, the sample is a tissue sample.
In some instances, the method is an in-situ method.
In some embodiments, the small molecule fragments described herein comprise non-naturally occurring molecules. In some instances, the non-naturally occurring molecules do not include natural and/or non-natural peptide fragments, or small molecules that are produced naturally within the body of a mammal.
In some embodiments, the small molecule fragments described herein comprise a molecule weight of about 100 Dalton or higher. In some embodiments, the small molecule fragments comprise a molecule weight of about 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some instances, the molecule weight of the small molecule fragments are between about 150 and about 500, about 150 and about 450, abut 150 and about 440, about 150 and about 430, about 150 and about 400, about 150 and about 350, about 150 and about 300, about 150 and about 250, about 170 and about 500, about 180 and about 450, about 190 and about 400, about 200 and about 350, about 130 and about 300, or about 120 and about 250 Dalton.
In some embodiments, the molecule weight of the small molecule fragments described herein is the molecule weight prior to enrichment with one or more elements selected from a halogen, a nonmetal, a transition metal, or a combination thereof. In some embodiments, the molecule weight of the small molecule fragments described herein is the molecule weight prior to enrichment with a halogen. In some embodiments, the molecule weight of the small molecule fragments described herein is the molecule weight prior to enrichment with a nonmetal. In some embodiments, the molecule weight of the small molecule fragments described herein is the molecule weight prior to enrichment with a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms.
In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some cases, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, the molecular weight of the small molecule fragment does not include the molecular weight of a transition metal.
In some embodiments, the small molecule fragments described herein comprise micromolar or millimolar binding affinity. In some instances, the small molecule fragments comprise a binding affinity of about 1 μM, 10 μM, 100 μM, 500 μM, 1 mM, 10 mM, or higher.
In some embodiments, the small molecule fragments described herein has a high ligand efficiency (LE). Ligand efficiency is the measurement of the binding energy per atom of a ligand to its binding partner. In some instances, the ligand efficiency is defined as the ratio of the Gibbs free energy (ΔG) to the number of non-hydrogen atoms of the compound (N):
LE=(ΔG)/N.
In some cases, LE is also arranged as:
LE=1.4(−log IC50)/N.
In some instances, the LE score is about 0.3 kcal mol−1 HA−1, about 0.35 kcal mol−1 HA−1, about 0.4 kcal mol−1 HA−1, or higher.
In some embodiments, the small molecule fragments described herein are designed based on the Rule of 3. In some embodiments, the Rule of 3 comprises a non-polar solvent-polar solvent (e.g. octanol-water) partition coefficient log P of about 3 or less, a molecular mass of about 300 Daltons or less, about 3 hydrogen bond donors or less, about 3 hydrogen bond acceptors or less, and about 3 rotatable bonds or less.
In some embodiments, the small molecule fragments described herein comprises three cyclic rings or less.
In some embodiments, the small molecule fragments described herein binds to a cysteine residue of a polypeptide that is about 20 amino acid residues in length or more. In some instances, the small molecule fragments described herein binds to a cysteine residue of a polypeptide that is about 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000 amino acid residues in length or more.
In some embodiments, the small molecule fragments described herein further comprise pharmacokinctic parameters that are unsuitable as a therapeutic agent for administration without further optimization of the small molecule fragments. In some instances, the pharmacokinetic parameters that are suitable as a therapeutic agent comprise parameters in accordance with FDA guideline, or in accordance with a guideline from an equivalent Food and Drug Administration outside of the United States. In some instances, the pharmacokinetic parameters comprise the peak plasma concentration (C max), the lowest concentration of a therapeutic agent (C min), volume of distribution, time to reach C max, elimination half-life, clearance, and the life. In some embodiments, the pharmacokinetic parameters of the small molecule fragments are outside of the parameters set by the FDA guideline, or by an equivalent Food and Drug Administration outside of the United States. In some instances, a skilled artisan understands in view of the pharmacokinetic parameters of the small molecule fragments described herein that these small molecule fragments are unsuited as therapeutic agents without further optimization.
In some embodiments, the small molecule fragments described herein comprise a reactive moiety which forms a covalent interaction with the thiol group of a cysteine residue of a cysteine containing protein, and an affinity handle moiety.
In some instances, a small molecule fragment described herein is a small molecule fragment of Formula (I):
wherein:
In some instances, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some cases, F is obtained from a compound library. In some cases, the compound library comprises ChemBridge fragment library, Pyramid Platform Fragment-Based Drug Discovery, Maybridge fragment library, FRGx from AnalytiCon, TCI-Frag from AnCoreX, Bio Building Blocks from ASINEX, BioFocus 3D from Charles River, Fragments of Life (FOL) from Emerald Bio. Enamine Fragment Library, IOTA Diverse 1500, BIONET fragments library, Life Chemicals Fragments Collection, OTAVA fragment library, Prestwick fragment library, Selcia fragment library, TimTec fragment-based library, Allium from Vitas-M Laboratory, or Zenobia fragment library.
In some embodiments, the small molecule fragment of Formula (I) does not contain a second binding site. In some instances, the small molecule fragment moiety does not bind to the protein. In some cases, the small molecule fragment moiety does not covalently bind to the protein. In some instances, the small molecule fragment moiety does not interact with a secondary binding site on the protein. In some instances, the secondary binding site is an active site such as an ATP binding site. In some cases, the active site is at least about 10, 15, 20, 25, 35, 40 Å, or more away from the biologically active cysteine residue. In some instances, the small molecule fragment moiety does not interact with an active site such as an ATP binding site.
In some instances, F is a small molecule fragment moiety illustrated in
In some instances, F is a small molecule fragment moiety selected from: N-(4-bromophenyl)-N-phenylacrylamide, N-(1-benzoylpiperidin-4-yl)-2-chloro-N-phenylacetamide, 1-(4-benzylpiperidin-1-yl)-2-chloroethan-1-one, N-(2-(1H-indol-3-yl)ethyl)-2-chloroacetamide, N-(3,5-bis(trifluoromethyl)phenyl)acrylamide, N-(4-phenoxy-3-(trifluoromethyl)phenyl)-N-(pyridin-3-ylmethyl)acrylamide, N-(3,5-bis(trifluoromethyl)phenyl)acetamide, 2-chloro-1-(4-(hydroxydiphenylmethyl)piperidin-1-yl)ethan-1-one, (E)-3-(3,5-bis(trifluoromethyl)phenyl)-2-cyanoacrylamide, N-(3,5-bis(trifluoromethyl)phenyl)-2-bromopropanamide, N-(3,5-bis(trifluoromethyl)phenyl)-2-chloropropanamide, N-(3,5-bis(trifluoromethyl)phenyl)-N-(pyridin-3-ylmethyl)acrylamide, 3-(2-chloroacetamido)-5-(trifluoromethyl)benzoic acid, 1-(4-(5-fluorobenzisoxazol-3-yl)piperidin-1-yl)prop-2-en-1-one, tert-butyl 4-(4-acrylamido-2,6-difluorophenyl)piperazine-1-carboxylate, N-(4-bromo-2,5-dimethylphenyl)acrylamide, 2-Chloroacetamido-2-deoxy-α/β-D-glucopyranose, 2-chloro-1-(2-methyl-3,4-dihydroquinolin-1(2H)-yl)ethan-1-one, N-cyclohexyl-N-phenylacrylamide, 1-(5-bromoindolin-1-yl)prop-2-en-1-one, N-(1-benzylpiperidin-4-yl)-N-phenylacrylamide, 2-chloro-N-(2-methyl-5-(trifluoromethyl)phenyl)acetamide, 1-(5-bromoindolin-1-yl)-2-chloroethan-1-one, 2-chloro-N-(quinolin-5-yl)acetamide, 1-(4-benzylpiperidin-1-yl)prop-2-en-1-one, 2-chloro-N-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)methyl)acetamide, or 1-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)prop-2-en-1-one.
In some embodiments, the small molecule fragment of Formula (I) comprise a molecule weight of about 100, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some instances, the molecule weight of the small molecule fragment of Formula (I) is between about 150 and about 500, about 150 and about 450, abut 150 and about 440, about 150 and about 430, about 150 and about 400, about 150 and about 350, about 150 and about 300, about 150 and about 250, about 170 and about 500, about 180 and about 450, about 190 and about 400, about 200 and about 350, about 130 and about 300, or about 120 and about 250 Dalton.
In some embodiments, the molecule weight of the small molecule fragment of Formula (I) is the molecule weight prior to enrichment with one or more elements selected from a halogen, a nonmetal, a transition metal, or a combination thereof. In some embodiments, the molecule weight of the small molecule fragment of Formula (I) is the molecule weight prior to enrichment with a halogen. In some embodiments, the molecule weight of the small molecule fragment of Formula (I) is the molecule weight prior to enrichment with a nonmetal. In some embodiments, the molecule weight of the small molecule fragment of Formula (I) is the molecule weight prior to enrichment with a transition metal.
In some embodiments, the molecular weight of the small molecule fragment of Formula (I) does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some embodiments, the molecular weight of the small molecule fragment of Formula (I) does not include the molecular weight of a halogen. In some embodiments, the molecular weight of the small molecule fragment of Formula (I) does not include the molecular weight of a transition metal.
In some instances, the small molecule fragment of Formula (I) comprises micromolar or millimolar binding affinity. In some instances, the small molecule fragment of Formula (I) comprises a binding affinity of about 1 μM, 10 μM, 100 μM, 500 μM, 1 mM, 10 mM, or higher.
In some cases, the small molecule fragment of Formula (I) has a LE score about 0.3 kcal mol−1 HA−1, about 0.35 kcal mol−1 HA−1, about 0.4 kcal mol−1 HA−1, or higher
In some embodiments, the small molecule fragment of Formula (I) follows the design parameters of Rule of 3. In some instances, the small molecule fragment of Formula (I) has a non-polar solvent-polar solvent (e.g. octanol-water) partition coefficient log P of about 3 or less, a molecular mass of about 300 Daltons or less, about 3 hydrogen bond donors or less, about 3 hydrogen bond acceptors or less, and about 3 rotatable bonds or less.
In some embodiments, the small molecule fragment of Formula (I) comprises three cyclic rings or less.
In some embodiments, the small molecule fragment of Formula (I) binds to a cysteine residue of a polypeptide (e.g., a cysteine containing protein) that is about 20 amino acid residues in length or more. In some instances, the small molecule fragments described herein binds to a cysteine residue of a polypeptide (e.g., a cysteine containing protein) that is about 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000 amino acid residues in length or more.
In some instances, the small molecule fragment of Formula (I) has pharmacokinetic parameters outside of the parameters set by the FDA guideline, or by an equivalent Food and Drug Administration outside of the United States. In some instances, a skilled artisan understands in view of the pharmacokinetic parameters of the small molecule fragment of Formula (I) described herein that these small molecule fragment is unsuited as a therapeutic agent without further optimization.
In some embodiments, the small molecule fragment is a specific inhibitor or a pan inhibitor.
In some embodiments, a cysteine-reactive probe comprises a reactive moiety which forms a covalent interaction with the thiol group of a cysteine residue of a cysteine containing protein, and an affinity handle moiety.
In some embodiments, a cysteine-reactive probe is a cysteine-reactive probe of Formula (II):
wherein:
In some instances, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some cases, the affinity handle moiety comprises an affinity handle and a binding moiety that facilitates covalent interaction of the cysteine-reactive probe to a cysteine residue of a cysteine-containing protein. In some cases, the binding moiety is a small molecule fragment obtained from a compound library. In some instances, the compound library comprises ChemBridge fragment library, Pyramid Platform Fragment-Based Drug Discovery, Maybridge fragment library, FRGx from AnalytiCon. TCI-Frag from AnCoreX, Bio Building Blocks from ASINEX, BioFocus 3D from Charles River, Fragments of Life (FOL) from Emerald Bio, Enamine Fragment Library, IOTA Diverse 1500, BIONET fragments library, Life Chemicals Fragments Collection, OTAVA fragment library. Prestwick fragment library, Selcia fragment library, TimTec fragment-based library. Allium from Vitas-M Laboratory, or Zenobia fragment library.
In some embodiments, the affinity handle is a bioorthogonal affinity handle. In some embodiments, the affinity handle utilizes bioorthogonal chemistry. As used herein, bioorthogonal chemistry refers to any chemical reaction that occurs inside of a living system (e.g. a cell) without interfering with native biochemical processes.
In some cases, the affinity handle comprises a carbodiimide, N-hydroxysuccinimide (NHS) ester, imidoester, pentafluorophenyl ester, hydroxymethyl phosphine, maleimide, haloacetyl, pyridyl disulfide, thiosulfonate, vinylsulfone, hydrazide, alkoxyamine, alkyne, azide, or isocyanate group. In some cases, the affinity handle comprises an alkyne or an azide group.
In some instances, the affinity handle is an alkyne group. The term “alkyne group” as used in the context of an affinity handle refers to a group with a chemical formula of H—C≡C—R, HC2R, R1—C≡C—R2, or R1C2R2. In the context of the present chemical formula, R, R1, and R2 are independently a cysteine-reactive probe portion described herein, a linker, or a combination thereof. In some cases, the alkyne group is capable of being covalently linked in a chemical reaction with a molecule containing an azide. In some instances, the affinity handle is an azide group.
In some instances, the affinity handle (e.g. alkyne group or azide group) serve as nonnative and non-perturbed bioorthogonal chemical handles. In some instances, the affinity handle (e.g. alkyne group or azide group) is further derivatized through chemical reactions such as click chemistry. In some instances, the click chemistry is a copper(I)-catalyzed [3+2]-Huisgen 1,3-dipolar cyclo-addition of alkynes and azides leading to 1,2,3-triazoles. In other instances, the click chemistry is a copper free variant of the above reaction.
In some instances, the affinity handle further comprises a linker. In some instances, the linker bridges the affinity handle to the reactive moiety.
In some instances, the affinity handle is further conjugated to an affinity ligand. In some cases, the affinity ligand comprises a chromophore, a labeling group, or a combination thereof. In some embodiments, the chromophore comprises fluorochrome, non-fluorochrome chromophore, quencher, an absorption chromophore, fluorophore, organic dye, inorganic dye, metal chelate, or a fluorescent enzyme substrate. In some cases, the chromophore comprises non-fluorochrome chromophore, quencher, an absorption chromophore, fluorophore, organic dye, inorganic dye, metal chelate, or a fluorescent enzyme substrate. In other cases, the chromophore comprises a fluorophore.
In some embodiments, the fluorophore comprises rhodamine, rhodol, fluorescein, thiofluorescein, aminofluorescein, carboxyfluorescein, chlorofluorescein, methylfluorescein, sulfofluorescein, aminorhodol, carboxythodol, chlororhodol, methylrhodol, sulforhodol, aminorhodamine, carboxyrhodamine, chlororhodamine, mcthylrhodamine, sulforhodamine, thiorhodamine, cyanine, indocarbocyanine, oxacarbocyvanine, thiacarbocyanine, merocyanine, cyanine 2, cyanine 3, cyanine 3.5, cyanine 5, cyanine 5.5, cyanine 7, oxadiazole derivatives, pyridyloxazole, nitrobenzoxadiazole, benzoxadiazole, pyren derivatives, cascade blue, oxazine derivatives. Nile red, Nile blue, cresyl violet, oxazine 170, acridine derivatives, proflavin, acridine orange, acridine yellow, arylmethine derivatives, auramine, crystal violet, malachite green, tetrapyrrole derivatives, porphin, phtalocyanine, bilirubin 1-dimethylaminonaphthyl-5-sulfonate, 1-anilino-8-naphthalene sulfonate, 2-p-touidinyl-6-naphthalene sulfonate, 3-phenyl-7-isocyanatocoumarin, N-(p-(2-benzoxazolyl)phenyl)maleimide, stilbenes, pyrenes, 6-FAM (Fluorescein), 6-FAM (NHS Ester), 5(6)-FAM, 5-FAM, Fluorescein dT, 5-TAMRA-cadavarine, 2-aminoacridone, HEX, JOE (NHS Ester), MAX, TET, ROX, TAMRA, TARMA™ (NHS Ester), TEX 615, ATTO™ 488, ATTO™ 532, ATTO™ 550, ATTO™ 565. ATTO™ Rho101, ATTO™ 590, ATTO™ 633, ATTO™ 647N, TYE™ 563, TYE™ 665, or TYE™ 705.
In some embodiments, the labeling group is a biotin moiety, a streptavidin moiety, bead, resin, a solid support, or a combination thereof. As used herein, a biotin moiety described herein comprises biotin and biotin derivatives. Exemplary biotin derivatives include, but are not limited by, desthiobiotin, biotin alkyne or biotin azide. In some instances, a biotin moiety described herein is desthiobiotin. In some cases, a biotin moiety described herein is d-Desthiobiotin.
In some instances, the labeling group is a biotin moiety. In some instances, the biotin moiety further comprises a linker such as a 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more residues in length. In some instances, the linker further comprises a cleavage site, such as a protease cleavage site. In some cases, the biotin moiety interacts with a streptavidin moiety. In some instances, the biotin moiety is further attached to a bead, such as a streptavidin-coupled bead. In some instances, the biotin moiety is further attached to a resin or a solid support, such as a streptavidin-coupled resin or a streptavidin-coupled solid support. In some instances, the solid support is a plate, a platform, a cover slide, a microfluidic channel, and the like.
In some embodiments, the affinity handle moiety further comprises a chromophore.
In some embodiments, the cysteine-reactive probe is a cysteine-reactive probe illustrated in
In some instances, the cysteine containing protein is a soluble protein or a membrane protein. In some instances, the cysteine containing protein is involved in one or more of a biological process such as protein transport, lipid metabolism, apoptosis, transcription, electron transport, mRNA processing, or host-virus interaction. In some instances, the cysteine containing protein is associated with one or more of diseases such as cancer or one or more disorders or conditions such as immune, metabolic, developmental, reproductive, neurological, psychiatric, renal, cardiovascular, or hematological disorders or conditions.
In some embodiments, the cysteine containing protein comprises a biologically active cysteine residue. In some embodiments, the cysteine containing protein comprises one or more cysteines in which at least one cysteine is a biologically active cysteine residue. In some cases, the biologically active cysteine site is a cysteine residue that is located about 10 Å or less to an active-site ligand or residue. In some cases, the cysteine residue that is located about 10 Å or less to the active-site ligand or residue is an active site cysteine. In other cases, the biologically active cysteine site is a cysteine residue that is located greater than 10 Å from an active-site ligand or residue. In some instances, the cysteine residue is located greater than 12 Å, 15 Å, 20 Å, 25 Å, 30 Å, 35 Å, 40 Å, 45 Å, or greater than 50 Å from an active-site ligand or residue. In some cases, the cysteine residue that is located greater than 10 Å from the active-site ligand or residue is a non-active site cysteine. In additional cases, the cysteine containing protein exists in an active form, or in a pro-active form.
In some embodiments, the cysteine containing protein comprises one or more functions of an enzyme, a transporter, a receptor, a channel protein, an adaptor protein, a chaperone, a signaling protein, a plasma protein, transcription related protein, translation related protein, mitochondrial protein, or cvtoskeleton related protein. In some embodiments, the cysteine containing protein is an enzyme, a transporter, a receptor, a channel protein, an adaptor protein, a chaperone, a signaling protein, a plasma protein, transcription related protein, translation related protein, mitochondrial protein, or cytoskeleton related protein. In some instances, the cysteine containing protein has an uncategorized function.
In some embodiments, the cysteine containing protein is an enzyme. An enzyme is a protein molecule that accelerates or catalyzes chemical reaction. In some embodiments, non-limiting examples of enzymes include kinases, proteases, or deubiquitinating enzymes.
In some instances, exemplary kinases include tyrosine kinases such as the TEC family of kinases such as Tec, Bruton's tvrosine kinase (Btk), interleukin-2-indicible T-cell kinase (Itk) (or Emt/Tsk). Bmx. and Txk/Rlk; spleen tyrosine kinase (Syk) family such as SYK and Zeta-chain-associated protein kinase 70 (ZAP-70); Src kinases such as Src, Yes, Fyn, Fgr, Lck, Hck. Blk, Lyn, and Frk; JAK kinases such as Janus kinase 1 (JAK1), Janus kinase 2 (JAK2), Janus kinase 3 (JAK3), and Tyrosine kinase 2 (TYK2); or ErbB family of kinases such as Her1 (EGFR, ErbB1), Her2 (Neu. ErbB2), Her3 (ErbB3), and Her4 (ErbB4).
In some embodiments, the cysteine containing protein is a protease. In some embodiments, the protease is a cysteine protease. In some cases, the cysteine protease is a caspase. In some instances, the caspase is an initiator (apical) caspase. In some instances, the caspase is an effector (executioner) caspase. Exemplary caspase includes CASP2, CASP8, CASP9, CASP10, CASP3, CASP6, CASP7, CASP4, and CASP5. In some instances, the cysteine protease is a cathepsin. Exemplary cathepsin includes Cathepsin B, Cathepsin C, CathepsinF, Cathepsin H, Cathepsin K, Cathepsin L1, Cathepsin L2, Cathepsin O. Cathepsin S, Cathepsin W, or Cathepsin Z.
In some embodiments, the cysteine containing protein is a deubiquitinating enzyme (DUB). In some embodiments, exemplary deubiquitinating enzymes include cysteine proteases DUBs or metalloproteases. Exemplary cysteine protease DUBs include ubiquitin-specific protease (USP/UBP) such as USP1, USP2, USP3, USP4, USP5, USP6, USP7, USP8, USP9X, USP9Y, USP10, USP11, USP12, USP13, USP14, USP15, USP16, USP17, USP17L2, USP17L3, USP17L4, USP17L5, USP17L7, USP17L8, USP18, USP19, USP20, USP21. USP22, USP23, USP24, USP25, USP26, USP27X, USP28. USP29, USP30, USP31, USP32, USP33, USP34, USP35. USP36, USP37, USP38, USP39, USP40, USP41, USP42, USP43, USP44, USP45, or USP46; ovarian tumor (OTU) proteases such as OTUB1 and OTUB2; Machado-Josephin domain (MJD) proteases such as ATXN3 and ATXN3L; and ubiquitin C-terminal hydrolase (UCH) proteases such as BAP1, UCHL1, UCHL3, and UCHL5. Exemplary metalloproteases include the Jab1/Mov34/Mpr1 Pad1 N-terminal+(MPN+) (JAMM) domain proteases.
In some embodiments, exemplary cysteine containing proteins as enzymes include, but are not limited to, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Protein arginine N-methyltransferase 1 (PRMT1), Peptidyl-prolyl cis-trans isomerase NIMA-interaction (PIN1), Acetyl-CoA acetyltransferase (mitochondrial) (ACAT1). Glutathione S-transferase P (GSTP1). Elongation factor 2 (EEF2). Glutathione S-transferase omega-1 (GSTO1), Acetyl-CoA acetyltransferase (mitochondrial) (ACAT1), Protein disulfide-isomerase A4 (PDIA4), Prostaglandin E synthase 3 (PTGES3), Adenosine kinase (ADK), Elongation factor 2 (EEF2), Isoamyl acetate-hydrolyzing esterase 1 homolog (IAHI), Peroxiredoxin-5 (mitochondrial) (PRDX5), Inosine-5-monophosphate dehydrogenase 2 (IMPDH2), 3-hydroxyacyl-CoA dehydrogenase type-2 (HSD17B10), Omega-amidase NIT2 (NIT2), Aldose reductase (AKR1B1), Monofunctional C1-tetrahydrofolate synthase (mitochondrial) (MTHFD1L), Protein disulfide-isomerase A6 (PDIA6), Pyruvate kinase isozymes M1/M2 (PKM), 6-phosphogluconolactonase (PGLS), Acetl-CoA acetyltransferase (mitochondrial) (ACAT1), ERO1-like protein alpha (EROIL), Thioredoxin domain-containing protein 17 (TXNDC17), Protein disulfide-isomerase A4 (PDIA4), Protein disulfide-isomerase A3 (PDIA3), 3-ketoacvl-CoA thiolase (mitochondrial) (ACAA2), Dynamin-2 (DNM2), DNA replication licensing factor MCM3 (MCM3), Serine-tRNA ligase (cytoplasmic) (SARS), Fatty acid synthase (FASN), Acetyl-CoA acetyltransferase (mitochondrial) (ACAT1), Protein disulfide-isomerase (P4HB), Deoxycytidine kinase (DCK), Eukaryotic translation initiation factor 3 subunit (EIF3F), Protein disulfide-isomerase A6 (PDIA6), UDP-N-acetylglucosamine-peptide N-acetylglucosamine (OGT), Ketosamine-3-kinase (FN3KRP), Protein DJ-1 (PARK7), Phosphoglycolate phosphatase (PGP), DNA replication licensing factor MCM6 (MCM6), Fructose-2,6-bisphosphatase TIGAR (TIGAR), Cleavage and polyadenylation specificity factor subunit (CPSF3), Ubiquitin-conjugating enzyme E2 L3 (UBE2L3), Alanine-tRNA ligase, cytoplasmic (AARS), Mannose-1-phosphate guanyltransferase alpha (GMPPA), C-1-tetrahydrofolate synthase (cytoplasmic) (MTHFD1), Dynamin-1-like protein (DNM1L), Protein disulfide-isomerase A3 (PDIA3), Aspartyl aminopeptidase (DNPEP), Acetyl-CoA acetyltransferase (cytosolic) (ACAT2), Thioredoxin domain-containing protein 5 (TXNDC5), Thymidine kinase (cytosolic) (TK1), Inosine-5-monophosphate dehydrogenase 2 (IMPDH2), Ubiquitin carboxyl-terminal hydrolase isozyme L3 (UCHL3), Integrin-linked protein kinase (ILK), Cyclin-dependent kinase 2 (CDK2), Histone acetyltransferase type B catalytic subunit (HAT1), Enoyl-CoA delta isomerase 2 (mitochondrial) (ECI2), C-1-tetrahydrofolate synthase (cytoplasmic) (MTHFD1), Deoxycytidine kinase (DCK), Ubiquitin-like modifier-activating enzyme 6 (UBA6), Protein-L-isoaspartate(D-aspartate)O-methyltransferase (PCMTI), Monofunctional C1-tetrahydrofolate synthase (mitochondrial) (MTHFD1L), Thymidylate kinase (DTYMK), Protein ETHE (mitochondrial) (ETHE 1), Arginine-tRNA ligase (cvtoplasmic) (RARS), NEDD8-activating enzyme E1 catalytic subunit (UBA3), Dual specificity mitogen-activated protein kinase (MAP2K3). Ubiquitin-conjugating enzyme E2S (UBE2S), Amidophosphoribosyltransferase (PPAT), Succinate-semialdehyde dehydrogenase (mitochondrial) (ALDH5A1), CAD, Phosphoenolpyruvate carboxykinase (PCK2), 6-phosphofructokinase type C (PFKP), Acyl-CoA synthetase family member 2 (mitochondrial) (ACSF2), Multifunctional protein ADE2 (PAICS), Desumoylating isopeptidase 1 (DESI1), 6-phosphofructokinase type C (PFKP), V-type proton ATPasc catalytic subunit A (ATP6V1A), 3-ketoacyl-CoA thiolase (peroxisomal) (ACAA1), Galactokinase (GALK1), Thymidine kinase (cytosolic) (TK1), ATPase WRNIP1 (WRNIP1), Phosphoribosylformylglycinamidine synthase (PFAS), V-type proton ATPase catalytic subunit A (ATP6V1A), Thioredoxin domain-containing protein 5 (TXNDC5), 4-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1). Dual specificity mitogen-activated protein kinase (MAP2K4), Calcineurin-like phosphoesterase domain-containing (CPPED1), Dual specificity protein phosphatase 12 (DUSP12), Phosphoribosylformylglycinamidine synthase (PFAS), Diphosphomevalonate decarboxylase (MVD), D-3-phosphoglycerate dehydrogenase (PHGDH), Cell cycle checkpoint control protein RAD9A (RAD9A), Peroxiredoxin-1 (PRDX1), Sorbitol dehydrogenase (SORD), Pcroxiredoxin-4 (PRDX4), AMP deaminase 2 (AMPD2), Isocitrate dehydrogenase (IDH1), Pyruvate carboxvlase (mitochondrial) (PC), Integrin-linked kinase-associated serine/threonine (ILKAP), Methylmalonate-semialdehyde dehydrogenase (ALDH6A1), 26S proteasome non-ATPase regulatory subunit 14 (PSMD 14), Thymidylate kinase (DTYMK), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphata (PFKFB2). Peroxiredoxin-5 (mitochondrial) (PRDX5), PDP1, Cathepsin B (CTSB), Transmembrane protease serine 12 (TMPRSS 12), UDP-glucose 6-dehydrogenase (UGDH), Histidine triad nucleotide-binding protein 1 (HINT1), E3 ubiquitin-protein ligase UBR5L (UBRL5), SAM domain and HD domain-containing protein 1 (SAMHD1), Probable tRNA threonylcarbamovyladenosine biosynthesis (OSGEP), Methylated-DNA-protein-cysteine methyltransferase (MGMT). Fatty acid synthase (FASN), Adenosine deaminase (ADA), Cyclin-dependent kinase 19 (CDK19), Serine/threonine-protein kinase 38 (STK38), Mitogen-activated protein kinase 9 (MAPK9), tRNA (adenine(58)-N(1))-methyltransferase catalytic (TRMT61A), Glyoxylate reductase/hydroxypyruvate reductase (GRHPR), Aldehyde dehydrogenase (mitochondrial) (ALDH2), Mitochondrial-processing peptidase subunit beta (PMPCB), 3-ketoacyl-CoA thiolase, peroxisomal (ACAA1), Lysophosphatidic acid phosphatase type 6 (ACP6), Ubiquitin/ISG15-conjugating enzyme E2 L6 (UBE2L6), Caspase-8 (CASP8), 2,5-phosphodiesterase 12 (PDE12), Thioredoxin domain-containing protein 12 (TXNDC12), Nitrilase homolog 1 (NIT1). ERO1-like protein alpha (ERO1L), SUMO-activating enzyme subunit 1 (SAE1), Leucine-tRNA ligase (cytoplasmic) (LARS), Protein-glutamine gamma-glutamyltransferase 2 (TGM2), Probable DNA dC-dU-editing enzyme APOBEC-3C (APOBEC3C), Double-stranded RNA-specific adenosine deaminase (ADAR), Isocitrate dehydrogenase (IDH2), Methylcrotonoyl-CoA carboxylase beta chain (mitochondrial) (MCCC2). Uridine phosphorylase 1 (UPP1). Glycogen phosphorylase (brain form) (PYGB), E3 ubiquitin-protein ligase UBR5 (UBR5). Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1 (PLOD1), Ubiquitin carboxyl-terminal hydrolase 48 (USP48), Aconitate hydratase (mitochondrial) (ACO2), GMP reductase 2 (GMPR2), Pyrroline-5-carboxylate reductase 1 (mitochondrial) (PYCR1), Cathepsin Z (CTSZ), E3 ubiquitin-protein ligase UBR2 (UBR2), Cysteine protease ATG4B (ATG4B), Serine/threonine-protein kinase Nek9 (NEK9), Lysine-specific demethylase 4B (KDM4B), Insulin-degrading enzyme (IDE), Dipeptidyl peptidase 9 (DPP9), Decaprenyl-diphosphate synthase subunit 2 (PDSS2), TFIIH basal transcription factor complex helicase (ERCC3). Methionine-R-sulfoxide reductase B2 (mitochondrial) (MSRB2), E3 ubiquitin-protein ligase BREIB (RNF40), Thymidylate synthase (TYMS), Cyclin-dependent kinase 5 (CDK5), Bifunctional 3-phosphoadenosine 5-phosphosulfate (PAPSS2), Short/branched chain specific acyl-CoA dehydrogenase (ACADSB), Cathepsin D (CTSD), E3 ubiquitin-protein ligase HUWE1 (HUWE1), Calpain-2 catalytic subunit (CAPN2), Dual specificity mitogen-activated protein kinase (MAP2K7), Mitogen-activated protein kinase kinase kinase MLT (MLTK), Bleomycin hydrolase (BLMH), Probable ATP-dependent RNA helicase DDX59 (DDX59), Cystathionine gamma-lyase (CTH). S-adenosylmethionine synthase isoform type-2 (MAT2A), 6-phosphofructokinase type C (PFKP), Cvtidine deaminase (CDA). DNA-directed RNA polymerase II subunit RPB2 (POLR2B), Protein disulfide-isomerase (P4HB), Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 (PLOD3), Nucleoside diphosphate-linked moiety X motif 8 (mitochondrial) (NUDT8), E3 ubiquitin-protein ligase HUWE1 (HUWE1). Methylated-DNA-protein-cysteine methyltransferase (MGMT), Nitrilase homolog 1 (NIT1), Interferon regulatory factor 2-binding protein 1 (IRF2BP1), Ubiquitin carboxyl-terminal hydrolase 16 (USP16), Glycylpeptide N-tetradecanoyltransferase 2 (NMT2), Cyclin-dependent kinase inhibitor 3 (CDKN3). Hydroxysteroid dehydrogenase-like protein 2 (HSDL2), Serine/threonine-protein kinase VRK1 (VRK1). Serine/threonine-protein kinase A-Raf (ARAF), ATP-citrate synthase (ACLY), Probable ribonuclease ZC3H12D (ZC3H12D), Peripheral plasma membrane protein CASK (CASK), DNA polymerase epsilon subunit 3 (POLE3), Aldehyde dehydrogenase X (mitochondrial) (ALDHIB1), UDP-N-acetylglucosamine transferase subunit ALG13 (ALG13), Protein disulfide-isomerase A4 (PDIA4), DNA polymerase alpha catalytic subunit (POLA1), Ethylmalonyl-CoA decarboxylase (ECHDC1), Protein-tyrosine kinase 2-beta (PTK2B), E3 SUMO-protein ligase RanBP2 (RANBP2), Legumain (LGMN), Non-specific lipid-transfer protein (SCP2), Long-chain-fatty-acid-CoA ligase 4 (ACSL4), Dual specificity protein phosphatase 12 (DUSP12), Oxidoreductase HTATIP2 (HTATIP2), Serine/threonine-protein kinase MRCK beta (CDC42BPB). Histone-lysine N-methyltransferase EZH2 (EZH2), Non-specific lipid-transfer protein (SCP2), Dual specificity mitogen-activated protein kinase (MAP2K7), Ubiquitin carboxyl-terminal hydrolase 28 (USP28), 6-phosphofructokinase (liver type) (PFKL), SWI/SNF-related matrix-associated actin-dependent (SMARCAD1), Protein phosphatase methylesterase 1 (PPME1). DNA replication licensing factor MCM5 (MCM5), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphata (PFKFB4), Dehydrogenase/reductase SDR family member 11 (DHRS11), Pyroglutamyl-peptidase 1 (PGPEP1), Probable E3 ubiquitin-protein ligase (MYCBP2), DNA fragmentation factor subunit beta (DFFB), Deubiquitinating protein VCIP135 (VCPIP1), Putative transferase CAF17 (mitochondrial) (IBA57), Calpain-7 (CAPN7), GDP-L-fucose synthase (TSTA3), Protein disulfide-isomerase A4 (PDIA4, Probable ATP-dependent RNA helicase (DDX59), RNA exonuclease 4 (REXO4), PDKI, E3 SUMO-protein ligase (PIAS4), DNA (cytosine-5)-methyltransferase 1 (DNMT1), Alpha-aminoadipic semialdehyde dehydrogenase (ALDH7A), Hydroxymethylglutaryl-CoA synthase (cytoplasmic) (HMGCS 1), E3 ubiquitin-protein ligase (SMURF2), Aldehyde dehydrogenase X (mitochondrial) (ALDHIB1), Tvrosine-protein kinase (BTK), DNA repair protein RAD50 (RAD50), ATP-binding domain-containing protein 4 (ATPBD4), Nucleoside diphosphate kinase 3 (NME3), Interleukin-1 receptor-associated kinase 1 (IRAK1), Ribonuclease P/MRP protein subunit POP5 (POP5), Peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagin (NGLY 1), Caspase-2 (CASP2), Ribosomal protein S6 kinase alpha-3 (RPS6KA3), E3 ubiquitin-protein ligase UBR1 (UBR1), Serine/threonine-protein kinase Chk2 (CHEK2), Phosphatidylinositol 3,4,5-trisphosphate 5-phospha (INPPL 1), Histone acetvltransferase p300 (EP300), Creatine kinase U-type (mitochondrial) (CKMTIB), E3 ubiquitin-protein ligase TRIM33 (TRIM33), Cancer-related nucleoside-triphosphatase (NTPCR), Aconitate hydratase (mitochondrial) (ACO2), Ubiquitin carboxyl-terminal hydrolase 34 (USP34), Probable E3 ubiquitin-protein ligase HERC4 (HERC4), E3 ubiquitin-protein ligase HECTD1 (HECTD1), Peroxisomal 2,4-dienoyl-CoA reductase (DECR2), Helicase ARIP4 (RAD54L2). Ubiquitin-like modifier-activating enzyme 7 (UBA7), ER degradation-enhancing alpha-mannosidase-like 3 (EDEM3). Ubiquitin-conjugating enzyme E20 (UBE2O). Dual specificity mitogen-activated protein kinase (MAP2K7), Myotubularin-related protein 1 (MTMR1), Calcium-dependent phospholipase A2 (PLA2G5), Mitotic checkpoint serine/threonine-protein kinase (BUB1B). Putative transferase CAF17 (mitochondrial) (IBA57), Tyrosine-protein kinase ZAP-70 (ZAP70). E3 ubiquitin-protein ligase pellino homolog 1 (PELI1), Neuropathy target esterase (PNPLA6), Ribosomal protein S6 kinase alpha-3 (RPS6KA3), N6-adenosine-methyltransferase 70 kDa subunit (METTL3), Fructosamine-3-kinase (FN3K), Ubiquitin carboxyl-terminal hydrolase 22 (USP22), Rab3 GTPase-activating protein catalytic subunit (RAB3GAP1), Caspase-5 (CASP5), L-2-hydroxyglutarate dehydrogenase (mitochondrial) (L2HGDH), Saccharopine dehydrogenase-like oxidoreductase (SCCPDH), FLAD1 FAD synthase, Lysine-specific demethylase 3A (KDM3A), or Ubiquitin carboxyl-terminal hydrolase 34 (USP34).
In some embodiments, the cysteine containing protein is a signaling protein. In some instances, exemplary signaling protein includes vascular endothelial growth factor (VEGF) proteins or proteins involved in redox signaling. Exemplary VEGF proteins include VEGF-A, VEGF-B, VEGF-C, VEGF-D. and PGF. Exemplary proteins involved in redox signaling include redox-regulatory protein FAM213A.
In some embodiments, the cysteine containing protein is a transcription factor or regulator. Exemplary cysteine containing proteins as transcription factors and regulators include, but are not limited to, 40S ribosomal protein S3 (RPS3). Basic leucine zipper and W2 domain-containing protein (BZW1). Poly(rC)-binding protein 1 (PCBP1), 40S ribosomal protein S11 (RPS11), 40S ribosomal protein S4, X isoform (RPS4X), Signal recognition particle 9 kDa protein (SRP9), Non-POU domain-containing octamer-binding protein (NONO), N-alpha-acetyltransferase 15, NatA auxiliary subunit (NAA15), Cleavage stimulation factor subunit 2 (CSTF2), Lamina-associated polypeptide 2, isoform alpha (TMPO), Heterogeneous nuclear ribonucleoprotein R (HNRNPR), MMS19 nucleotide excision repair protein homolog (MMS19), SWI/SNF complex subunit SMARCC2 (SMARCC2), Enhancer of mRNA-decapping protein 3 (EDC3), H/ACA ribonucleoprotein complex subunit 2 (NHP2), WW domain-containing adapter protein with coiled-c (WAC), N-alpha-acetyltransferase 15 NatA auxiliary subunit (NAA15), 40S ribosomal protein S11 (RPS11), Signal transducer and activator of transcription 1 (STAT1), Mediator of RNA polymerase II transcription subunit (MED15), Lamina-associated polypeptide 2 (isoform alpha) (TMPO), MMS19 nucleotide excision repair protein homolog (MMS19), DNA mismatch repair protein Msh2 (MSH2). Recombining binding protein suppressor of hairless (RBPJ). Mediator of RNA polymerase II transcription subunit (MED17), Heterogeneous nuclear ribonucleoprotein U (HNRNPU), Transcription initiation factor IIA subunit 2 (GTF2A2), Chromatin accessibility complex protein 1 (CHRAC1), CDKN2A-interacting protein (CDKN2AIP). Zinc finger protein 217 (ZNF217), Signal transducer and activator of transcription 3 (STAT3), WD repeat and HMG-box DNA-binding protein 1 (WDHDI), Lamina-associated polypeptide 2 (isoform alpha) (TMPO), Lamina-associated polypeptide 2 (isoforms beta/gam) (TMPO), Interferon regulatory factor 4 (IRF4), Protein flightless-1 homolog (FLII), Heterogeneous nuclear ribonucleoprotein F (HNRNPF). Nucleus accumbens-associated protein 1 (NACC1), Transcription elongation regulator 1 (TCERG1), Protein HEXIM1 (HEXIM1). Enhancer of mRNA-decapping protein (EDC3), Zinc finger protein Aiolos (IKZF3), Transcription elongation factor SPT5 (SUPT5H), Forkhead box protein K1 (FOXK1), LIM domain-containing protein 1 (LIMD1), MMS19 nucleotide excision repair protein homolog (MMS19), Elongator complex protein 4 (ELP4). Ankyrin repeat and KH domain-containing protein 1 (ANKHD1), PML, Nuclear factor NF-kappa-B p100 subunit (NFKB2), Heterogeneous nuclear ribonucleoprotein L-like (HNRPLL), CCR4-NOT transcription complex subunit 3 (CNOT3), Constitutive coactivator of PPAR-gamma-like protein (FAM120A), Mediator of RNA polymerase II transcription subunit (MED15), 60S ribosomal protein L7 (RPL7), Interferon regulatory factor 8 (IRF8), COUP transcription factor 2 (NR2F2), Mediator of RNA polymerase II transcription subunit (MED1), tRNA (uracil-5-)-mcthyltransferase homolog A (TRMT2A), Transcription factor p65 (RELA), Exosome complex component RRP42 (EXOSC7), General transcription factor 3C polypeptide 1 (GTF3C1), Mothers against decapentaplegic homolog 2 (SMAD2), Ankyrin repeat domain-containing protein 17 (ANKRDI7), MMSl9 nucleotide excision repair protein homolog (MMS19), Death domain-associated protein 6 (DAXX), Zinc finger protein 318 (ZNF318), Thioredoxin-interacting protein (TXNIP), Glucocorticoid receptor (NR3C1), Iron-responsive element-binding protein 2 (IREB2), Zinc finger protein 295 (ZNF295). Polycomb protein SUZ12 (SUZ12), Cleavage stimulation factor subunit 2 tau variant (CSTF2T), C-myc promoter-binding protein (DENND4A), Pinin (PNN), Mediator of RNA polymerase II transcription subunit (MED9), POU domain, class 2, transcription factor 2 (POU2F2), Enhancer of mRNA-decapping protein 3 (EDC3), A-kinase anchor protein 1 (mitochondrial) (AKAP), Transcription factor RelB (RELB), RNA polymerase II-associated protein 1 (RPAP 1), Zinc finger protein 346 (ZNF346), Chromosome-associated kinesin KIF4A (KIF4A), Mediator of RNA polymerase II transcription subunit (MED12), Protein NPAT (NPAT), Leucine-rich PPR motif-containing protein (mitochondrial) (LRPPRC), AT-hook DNA-binding motif-containing protein 1 (AHDC1), Mediator of RNA polymerase II transcription subunit (MED12), Bromodomain-containing protein 8 (BRD8), Trinucleotide repeat-containing gene 6B protein (TNRC6B), Aryl hydrocarbon receptor nuclear translocator (ARNT), Activating transcription factor 7-interacting protein (ATF71P), Glucocorticoid receptor (NR3C1), Chromosome transmission fidelity protein 18 homolog (CHTF18), or C-myc promoter-binding protein (DENND4A).
In some embodiments, the cysteine containing protein is a channel, transporter or receptor. Exemplary cysteine containing proteins as channels, transporters, or receptors include, but are not limited to, Chloride intracellular channel protein 4 (CLIC4), Exportin-1 (XPO1), Thioredoxin (TXN), Protein SEC13 homolog (SEC13), Chloride intracellular channel protein 1 (CLIC1), Guanine nucleotide-binding protein subunit beta-2 (GNB2L1), Sorting nexin-6 (SNX6), Conserved oligomeric Golgi complex subunit 3 (COG3), Nuclear cap-binding protein subunit 1 (NCBP1), Cytoplasmic dynein 1 light intermediate chain 1 (DYNCILI1), MOB-like protein phocein (MOB4). Programmed cell death 6-interacting protein (PDCD6IP), Glutaredoxin-1 (GLRX), ATP synthase subunit alpha (mitochondrial) (ATP5A1), Treacle protein (TCOF1), Dynactin subunit 1 (DCTN1), Importin-7 (IPO7), Exportin-2 (CSE1L), ATP synthase subunit gamma (mitochondrial) (ATP5C1), Trafficking protein particle complex subunit 5 (TRAPPC5), Thioredoxin mitochondrial (TXN2), THO complex subunit 6 homolog (THOC6), Exportin-1 (XPO), Nuclear pore complex protein Nup50 (NUP50), Treacle protein (TCOF1), Nuclear pore complex protein Nup93 (NUP93), Nuclear pore glycoprotein p62 (NUP62), Cytoplasmic dynein 1 heavy chain 1 (DYNC1H1), Thioredoxin-like protein 1 (TXNL1), Nuclear pore complex protein Nup214 (NUP214). Protein lin-7 homolog C (LIN7C), ADP-ribosylation factor-binding protein GGA2 (GGA2), Trafficking protein particle complex subunit 4 (TRAPPC4), Protein quaking (QKI), Perilipin-3 (PLIN3), Copper transport protein ATOX1 (ATOX1), Unconventional myosin-Ic (MYO IC), Nucleoporin NUP53 (NUP35), Vacuolar protein sorting-associated protein 18 homolog (VPS 18), Dedicator of cytokinesis protein 7 (DOCK7), Nucleoporin p54 (NUP54), Ras-related GTP-binding protein C (RRAGC), Arf-GAP with Rho-GAP domain (ANK repeat and PH domain) (ARAPI), Exportin-5 (XPO5), Kinectin (KTN1), Chloride intracellular channel protein 6 (CLIC6), Voltage-gated potassium channel subunit beta-2 (KCNAB2), Exportin-5 (XPO5), Ras-related GTP-binding protein C (RRAGC), Ribosome-binding protein 1 (RRBP1), Acyl-CoA-binding domain-containing protein 6 (ACBD6), Chloride intracellular channel protein 5 (CLIC5), Pleckstrin homology domain-containing family A member (PLEKHA2), ADP-ribosylation factor-like protein 3 (ARL3), Protein transport protein Sec24C (SEC24C), Voltage-dependent anion-selective channel protein (VDAC3), Programmed cell death 6-interacting protein (PDCD6IP), Chloride intracellular channel protein 3 (CLIC3), Multivesicular body subunit 12A (FAM125A), Eukaryotic translation initiation factor 4E transporter (EIF4ENIF 1), NmrA-like family domain-containing protein 1 (NMRAL1), Nuclear pore complex protein Nup98-Nup96 (NUP98), Conserved oligomeric Golgi complex subunit 1 (COG1), Importin-4 (1P04), Pleckstrin homology domain-containing family A member (PLEKHA2), Cytoplasmic dynein 1 heavy chain 1 (DYNC1H1), DENN domain-containing protein 1C (DENND1C), Cytoplasmic dynein 1 heavy chain 1 (DYNC1H1), Protein ELYS (AHCTF), Trafficking protein particle complex subunit 1 (TRAPPC1), Guanine nucleotide-binding protein-like 3 (GNL3), or Importin-13 (IPO13).
In some embodiments, the cysteine containing protein is a chaperone. Exemplary cysteine containing proteins as chaperones include, but are not limited to, 60 kDa heat shock protein (mitochondrial) (HSPD1), T-complex protein 1 subunit eta (CCT7), T-complex protein 1 subunit epsilon (CCT5). Heat shock 70 kDa protein 4 (HSPA4), GrpE protein homolog 1 (mitochondrial) (GRPEL1), Tubulin-specific chaperone E (TBCE), Protein unc-45 homolog A (UNC45A), Serpin H1 (SERPINH1), Tubulin-specific chaperone D (TBCD). Peroxisomal biogenesis factor 19 (PEX19), BAG family molecular chaperone regulator 5 (BAG5), T-complex protein 1 subunit theta (CCT8), Protein canopy homolog 3 (CNPY3), DnaJ homolog subfamily C member 10 (DNAJC10), ATP-dependent Clp protease ATP-binding subunit clp (CLPX), or Midasin (MDN 1).
In some embodiments, the cysteine containing protein is an adapter, scaffolding or modulator protein. Exemplary cysteine containing proteins as adapter, scaffolding, or modulator proteins include, but are not limited to, Proteasome activator complex subunit 1 (PSME1), TIP41-like protein (TIPRL), Crk-like protein (CRKL), Cofilin-1 (CFL), Condensin complex subunit 1 (NCAPD2), Translational activator GCN1 (GCN1L1), Serine/threonine-protein phosphatase 2A 56 kDa regulatory (PPP2R5D), UPF0539 protein C7orf59 (C7orf59), Protein diaphanous homolog 1 (DIAPH1), Protein asunder homolog (Asun), Ras GTPase-activating-like protein IQGAP1 (IQGAP1), Sister chromatid cohesion protein PDS5 homolog A (PDS5A), Reticulon-4 (RTN4), Proteasome activator complex subunit 4 (PSME4), Condensin complex subunit 2 (NCAPH), Sister chromatid cohesion protein PDS5 homolog A (PDS5A), cAMP-dependent protein kinase type I-alpha regulatory (PRKARIA), Host cell factor 1 (HCFC1), Serine/threonine-protein phosphatase 4 regulatory (PPP4R2), Apoptotic chromatin condensation inducer in the nucleus (ACIN1), BRISC and BRCA1-A complex member 1 (BABAM1), Interferon-induced protein with tetratricopeptide (IFIT3), Ras association domain-containing protein 2 (RASSF2), Hsp70-binding protein 1 (HSPBP1). TBC1 domain family member 15 (TBC1D15), Dynamin-binding protein (DNMBP), Condensin complex subunit 1 (NCAPD2), Beta-2-syntrophin (SNTB2), Disks large homolog 1 (DLG1), TBC1 domain family member 13 (TBC ID13), Formin-binding protein 1-like (FNBPIL), Translational activator GCN1 (GCN1L1), GRB2-related adapter protein (GRAP), G2/mitotic-specific cyclin-B1 (CCNB1), Myotubularin-related protein 12 (MTMR12), Protein FADD (FADD), Translational activator GCN1 (GCNIL1), Wings apart-like protein homolog (WAPAL), cAMP-dependent protein kinase type II-beta regulatory (PRKAR2B), Malcavemin (CCM2), MPP1 55 kDa erythrocyte membrane protein, Actin filament-associated protein 1 (AFAP1), Tensin-3 (TNS3), tRNA methyltransferase 112 homolog (TRMT112). Symplekin (SYMPK), TBC1 domain family member 2A (TBC1D2), ATR-interacting protein (ATRIP), Ataxin-10 (ATXN10), Succinate dehydrogenase assembly factor 2 (mitochondrial) (SDHAF2), Formin-binding protein 1 (FNBPI), Myotubularin-related protein 12 (MTMR12), Interferon-induced protein with tetratricopeptide (IFIT3), Protein CBFA2T2 (CBFA2T2), Neutrophil cytosol factor 1 (NCF1), or Protein syndesmos (NUDT16L1).
In some embodiments, a cysteine containing protein comprises a protein illustrated in Tables 1-5 or Tables 7-9. In some instances, a cysteine containing protein comprises a protein illustrated in Table 1. In some embodiments, the cysteine containing protein comprises a cysteine residue denoted in Table 1. In some instances, a cysteine containing protein comprises a protein illustrated in Table 2. In some embodiments, the cysteine containing protein comprises a cysteine residue denoted in Table 2. In some instances, a cysteine containing protein comprises a protein illustrated in Table 3. In some embodiments, the cysteine containing protein comprises a cysteine residue denoted in Table 3. In some instances, a cysteine containing protein comprises a protein illustrated in Table 4. In some embodiments, the cysteine containing protein comprises a cysteine residue denoted in Table 4. In some instances, a cysteine containing protein comprises a protein illustrated in Table 5. In some embodiments, the cysteine containing protein comprises a cysteine residue denoted in Table 5. In some instances, a cysteine containing protein comprises a protein illustrated in Table 7. In some embodiments, the cysteine containing protein comprises a cysteine residue denoted in Table 7. In some instances, a cysteine containing protein comprises a protein illustrated in Table 8. In some embodiments, the cysteine containing protein comprises a cysteine residue denoted in Table 8. In some instances, a cysteine containing protein comprises a protein illustrated in Table 9. In some embodiments, the cysteine containing protein comprises a cysteine residue denoted in Table 9. In some instances, the cysteine containing protein is a modified protein, in which the protein is modified at a cysteine residue site by a small molecule fragment described herein, such as for example, by a small molecule fragment of Formula (I) described herein, a cysteine-reactive probe of Formula (II) described herein, or by a small molecule fragment illustrated in
In some embodiments, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein. In some instances, the cysteine containing protein is selected from Table 3. In some cases, one or more cysteine residues of each respective cysteine containing protein are denoted in Table 3. In some cases, a cysteine containing protein selected from Table 3 is modified by a small molecule fragment at at least one cysteine site denoted in Table 3 to generate a modified cysteine containing protein. In some cases, the cysteine containing protein is selected from AIP, PES1, IKBKB, XPO1, KDM4B, NR3C1, GSTP1, TNFAIP3, ACAT1, IRAK1, GNB2L1, IRF4, USP34. ZC3HAV1, USP7, PELI1, DCUN1D1, USP28, UBE2O, RRAGC, MLTK, USP22, KDM3A, or USP16. In some cases, the cysteine containing protein is selected from AIP, PES1, IKBKB, XPO1, GSTP1, ACAT1, IRAK1, IRF4, ZC3HAV1, USP7, PELI1, USP28, UBE2O, RRAGC, MLTK, USP22, KDM3A, or USP16. In some cases, the cysteine containing protein is selected from KDM4B, NR3C, TNFAIP3, USP7 or USP22. In some cases, the cysteine containing protein is selected from GNB2L1 or USP34. In some cases, the cysteine containing protein is DCUN1D1. In some cases, the cysteine containing protein is selected from PES1, IKBKB, GSTP1, ACAT1, IRAK1, ZC3HAV1 or RRAGC. In some cases, the cysteine containing protein is selected from XPO1, GNB2L1, USP34, UBE2O, MLTK or USP22. In some cases, the cysteine containing protein is selected from KDM4B or NR3C1. In some cases, the cysteine containing protein is selected from TNFAIP3, USP7, USP28, KDM3A or USP16. In some cases, the cysteine containing protein is selected from IRF4, PELI1, DCUNID1 or USP22. In some cases, the cysteine containing protein is AIP. In some cases, the cysteine containing protein is an enzyme and the enzyme is selected from IKBKB, KDM4B, GSTP1, TNFAIP3, ACAT1, IRAK1, USP34, USP7, PELI1, USP28, UBE2O, MLTK, USP22, KDM3A. or USP16. In some cases, the cysteine containing protein is a transcription factor or regulator and the transcription factor or regulator is selected from NR3C1, IRF4 or ZC3HAV1. In some cases, the cysteine containing protein is a channel, a transporter, or a receptor and the channel, transporter, or receptor is selected from GNB2L1 or RRAGC. In some cases, the cysteine containing protein is selected from AIP. PES1, XPO1 or DCUN1D1. In some cases, the cysteine containing protein is selected from PES1, CYR61, UBE2L6, XPO1, ADA, NR3C1, POU2F2, UCHL3, MGMT, ERCC3, ACAT1, STAT3, UBA7, CASP2, IDH2, LRBA, UBE2L3, RELB, IRF8, CASP8, PDIA6, PCK2, PFKFB4, PDE12, USP34, USP48, SMARCC2 or SAMHD1. In some cases, the cysteine containing protein is selected from PES1, CYR61, NR3C1, UCHL3, ERCC3, ACAT1, STAT3, CASP2, LRBA, UBE2L3. RELB, PDIA6, PCK2, PFKFB4, USP48 or SMARCC2. In some cases, the cysteine containing protein is selected from UBE2L6, POU2F2, MGMT, ACAT1, UBA7, CASP8, PDE12 or USP34. In some cases, the cysteine containing protein is selected from CYR61 or XPO1. In some cases, the cysteine containing protein is selected from ADA, MGMT, IDH2, IRF8 or SAMHD1. In some cases, the cysteine containing protein is selected from PES1, CYR61, XPO1, NR3C1 or SMARCC2. In some cases, the cysteine containing protein is selected from CYR61, UBE2L6, MGMT, ERCC3, ACAT1 or USP48. In some cases, the cysteine containing protein is selected from ADA, RELB or USP34. In some cases, the cysteine containing protein is selected from UCHL3. CASP2, IDH2. LRBA, CASP8, PCK2 or PDE12. In some cases, the cysteine containing protein is selected from MGMT. ACAT1, UBA7, UBE2L3 or IRF8. In some cases, the cysteine containing protein is selected from PFKFB4, ACAT1 or STAT3. In some cases, the cysteine containing protein is selected from POU2F2, PDIA6 or SAMHD1. In some cases, the cysteine containing protein is an enzyme and the enzyme is selected from UBE2L6, ADA, UCHL3. MGMT, ERCC3, ACAT1, UBA7, CASP2, IDH2, UBE2L3, CASP8, PDIA6, PCK2, PFKFB4, PDE12, USP34. USP48 or SAMHD1. In some cases, the cysteine containing protein is a transcription factor or a regulator and the transcription factor or regulator is selected from NR3C1, POU2F2, STAT3, RELB, IRF8 or SMARCC2. In some cases, the cysteine containing protein is selected from ZAP70, PRKCQ or PRMT1. In some cases, the cysteine containing protein is selected from ZAP70 or PRKCQ. In some cases, the cysteine containing protein is selected from CYR61, ZNF217, NCF1, IREB2, LRBA, CDK5, EP300, EZH2, UBE2S, VCPIP1, RRAGC or IRAK4. In some cases, the cysteine containing protein is selected from CYR61, ZNF217, IREB2, EP300, UBE2S, VCPIP1, RRAGC or IRAK4. In some cases, the cysteine containing protein is selected from NCF1, LRBA or CDK5. In some cases, the cysteine containing protein is EZH2. In some cases, the cysteine containing protein is selected from ZNF217, NCF1, CDK5, EP300 or IRAK4. In some cases, the cysteine containing protein is selected from CYR61, IREB2, LRBA or UBE2S. In some cases, the cysteine containing protein is selected from EZH2, VCPIP1 or RRAGC. In some cases, the cysteine containing protein is an enzyme and the enzyme is selected from CDK5, EP300, EZH2, UBE2S, VCPIP1 or IRAK4. In some cases, the cysteine containing protein is a transcription factor or a regulator and the transcription factor or regulator is selected from ZNF217 or IREB2. In some cases, the cysteine containing protein is an adapter, a scaffolding protein or a modulator protein and the adapter, scaffolding protein or the modulator protein is selected from NCF1. In some cases, the cysteine containing protein is a channel, a transporter or a receptor and the channel, transporter, or receptor is selected from RRAGC. In some cases, the cysteine containing protein is selected from CYR61 or LRBA. In some cases, the cysteine containing protein is about 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000 amino acid residues in length or more. In some cases, the cysteine residue of the modified cysteine containing protein has the structure SR, wherein R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is the small molecule fragment moiety. In some cases, the small molecule fragment has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton. or higher. In some cases, the molecular weight of the small molecule fragment is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some cases, the small molecule fragment is a small molecule fragment of Formula (I):
wherein RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue, and F is a small molecule fragment moiety. In some cases, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some cases, F is obtained from a compound library. In some cases, F is a small molecule fragment moiety illustrated in
In some embodiments, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein is selected from Table 10A, enzymes. In some cases, one or more cysteine residues of each respective cysteine containing protein are denoted in Table 10A. In some cases, a cysteine containing protein selected from Table 10 A is modified by a small molecule fragment at at least one cysteine site denoted in Table 10A to generate a modified cysteine containing protein. In some cases, the cysteine containing protein is about 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000 amino acid residues in length or more. In some cases, the cysteine residue of the modified cysteine containing protein has the structure SR, wherein R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is the small molecule fragment moiety. In some cases, the small molecule fragment has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some cases, the molecular weight of the small molecule fragment is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some cases, the small molecule fragment is a small molecule fragment of Formula (I):
wherein RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue, and F is a small molecule fragment moiety. In some cases, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some cases, F is obtained from a compound library. In some cases. F is a small molecule fragment moiety illustrated in
In some embodiments, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein is selected from Table 10B, transcription factors and regulators. In some cases, one or more cysteine residues of each respective cysteine containing protein are denoted in Table 10B. In some cases, a cysteine containing protein selected from Table 10B is modified by a small molecule fragment at at least one cysteine site denoted in Table 10B to generate a modified cysteine containing protein. In some cases, the cysteine containing protein is about 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000 amino acid residues in length or more. In some cases, the cysteine residue of the modified cysteine containing protein has the structure SRI wherein R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is the small molecule fragment moiety. In some cases, the small molecule fragment has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some cases, the molecular weight of the small molecule fragment is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some cases, the small molecule fragment is a small molecule fragment of Formula (I):
wherein RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue; and F is a small molecule fragment moiety. In some cases, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some cases, F is obtained from a compound library. In some cases, F is a small molecule fragment moiety illustrated in
In some embodiments, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein is selected from Table 10C, channels, transporters or receptors. In some cases, one or more cysteine residues of each respective cysteine containing protein are denoted in Table 10C. In some cases, a cysteine containing protein selected from Table 10C is modified by a small molecule fragment at at least one cysteine site denoted in Table 10C to generate a modified cysteine containing protein. In some cases, the cysteine containing protein is about 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000 amino acid residues in length or more. In some cases, the cysteine residue of the modified cysteine containing protein has the structure SRI wherein R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is the small molecule fragment moiety. In some cases, the small molecule fragment has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some cases, the molecular weight of the small molecule fragment is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some cases, the small molecule fragment is a small molecule fragment of Formula (I):
wherein RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue; and F is a small molecule fragment moiety. In some cases, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some cases, F is obtained from a compound library. In some cases, F is a small molecule fragment moiety illustrated in
In some embodiments, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein is selected from Table 10D, adapter, scaffolding, or modulator proteins. In some cases, one or more cysteine residues of each respective cysteine containing protein are denoted in Table 10D. In some cases, a cysteine containing protein selected from Table 10D is modified by a small molecule fragment at at least one cysteine site denoted in Table 10D to generate a modified cysteine containing protein. In some cases, the cysteine containing protein is about 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000 amino acid residues in length or more. In some cases, the cysteine residue of the modified cysteine containing protein has the structure SR, wherein R is selected from:
wherein R1 is H. C1-C3 alkyl, or aryl; and F′ is the small molecule fragment moiety. In some cases, the small molecule fragment has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some cases, the molecular weight of the small molecule fragment is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some cases, the small molecule fragment is a small molecule fragment of Formula (I):
wherein RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue; and F is a small molecule fragment moiety. In some cases, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some cases, F is obtained from a compound library. In some cases, F is a small molecule fragment moiety illustrated in
In some embodiments, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein is selected from Table 10E. In some cases, one or more cysteine residues of each respective cysteine containing protein are denoted in Table 10E. In some cases, a cysteine containing protein selected from Table 10E is modified by a small molecule fragment at at least one cysteine site denoted in Table 10E to generate a modified cysteine containing protein. In some cases, the cysteine containing protein is about 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000 amino acid residues in length or more. In some cases, the cysteine residue of the modified cysteine containing protein has the structure SR, wherein R is selected from
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is the small molecule fragment moiety. In some cases, the small molecule fragment has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some cases, the molecular weight of the small molecule fragment is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some cases, the small molecule fragment is a small molecule fragment of Formula (I):
wherein RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue, and F is a small molecule fragment moiety. In some cases, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some cases, F is obtained from a compound library. In some cases, F is a small molecule fragment moiety illustrated in
In some embodiments, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XpC*Z, wherein X, is a polar residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from AIP, PES1, IKBKB, XPO1. KDM4B, NR3C1, GSTP1. TNFAIP3, ACAT1, IRAK1, GNB2L1, IRF4, USP34, ZC3HAV1, USP7, PELI1, DCUN1D1, USP28, UBE2O, RRAGC, MLTK, USP22, KDM3A, or USP16.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XpC*Xn, wherein Xp is a polar residue. C* denotes the site of modification, and Xn is a nonpolar residue. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from AIP, PES1, IKBKB, XPO1, GSTP1, ACAT1, IRAK1, IRF4, ZC3HAV1, USP7, PELI1, USP28, UBE2O, RRAGC, MLTK, USP22, KDM3A, or USP16.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XpC*Xp, wherein Xp is a polar residue and C* denotes the site of modification. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from KDM4B, NR3C1, TNFAIP3, USP7 or USP22.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XpC*Xb, wherein Xp is a polar residue, C* denotes the site of modification, and Xb is a basic residue. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from GNB2L1 or USP34.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XpC*Xa, wherein Xp is a polar residue, C* denotes the site of modification, and Xa is an acidic residue. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is DCUN1D1.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif SC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from PES1, IKBKB, GSTP1, ACAT1, IRAK1, ZC3HAV1 or RRAGC.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif NC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from XPO1, GNB2L1, USP34, UBE2O, MLTK or USP22.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif YC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from KDM4B or NR3C1.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif TC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from TNFAIP3, USP7, USP28, KDM3A or USP16.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif QC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from IRF4, PELI1, DCUN1D1 or USP22.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif CC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is AIP.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein is an enzyme and the enzyme comprises the motif XpC*Z, wherein Xp is a polar residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the enzyme is selected from IKBKB, KDM4B, GSTP1, TNFAIP3, ACAT1, IRAK1, USP34, USP7, PELI1, USP28, UBE20O, MLTK, USP22, KDM3A, or USP16.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein is a transcription factor or a regulator and the transcription factor or regulator comprises the motif XpC*Z, wherein Xp is a polar residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the transcription factor or regulator is selected from NR3C1, IRF4 or ZC3HAV1.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein is a channel, transporter or a receptor and the channel, transporter or receptor comprises the motif XpC*Z, wherein Xp is a polar residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the channel, transporter, or receptor is selected from GNB2L1 or RRAGC.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XpC*Z, wherein Xp is a polar residue. C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from AIP, PES1, XPO1 or DCUN1D1.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XnC*Z, wherein Xn is a nonpolar residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from PES1, CYR61, UBE2L6, XPO1, ADA, NR3C1, POU2F2, UCHL3, MGMT, ERCC3, ACAT1, STAT3, UBA7, CASP2, IDH2, LRBA, UBE2L3, RELB, IRF8, CASP8, PDIA6, PCK2, PFKFB4, PDE12, USP34, USP48, SMARCC2 or SAMHD1.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XnC*Xn, wherein Xn is a nonpolar residue and C* denotes the site of modification. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from PES1, CYR61, NR3C1, UCHL3, ERCC3, ACAT1, STAT3, CASP2, LRBA, UBE2L3, RELB, PDIA6, PCK2, PFKFB4, USP48 or SMARCC2.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XnC*Xp, wherein Xn is a nonpolar residue, C* denotes the site of modification, and Xp is a polar residue. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from UBE2L6, POU2F2, MGMT, ACAT1, UBA7, CASP8, PDE12 or USP34.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XnC*Xa, wherein Xn is a nonpolar residue, C* denotes the site of modification, and Xa is an acidic residue. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from CYR61 or XPO1.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XaC*Xb, wherein Xn is a nonpolar residue, C* denotes the site of modification, and Xb is a basic residue. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from ADA, MGMT, IDH2, IRF8 or SAMHD1.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif LC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from PES1, CYR61, XPO1, NR3C1 or SMARCC2.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif PC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from CYR61, UBE2L6, MGMT, ERCC3, ACAT1 or USP48.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif GC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from ADA, RELB or USP34.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif AC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from UCHL3, CASP2. IDH2, LRBA. CASP8, PCK2 or PDE12.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif VC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from MGMT, ACAT1, UBA7, UBE2L3 or IRF8.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif IC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from PFKFB4, ACAT1 or STAT3.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XrC*Z, wherein Xr denotes an aromatic residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from POU2F2, PDIA6 or SAMHD1.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein is an enzyme and the enzyme comprises the motif XnC*Z, wherein Xn is a nonpolar residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the enzyme is selected from UBE2L6, ADA, UCHL3, MGMT, ERCC3, ACAT1, UBA7, CASP2, IDH2, UBE2L3, CASP8, PDIA6, PCK2, PFKFB4, PDE12, USP34, USP48 or SAMHD1.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein is a transcription factor or a regulator and the transcription factor or regulator comprises the motif XnC*Z, wherein Xn is a nonpolar residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the transcription factor or regulator is selected from NR3C1, POU2F2, STAT3, RELB, IRF8 or SMARCC2.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XnC*Z, wherein Xn is a nonpolar residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from PES1, CYR61, XPO1 or LRBA.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XaC*Z, wherein Xa is an acidic residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from ZAP70, PRKCQ or PRMT1.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif EC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from ZAP70 or PRKCQ.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XbC*Z, wherein Xb is a basic residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from CYR61, ZNF217, NCF1, IREB2, LRBA, CDK5, EP300, EZH2, UBE2S, VCPIP1, RRAGC or IRAK4.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XbC*Xn, wherein Xb is a basic residue, C* denotes the site of modification, and Xn is a nonpolar residue. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from CYR61, ZNF217, IREB2, EP300, UBE2S, VCPIP1, RRAGC or IRAK4.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XbC*Xp, wherein Xb is a basic residue, C* denotes the site of modification, and Xp is a polar residue. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from NCF1, LRBA or CDK5.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XbC*Xb, wherein Xb is a basic residue and C* denotes the site of modification. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is EZH2.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif RC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from ZNF217, NCF1, CDK5, EP300 or IRAK4.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif KC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from CYR61, IREB2, LRBA or UBE2S.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif HC*Z, wherein C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from EZH2, VCPIP1 or RRAGC.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein is an enzyme and the enzyme comprises the motif XbC*Z, wherein Xb is a basic residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the enzyme is selected from CDK5, EP300, EZH2, UBE2S, VCPIP1 or IRAK4.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein is a transcription factor or a regulator and the transcription factor or regulator comprises the motif XbC*Z, wherein Xb is a basic residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the transcription factor or regulator is selected from ZNF217 or IREB2.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein is an adapter, a scaffolding protein, or a modulator protein and the adapter, scaffolding protein or the modulator protein comprises the motif XbC*Z, wherein Xb is a basic residue. C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the adapter, scaffolding protein or the modulator protein is selected from NCF1.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein is a channel, a transporter, or a receptor and the channel, transporter, or receptor comprises the motif XbC*Z, wherein Xb is a basic residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the channel, transporter, or receptor is selected from RRAGC.
In some instances, described herein is a modified cysteine containing protein comprising a small molecule fragment having a covalent bond to a cysteine residue of a cysteine containing protein, in which the cysteine containing protein comprises the motif XbC*Z, wherein Xb is a basic residue, C* denotes the site of modification, and Z is any amino acid. In some cases, the cysteine containing protein is selected from Table 3. In some cases, the cysteine containing protein is selected from CYR61 or LRBA.
In some cases, a cysteine containing protein described above comprises about 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000 amino acid residues in length or more.
In some cases, the cysteine residue of a modified cysteine containing protein described above has the structure SR, wherein R is selected from:
wherein R1 is H, C1-C3 alkyl, or aryl; and F′ is the small molecule fragment moiety. In some cases, the small molecule fragment has a molecular weight of about 175, 200, 225, 250, 275, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 Dalton, or higher. In some cases, the molecular weight of the small molecule fragment is prior to enrichment with a halogen, a nonmetal, or a transition metal. In some embodiments, the molecular weight of the small molecule fragment is calculated based on carbon and hydrogen atoms and optionally further based on nitrogen, oxygen and/or sulfur atoms. In some embodiments, the molecular weight of the small molecule fragment does not include the molecular weight of a halogen, a transition metal or a combination thereof. In some cases, the small molecule fragment is a small molecule fragment of Formula (I):
wherein RM is a reactive moiety selected from a Michael acceptor moiety, a leaving group moiety, or a moiety capable of forming a covalent bond with the thiol group of a cysteine residue; and F is a small molecule fragment moiety. In some cases, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some cases, F is obtained from a compound library. In some cases, F is a small molecule fragment moiety illustrated in
Disclosed herein also include compositions of a small molecule fragment conjugated to a cysteine containing protein, a cysteine-reactive probe conjugated to a cysteine containing protein, and treated sample compositions. In some embodiments, a composition described herein comprises a small molecule fragment of Formula (I):
wherein:
In some embodiments, also described herein is a composition that comprises a cysteine-reactive probe of Formula (II):
wherein:
In some embodiments, also described herein is a composition that comprises an isolated sample wherein the isolated sample is an isolated cell or a tissue sample; and a cysteine-reactive probe to be assayed for its ability to interact with a cysteine containing protein expressed in the isolated sample.
Disclosed herein further include isolated treated cell and cell populations. In some embodiments, described herein is an isolated treated cell that comprises a cysteine-reactive probe covalently attached to a cysteine containing protein. In some instances, the isolated treated cell further comprises a set of cysteine-reactive probes wherein each of the cysteine-reactive probes is covalently attached to a cysteine containing protein.
In some embodiments, described herein is an isolated treated cell that comprises a small molecule fragment covalently attached to a cysteine containing protein. In some instances, the isolated treated cell further comprises a set of small molecule fragments wherein each of the small molecule fragment is covalently attached to a cysteine containing protein. In some instances, the isolated treated cell further comprises a cysteine-reactive probe. In some instances, the isolated treated cell further comprises a set of cysteine-reactive probes.
In some embodiments, also described herein is an isolated treated population of cells that comprises a set of cysteine-reactive probes covalently attached to cysteine containing proteins.
In some embodiments, further described herein is an isolated treated population of cells that comprises a set of small molecule fragments covalently attached to cysteine containing proteins. In some instances, the isolated treated population of cells further comprises a set of cysteine-reactive probes.
As disclosed elsewhere herein, the small molecule fragment is a small molecule fragment of Formula (I):
wherein:
In some instances, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some cases, F is obtained from a compound library. In some embodiments, the compound library comprises ChemBridge fragment library, Pyramid Platform Fragment-Based Drug Discovery, Maybridge fragment library, FRGx from AnalytiCon, TCI-Frag from AnCoreX, Bio Building Blocks from ASINEX, BioFocus 3D from Charles River, Fragments of Life (FOL) from Emerald Bio. Enamine Fragment Library, IOTA Diverse 1500, BIONET fragments library, Life Chemicals Fragments Collection, OTAVA fragment library, Prestwick fragment library, Selcia fragment library, TimTec fragment-based library, Allium from Vitas-M Laboratory, or Zenobia fragment library. In some cases, F is a small molecule fragment moiety illustrated in
Also described elsewhere herein, the cysteine-reactive probe is a cysteine-reactive probe of Formula (II):
wherein:
In some embodiments, the Michael acceptor moiety comprises an alkene or an alkyne moiety. In some instances, the affinity handle moiety comprises an affinity handle and a binding moiety that facilitates covalent interaction of the cysteine-reactive probe to a cysteine residue of a cysteine-containing protein. In some cases, the binding moiety is a small molecule fragment obtained from a compound library. In some cases, the compound library comprises ChemBridge fragment library, Pyramid Platform Fragment-Based Drug Discovery, Maybridge fragment library. FRGx from AnalytiCon, TCI-Frag from AnCoreX, Bio Building Blocks from ASINEX, BioFocus 3D from Charles River, Fragments of Life (FOL) from Emerald Bio, Enamine Fragment Library, IOTA Diverse 1500, BIONET fragments library, Life Chemicals Fragments Collection, OTAVA fragment library, Prestwick fragment library, Selcia fragment library, TimTec fragment-based library, Allium from Vitas-M Laboratory, or Zenobia fragment library.
In some instances, the affinity handle is a bioorthogonal affinity handle. In some cases, the affinity handle comprises a carbodiimide, N-hydroxysuccinimide (NHS) ester, imidoester, pentafluorophenyl ester, hydroxymethyl phosphine, maleimide, haloacetyl, pyridyl disulfide, thiosulfonate, vinylsulfone, hydrazide, alkoxyamine, alkyne, azide, or isocyanate group. In some cases, the affinity handle comprises an alkyne or an azide group. In some instances, the affinity handle is further conjugated to an affinity ligand. In some instances, the affinity ligand comprises a chromophore, a labeling group, or a combination thereof. In some cases, the chromophore comprises fluorochrome, non-fluorochrome chromophore, quencher, an absorption chromophore, fluorophore, organic dye, inorganic dye, metal chelate, or a fluorescent enzyme substrate. In some cases, the labeling group is biotin moiety, streptavidin moiety, bead, resin, a solid support, or a combination thereof. In some instances, the affinity handle moiety further comprises a chromophore. In some embodiments, the cysteine-reactive probe is a cysteine-reactive probe illustrated in
Further described elsewhere herein, the cell or cell population is obtained from any mammal, such as human or non-human primates. In some embodiments, the cell or cell population is an epithelial cell, connective tissue cell, hormone secreting cell, a nerve cell, a skeletal muscle cell, a blood cell, or an immune system cell. In additional embodiments, the cell or cell population is cancerous or is obtained from a tumor site.
Further disclosed herein are polypeptides that comprise one or more of the cysteine interacting sites identified by a method described herein. In some embodiments, described herein is an isolated and purified polypeptide that comprises at least 90% sequence identity to at least seven contiguous amino acids of an amino acid sequence selected from Tables 1-3 or 8-9. In some embodiments, the isolated and purified polypeptide comprises at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity to at least seven contiguous amino acids of an amino acid sequence selected from Tables 1-3 or 8-9. In some embodiments, the isolated and purified polypeptide comprises 100% sequence identity to at least seven contiguous amino acids of an amino acid sequence selected from Tables 1-3 or 8-9. In some instances, the isolated and purified polypeptide consists 100% sequence identity to the full length of an amino acid sequence selected from Tables 1-3 or 8-9. In some instances, the isolated and purified polypeptide is at most 50 amino acids in length.
In some embodiments, additionally described herein include nucleic acid encoding a polypeptide that comprises at least 90% sequence identity at least seven contiguous amino acids of an amino acid sequence selected from Tables 1-3 or 8-9. In some embodiments, the nucleic acid encoding a polypeptide comprises at least 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity at least seven contiguous amino acids of an amino acid sequence selected from Tables 1-3 or 8-9. In some embodiments, the nucleic acid encoding a polypeptide comprises 100% sequence identity at least seven contiguous amino acids of an amino acid sequence selected from Tables 1-3 or 8-9. In some embodiments, the nucleic acid encoding a polypeptide consists 100% sequence identity to the full length of an amino acid sequence selected from Tables 1-3 or 8-9.
In some embodiments, further disclosed herein include a method of mapping a biologically active cysteine site on a protein, which comprises harvesting a set of cysteine-reactive probe-protein complexes from a sample wherein the cysteine-reactive probe comprises a reactive moiety capable of forming a covalent bond with a cysteine residue located on the cysteine containing protein; analyzing the set of cysteine-reactive probe-protein complexes by a proteomic analysis means; and based on the previous step, mapping the biologically active cysteine site on the protein.
In some embodiments, the analyzing further comprises treating the set of cysteine-reactive probe-protein complexes with a protease to generate a set of protein fragments. The protease is a serine protease, a threonine protease, a cysteine protease, an aspartate protease, a glutamic acid protease, or a metalloprotease. In some instances, the protease is a serine protease. In some instances, the protease is trypsin. In some instances, cysteine-reactive probe-protein complex is further attached to a labeling group such as a biotin moiety. In some instances, the labeling group such as a biotin moiety further comprises a linker. In some instances, the linker is a peptide. In some instances, the peptide linker is about 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more amino acid residues in length. In some instances, the peptide linker contains a cleavage site. A non-limiting list of cleavage sites includes Tobacco Etch Virus (TEV), thrombin (Thr), enterokinase (EKT), activated Factor X (Xa), or human Rhinovirus 3C protease (3C/PreScission). In some instances, the peptide linker contains a TEV protease cleavage site. In some instances, the TEV protease cleavage site comprises the following sequence Gly-Gln-Phe-Tyr-Leu-Asn-Glu (SEQ ID NO: 860). In some instances, the biotin moiety is further coupled to a bead (e.g. a streptavidin-coupled bead).
In some instances, the protein from the cysteine-reactive probe-protein complex attached to the bead (via a biotin moiety comprising a linker and attached to a streptavidin-coupled bead) is digested with trypsin, and the immobilized peptide or protein fragment is further separated and collected. In some instances, the collected peptide or protein fragment is then digested by a protease (e.g. TEV protease), and the treated protein fragment is then separated, and collected for analysis. In some instances, the analysis is a proteomic analysis as described above and elsewhere herein. In some instances, the sequence of the protein fragment is further determined. In some instances, the protein fragment correlates to a small molecule fragment binding site on the cysteine containing protein.
In some embodiments, the sequence of the protein fragment correlates to a sequence as illustrated in Tables 1-3 or 8-9. In some instances, the sequence as shown in Tables 1-3 or 8-9 correlate to a site on the full length protein as a drug binding site. In some instances, the sequence as shown in Tables 1-3 or 8-9 correlate to a drug binding site. In some instances, polypeptides comprising one or more of the sequences as shown in Tables 1-3 or 8-9 serve as probes for small molecule fragment screening.
In some instances after the generation of a polypeptide, the polypeptide is subjected to one or more rounds of purification steps to remove impurities. In some instances, the purification step is a chromatographic step utilizing separation methods such as affinity-based, size-exclusion based, ion-exchange based, or the like. In some cases, the polypeptide is at most 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 99.9%, or 100% pure or without the presence of impurities. In some cases, the polypeptide is at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 99.9%, or 100% pure or without the presence of impurities.
As described above, nucleic acid encoding a polypeptide that is derived from a cysteine containing protein is subjected to one or more rounds of purification steps to remove impurities. In some instances, the purification step is a chromatographic step utilizing separation methods such as affinity-based, size-exclusion based, ion-exchange based, or the like. In some cases, the nucleic acid is at most 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 99.9%, or 100% pure or without the presence of impurities. In some cases, the nucleic acid is at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 99.9%, or 100% pure or without the presence of impurities.
As used herein, a polypeptide includes natural amino acids, unnatural amino acids, or a combination thereof. In some instances, an amino acid residue refers to a molecule containing both an amino group and a carboxyl group. Suitable amino acids include, without limitation, both the D- and L-isomers of the naturally-occurring amino acids, as well as non-naturally occurring amino acids prepared by organic synthesis or other metabolic routes. The term amino acid, as used herein, includes, without limitation, α-amino acids, natural amino acids, non-natural amino acids, and amino acid analogs.
The term “α-amino acid” refers to a molecule containing both an amino group and a carboxyl group bound to a carbon which is designated the α-carbon.
The term “β-amino acid” refers to a molecule containing both an amino group and a carboxyl group in a β configuration.
“Naturally occurring amino acid” refers to any one of the twenty amino acids commonly found in peptides synthesized in nature, and known by the one letter abbreviations A, R, N, C, D, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y and V.
The following table shows a summary of the properties of natural amino acids:
“Hydrophobic amino acids” include small hydrophobic amino acids and large hydrophobic amino acids. “Small hydrophobic amino acid” are glycine, alanine, proline, and analogs thereof. “Large hydrophobic amino acids” are valine, leucine, isoleucine, phenylalanine, methionine, tryptophan, and analogs thereof. “Polar amino acids” are serine, threonine, asparagine, glutamine, cysteine, tyrosine, and analogs thereof. “Charged amino acids” are lysine, arginine, histidine, aspartate, glutamate, and analogs thereof. In some cases, aspartic acid and glutamic acid are referred to as acidic amino acids. In other cases, lysine, arginine and histidine are referred to as basic amino acids.
The term “amino acid analog” refers to a molecule which is structurally similar to an amino acid and which is substituted for an amino acid in the formation of a peptidomimetic macrocycle Amino acid analogs include, without limitation, β-amino acids and amino acids where the amino or carboxy group is substituted by a similarly reactive group (e.g., substitution of the primary amine with a secondary or tertiary amine, or substitution of the carboxy group with an ester).
The term “non-natural amino acid” refers to an amino acid which is not one of the twenty amino acids commonly found in peptides synthesized in nature, and known by the one letter abbreviations A, R, N, C, D, Q, E, G, H, I, L, K, M, F, P, S, T, W Y and V.
In some instances, amino acid analogs include β-amino acid analogs. Examples of β-amino acid analogs include, but are not limited to, the following: cyclic β-amino acid analogs; β-alanine; (R)-β-phenylalanine; (R)-1,2,3,4-tetrahydro-isoquinoline-3-acetic acid; (R)-3-amino-4-(1-naphthyl)-butyric acid; (R)-3-amino-4-(2,4-dichlorophenyl)butyric acid; (R)-3-amino-4-(2-chlorophenyl)-butyric acid; (R)-3-amino-4-(2-cyanophenyl)-butyric acid; (R)-3-amino-4-(2-fluorophenyl)-butyric acid; (R)-3-amino-4-(2-furyl)-butyric acid; (R)-3-amino-4-(2-methylphenyl)-butyric acid; (R)-3-amino-4-(2-naphthyl)-butyric acid; (R)-3-amino-4-(2-thienyl)-butyric acid; (R)-3-amino-4-(2-trifluoromethylphenyl)-butyric acid; (R)-3-amino-4-(3,4-dichlorophenyl)butyric acid; (R)-3-amino-4-(3,4-difluorophenyl)butyric acid; (R)-3-amino-4-(3-benzothienyl)-butyric acid; (R)-3-amino-4-(3-chlorophenyl)-butyric acid; (R)-3-amino-4-(3-cyanophenyl)-butyric acid; (R)-3-amino-4-(3-fluorophenyl)-butyric acid; (R)-3-amino-4-(3-methylphenyl)-butyric acid; (R)-3-amino-4-(3-pyridyl)-butyric acid; (R)-3-amino-4-(3-thienyl)-butyric acid; (R)-3-amino-4-(3-trifluoromethylphenyl)-butyric acid; (R)-3-amino-4-(4-bromophenyl)-butyric acid; (R)-3-amino-4-(4-chlorophenyl)-butyric acid; (R)-3-amino-4-(4-cyanophenyl)-butyric acid; (R)-3-amino-4-(4-fluorophenyl)-butyric acid; (R)-3-amino-4-(4-iodophenyl)-butyric acid; (R)-3-amino-4-(4-methylphenyl)-butyric acid; (R)-3-amino-4-(4-nitrophenyl)-butyric acid; (R)-3-amino-4-(4-pyridyl)-butyric acid; (R)-3-amino-4-(4-trifluoromethylphenyl)-butyric acid; (R)-3-amino-4-pentafluoro-phenylbutyric acid; (R)-3-amino-5-hexenoic acid; (R)-3-amino-5-hexynoic acid; (R)-3-amino-5-phenylpentanoic acid; (R)-3-amino-6-phenyl-5-hexenoic acid; (S)-1,2,3,4-tetrahydro-isoquinoline-3-acetic acid; (S)-3-amino-4-(1-naphthyl)-butyric acid; (S)-3-amino-4-(2,4-dichlorophenyl)butyric acid; (S)-3-amino-4-(2-chlorophenyl)-butyric acid; (S)-3-amino-4-(2-cyanophenyl)-butyric acid; (S)-3-amino-4-(2-fluorophenyl)-butyric acid; (S)-3-amino-4-(2-furyl)-butyric acid; (S)-3-amino-4-(2-methylphenyl)-butyric acid; (S)-3-amino-4-(2-naphthyl)-butyric acid; (S)-3-amino-4-(2-thienyl)-butyric acid; (S)-3-amino-4-(2-trifluoromethylphenyl)-butyric acid; (S)-3-amino-4-(3,4-dichlorophenyl)butyric acid; (S)-3-amino-4-(3,4-difluorophenyl)butyric acid; (S)-3-amino-4-(3-benzothienyl)-butyric acid; (S)-3-amino-4-(3-chlorophenyl)-butyric acid; (S)-3-amino-4-(3-cyanophenyl)-butyric acid; (S)-3-amino-4-(3-fluorophenyl)-butyric acid; (S)-3-amino-4-(3-methylphenyl)-butyric acid; (S)-3-amino-4-(3-pyridyl)-butyric acid; (S)-3-amino-4-(3-thienyl)-butyric acid; (S)-3-amino-4-(3-trifluoromethylphenyl)-butyric acid; (S)-3-amino-4-(4-bromophenyl)-butyric acid; (S)-3-amino-4-(4-chlorophenyl) butyric acid; (S)-3-amino-4-(4-cyanophenyl)-butyric acid; (S)-3-amino-4-(4-fluorophenyl) butyric acid; (S)-3-amino-4-(4-iodophenyl)-butyric acid; (S)-3-amino-4-(4-methylphenyl)-butyric acid; (S)-3-amino-4-(4-nitrophenyl)-butyric acid; (S)-3-amino-4-(4-pyridyl)-butyric acid; (S)-3-amino-4-(4-trifluoromethylphenyl)-butyric acid; (S)-3-amino-4-pentafluoro-phenylbutyric acid; (S)-3-amino-5-hexenoic acid; (S)-3-amino-5-hexynoic acid; (S)-3-amino-5-phenylpentanoic acid; (S)-3-amino-6-phenyl-5-hexenoic acid; 1,2,5,6-tetrahydropyridine-3-carboxylic acid; 1,2,5,6-tetrahydropyridine-4-carboxylic acid; 3-amino-3-(2-chlorophenyl)-propionic acid; 3-amino-3-(2-thienyl)-propionic acid; 3-amino-3-(3-bromophenyl)-propionic acid; 3-amino-3-(4-chlorophenyl)-propionic acid; 3-amino-3-(4-methoxyphenyl)-propionic acid; 3-amino-4,4,4-trifluoro-butyric acid; 3-aminoadipic acid; D-β-phenylalanine; β-leucine; L-β-homoalanine; L-β-homoaspartic acid γ-benzyl ester; L-β-homoglutamic acid δ-benzyl ester; L-β-homoisoleucine; L-β-homoleucine; L-β-homomethionine; L-β-homophenylalanine; L-β-homoproline; L-β-homotryptophan; L-β-homovaline; L-Nω-benzyloxycarbony-β-homolysine; Nω-L-β-homoarginine; O-benzyl-L-β-homohydroxyproline; O-benzyl-L-β-homoserine; O-benzyl-L-β-homothreonine; O-benzyl-L-β-homotyrosine; γ-trityl-L-β-homoasparagine; (R)-β-phenylalanine; L-β-homoaspartic acid γ-t-butyl ester; L-β-homoglutamic acid δ-t-butyl ester; L-Nω-β-homolysine; Nδ-trityl-L-β-homoglutamine; Nω-2,2,4,6,7-pentamethyl-dihydrobenzofuran-5-sulfonyl-L-3-homoarginine; O-t-butyl-L-β-homohydroxyproline; O-t-butyl-L-β-homoserine; O-t-butyl-L-β-homothreonine; O-t-butyl-L-β-homotyrosine; 2-aminocyclopentane carboxylic acid; and 2-aminocyclohexane carboxylic acid.
In some instances, amino acid analogs include analogs of alanine, valine, glycine or leucine. Examples of amino acid analogs of alanine, valine, glycine, and leucine include, but are not limited to, the following: α-methoxyglycine; α-allyl-L-alanine; α-aminoisobutyric acid; α-methyl-leucine; β-(1-naphthyl)-D-alanine; β-(1-naphthyl)-L-alanine; β-(2-naphthyl)-D-alanine; β-(2-naphthyl)-L-alanine; β-(2-pyridyl)-D-alanine β-(2-pyridyl)-L-alanine; β-(2-thienyl)-D-alanine; β-(2-thienyl)-L-alanine; β-(3-benzothienyl)-D-alanine; β-(3-benzothienyl)-L-alanine; β-(3-pyridyl)-D-alanine; β-(3-pyridyl)-L-alanine; β-(4-pyridyl)-D-alanine; β-(4-pyridyl)-L-alanine; β-chloro-L-alanine; β-cyano-L-alanin; β-cyclohexyl-D-alanine; β-cyclohexyl-L-alanine; β-cyclopenten-1-yl-alanine; β-cyclopentyl-alanine; β-cyclopropyl-L-Ala-OH.dicyclohexylammonium salt; β-t-butyl-D-alanine; β-t-butyl-L-alanine; γ-aminobutyric acid; L-α,β-diaminopropionic acid; 2,4-dinitro-phenylglycine; 2,5-dihydro-D-phenylglycine; 2-amino-4,4,4-trifluorobutyric acid; 2-fluoro-phenylglycine; 3-amino-4,4,4-trifluoro-butyric acid; 3-fluoro-valine; 4,4,4-trifluoro-valine; 4,5-dehydro-L-leu-OH.dicyclohexylammonium salt; 4-fluoro-D-phenylglycine; 4-fluoro-L-phenylglycine; 4-hydroxy-D-phenylglycine; 5,5,5-trifluoro-leucine; 6-aminohexanoic acid; cyclopentyl-D-Gly-OH.dicyclohexylammonium salt; cyclopentyl-Gly-OH.dicyclohexylammonium salt; D-α,β-diaminopropionic acid; D-α-aminobutyric acid; D-α-t-butylglycine; D-(2-thienyl)glycine; D-(3-thienyl)glycine; D-2-aminocaproic acid; D-2-indanylglycine; D-allylglycine-dicyclohexylammonium salt; D-cyclohexylglycine; D-norvaline; D-phenylglycine; β-aminobutyric acid; β-aminoisobutyric acid; (2-bromophenyl)glycine; (2-methoxyphenyl)glycine; (2-methylphenyl)glycine; (2-thiazoyl)glycine; (2-thienyl)glycine; 2-amino-3-(dimethylamino)-propionic acid; L-α,β-diaminopropionic acid; L-α-aminobutyric acid; L-α-t-butylglycine; L-(3-thienyl)glycine; L-2-amino-3-(dimethylamino)-propionic acid; L-2-aminocaproic acid dicyclohexyl-ammonium salt; L-2-indanylglycine; L-allylglycine.dicyclohexyl ammonium salt; L-cyclohexylglycine; L-phenylglycine; L-propargylglycine; L-norvaline; N-α-aminomethyl-L-alanine; D-α,γ-diaminobutyric acid; L-α,γ-diaminobutyric acid; β-cyclopropyl-L-alanine; (N-β-(2,4-dinitrophenyl))-L-α,β-diaminopropionic acid; (N-β-1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-D-α,4-diaminopropionic acid; (N-β-1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-L-α,β-diaminopropionic acid; (N-β-4-methyltrityl)-L-α,β-diaminopropionic acid; (N-β-allyloxycarbonyl)-L-α,β-diaminopropionic acid; (N-γ-1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-D-α,γ-diaminobutyric acid; (N-γ-1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl)-L-α,γ-diaminobutyric acid; (N-γ-4-methyltrityl)-D-α,γ-diaminobutyric acid; (N-γ-4-methyltrityl)-L-α,γ-diaminobutyric acid; (N-γ-allyloxycarbonyl)-L-α,γ-diaminobutyric acid; D-α,γ-diaminobutyric acid; 4,5-dehydro-L-leucine; cyclopentyl-D-Gly-OH; cyclopentyl-Gly-OH; D-allylglycine; D-homocyclohexylalanine; L-1-pyrenylalanine; L-2-aminocaproic acid; L-allylglycine; L-homocyclohexylalanine; and N-(2-hydroxy-4-methoxy-Bzl)-Gly-OH.
In some instances, amino acid analogs include analogs of arginine or lysine. Examples of amino acid analogs of arginine and lysine include, but are not limited to, the following: citrulline; L-2-amino-3-guanidinopropionic acid; L-2-amino-3-ureidopropionic acid; L-citrulline; Lys(Me)2-OH; Lys(N3)—OH; Nδ-benzyloxycarbonyl-L-omithine; Nω-nitro-D-arginine; Nω-nitro-L-arginine; α-methyl-omithine; 2,6-diaminoheptanedioic acid; L-omithine; (Nδ-1-(4,4-dimethyl-2,6-dioxo-cyclohex-1-ylidene)ethyl)-D-omithine; (Nδ-1-(4,4-dimethyl-2,6-dioxo-cyclohex-1-ylidene)ethyl)-L-omithine; (Nδ-4-methyltrityl)-D-omithine; (Nδ-4-methyltrityl)-L-omithine; D-omithine; L-omithine; Arg(Me)(Pbf)-OH; Arg(Me)2-OH (asymmetrical); Arg(Me)2-OH (symmetrical); Lys(ivDde)-OH; Lys(Me)2-OH.HCl; Lys(Me3)-OH chloride; Nω-nitro-D-arginine; and Nω-nitro-L-arginine.
In some instances, amino acid analogs include analogs of aspartic or glutamic acids. Examples of amino acid analogs of aspartic and glutamic acids include, but are not limited to, the following: α-methyl-D-aspartic acid; α-methyl-glutamic acid; α-methyl-L-aspartic acid; γ-methylene-glutamic acid; (N-γ-ethyl)-L-glutamine; [N-α-(4-aminobenzoyl)]-L-glutamic acid; 2,6-diaminopimelic acid; L-α-aminosuberic acid; D-2-aminoadipic acid; D-α-aminosuberic acid; α-aminopimelic acid; iminodiacetic acid; L-2-aminoadipic acid; threo-β-methyl-aspartic acid; γ-carboxy-D-glutamic acid γ,γ-di-t-butyl ester; γ-carboxy-L-glutamic acid γ,γ-di-t-butyl ester; Glu(OAll)-OH; L-Asu(OtBu)-OH; and pyroglutamic acid.
In some instances, amino acid analogs include analogs of cysteine and methionine. Examples of amino acid analogs of cysteine and methionine include, but are not limited to, Cys(farnesyl)-OH, Cys(farnesyl)-OMe, α-methyl-methionine, Cys(2-hydroxyethyl)-OH, Cys(3-aminopropyl)-OH, 2-amino-4-(ethylthio)butyric acid, buthionine, buthioninesulfoximine, ethionine, methionine methylsulfonium chloride, selenomethionine, cysteic acid, [2-(4-pyridyl)ethyl]-DL-penicillamine, [2-(4-pyridyl)ethyl]-L-cysteine, 4-methoxybenzyl-D-penicillamine, 4-methoxybenzyl-L-penicillamine, 4-methylbenzyl-D-penicillamine, 4-methylbenzyl-L-penicillamine, benzyl-D-cysteine, benzyl-L-cysteine, benzyl-DL-homocysteine, carbamoyl-L-cysteine, carboxyethyl-L-cysteine, carboxymethyl-L-cysteine, diphenylmethyl-L-cysteine, ethyl-L-cysteine, methyl-L-cysteine, t-butyl-D-cysteine, trityl-L-homocysteine, trityl-D-penicillamine, cystathionine, homocystine, L-homocystine, (2-aminoethyl)-L-cysteine, seleno-L-cystine, cystathionine, Cys(StBu)-OH, and acetamidomethyl-D-penicillamine.
In some instances, amino acid analogs include analogs of phenylalanine and tyrosine. Examples of amino acid analogs of phenylalanine and tyrosine include β-methyl-phenylalanine, β-hydroxyphenylalanine, α-methyl-3-methoxy-DL-phenylalanine, α-methyl-D-phenylalanine, α-methyl-L-phenylalanine, 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, 2,4-dichloro-phenylalanine, 2-(trifluoromethyl)-D-phenylalanine, 2-(trifluoromethyl)-L-phenylalanine, 2-bromo-D-phenylalanine, 2-bromo-L-phenylalanine, 2-chloro-D-phenylalanine, 2-chloro-L-phenylalanine, 2-cyano-D-phenylalanine, 2-cyano-L-phenylalanine, 2-fluoro-D-phenylalanine, 2-fluoro-L-phenylalanine, 2-methyl-D-phenylalanine, 2-methyl-L-phenylalanine, 2-nitro-D-phenylalanine, 2-nitro-L-phenylalanine, 2;4;5-trihydroxy-phenylalanine, 3,4,5-trifluoro-D-phenylalanine, 3,4,5-trifluoro-L-phenylalanine, 3,4-dichloro-D-phenylalanine, 3,4-dichloro-L-phenylalanine, 3,4-difluoro-D-phenylalanine, 3,4-difluoro-L-phenylalanine, 3,4-dihydroxy-L-phenylalanine, 3,4-dimethoxy-L-phenylalanine, 3,5,3′-triiodo-L-thyronine, 3,5-diiodo-D-tyrosine, 3,5-diiodo-L-tryosine, 3,5-diiodo-L-thyronine, 3-(trifluoromethyl)-D-phenylalanine, 3-(trifluoromethyl)-L-phenylalanine, 3-amino-L-tyrosine, 3-bromo-D-phenylalanine, 3-bromo-L-phenylalanine, 3-chloro-D-phenylalanine, 3-chloro-L-phenylalanine, 3-chloro-L-tyrosine, 3-cyano-D-phenylalanine, 3-cyano-L-phenylalanine, 3-fluoro-D-phenylalanine, 3-fluoro-L-phenylalanine, 3-fluoro-tyrosine, 3-iodo-D-phenylalanine, 3-iodo-L-phenylalanine, 3-iodo-L-tyrosine, 3-methoxy-L-tyrosine, 3-methyl-D-phenylalanine, 3-methyl-L-phenylalanine, 3-nitro-D-phenylalanine, 3-nitro-L-phenylalanine, 3-nitro-L-tyrosine, 4-(trifluoromethyl)-D-phenylalanine, 4-(trifluoromethyl)-L-phenylalanine, 4-amino-D-phenylalanine, 4-amino-L-phenylalanine, 4-benzoyl-D-phenylalanine, 4-benzoyl-L-phenylalanine, 4-bis(2-chloroethyl)amino-L-phenylalanine, 4-bromo-D-phenylalanine, 4-bromo-L-phenylalanine, 4-chloro-D-phenylalanine, 4-chloro-L-phenylalanine, 4-cyano-D-phenylalanine, 4-cyano-L-phenylalanine, 4-fluoro-D-phenylalanine, 4-fluoro-L-phenylalanine, 4-iodo-D-phenylalanine, 4-iodo-L-phenylalanine, homophenylalanine, thyroxine, 3,3-diphenylalanine, thyronine, ethyl-tryosine, and methyl-tyrosine.
In some instances, amino acid analogs include analogs of proline. Examples of amino acid analogs of proline include, but are not limited to, 3,4-dehydro-proline, 4-fluoro-proline, cis-4-hydroxy-proline, thiazolidine-2-carboxylic acid, and trans-4-fluoro-proline.
In some instances, amino acid analogs include analogs of serine and threonine. Examples of amino acid analogs of serine and threonine include, but are not limited to, 3-amino-2-hydroxy-5-methylhexanoic acid, 2-amino-3-hydroxy-4-methylpentanoic acid, 2-amino-3-ethoxybutanoic acid, 2-amino-3-methoxybutanoic acid, 4-amino-3-hydroxy-6-methylheptanoic acid, 2-amino-3-benzyloxypropionic acid, 2-amino-3-benzyloxypropionic acid, 2-amino-3-ethoxypropionic acid, 4-amino-3-hydroxybutanoic acid, and α-methylserine.
In some instances, amino acid analogs include analogs of tryptophan. Examples of amino acid analogs of tryptophan include, but are not limited to, the following: α-methyl-tryptophan; β-(3-benzothienyl)-D-alanine; β-(3-benzothienyl)-L-alanine; 1-methyl-tryptophan; 4-methyl-tryptophan; 5-benzyloxy-tryptophan; 5-bromo-tryptophan; 5-chloro-tryptophan; 5-fluoro-tryptophan; 5-hydroxy-tryptophan, 5-hydroxy-L-tryptophan; 5-methoxy-tryptophan; 5-methoxy-L-tryptophan; 5-methyl-tryptophan; 6-bromo-tryptophan; 6-chloro-D-tryptophan; 6-chloro-tryptophan; 6-fluoro-tryptophan; 6-methyl-tryptophan; 7-benzyloxy-tryptophan; 7-bromo-tryptophan; 7-methyl-tryptophan; D-1,2,3,4-tetrahydro-norharman-3-carboxylic acid; 6-methoxy-1,2,3,4-tetrahydronorharman-1-carboxylic acid; 7-azatryptophan; L-1,2,3,4-tetrahydro-norharman-3-carboxylic acid; 5-methoxy-2-methyl-tryptophan; and 6-chloro-L-tryptophan.
In some instances, amino acid analogs are racemic. In some instances, the D isomer of the amino acid analog is used. In some cases, the L isomer of the amino acid analog is used. In some instances, the amino acid analog comprises chiral centers that are in the R or S configuration. Sometimes, the amino group(s) of a β-amino acid analog is substituted with a protecting group, e.g., tert-butyloxycarbonyl (BOC group), 9-fluorenylmethyloxycarbonyl (FMOC), tosyl, and the like. Sometimes, the carboxylic acid functional group of a β-amino acid analog is protected, e.g., as its ester derivative. In some cases, the salt of the amino acid analog is used.
In some embodiments, nucleic acid molecules refer to at least two nucleotides covalently linked together. In some instances, a nucleic acid described herein contains phosphodiester bonds, although in some cases, as outlined below (for example in the construction of primers and probes such as label probes), nucleic acid analogs are included that have alternate backbones, comprising, for example, phosphoramide (Beaucage et al., Tetrahedron 49(10): 1925 (1993) and references therein; Letsinger, J. Org. Chem. 35:3800 (1970); Sprinzl et al., Eur. J. Biochem. 81:579 (1977); Letsinger et al., Nucl. Acids Res. 14:3487 (1986); Sawai et al, Chem. Lett. 805 (1984), Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); and Pauwels et al., Chemica Scripta 26:141 91986)), phosphorothioate (Mag et al., Nucleic Acids Res. 19:1437 (1991); and U.S. Pat. No. 5,644,048), phosphorodithioate (Bnu et al., J. Am. Chem. Soc. 111:2321 (1989), O-methylphosphoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press), and peptide nucleic acid (also referred to herein as “PNA”) backbones and linkages (see Egholm, J. Am. Chem. Soc. 114:1895 (1992); Meier et al., Chem. Int. Ed. Engl, 31:1008 (1992); Nielsen, Nature, 365:566 (1993): Carlsson et al., Nature 380:207 (1996), all of which are incorporated by reference). Other analog nucleic acids include those with bicyclic structures including locked nucleic acids (also referred to herein as “LNA”), Koshkin et al., J. Am. Chem. Soc. 120.13252 3 (1998); positive backbones (Denpcy et al., Proc. Natl. Acad. Sci. USA 92:6097 (1995); non-ionic backbones (U.S. Pat. Nos. 5,386,023, 5,637,684, 5,602,240, 5,216,141 and 4,469,863; Kiedrowshi et al., Angew. Chem. Intl. Ed. English 30:423 (1991); Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988): Letsinger et al., Nucleoside & Nucleotide 13:1597 (1994); Chapters 2 and 3, ASC Symposium Series 580, “Carbohydrate Modifications in Antisense Research”, Ed. Y. S. Sanghui and P. Dan Cook; Mesmaeker et al., Bioorganic & Medicinal Chem. Lett. 4:395 (1994); Jeffs et al., J. Biomolecular NMR 34:17 (1994); Tetrahedron Lett. 37:743 (1996)) and non-ribose backbones, including those described in U.S. Pat. Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, “Carbohydrate Modifications in Antisense Research”, Ed. Y. S. Sanghui and P. Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within the definition of nucleic acids (see Jenkins et al., Chem. Soc. Rev. (1995) pp 169 176). Several nucleic acid analogs are described in Rawls, C & E News Jun. 2, 1997 page 35. “Locked nucleic acids” are also included within the definition of nucleic acid analogs. LNAs are a class of nucleic acid analogues in which the ribose ring is “locked” by a methylene bridge connecting the 2′-O atom with the 4′-C atom. All of these references are hereby expressly incorporated by reference. In some instances, these modifications of the ribose-phosphate backbone are done to increase the stability and half-life of such molecules in physiological environments. For example, PNA:DNA and LNA-DNA hybrids exhibit higher stability and thus are used in some embodiments. The target nucleic acids are single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. Depending on the application, the nucleic acids are DNA (including, e.g., genomic DNA, mitochondrial DNA, and cDNA), RNA (including, e.g., mRNA and rRNA) or a hybrid, where the nucleic acid contains any combination of deoxyribo- and ribo-nucleotides, and any combination of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xathanine hypoxathanine, isocytosine, isoguanine, etc.
In certain embodiments, one or more of the methods disclosed herein comprise a sample. In some embodiments, the sample is a cell sample or a tissue sample. In some instances, the sample is a cell sample. In some embodiments, the sample for use with the methods described herein is obtained from cells of an animal. In some instances, the animal cell includes a cell from a marine invertebrate, fish, insects, amphibian, reptile, or mammal. In some instances, the mammalian cell is a primate, ape, equine, bovine, porcine, canine, feline, or rodent. In some instances, the mammal is a primate, ape, dog, cat, rabbit, ferret, or the like. In some cases, the rodent is a mouse, rat, hamster, gerbil, hamster, chinchilla, or guinea pig. In some embodiments, the bird cell is from a canary, parakeet or parrots. In some embodiments, the reptile cell is from a turtles, lizard or snake. In some cases, the fish cell is from a tropical fish. In some cases, the fish cell is from a zebrafish (e.g. Danino rerio). In some cases, the worm cell is from a nematode (e.g. C. elegans). In some cases, the amphibian cell is from a frog. In some embodiments, the arthropod cell is from a tarantula or hermit crab.
In some embodiments, the sample for use with the methods described herein is obtained from a mammalian cell. In some instances, the mammalian cell is an epithelial cell, connective tissue cell, hormone secreting cell, a nerve cell, a skeletal muscle cell, a blood cell, or an immune system cell.
Exemplary mammalian cells include, but are not limited to, 293A cell line, 293FT cell line, 293F cells, 293 H cells, HEK 293 cells, CHO DG44 cells, CHO-S cells, CHO-K1 cells, Expi293F™ cells, Flp-In™ T-REx™ 293 cell line, Flp-In™-293 cell line, Flp-In™-3T3 cell line, Flp-In™-BHK cell line, Flp-In™-CHO cell line, Flp-In™-CV-1 cell line, Flp-In™-Jurkat cell line, FreeStyle™ 293-F cells, FreeStyle™ CHO-S cells, GripTite™ 293 MSR cell line, GS-CHO cell line, HepaRG™ cells, T-REx™ Jurkat cell line, Per.C6 cells, T-REx™-293 cell line, T-REx™-CHO cell line, T-REx™-HeLa cell line, NC-HIMT cell line, and PC12 cell line.
In some instances, the sample for use with the methods described herein is obtained from cells of a tumor cell line. In some instances, the sample is obtained from cells of a solid tumor cell line. In some instances, the solid tumor cell line is a sarcoma cell line. In some instances, the solid tumor cell line is a carcinoma cell line. In some embodiments, the sarcoma cell line is obtained from a cell line of alveolar rhabdomyosarcoma, alveolar soft part sarcoma, ameloblastoma, angiosarcoma, chondrosarcoma, chordoma, clear cell sarcoma of soft tissue, dedifferentiated liposarcoma, desmoid, desmoplastic small round cell tumor, embryonal rhabdomyosarcoma, epithelioid fibrosarcoma, epithelioid hemangioendothelioma, epithelioid sarcoma, esthesioneuroblastoma, Ewing sarcoma, extrarenal rhabdoid tumor, extraskeletal myxoid chondrosarcoma, extraskeletal osteosarcoma, fibrosarcoma, giant cell tumor, hemangiopericytoma, infantile fibrosarcoma, inflammatory myofibroblastic tumor, Kaposi sarcoma, leiomyosarcoma of bone, liposarcoma, liposarcoma of bone, malignant fibrous histiocytoma (MFH), malignant fibrous histiocytoma (MFH) of bone, malignant mesenchymoma, malignant peripheral nerve sheath tumor, mesenchymal chondrosarcoma, myxofibrosarcoma, myxoid liposarcoma, myxoinflammatory fibroblastic sarcoma, neoplasms with perivascular epitheioid cell differentiation, osteosarcoma, parosteal osteosarcoma, neoplasm with perivascular epitheioid cell differentiation, periosteal osteosarcoma, pleomorphic liposarcoma, pleomorphic rhabdomyosarcoma, PNET/extraskeletal Ewing tumor, rhabdomyosarcoma, round cell liposarcoma, small cell osteosarcoma, solitary fibrous tumor, synovial sarcoma, telangiectatic osteosarcoma.
In some embodiments, the carcinoma cell line is obtained from a cell line of adenocarcinoma, squamous cell carcinoma, adenosquamous carcinoma, anaplastic carcinoma, large cell carcinoma, small cell carcinoma, anal cancer, appendix cancer, bile duct cancer (i.e., cholangiocarcinoma), bladder cancer, brain tumor, breast cancer, cervical cancer, colon cancer, cancer of Unknown Primary (CUP), esophageal cancer, eye cancer, fallopian tube cancer, gastroenterological cancer, kidney cancer, liver cancer, lung cancer, medulloblastoma, melanoma, oral cancer, ovarian cancer, pancreatic cancer, parathyroid disease, penile cancer, pituitary tumor, prostate cancer, rectal cancer, skin cancer, stomach cancer, testicular cancer, throat cancer, thyroid cancer, uterine cancer, vaginal cancer, or vulvar cancer.
In some instances, the sample is obtained from cells of a hematologic malignant cell line. In some instances, the hematologic malignant cell line is a T-cell cell line. In some instances, B-cell cell line. In some instances, the hematologic malignant cell line is obtained from a T-cell cell line of: peripheral T-cell lymphoma not otherwise specified (PTCL-NOS), anaplastic large cell lymphoma, angioimmunoblastic lymphoma, cutaneous T-cell lymphoma, adult T-cell leukemia/lymphoma (ATLL), blastic NK-cell lymphoma, enteropathy-type T-cell lymphoma, hematosplenic gamma-delta T-cell lymphoma, lymphoblastic lymphoma, nasal NK/T-cell lymphomas, or treatment-related T-cell lymphomas.
In some instances, the hematologic malignant cell line is obtained from a B-cell cell line of: acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), acute monocytic leukemia (AMoL), chronic lymphocytic leukemia (CLL), high-risk chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), high-risk small lymphocytic lymphoma (SLL), follicular lymphoma (FL), mantle cell lymphoma (MCL), Waldenstrom's macroglobulinemia, multiple myeloma extranodal marginal zone B cell lymphoma, nodal marginal zone B cell lymphoma. Burkitt's lymphoma, non-Burkitt high grade B cell lymphoma, primary mediastinal B-cell lymphoma (PMBL), immunoblastic large cell lymphoma, precursor B-lymphoblastic lymphoma. B cell prolymphocytic leukemia, lymphoplasmacytic lymphoma, splenic marginal zone lymphoma, plasma cell myeloma, plasmacytoma, mediastinal (thymic) large B cell lymphoma, intravascular large B cell lymphoma, primary effusion lymphoma, or lymphomatoid granulomatosis.
In some embodiments, the sample for use with the methods described herein is obtained from a tumor cell line. Exemplary tumor cell line includes, but is not limited to, 600MPE, AU565, BT-20, BT-474, BT-483, BT-549, Evsa-T, Hs578T, MCF-7, MDA-MB-231, SkBr3, T-47D, HeLa, DU 145, PC3, LNCaP, A549, H1299, NCI-H460, A2780, SKOV-3/Luc, Neuro2a, RKO, RKO-AS45-1. HT-29, SW1417, SW948, DLD-1, SW480, Capan-1, MC/9, B72.3, B25.2, B6.2, B38.1, DMS153, SU.86.86, SNU-182, SNU-423, SNU-449, SNU-475, SNU-387, Hs 817.T, LMH, LMH/2A, SNU-398, PLHC-1, HepG2/SF, OCI-Ly1, OCI-Ly2, OCI-Ly3, OCI-Ly4, OCI-Ly6, OCI-Ly7, OCI-Ly10, OCI-Ly18, OCI-Ly19, U2932, DB, HBL-1, RIVA, SUDHL2, TMD8, MEC1, MEC2, 8E5, CCRF-CEM, MOLT-3, TALL-104, AML-193, THP-1, BDCM, HL-60, Jurkat, RPMI 8226, MOLT-4, RS4, K-562, KASUMI-1, Daudi, GA-10, Raji, JeKo-1, NK-92, and Mino.
In some embodiments, the sample for use in the methods is from any tissue or fluid from an individual. Samples include, but are not limited to, tissue (e.g. connective tissue, muscle tissue, nervous tissue, or epithelial tissue), whole blood, dissociated bone marrow, bone marrow aspirate, pleural fluid, peritoneal fluid, central spinal fluid, abdominal fluid, pancreatic fluid, cerebrospinal fluid, brain fluid, ascites, pericardial fluid, urine, saliva, bronchial lavage, sweat, tears, ear flow, sputum, hydrocele fluid, semen, vaginal flow, milk, amniotic fluid, and secretions of respiratory, intestinal or genitourinary tract. In some embodiments, the sample is a tissue sample, such as a sample obtained from a biopsy or a tumor tissue sample. In some embodiments, the sample is a blood serum sample. In some embodiments, the sample is a blood cell sample containing one or more peripheral blood mononuclear cells (PBMCs). In some embodiments, the sample contains one or more circulating tumor cells (CTCs). In some embodiments, the sample contains one or more disseminated tumor cells (DTC, e.g., in a bone marrow aspirate sample).
In some embodiments, the samples are obtained from the individual by any suitable means of obtaining the sample using well-known and routine clinical methods. Procedures for obtaining tissue samples from an individual are well known. For example, procedures for drawing and processing tissue sample such as from a needle aspiration biopsy is well-known and is employed to obtain a sample for use in the methods provided. Typically, for collection of such a tissue sample, a thin hollow needle is inserted into a mass such as a tumor mass for sampling of cells that, after being stained, will be examined under a microscope.
In some embodiments, the sample is a sample solution. In some instances, the sample solution comprises a solution such as a buffer (e.g. phosphate buffered saline) or a media. In some embodiments, the media is an isotopically labeled media. In some instances, the sample solution is a cell solution.
In some embodiments, the sample (e.g., cells or a cell solution) is incubated with a cysteine-reactive probe for analysis of protein cysteine-reactive probe interactions. In some instances, the sample (e.g., cells or a cell solution) is further incubated in the presence of a small molecule fragment prior to addition of the cysteine-reactive probe. In some instances, the sample is compared with a control. In some instances, the control comprises the cysteine-reactive probe but not the small molecule fragment. In some instances, a difference is observed between a set of cysteine-reactive probe protein interactions between the sample and the control. In some instances, the difference correlates to the interaction between the small molecule fragment and the cysteine containing proteins.
In some embodiments, the sample (e.g. cells or a cell solution) is further labeled for analysis of cysteine-reactive probe protein interactions. In some instances, the sample (e.g. cells or a cell solution) is labeled with an enriched media. In some cases, the sample (e.g. cells or a cell solution) is labeled with isotope-labeled amino acids, such as 13C or 15N-labeled amino acids. In some cases, the labeled sample is further compared with a non-labeled sample to detect differences in cysteine-reactive probe protein interactions between the two samples. In some instances, this difference is a difference of a cysteine containing protein and its interaction with a small molecule fragment in the labeled sample versus the non-labeled sample. In some instances, the difference is an increase, decrease or a lack of protein cysteine-reactive probe interaction in the two samples. In some instances, the isotope-labeled method is termed SILAC, stable isotope labeling using amino acids in cell culture.
In some instances, the sample is divided into a first cell solution and a second cell solution. In some cases, the first cell solution is incubated with a small molecule fragment for an extended period of time prior to incubating the first cell solution with a first cysteine-reactive probe to generate a first group of cysteine-reactive probe-protein complexes. In some instances, the extended period of time is about 5, 10, 15, 20, 30, 60, 90, 120 minutes or longer. In some instances, the second cell solution comprises a second cysteine-reactive probe to generate a second group of cysteine-reactive probe-protein complexes. In some instances, the first cysteine-reactive probe and the second cysteine-reactive probe are the same. In some embodiments, cells from the second cell solution are further treated with a buffer, such as a control buffer, in which the buffer does not contain a small molecule fragment. In some embodiments, the control buffer comprises dimethyl sulfoxide (DMSO).
In some embodiments, the cysteine-reactive probe-protein complex is further conjugated to a chromophore, such as a fluorophore. In some instances, the cysteine-reactive probe-protein complex is separated and visualized utilizing an electrophoresis system, such as through a gel clectrophoresis, or a capillary electrophoresis. Exemplary gel electrophoresis includes agarose based gels, polyacrylamide based gels, or starch based gels. In some instances, the cysteine-reactive probe-protein is subjected to a native electrophoresis condition. In some instances, the cysteine-reactive probe-protein is subjected to a denaturing electrophoresis condition.
In some instances, the cysteine-reactive probe-protein after harvesting is further fragmentized to generate protein fragments. In some instances, fragmentation is generated through mechanical stress, pressure, or chemical means. In some instances, the protein from the cysteine-reactive probe-protein complexes is fragmented by a chemical means. In some embodiments, the chemical means is a protease. Exemplary proteases include, but are not limited to, serine proteases such as chymotrypsin A, penicillin G acylase precursor, dipeptidase E, DmpA aminopeptidase, subtilisin, prolyl oligopeptidase, D-Ala-D-Ala peptidase C, signal peptidase I, cytomegalovirus assemblin, Lon-A peptidase, peptidase Clp, Escherichia coli phage KIF endosialidase CIMCD self-cleaving protein, nucleoporin 145, lactoferrin, murein tetrapeptidase LD-carboxypeptidase, or rhomboid-1; threonine proteases such as omithine acetyltransferase; cysteine proteases such as TEV protease, amidophosphoribosyltransferase precursor, gamma-glutamyl hydrolase (Rattus norvegicus), hedgehog protein. DmpA aminopeptidase, papain, bromelain, cathepsin K, calpain, caspase-1, separase, adenain, pyroglutamyl-peptidase I, sortase A, hepatitis C virus peptidase 2, sindbis virus-type nsP2 peptidase, dipeptidyl-peptidase VI, or DeSI-1 peptidase; aspartate proteases such as beta-secretase 1 (BACE), beta-secretase 2 (BACE2), cathepsin D, cathepsin E, chymosin, napsin-A, nepenthesin, pepsin, plasmepsin, presenilin, or renin; glutamic acid proteases such as AfuGprA; and metalloproteases such as peptidase_M48.
In some instances, the fragmentation is a random fragmentation. In some instances, the fragmentation generates specific lengths of protein fragments, or the shearing occurs at particular sequence of amino acid regions.
In some instances, the protein fragments are further analyzed by a proteomic method such as by liquid chromatography (LC) (e.g. high performance liquid chromatography), liquid chromatography-mass spectrometry (LC-MS), matrix-assisted laser desorption/ionization (MALDI-TOF), gas chromatography-mass spectrometry (GC-MS), capillary electrophoresis-mass spectrometry (CE-MS), or nuclear magnetic resonance imaging (NMR).
In some embodiments, the LC method is any suitable LC methods well known in the art, for separation of a sample into its individual parts. This separation occurs based on the interaction of the sample with the mobile and stationary phases. Since there are many stationary/mobile phase combinations that are employed when separating a mixture, there are several different types of chromatography that are classified based on the physical states of those phases. In some embodiments, the LC is further classified as normal-phase chromatography, reverse-phase chromatography, size-exclusion chromatography, ion-exchange chromatography, affinity chromatography, displacement chromatography, partition chromatography, flash chromatography, chiral chromatography, and aqueous normal-phase chromatography.
In some embodiments, the LC method is a high performance liquid chromatography (HPLC) method. In some embodiments, the HPLC method is further categorized as normal-phase chromatography, reverse-phase chromatography, size-exclusion chromatography, ion-exchange chromatography, affinity chromatography, displacement chromatography, partition chromatography, chiral chromatography, and aqueous normal-phase chromatography.
In some embodiments, the HPLC method of the present disclosure is performed by any standard techniques well known in the art. Exemplary HPLC methods include hydrophilic interaction liquid chromatography (HILIC), electrostatic repulsion-hydrophilic interaction liquid chromatography (ERLIC) and reverse phase liquid chromatography (RPLC).
In some embodiments, the LC is coupled to a mass spectroscopy as a LC-MS method. In some embodiments, the LC-MS method includes ultra-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS), ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS), reverse phase liquid chromatography-mass spectrometry (RPLC-MS), hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS), hydrophilic interaction liquid chromatography-triple quadrupole tandem mass spectrometry (HILIC-QQQ), electrostatic repulsion-hydrophilic interaction liquid chromatography-mass spectrometry (ERLIC-MS), liquid chromatography time-of-flight mass spectrometry (LC-QTOF-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS), multidimensional liquid chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS). In some instances, the LC-MS method is LC/LC-MS/MS. In some embodiments, the LC-MS methods of the present disclosure are performed by standard techniques well known in the art.
In some embodiments, the GC is coupled to a mass spectroscopy as a GC-MS method. In some embodiments, the GC-MS method includes two-dimensional gas chromatography time-of-flight mass spectrometry (GC*GC-TOFMS), gas chromatography time-of-flight mass spectrometry (GC-QTOF-MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS).
In some embodiments, CE is coupled to a mass spectroscopy as a CE-MS method. In some embodiments, the CE-MS method includes capillary electrophoresis-negative electrospray ionization-mass spectrometry (CE-ESI-MS), capillary electrophoresis-negative electrospray ionization-quadrupole time of flight-mass spectrometry (CE-ESI-QTOF-MS) and capillary electrophoresis-quadrupole time of flight-mass spectrometry (CE-QTOF-MS).
In some embodiments, the nuclear magnetic resonance (NMR) method is any suitable method well known in the art for the detection of one or more cysteine binding proteins or protein fragments disclosed herein. In some embodiments, the NMR method includes one dimensional (ID) NMR methods, two dimensional (2D) NMR methods, solid state NMR methods and NMR chromatography. Exemplary ID NMR methods include 1Hydrogen, 13Carbon, 15Nitrogen, 17Oxygen, 19Fluorine, 31Phosphorus, 39Potassium, 23Sodium, 33Sulfur, 87Strontium, 27Aluminium, 43Calcium, 35Chlorine, 37Chlorine, 63Copper, 65Copper, 57Iron, 25Magnesium, 199Mercury or 67Zinc NMR method, distortionless enhancement by polarization transfer (DEPT) method, attached proton test (APT) method and ID-incredible natural abundance double quantum transition experiment (INADEQUATE) method. Exemplary 2D NMR methods include correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), 2D-INADEQUATE, 2D-adequate double quantum transfer experiment (ADEQUATE), nuclear overhauser effect spectroscopy (NOSEY), rotating-frame NOE spectroscopy (ROESY), heteronuclear multiple-quantum correlation spectroscopy (HMQC), heteronuclear single quantum coherence spectroscopy (HSQC), short range coupling and long range coupling methods. Exemplary solid state NMR method include solid state 13Carbon NMR, high resolution magic angle spinning (HR-MAS) and cross polarization magic angle spinning (CP-MAS) NMR methods. Exemplary NMR techniques include diffusion ordered spectroscopy (DOSY), DOSY-TOCSY and DOSY-HSQC.
In some embodiments, the protein fragments are analyzed by method as described in Weerapana et al., “Quantitative reactivity profiling predicts functional cysteines in proteomes,” Nature, 468:790-795 (2010).
In some embodiments, the results from the mass spectroscopy method are analyzed by an algorithm for protein identification. In some embodiments, the algorithm combines the results from the mass spectroscopy method with a protein sequence database for protein identification. In some embodiments, the algorithm comprises ProLuCID algorithm, Probity, Scaffold, SEQUEST, or Mascot.
In some embodiments, a value is assigned to each of the protein from the cystein-reactive probe-protein complex. In some embodiments, the value assigned to each of the protein from the cysteine-reactive probe-protein complex is obtained from the mass spectroscopy analysis. In some instances, the value is the area-under-the curve from a plot of signal intensity as a function of mass-to-charge ratio. In some embodiments, a first value is assigned to the protein obtained from the first cell solution and a second value is assigned to the same protein obtained from the second cell solution. In some instances, a ratio is calculated between the two values. In some instances, a ratio of greater than 2 indicates that the protein is a candidate for interacting with a drug or that the protein is a cysteine binding protein. In some instances, the ratio is greater than 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. In some cases, the ratio is at most 20.
In some instances, the ratio is calculated based on averaged values. In some instances, the averaged value is an average of at least two, three, or four values of the protein from each cell solution, or that the protein is observed at least two, three, or four times in each cell solution and a value is assigned to each observed time. In some instances, the ratio further has a standard deviation of less than 12, 10, or 8.
In some instances, a value is not an averaged value. In some instances, the ratio is calculated based on value of a protein observed only once in a cell population. In some instances, the ratio is assigned with a value of 20.
In some embodiments, in the context of identifying a cysteine containing protein as a small fragment molecule binding target, a first ratio is obtained from two cell solutions in which both cell solutions have been incubated with a cysteine-reactive probe and the first cell solution is further incubated with a small molecule fragment. In some instances, the first ratio is further compared to a second ratio in which both cell solutions have been treated by cysteine-reactive probes in the absence of a small molecule fragment. In some instances, the first ratio is greater than 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. In some instances, the second ratio is greater than 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. In some instances, if the first ratio is greater than 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 and the second ratio is from about 0.5 to about 2, the two ratios indicate that a protein is a drug binding target.
In some embodiments, the value further enables calculating a percentage of inhibition of the cysteine-reactive probe to the cysteine containing protein. In some embodiments, the percentage of inhibition of greater than 50%, 60%, 70%, 80%, 90%, or at 100% indicates that the cysteine containing protein is a candidate for interacting with the small molecule fragment.
Disclosed herein, in certain embodiments, are kits and articles of manufacture for use with one or more methods described herein. In some embodiments, described herein is a kit for identifying a cysteine containing protein as a small molecule fragment binding target. In some instances, also described herein is a kit for mapping binding sites on a cysteine containing protein. In some cases, described herein is a kit for identifying cysteine binding proteins. In some embodiments, also described herein is a kit for a high throughput screening of a small molecule fragment for interaction with a cysteine containing protein.
In some embodiments, such kit includes cysteine-reactive probes such as the cysteine-reactive probes described herein, test compounds such as small molecule fragments or libraries and/or controls, and reagents suitable for carrying out one or more of the methods described herein. In some instances, the kit further comprises samples, such as a cell sample, and suitable solutions such as buffers or media. In some embodiments, the kit further comprises recombinant proteins for use in one or more of the methods described herein. In some embodiments, additional components of the kit comprises a carrier, package, or container that is compartmentalized to receive one or more containers such as vials, tubes, and the like, each of the container(s) comprising one of the separate elements to be used in a method described herein. Suitable containers include, for example, bottles, vials, plates, syringes, and test tubes. In one embodiment, the containers are formed from a variety of materials such as glass or plastic.
The articles of manufacture provided herein contain packaging materials. Examples of pharmaceutical packaging materials include, but are not limited to, bottles, tubes, bags, containers, and any packaging material suitable for a selected formulation and intended mode of use.
For example, the container(s) include cysteine-reactive probes, test compounds, and one or more reagents for use in a method disclosed herein. Such kits optionally include an identifying description or label or instructions relating to its use in the methods described herein.
A kit typically includes labels listing contents and/or instructions for use, and package inserts with instructions for use. A set of instructions will also typically be included.
In one embodiment, a label is on or associated with the container. In one embodiment, a label is on a container when letters, numbers or other characters forming the label are attached, molded or etched into the container itself; a label is associated with a container when it is present within a receptacle or carrier that also holds the container, e.g., as a package insert. In one embodiment, a label is used to indicate that the contents are to be used for a specific therapeutic application. The label also indicates directions for use of the contents, such as in the methods described herein.
In some embodiments, the methods provided herein also perform as a service. In some instances, a service provider obtain from the customer a plurality of small molecule fragment candidates for analysis with one or more of the cysteine-reactive probes for screening. In some embodiments, the service provider screens the small molecule fragment candidates using one or more of the methods described herein, and then provide the results to the customer. In some instances, the service provider provides the appropriate reagents to the customer for analysis utilizing one or more of the cysteine-reactive probes and one or more of the methods described herein. In some cases, the customer performs one or more of the methods described herein and then provide the results to the service provider for analysis. In some embodiments, the service provider then analyzes the results and provides the results to the costumer. In some cases, the customer further analyze the results by interacting with software installed locally (at the customer's location) or remotely (e.g., on a server reachable through a network). Exemplary customers include pharmaceutical companies, clinical laboratories, physicians, patients, and the like. In some instances, a customer is any suitable customer or party with a need or desire to use the methods, systems, compositions, and kits described herein.
In some embodiments, the methods described herein include a digital processing device, or use of the same. In further embodiments, the digital processing device includes one or more hardware central processing units (CPU) that carry out the device's functions. In still further embodiments, the digital processing device further comprises an operating system configured to perform executable instructions. In some embodiments, the digital processing device is optionally connected to a computer network. In further embodiments, the digital processing device is optionally connected to the Internet such that it accesses the World Wide Web. In still further embodiments, the digital processing device is optionally connected to a cloud computing infrastructure. In other embodiments, the digital processing device is optionally connected to an intranet. In other embodiments, the digital processing device is optionally connected to a data storage device.
In accordance with the description herein, suitable digital processing devices include, by are not limited to, server computers, desktop computers, laptop computers, notebook computers, subnotebook computers, netbook computers, netpad computers, set-top computers, media streaming devices, handheld computers, Internet appliances, mobile smartphones, tablet computers, personal digital assistants, video game consoles, and vehicles. Suitable tablet computers include those with booklet, slate, or convertible configurations.
In some embodiments, the digital processing device includes an operating system configured to perform executable instructions. The operating system is, for example, software, including programs and data, which manages the device's hardware and provides services for execution of applications. Suitable server operating systems include, by way of non-limiting examples. FreeBSD, OpenBSD, NetBSD®, Linux, Apple® Mac OS X Server®, Oracle® Solaris®, Windows Server®, and Novell® NetWare®. Suitable personal computer operating systems include, by way of non-limiting examples, Microsoft® Windows®, Apple® Mac OS X®, UNIX®, and UNIX-like operating systems such as GNU/Linux®. In some embodiments, the operating system is provided by cloud computing. Suitable mobile smart phone operating systems include, by way of non-limiting examples, Nokia® Symbian® OS, Apple® iOS®, Research In Motion® BlackBerry OS®, Google® Android®, Microsoft® Windows Phone® OS, Microsoft® Windows Mobile® OS, Linux®, and Palm® WebOS®. Suitable media streaming device operating systems include, by way of non-limiting examples, Apple TV®, Roku®, Boxee®, Google TV®, Google Chromecast®, Amazon Fire®, and Samsung® HomeSync®. Suitable video game console operating systems include, by way of non-limiting examples, Sony® PS3®, Sony® PS4®, Microsoft® Xbox 360®, Microsoft Xbox One, Nintendo® Wii®, Nintendo® Wii U®, and Ouya®.
In some embodiments, the device includes a storage and/or memory device. The storage and/or memory device is one or more physical apparatuses used to store data or programs on a temporary or permanent basis. In some embodiments, the device is volatile memory and requires power to maintain stored information. In some embodiments, the device is non-volatile memory and retains stored information when the digital processing device is not powered. In further embodiments, the non-volatile memory comprises flash memory. In some embodiments, the non-volatile memory comprises dynamic random-access memory (DRAM). In some embodiments, the non-volatile memory comprises ferroelectric random access memory (FRAM). In some embodiments, the non-volatile memory comprises phase-change random access memory (PRAM). In other embodiments, the device is a storage device including, by way of non-limiting examples, CD-ROMs, DVDs, flash memory devices, magnetic disk drives, magnetic tapes drives, optical disk drives, and cloud computing based storage. In further embodiments, the storage and/or memory device is a combination of devices such as those disclosed herein.
In some embodiments, the digital processing device includes a display to send visual information to a user. In some embodiments, the display includes a cathode ray tube (CRT), a liquid crystal display (LCD), a thin film transistor liquid crystal display (TFT-LCD), an organic light emitting diode (OLED) display, a plasma display, a video projector, or a combination thereof.
In some embodiments, the digital processing device includes an input device to receive information from a user. In some embodiments, the input device is a keyboard. In some embodiments, the input device is a pointing device including, by way of non-limiting examples, a mouse, trackball, track pad, joystick, game controller, or stylus. In some embodiments, the input device is a touch screen or a multi-touch screen. In other embodiments, the input device is a microphone to capture voice or other sound input. In other embodiments, the input device is a video camera or other sensor to capture motion or visual input. In further embodiments, the input device is a Kinect™, Leap Motion™, or the like. In still further embodiments, the input device is a combination of devices such as those disclosed herein.
In some embodiments, the systems and methods disclosed herein include one or more non-transitory computer readable storage media encoded with a program including instructions executable by the operating system of an optionally networked digital processing device. In further embodiments, a computer readable storage medium is a tangible component of a digital processing device. In still further embodiments, a computer readable storage medium is optionally removable from a digital processing device. In some embodiments, a computer readable storage medium includes, by way of non-limiting examples, CD-ROMs, DVDs, flash memory devices, solid state memory, magnetic disk drives, magnetic tape drives, optical disk drives, cloud computing systems and services, and the like. In some cases, the program and instructions are permanently, substantially permanently, semi-permanently, or non-transitorily encoded on the media.
In some embodiments, the systems and methods disclosed herein include at least one computer program, or use of the same. A computer program includes a sequence of instructions, executable in the digital processing device's CPU, written to perform a specified task. In some embodiments, computer readable instructions are implemented as program modules, such as functions, objects, Application Programming Interfaces (APIs), data structures, and the like, that perform particular tasks or implement particular abstract data types.
In some embodiments, the functionality of the computer readable instructions are combined or distributed as desired in various environments. In some embodiments, a computer program comprises one sequence of instructions. In some embodiments, a computer program comprises a plurality of sequences of instructions. In some embodiments, a computer program is provided from one location. In other embodiments, a computer program is provided from a plurality of locations. In various embodiments, a computer program includes one or more software modules. In various embodiments, a computer program includes, in part or in whole, one or more web applications, one or more mobile applications, one or more standalone applications, one or more web browser plug-ins, extensions, add-ins, or add-ons, or combinations thereof.
In some embodiments, a computer program includes a web application. A web application, in various embodiments, utilizes one or more software frameworks and one or more database systems. In some embodiments, a web application is created upon a software framework such as Microsoft® .NET or Ruby on Rails (RoR). In some embodiments, a web application utilizes one or more database systems including, by way of non-limiting examples, relational, non-relational, object oriented, associative, and XML database systems. In further embodiments, suitable relational database systems include, by way of non-limiting examples, Microsoft® SQL Server, mySQL™, and Oracle®. A web application, in various embodiments, is written in one or more versions of one or more languages. In some embodiments, a web application is written in one or more markup languages, presentation definition languages, client-side scripting languages, server-side coding languages, database query languages, or combinations thereof. In some embodiments, a web application is written to some extent in a markup language such as Hypertext Markup Language (HTML). Extensible Hypertext Markup Language (XHTML), or eXtensible Markup Language (XML). In some embodiments, a web application is written to some extent in a presentation definition language such as Cascading Style Sheets (CSS). In some embodiments, a web application is written to some extent in a client-side scripting language such as Asynchronous Javascript and XML (AJAX), Flash® Actionscript, Javascript, or Silverlight®. In some embodiments, a web application is written to some extent in a server-side coding language such as Active Server Pages (ASP), ColdFusion®, Perl, Java™, JavaServer Pages (JSP), Hypertext Preprocessor (PHP), Python™, Ruby, Tel, Smalltalk, WebDNA®, or Groovy. In some embodiments, a web application is written to some extent in a database query language such as Structured Query Language (SQL). In some embodiments, a web application integrates enterprise server products such as IBM® Lotus Domino®. In some embodiments, a web application includes a media player element. In various further embodiments, a media player element utilizes one or more of many suitable multimedia technologies including, by way of non-limiting examples, Adobe® Flash®, HTML 5, Apple® QuickTime®, Microsoft® Silverlight®, Java™, and Unity®.
In some embodiments, a computer program includes a mobile application provided to a mobile digital processing device. In some embodiments, the mobile application is provided to a mobile digital processing device at the time it is manufactured. In other embodiments, the mobile application is provided to a mobile digital processing device via the computer network described herein.
In view of the disclosure provided herein, a mobile application is created by techniques using hardware, languages, and development environments. Suitable programming languages include, by way of non-limiting examples, C, C++, C #, Objective-C, Java™, Javascript, Pascal, Object Pascal, Python™, Ruby, VB.NET, WML, and XHTML/HTML with or without CSS, or combinations thereof.
Suitable mobile application development environments are available from several sources. Commercially available development environments include, by way of non-limiting examples, AirplaySDK, alcheMo, Appcelerator®, Celsius, Bedrock, Flash Lite, .NET Compact Framework, Rhomobile, and WorkLight Mobile Platform. Other development environments are available without cost including, by way of non-limiting examples, Lazarus, MobiFlex, MoSync, and Phonegap. Also, mobile device manufacturers distribute software developer kits including, by way of non-limiting examples, iPhone and iPad (iOS) SDK, Android™ SDK, BlackBerry® SDK, BREW SDK, Palm® OS SDK, Symbian SDK, webOS SDK, and Windows® Mobile SDK.
In some embodiments, commercial forums for distribution of mobile applications include, by way of non-limiting examples, Apple® App Store, Android™ Market, BlackBerry® App World, App Store for Palm devices, App Catalog for webOS, Windows® Marketplace for Mobile, Ovi Store for Nokia® devices, Samsung® Apps, and Nintendo® DSi Shop.
In some embodiments, a computer program includes a standalone application, which is a program that is run as an independent computer process, not an add-on to an existing process, e.g., not a plug-in. In some instances, standalone applications are compiled. A compiler is a computer program(s) that transforms source code written in a programming language into binary object code such as assembly language or machine code. Suitable compiled programming languages include, by way of non-limiting examples, C, C++, Objective-C, COBOL, Delphi, Eiffel, Java™, Lisp, Python™, Visual Basic, and VB .NET, or combinations thereof. Compilation is often performed, at least in part, to create an executable program. In some embodiments, a computer program includes one or more executable complied applications.
In some embodiments, the computer program includes a web browser plug-in. In computing, a plug-in is one or more software components that add specific functionality to a larger software application. Makers of software applications support plug-ins to enable third-party developers to create abilities which extend an application, to support easily adding new features, and to reduce the size of an application. When supported, plug-ins enable customizing the functionality of a software application. For example, plug-ins are commonly used in web browsers to play video, generate interactivity, scan for viruses, and display particular file types. In some instances, web browser plug-ins include Adobe® Flash® Player, Microsoft® Silverlight®, and Apple® QuickTime®. In some embodiments, the toolbar comprises one or more web browser extensions, add-ins, or add-ons. In some embodiments, the toolbar comprises one or more explorer bars, tool bands, or desk bands.
In view of the disclosure provided herein, plug-in frameworks are available that enable development of plug-ins in various programming languages, including, by way of non-limiting examples, C++, Delphi, Java™, PHP, Python™, and VB .NET, or combinations thereof.
Web browsers (also called Internet browsers) are software applications, designed for use with network-connected digital processing devices, for retrieving, presenting, and traversing information resources on the World Wide Web. Suitable web browsers include, by way of non-limiting examples, Microsoft® Internet Explorer, Mozilla® Firefox®, Google® Chrome, Apple® Safari®, Opera Software® Opera®, and KDE Konqueror. In some embodiments, the web browser is a mobile web browser. Mobile web browsers (also called mircrobrowsers, mini-browsers, and wireless browsers) are designed for use on mobile digital processing devices including, by way of non-limiting examples, handheld computers, tablet computers, netbook computers, subnotebook computers, smartphones, music players, personal digital assistants (PDAs), and handheld video game systems. Suitable mobile web browsers include, by way of non-limiting examples, Google® Android® browser, RIM Blackberry® Browser, Apple® Safari®, Palm® Blazer, Palm® WebOS® Browser, Mozilla® Firefox® for mobile, Microsoft® Internet Explorer® Mobile, Amazon® Kindle® Basic Web, Nokia® Browser, Opera Software® Opera® Mobile, and Sony® PSP™ browser.
In some embodiments, the systems and methods disclosed herein include software, server, and/or database modules, or use of the same. In view of the disclosure provided herein, software modules are created and implemented in a multitude of ways. In various embodiments, a software module comprises a file, a section of code, a programming object, a programming structure, or combinations thereof. In further various embodiments, a software module comprises a plurality of files, a plurality of sections of code, a plurality of programming objects, a plurality of programming structures, or combinations thereof. In various embodiments, the one or more software modules comprise, by way of non-limiting examples, a web application, a mobile application, and a standalone application. In some embodiments, software modules are in one computer program or application. In other embodiments, software modules are in more than one computer program or application. In some embodiments, software modules are hosted on one machine. In other embodiments, software modules are hosted on more than one machine. In further embodiments, software modules are hosted on cloud computing platforms. In some embodiments, software modules are hosted on one or more machines in one location. In other embodiments, software modules are hosted on one or more machines in more than one location.
In some embodiments, the methods and systems disclosed herein include one or more databases, or use of the same. In view of the disclosure provided herein, databases are suitable for storage and retrieval of analytical information described elsewhere herein. In various embodiments, suitable databases include, by way of non-limiting examples, relational databases, non-relational databases, object oriented databases, object databases, entity-relationship model databases, associative databases, and XML databases. In some embodiments, a database is internet-based. In further embodiments, a database is web-based. In still further embodiments, a database is cloud computing-based. In other embodiments, a database is based on one or more local computer storage devices.
In some embodiments, the methods provided herein are processed on a server or a computer server (
In some embodiments, the server 401 is in communication with one or more output devices 435 such as a display or printer, and/or with one or more input devices 440 such as, for example, a keyboard, mouse, or joystick. In some embodiments, the display is a touch screen display, in which case it functions as both a display device and an input device. In some embodiments, different and/or additional input devices are present such an enunciator, a speaker, or a microphone. In some embodiments, the server uses any one of a variety of operating systems, such as for example, any one of several versions of Windows®, or of MacOS®, or of Unix®, or of Linux®.
In some embodiments, the storage unit 415 stores files or data associated with the operation of a device, systems or methods described herein.
In some embodiments, the server communicates with one or more remote computer systems through the network 430. In some embodiments, the one or more remote computer systems include, for example, personal computers, laptops, tablets, telephones. Smart phones, or personal digital assistants.
In some embodiments, a control assembly includes a single server 401. In other situations, the system includes multiple servers in communication with one another through an intranet, extranet and/or the Internet.
In some embodiments, the server 401 is adapted to store device operation parameters, protocols, methods described herein, and other information of potential relevance. In some embodiments, such information is stored on the storage unit 415 or the server 401 and such data is transmitted through a network.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which the claimed subject matter belongs. It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of any subject matter claimed. In this application, the use of the singular includes the plural unless specifically stated otherwise. It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. In this application, the use of “or” means “and/or” unless stated otherwise. Furthermore, use of the term “including” as well as other forms, such as “include”. “includes,” and “included,” is not limiting.
As used herein, ranges and amounts can be expressed as “about” a particular value or range. About also includes the exact amount. Hence “about 5 μL” means “about 5 μL” and also “5 μL.” Generally, the term “about” includes an amount that would be expected to be within experimental error.
The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.
The term “protein”, as used herein, encompasses a full-length cysteine containing protein, a full-length functional cysteine containing protein, a cysteine containing protein fragment, or a functionally active cysteine containing protein fragment. In some instances, a protein described herein is also referred to as an “isolated protein”, or a protein that by virtue of its origin or source of derivation is not associated with naturally associated components that accompany it in its native state; is substantially free of other proteins from the same species; is expressed by a cell from a different species, or does not occur in nature.
The term “polypeptide”, as used herein, refers to any polymeric chain of amino acids. The term “polypeptide” encompasses native or modified cysteine containing protein, cysteine containing protein fragments, or polypeptide analogs comprising non-native amino acid residues. In some instances, a polypeptide is monomeric. In other instances, a polypeptide is polymeric. In some instances, a polypeptide described herein is also referred to as an “isolated polypeptide”, or a polypeptide that by virtue of its origin or source of derivation is not associated with naturally associated components that accompany it in its native state; is substantially free of other proteins from the same species; is expressed by a cell from a different species; or does not occur in nature.
As used herein, the terms “individual(s)”. “subject(s)” and “patient(s)” mean any mammal. In some embodiments, the mammal is a human. In some embodiments, the mammal is a non-human. None of the terms require or are limited to situations characterized by the supervision (e.g. constant or intermittent) of a health care worker (e.g. a doctor, a registered nurse, a nurse practitioner, a physician's assistant, an orderly or a hospice worker).
The term “alkyl” as used herein is a branched or unbranched saturated hydrocarbon group of 1 to 24 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, s-pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, eicosyl, tetracosyl, and the like. It is understood that the alkyl group is acyclic. In some instances, the alkyl group is branched or unbranched. In some instances, the alkyl group is also substituted or unsubstituted. For example, the alkyl group is substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, amino, ether, halide, hydroxy, nitro, silyl, sulfo-oxo, or thiol. A “lower alkyl” group is an alkyl group containing from one to six (e.g., from one to four) carbon atoms. In some instances, the term alkyl group is also a C1 alkyl, C1-C2 alkyl, C1-C3 alkyl, C1-C4 alkyl, C1-05 alkyl, C1-C6 alkyl, C1-C7 alkyl, C1-C8 alkyl, C1-C9 alkyl, C1-C10 alkyl, and the like up to and including a C1-C24 alkyl.
The term “aryl” as used herein is a group that contains any carbon-based aromatic group including, but not limited to, benzene, naphthalene, phenyl, biphenyl, anthracene, and the like. The aryl group can be substituted or unsubstituted. In some instances, the aryl group is substituted with one or more groups including, but not limited to, alkyl, cycloalkyl, alkoxy, alkenyl, cycloalkenyl, alkynyl, cycloalkynyl, aryl, heteroaryl, aldehyde, —NH2, carboxylic acid, ester, ether, halide, hydroxy, ketone, azide, nitro, silyl, sulfo-oxo, or thiol. The term “biaryl” is a specific type of aryl group and is included in the definition of “aryl.” In addition, the aryl group is optionally a single ring structure or comprises multiple ring structures that are either fused ring structures or attached via one or more bridging groups such as a carbon-carbon bond. For example, biaryl refers to two aryl groups that are bound together via a fused ring structure, as in naphthalene, or are attached via one or more carbon-carbon bonds, as in biphenyl.
These examples are provided for illustrative purposes only and not to limit the scope of the claims provided herein.
All cell lines were obtained from ATCC, were used with a low passage number and were grown at 37° C. with 5% CO2. MDA-MB-231 cells and HEK-293T cells were grown in DMEM supplemented with 10% fetal bovine serum, penicillin, streptomycin and glutamine. Jurkat, Ramos and MUM2C cells were grown in RPMI-1640 medium supplemented with 10% fetal bovine serum, penicillin and streptomycin. For in vitro labeling, cells were grown to 100% confluence for MDA-MB-231 cells or until cell density reached 1.5 million cells/mL for Ramos and Jurkat cells. Cells were washed with cold PBS, scraped with cold PBS and cell pellets were isolated by centrifugation (1,400 g, 3 min, 4° C.), and stored at −80° C. until use. Cell pellets were lysed by sonication and fractionated (100,000 g, 45 min) to yield soluble and membrane fractions, which were then adjusted to a final protein concentration of 1.5 mg/mL for proteomics experiments and 1 mg/mL for gel-based ABPP experiments. The soluble lysate was prepared fresh from frozen pellets directly before each experiment. Protein concentration was determined using the Bio-Rad DC™ protein assay kit.
Screening of Fragment Electrophile Library by Gel-Based ABPP with IA-Rhodamine and Ac-Rho-DEVD-AMK (“DEVD” Disclosed as SEQ ID NO: 857)
25 μL of soluble proteome (1 mg/mL) was treated with fragment electrophiles (1 μL of 25×stock solution in DMSO) at ambient temperature for 1 h. IA-rhodamine (1 μL of 25 μM, final concentration=1 μM) was then added and allowed to react for an additional 1 h. The reactions were quenched with 8 μL of 4×SDS-PAGE loading buffer and the quenched samples analyzed by SDS-PAGE (10% polyacrylamide; 15 μL of sample/lane) and visualized by in-gel fluorescence using a flatbed fluorescent scanner (BioRad ChemiDoc™ MP or Hitachi FMBio IIe). To measure labeling of recombinant proteins expressed in E. coli, purified protein was added to soluble proteome to a final concentration of 1 μM (CASP8, PRMT1, IMPDH2), 2 μM (TIGAR, IDH1) or 4 μM (IDH1 R132H) and the proteomes were treated as detailed above. IDH1 labeling by IA-rhodamine is relatively better in MDA-MB-231 soluble proteome when compared with Ramos and Jurkat soluble proteome. Recombinant, active CASP8 in soluble proteome was labeled with Rho-DEVD-AOMK (“DEVD” disclosed as SEQ ID NO: 857) (1 μL of 50 μM, final concentration=2 μM), quenched and analyzed by SDS-PAGE on 14% polyacrylamide gels.
Gel-Based ABPP with Alkyne-Containing Click Probes
25 μL of soluble proteome (1 mg/mL) was labeled with the indicated concentration of 18 or 19 (1 μL of 25× stock solution in DMSO) for 1 h at ambient temperature followed by copper-mediated azide-alkyne cycloaddition (CuAAC) conjugation to rhodamine-azide. CuAAC was performed with 20 μM rhodamine-azide (50× stock in DMSO), 1 mM tris(2-carboxyethyl)phosphine hydrochloride (TCEP; fresh 50× stock in water, final concentration=1 mM), ligand (17× stock in DMSO:t-butanol 1:4, final concentration=100 μM) and 1 mM CuSO4 (50× stock in water, final concentration=1 mM). Samples were allowed to react for 1 h at ambient temperature before quenching with 8 μL 4×SDS-PAGE loading buffer. Quenched reactions were analyzed by SDS-PAGE and visualized by in-gel fluorescence. For CASP8 and IMPDH2 25 μL of soluble proteomes containing IMPDH2 or Pro-CASP8 (1 μM each respectively) were treated with the indicated fragment for 1 h prior to incubation for 1 h with 18 (1 μl, of 625 μM, final concentration=25 μM) for IMPDH2 or 61 (1 μl, of 625 μM, final concentration=25 μM) for CASP8. For MLTK, HEK 293T cells stably overexpressing MTLK2 were treated with the indicated fragment electrophiles for 1 h, followed by labeling with 59 (1 μl, of 125 μM, final concentration=5 μM) for 1 h. These were followed by CuAAC conjugation to rhodamine-azide and evaluation by SDS-PAGE as described above.
25 μL of proteomes containing the indicated protein were treated with fragment electrophiles for 1 h at ambient temperature, labeled with the probes detailed above for 1 h, quenched, and analyzed by SDS-PAGE and in-gel fluorescence visualization (n=3). IA-rhodamine was used as the probe for C161S-TIGAR, C409S-CASP8 and PRMT1, 59 was used as a probe for MLTK. The soluble proteome containing IMPDH2 was treated with ATP for 15 min prior to incubation with 18 (1 μl, of 625 μM, final concentration=25 μM) for 1 h. MLTK and IMPDH2 were subjected to CuAAC conjugation to rhodamine-azide as detailed above. The percentage of labeling was determined by quantifying the integrated optical intensity of the bands, using ImageJ software. Nonlinear regression analysis was used to determine the IC50 values from a dose-response curve generated using GraphPad Prism 6.
For in situ labeling, MDA-MB-231 cells were grown to 95% confluence and Ramos cells were grown to 1 million cells/mL. The media in all samples was replaced with fresh media, containing 200 μM of the indicated fragments and the cells were incubated at 37° C. for 2 h, washed with cold PBS, scraped into cold PBS and harvested by centrifugation (see prior section on “Preparation of human cancer cell line proteomes”).
Fragments 2, 3, 8, 9, 10, 12, 13, 14, 21, 27, 28, 29, 31, 33, 38, 45, 51 and 56 were screened at 200 μM in situ. Fragments 4 and 11 were screened at 100 μM in situ. Fragments 2, 3, 8, and 20 were tested at 50 μM in situ.
After in vitro or in situ fragment treatment, the samples were labeled for 1 h at ambient temperature with 100 μM iodoacetamide alkyne (IA-alkyne, 5 μL of 10 mM stock in DMSO). For direct labeling with 61, 61 (5 μL of 1 or 10 mM stocks in DMSO, final concentration=10 or 100 μM) was substituted for IA-alkyne. Samples were conjugated by CuAAC to either the light (fragment treated) or heavy (DMSO treated) TEV tags (10 μL of 5 mM stocks in DMSO, final concentration=100 μM), TCEP, TBTA ligand and CuSO4 as detailed above. The samples were allowed to react for 1 h at which point the samples were centrifuged (16,000 g, 5 min, 4° C.). The resulting pellets were sonicated in ice-cold methanol (500 μL) and the resuspended light- and heavy-labeled samples were then combined and centrifuged (16,000 g, 5 min, 4° C.). The pellets were solubilized in PBS containing 1.2% SDS (1 mL) with sonication and heating (5 min, 95° C.) and any insoluble material was removed by an additional centrifugation step at ambient temperature (14,000 g, 1 min).
For each sample, 100 μL of streptavidin-agarose beads slurry (Pierce) was washed in 10 mL PBS and then resuspended in 5 mL PBS. The SDS-solubilized proteins were added to the suspension of streptavidin-agarose beads and the bead mixture was rotated for 3 h at ambient temperature. After incubation, the beads were pelleted by centrifugation (1.400 g, 3 min) and were washed (2×10 mL PBS and 2×10 mL water).
The beads were transferred to eppendorf tubes with 1 mL PBS, centrifuged (1,400 g, 3 min), and resuspended in PBS containing 6 M urea (500 μL). To this was added 10 mM DTT (25 μL of a 200 mM stock in water) and the beads were incubated at 65° C. for 15 mins, 20 mM iodoacetamide (25 μL of a 400 mM stock in water) was then added and allowed to react at 37° C. for 30 mins with shaking. The bead mixture was diluted with 900 μL PBS, pelleted by centrifugation (1,400 g, 3 min), and resuspended in 200 μL PBS. To this was added 1 mM CaCl2 (2 μL of a 200 mM stock in water) and trypsin (2 μg, Promega, sequencing grade) and the digestion was allowed to proceed overnight at 37° C. with shaking. The beads were separated from the digest with Micro Bio-Spin columns (Bio-Rad) by centrifugation (1,000 g, 1 min), washed (2×1 mL PBS and 2×1 mL water) and then transferred to fresh eppendorfs with 1 mL water. The washed beads were washed once further in 140 μL TEV buffer (50 mM Tris, pH 8, 0.5 mM EDTA, 1 mM DTT) and then resuspended in 140 μL TEV buffer, 5 μL TEV protease (80 μM) was added and the reactions were rotated overnight at 29° C. The TEV digest was separated from the beads with Micro Bio-Spin columns by centrifugation (1,400 g, 3 min) and the beads were washed once with water (100 μL). The samples were then acidified to a final concentration of 5% (v/v) formic acid and stored at −80° C. prior to analysis.
Liquid-Chromatography-Mass-Spectrometry (LC-MS) Analysis of isoTOP-ABPP Samples
TEV digests were pressure loaded onto a 250 μm (inner diameter) fused silica capillary column packed with C18 resin (Aqua 5 μm, Phenomenex). The samples were analyzed by multidimensional liquid chromatography tandem mass spectrometry (MudPIT), using an LTQ-Velos Orbitrap mass spectrometer (Thermo Scientific) coupled to an Agilent 1200-series quaternary pump. The peptides were eluted onto a biphasic column with a 5 μm tip (100 μm fused silica, packed with C18 (10 cm) and bulk strong cation exchange resin (3 cm, SCX, Phenomenex,)) in a 5-step MudPIT experiment, using 0%, 30%, 60%, 90%, and 100% salt bumps of 500 mM aqueous ammonium acetate and using a gradient of 5-100% buffer B in buffer A (buffer A: 95% water, 5% acetonitrile, 0.1% formic acid; buffer B: 5% water, 95% acetonitrile, 0.1% formic acid) as has been described in Weerapana et al. Nat Protoc 2:1414-1425 (2007). Data was collected in data-dependent acquisition mode with dynamic exclusion enabled (20 s, repeat of 2). One full MS (MS1) scan (400-1800 m/z) was followed by 30 MS2 scans (ITMS) of the nth most abundant ions.
The MS2 spectra data were extracted from the raw file using RAW Xtractor (version 1.9.9.2; available at http://fields.scripps.edu/downloads.php). MS2 spectra data were searched using the ProLuCID algorithm (publicly available at http://fields.scripps.edu/downloads.php) using a reverse concatenated, nonredundant variant of the Human UniProt database (release-2012_11). Cysteine residues were searched with a static modification for carboxyamidomethylation (+57.02146) and up to one differential modification for either the light or heavy TEV tags (+464.28595 or +470.29976 respectively). Peptides were required to have at least one tryptic terminus and to contain the TEV modification. ProLuCID data was filtered through DTASelect (version 2.0) to achieve a peptide false-positive rate below 1%.
The ratios of heavy/light for each unique peptide (DMSO/compound treated; isoTOP-ABPP ratios, R values) were quantified with in-house CIMAGE software, using default parameters (3 ms 1 s per peak and signal to noise threshold 2.5). Site-specific engagement of electrophilic fragments was assessed by blockade of IA-alkyne probe labeling. For peptides that showed a ≥95% reduction in MS1 peak area from the fragment treated proteome (light TEV tag) when compared to the DMSO treated proteome (heavy TEV tag), a maximal ratio of 20 was assigned. Ratios for unique peptide entries were calculated for each experiment; overlapping peptides with the same modified cysteine (e.g. different charge states, MudPIT chromatographic steps or tryptic termini) were grouped together and the median ratio was reported as the final ratio (R). The peptide ratios reported by CIMAGE were further filtered to ensure the removal or correction of low quality ratios in each individual dataset. The quality filters applied were the following: removal of half tryptic peptides; for ratios with high standard deviations from the median (90% of the median or above) the lowest ratio was taken instead of the median; removal of peptides with R=20 and only a single ms2 event triggered during the elution of the parent ion; manual annotation of all the peptides with ratios of 20, removing any peptides with low-quality elution profiles that remained after the previous curation steps. Proteome reactivity values for individual fragments were computed as the percentage of the total quantified cysteine-containing peptides with R values≥4 (defined as liganded cysteines) for each replicate experiment and the final proteome reactivity value was calculated as the mean for all replicate experiments for each fragment from both MDA-MB-231 and Ramos cellular proteomes.
Biological replicates of the same compound and cell-line were averaged if the standard deviation was below 60% of the mean; otherwise the lowest value of the ratio set was taken. For peptides with multiple modified cysteines, the cysteine with the highest number of quantification events was kept and the remaining, redundant peptides were discarded. Peptides included in the aggregate dataset (those used for further bioinformatics and statistical analyses) were required to have been quantified in 3 experiments. Cysteines were categorized as liganded if they had at least two ratios R≥4 (hit fragments) and one ratio between 0.5 and 2 (control fragments). Although the majority (>75% of fragments) were profiled in at least two biological replicates, some data from single replicate MS experiments were included. Averaged filtered data for all fragments and representative individual filtered datasets are found in Tables 1-3.
R values were calculated and individual datasets were filtered as described above (R value calculation and processing). Two categories of hits in situ were defined: 1) cysteines liganded in situ that were also observed as hits in vitro and 2) cysteines that detected in vitro, but were only liganded in situ. For the first category. R values for the same cysteine containing peptide from in vitro and in situ experiments were compared and if both had ratios R≥4, the cysteine was considered ligandable in situ. To qualify for the second category, two ratios R≥4 for replicates of two different fragments were required to be detected in situ and at least one of these fragments must be quantified as a non-hit with R≤2 in vitro. Additionally, another cysteine from the same protein was required to be unliganded in situ (R≤2) by the same fragment to control for the possibility that changes in R values from changes in protein expression upon fragment treatment rather than from fragment competition.
Custom python scripts were used to compile functional annotations available in the UniProtKB/Swiss-Prot Protein Knowledge database (release-2012_11). Relevant Uniprot entries were mined for available functional annotations at the residue level, specifically for annotations regarding enzyme catalytic residues (active sites), disulfides (redox active and structural) and metal binding sites. Liganded proteins were queried against the Drugbank database (Version 4.2) and fractionated into DrugBank and non-Drugbank proteins. Functional keywords assigned at the protein level were collected from the Uniprot database and the Drugbank and non-drugbank categories were further classified into protein functional classes. Cysteine reactivity data was re-processed using ProLuCID as detailed above (Peptide and protein identification). Cysteines found in both the reactivity and ligandability datasets were sorted based on their reactivity values (lower ratio indicates higher reactivity). The moving average of the percentage of total liganded cysteines within each reactivity bin (step-size 50) was taken. Custom python scripts were developed to collect relevant NMR and X-ray structures from the RCSB Protein Data Bank (PDB). For proteins without available PDB structures, sequence alignments, performed with BLAST to proteins deposited in the PDB, were used to identify structural homologues. For annotation of active-site and non-active cysteines, enzymes with structures in the PDB were manually inspected to evaluate the location of the cysteine. Cysteines were considered to reside in enzyme active sites if they were within 10 Å of active-site ligand or residue(s). Cysteines outside of the 10 Å range were deemed non-active-site residues. Histograms of fragment hit-rates across high-coverage, ligandable cysteines, active-site and non-active site cysteines were calculated from the subset of ligandable cysteines quantified in 10 or more separate experiments. The fragment hit rate is reported as the percentage of the total quantification events with R≥4. For analyses of trends within the whole data, including histograms and heatmaps, a cell-line merged dataset was used where data from the MDA-MB-231 experiments was taken first and the Ramos data was used if there was no data from MDA-MB-231 experiments for a particular fragment and cysteine. Heatmaps were generated in R (version 3.1.3) using the heatmap.2 algorithm. Protein structures were rendered using Pymol.
Glutathione (GSH) was diluted to a final concentration of 125 μM in assay buffer (100 mM Tris, pH 8.8, 10% ethanol as co solvent). In triplicate, to 100 μL of the GSH mixture in a clear 96 well plate (Costar® Corning®), the indicated electrophile (2 μL of a 50 mM stock solution in DMSO, final concentration=500 μM) was added and the reaction mixture was incubated at room temperature for 1 h. 5 μL of Ellman's reagent (100 mM stock in IM NaOH, final concentration=5 mM) was added and the absorbance was measure at 440 nm on a plate reader (Tecan Infinite F500). The concentration of GSH remaining was calculated from a standard curve.
In silico fragment library containing all chloroacetamide and acrylamide fragments from
For each protein, the UniProtKB ID was used to filter the PDB. Structures determined by X-ray crystallography were selected, privileging higher sequence coverage and structure resolution (See Table 5 for selected PDB IDs). When no human structures were available, the closest homologous organism available was selected (e.g. PRMT1: R. norvegicus). Protein structures were prepared following the standard AutoDock protocol. Waters, salts, and crystallographic additives were removed; AutoDockTools was used to add hydrogens, calculate Gasteiger-Marsili charges and generate PDBQT files.
MSMS reduced surface method was used to identify accessible cysteines. The protein volume was scanned using a probe radius of 1.5 Å; residues were considered accessible if they had at least one atom in contact with either external surfaces or internal cavities.
The fragment library was docked independently on each accessible cysteine using AutoDock 4.2. A grid box of 24.4×24.4×24.4 Å was centered on the geometric center of the residue; thiol hydrogen was removed from the side-chain, which was modeled as flexible during the docking; the rest of the structure was kept rigid. A custom 13-7 interaction potential was defined between the nucleophile sulfur and the reactive carbon in the ligands. The equilibrium distance (req) was set to the length of the C-S covalent bond (1.8 Å); the potential well depth (εeq) varied between 1.0 and 0.175 to model to the reactivity of the different ligands. For each fragment, potential well depth was determined by dividing its proteomic reactivity percentage by 20, and the value for iodoacetamide was approximated as the maximum (2.5) for reference. The potential was implemented by modifying the force field table of AutoDock. Fragments were docked with no constraints, generating 100 poses using the default GA settings. For each fragment, the best docking score pose was analyzed: if the distance between the nucleophilic sulfur and the reactive carbon was ≤2.0 Å, the cysteine was considered covalently modified. If a residue was alkylated by at least one ligand, it was considered labeled. The docking score (i.e., negative binding energy) was calculated based on the estimated interaction energy of each fragment in its docked pose. The docking score of the best alkylating fragment defined the labeling score. The residue with the best labeling score was considered the most probable to be labeled.
IMPDH2 structure, including the Bateman domain, was modeled using I-TASSER.
Full length cDNAs encoding for IDH1 (Open Biosystems, Clone ID: 3880331) and IMPDH2 (Open Biosystems, Clone ID: 3447994) were subcloned into pET22b (+) (Novagen) with C-terminal His6-affinity tag (SEQ ID NO: 861). Full length cDNA encoding for TIGAR (Origene, Sc320794) was subcloned into pET28a (+) (Novagen) with N-terminal His-affinity tag (SEQ ID NO: 861). Full length PRMT1 subcloned into pET45b (+) (Novagen) was previously generated by the Cravatt lab. Full-length human CASP3 (residues 1-277) and a truncated CASP8 (residues 217-479) without the CARD domain was subcloned into pET23b (Novagen) with C-terminal His6-affinity tags (SEQ ID NO: 861). Cysteine mutants were generated using QuikChange site-directed mutagenesis, using primers containing the desired mutations and their respective compliments.
TIGAR, IDH1, PRMT1 and IMPDH2 were expressed in BL21(DE3) Chemically Competent Cells (NEB), grown on Terrific Broth supplemented with the desired antibiotic (50 μg/mL Kanamycin or 50 μg/mL Carbenicillin) to OD600 of 0.8 and induced with 0.5 mM IPTG for 16 h at 18° C. Cells were immediately harvested and resuspended in 30 mL cold buffer A (25 mM Tris, pH 7.4, 200 mM NaCl, 10% glycerol, 1 mM BME), supplemented with lysozyme (Sigma), DNAase (NEB) and cOmplete protease inhibitor tablets (Roche), sonicated, and centrifuged (45,000 g, 30 min, 4° C.). The soluble fractions were collected and rotated for 1 h with 1 mL Ni-NTA slurry (Qiagen) at 4° C. The slurry was then transferred to a 50 mL volume, fritted column and collected by gravity flow. The resin was then washed with 100 mL buffer A containing 20 mM imidazole and eluted with 10 mL buffer A containing 200 mM imidazole. The eluant was concentrated to 2.5 mL (Amicon-Ultra-15, 10 kDa MW cutoff), buffer exchanged using PD10 columns (GE Amersham) into the storage buffer (50 mM HEPES, pH 7.4, 150 mM NaCl, 10% glycerol, 1 mM BME) and further concentrated (Amicon-Ultra-4, 10 kDa MW cutoff) to a final concentration of approximately 100 μM protein. Protein concentration was determined using the Bio-Rad DC™ protein assay kit. Protein purity was assayed by SDS-PAGE under reducing conditions and were >95% pure.
CASP3, CASP8, pro-CASP8 (D374A, D384A) and an N-terminal MBP fusion-His6-TEV-Arg6 protease construct pRK793 (“His6” disclosed as SEQ ID NO: 861 and “Arg6” disclosed as SEQ ID NO: 862) were expressed in E. coli BL21(DE3)pLysS cells (Stratagene). Cells were grown in 2×YT medium supplemented with 200 μg/ml ampicillin and 50 μg/ml chloramphenicol at 37° C. to an OD600 of 0.8-1.0. Overexpression of caspase was induced with 0.2 mM IPTG at 30° C. for 4 h (CASP3) or at 12° C. overnight (CASP8) or with 0.5 mM IPTG at 30° C. for 4 h (TEV protease). Cells were immediately harvested and resuspended in ice cold buffer A (caspases: 100 mM Tris, pH 8.0, 100 mM NaCl; TEV protease: PBS) and subjected to 3 cycles of lysis by microfluidization (Microfluidics). The cell lysate was clarified by centrifugation (45,000 g, 30 min, 4° C.) and soluble fractions were loaded onto a 1 mL HisTrap HP Ni-NTA affinity column (GE Amersham) pre-equilibrated with buffer A and eluted with buffer A containing 200 mM imidazole. The eluted protein was immediately diluted two-fold with buffer B (20 mM Tris, pH 8.0) and purified by anion-exchange chromatography (HiTrap Q HP, GE Amersham) with a 30-column volume gradient to 50% of buffer B containing 1 M NaCl. The caspases were injected over a Superdex 200 16/60 gel filtration column (GE Amersham) and TEV protease over a Superdex 75 gel filtration column (GE Amersham) in buffer C (caspases: 20 mM Tris, pH 8.0, 50 mM NaCl; TEV protease: PBS, 10 mM DTT) to buffer exchange and to remove any remaining contaminants. Fractions containing the desired protein were pooled and concentrated to approximately 1 mg/mL (Millipore Ultrafree-15, 10 kDa MW cutoff). The purified proteins were immediately frozen and stored at −80° C. Protein concentrations were measured using both Bio-Rad colorimetric assay and A280 absorbance in denaturing conditions. Protein purity was assayed by SDS-PAGE under reducing conditions and were >98% pure.
R132H-IDH1, including an additional K345K silent mutation to remove an unwanted restriction site and GFP were subcloned into a modified pCLNCX retroviral vector. Retrovirus was prepared by taking 1.5 μg of each pCLNCX vector and 1.5 μg pCMV-VSV-G and 20 μL of Roche X-tremeGeneHP DNA transfection reagent to transfect HEK-293RTV cells. The medium was replaced after 1 day of transfection and the following day the culture supernatant was collected and filtered through 0.5 μM filter, 10 mL of the filtrate, containing the desired virus, was used to infect MUM2C cells in the presence of polybrene (8 μg/mL) for 48 h, at which point the infected cells were selected for in medium containing 100 μg/mL hygromycin for 7-10 days. Surviving cells were expanded and cultured in complete RPMI-1640 medium containing hygromycin.
Recombinant IDH1 and C269S-IDH1 (100 μM in storage buffer) were diluted 1:200 in MDA-MB-231 cellular proteome (1 mg/mL). To 25 μL of this mixture was added 1 μL of the indicated compound (25× stock solution in DMSO) and the lysates were incubated for 1 h at room temperature in clear 96 well plates (Corning®, Costar®), 75 μL per well of a stock solution of NADP (13.3 mM) and isocitrate (13.3 mM) in IDH1 buffer (40 mM Tris, pH 7.4, 2 mM MgCl2, 0.01% pluronic) was added immediately before measuring UV absorbance at 340 nm on a 96 well UV absorbance plate reader (TECAN). Absorbance was measured for 45 minutes and the relative activities were calculated from the change in absorbance for the linear portion of the curve.
MUM2C cells stably overexpressing IDH1 R132H were seeded 1.5×106 cells/150 mm dish. The following day the indicated compounds (50 mM stock solutions in DMSO) or DMSO were added to the cells to the final concentrations indicated and were allowed to incubate for 2 h. Control cells overexpressing GFP were treated in parallel. The cells were washed in ice-cold PBS and collected by scraping in ice-cold PBS and centrifugation (1,400 g, 3 min, 4° C.). The cell pellets were then resuspended in 100 μL ice-cold PBS followed by sonication and centrifugation at 16,000 g for 10 min. Lysates were then buffer exchanged into IDH1 buffer (40 mM Tris, pH 7.4, 2 mM MgCl2) with 0.5 mL ZEBA spin desalting columns (Thermo Fisher, 89882). The protein concentrations were adjusted to 3.5 mg/mL and 25 μL of the lysate was mixed with 25 μL of the reaction mixture (2.5 mM NADPH and 2.5 mM α-ketoglutarate in IDH1 buffer) and the reaction was allowed to proceed for 4 h at which point the reaction mixtures were quenched with 50 μL cold methanol, followed by a centrifugation (16,000 g, 10 min, 4° C.). Formation of 2-HG was followed by targeted LC/MS analysis. The reaction mixture was separated with a Luna-NH2 column (5 μm, 100 Å, 50×4.6 mm, Phenomenex) with a precolumn (NH2, 4×3.0 mm) using a gradient of mobile phases A and B (mobile phase A: 100% CH3CN, 0.1% formic acid; mobile phase B: 95:5 (v/v) H2O:CH3CN, 50 mM NH4OAc, 0.2% NH4OH). The flow rate started at 0.1 mL/min. and the gradient consisted of 5 min 0% B, a linear increase to 100% B over 20 min at a flow rate of 0.4 mL/min, followed by an isocratic gradient of 100% B for 2 min at 0.5 mL/min before equilibrating for 3 min at 0% B at 0.4 mL/min (30 min total). For each run, the injection volume was 25 μL. MS analysis was performed on an Agilent G6410B tandem mass spectrometer with ESI source. The dwell time for 2-HG was set to 100 ms, and collision energy for 2-HG was set to 5. The capillary was set to 4 kV, and the fragmentor was set to 100 V. The drying gas temperature was 350° C., the drying gas flow rate was 11 L/min and the nebulizer pressure was 35 psi. The mass spectrometer was run in MRM mode, monitoring the transition of m/z from 146.7 to 129 for 2-HG (negative ionization mode). Treatments were conducted in triplicate. Background 2-HG production, calculated from the ‘mock’ GFP over expressing cells, was subtracted from the total 2-HG production. TIGAR activity assay
TIGAR activity assay was conducted as described in Gerin et al. The Biochemical Journal 458:439-448 (2014). Formation of 3PG (3-phosphoglycerate) production from 23BPG (2,3-bisphosphoglycerate) was measured spectrophotometrically on a TECAN plate reader, measuring decrease in absorbance at 340 nm in clear, flat-bottom 96 well microplate (Corning® Costar®). 2 μL of recombinant TIGAR (10 mg/mL) was diluted into 1 mL dilution buffer (25 mM HEPES, pH 7.1, 25 mM KCl, 1 mM MgCl2). 25 μL of diluted protein was incubated for 1 h with the indicated concentration of compound (1 μL, 25× stock in DMSO). Then 75 μL of assay mixture comprised of 25 mM HEPES (pH 7.1), 25 mM KCl, 1 mM MgCl2, 0.5 mM NADH, 1 mM DTT, 1 mM 23BPG, 1 mM ATP-Mg, the equivalent of 1 μL each of rabbit muscle GAPDH (4000 units/mL, Sigma, G5537) and yeast PG kinase (6300 units/mL, Sigma, P7634) was added to the protein and decrease in absorbance was monitored at 340 nm. The background, calculated from samples lacking TIGAR, was subtracted from samples containing TIGAR. Experiments were performed in quadruplicate.
PRMT1 assays were conducted as described in Weerapana et al. Nature 468:790-795 (2010). Recombinant human PRMT1 (0.85 μM, wild type or C101S mutant) in 25 μL methylation buffer (20 mM This, pH 8.0, 200 mM NaCl, 0.4 mM EDTA) was pre-incubated with indicated fragments for 1 h and methylation activity was monitored after addition of 1 mg of recombinant histone 4 (NEB, M2504S) and 3H-SAM (2 μCi). Reactions were further incubated for 60 min at ambient temperature and stopped with 4×SDS sample buffer. SDS-PAGE gels were fixed with 10% acetic acid/10% methanol (v/v), washed, and incubated with Amplify reagent (Amersham) before exposing to film at −80° C. for 3 days.
The kinase activity assay protocol was conducted as described in Wang et al. ACS Chemical biology 9:2194-2198 (2014). Kinase assay buffers, myelin basic protein (MBP) substrate and ATP stock solution were purchased from SignalChem. Radio-labeled [γ-33P ATP was purchased from PerkinElmer. 250 μL of HEK-293T soluble lysates (8 mg/mL), stably overexpressing WT, C22A or K45M MLTK were labeled for 1 h with 100 μM fragment or DMSO. The samples were then individually immunoprecipitated with 20 μL flag resin slurry per sample and then eluted with 15 μL 3×Flag-peptide. To each sample was added 5 μL of MBP and then 5 μL of γ-33P] ATP assay cocktail (250 μM, 167 μCi/mL) was added to initiate the kinase reaction. Each reaction mixture was incubated at ambient temperature for 30 min, and the reactions were terminated by spotting 25 μL of the reaction mixture onto individual precut phosphocellulose P81 paper. The spotted P81 strips were washed with 10 mL of 1% phosphoric acid (3×10 min). MLTK activity was measured by counting the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter. The background was determined from the K45M-inactive mutant MLTK activity level, which was subtracted from the WT and C22A samples. Relative activities for WT and C22A were normalized to their respective DMSO treated samples. Experiments were performed in triplicate.
Caspase 3 and 8 assays were conducted with CASP8 activity assay kit (BioVision, K112-100) and Caspase 3 activity assay kit (Invitrogen, EnzChek® Caspase-3 Assay Kit), following the manufacturer's instructions. Briefly, recombinant Caspase 3 (10 μM) was added to soluble Ramos lysates (1 mg/mL) to a 100 nM final concentration of protease. Caspase 8 (30 μM) was added to soluble Ramos lysates to a 1 μM final concentration of protease. In triplicate, 50 μL lysate was treated with either DMSO, DEVD-CHO (“DEVD” disclosed as SEQ ID NO: 857) (20 μM) or the indicated compounds (100 μM) for 1 h. following which 50 μL of 2× reaction buffer containing 10 mM DTT and 5 μL substrate (4 mM stock in DMSO of IETD-AFC (“IETD” disclosed as SEQ ID NO: 858) for CASP8; 10 mM stock in DMSO of DEVD-AMC (“DEVD” disclosed as SEQ ID NO: 857) for CASP3) was added to each well and the samples were incubated at ambient temperature for 2 h. Caspase activity was measured from the increase in fluorescence (excitation 380 nm emission 460 nm). Experiments were performed in triplicate. Background was calculated from samples lacking the recombinant caspase.
Apoptosis Assays with Caspase 8 Inhibitors
4 mL of Jurkat cells in RPMI (1.5 million cells/mL) were treated with the indicated compound at 30 μM for 30 min (50 mM stock solution in DMSO). Z-VAD-FMK (EMD Millipore Biosciences, 627610) and was used at a final concentration of 100 μM. After pre-incubation, FASL (4 μL of 100 μg/μL stock solution of SuperFasLigand™ in water, final concentration=100 ng/mL, Enzo life Sciences) or staurosporine (8 μL of 1 mM stock solution in DMSO, final concentration=2 μM, Fisher Scientific, 50664333). After 6 hours, cells were harvested by centrifugation, washed and lysed in cell lysis buffer (BioVision, 1067-100) and 40 μg of each sample were separated by SDS-Page on 14% polyacrylamide gels. The gels were transferred to nitrocellulose membranes and were immunoblotted overnight with the indicated antibodies. For measurements of cell viability, in quadruplicate for each condition, 150,000 cells (100 μL of 1.5 million cells/mL) were plated in Nunc™ MicroWell™ 96-Well Optical-Bottom Plates with Polymer Base (Fisher Scientific). Compounds, FASL and STS were used at the same concentrations indicated above with a 30 minute pre-incubation with compound, followed by 6 hours with either STS or FASL or DMSO. Cell viability was measured with CellTiter-Glot® Luminescent Cell Viability Assay (Promega) and was read on a Biotech Synergy 4 plate reader.
For CASP8, CASP3 and PARP, cell pellets were resuspended in cell lysis buffer from (BioVision, 1067-100) with 1× cOmplete protease inhibitor (Roche) and allowed to incubate on ice for 30 min prior to centrifugation (10 min, 16,000 g). For all other proteins, cell pellets were resuspended in PBS and lysed with sonication prior to centrifugation (10 min, 16,000 g). The proteins were then resolved by SDS-PAGE and transferred to nitrocellulose membranes, blocked with 5% BSA in TBST and probed with the indicated antibodies. The primary antibodies and the dilutions used are as follows: anti-parp (Cell Signaling, 9532, 1:1000), anti-casp3 (Cell Signaling, 9662, 1:500), anti-casp8 (Cell Signaling, 9746, 1:500), anti-IDH1 (Cell Signaling, 1:500, 3997s), anti-actin (Cell Signaling, 3700, 1:3000), anti-gapdh (Santa Cruz, sc-32233, 1:2000) anti-flag (Sigma Aldrich, F1804, 1:3000). Blots were incubated with primary antibodies overnight at 4° C. with rocking and were then washed (3×5 min, TBST) and incubated with secondary antibodies (LICOR, IRDye® 800CW or IRDye® 800LT, 1:10,000) for 1 h at ambient temperature. Blots were further washed (3×5 min, TBST) and visualized on a LICOR Odyssey Scanner.
Data are shown as mean±SEM. P values were calculated using unpaired, two-tailed Student's t-test. P values of <0.05 were considered significant.
Prediction failures were due to the approximations of the rigid model used with highly flexible/solvent exposed loop regions (STAT1:C255, PDB ID: 1YVL; HAT1:C101. PDB ID:2P0W; ZAP70:C117, PDB ID:4K2R), or with partially buried residues (SARS:C438, PDB ID:4187; PAICS:C374, PDB ID:2H31). In some embodiments, the simulation of some degree of flexibility (such as flexible side chains) improves the success rate. In some embodiments, the method was limited by availability and quality of crystallographic structures, when sequences were not fully resolved in available models (XPO1:C34, C1070, PDB ID:3GB8, FNBP1:C511,C555,C609, PDB ID:2EFL; IMPDH2:C140, PDB ID: INF7), or when only orthologue sequences were available (PRMT1: R. norvegicus, PDB ID: 1ORI).
Chemicals and reagents were purchased from a variety of vendors, including Sigma Aldrich, Acros, Fisher, Fluka, Santa Cruz, CombiBlocks, BioBlocks, and Matrix Scientific, and were used without further purification, unless noted otherwise. Anhydrous solvents were obtained as commercially available pre-dried, oxygen-free formulations. Flash chromatography was carried out using 230-400 mesh silica gel. Preparative thin layer chromotography (PTLC) was carried out using glass backed PTLC plates 500-2000 μm thickness (Analtech). All reactions were monitored by thin layer chromatography carried out on 0.25 mm E. Merck silica gel plates (60F-254) and visualized with UV light, or by ninhydrin, ethanolic phosphomolybdic acid, iodine, p-anisaldehyde or potassium permanganate stain. NMR spectra were recorded on Varian INOVA-400, Bruker DRX-600 or Bruker DRX-500 spectrometers in the indicated solvent. Multiplicities are reported with the following abbreviations: s singlet; d doublet; t triplet; q quartet; p pentet; m multiplet; br broad. Chemical shifts were reported in ppm relative to TMS and J values were reported in Hz. Mass spectrometry data were collected on a HP 1100 single-quadrupole instrument (ESI; low resolution) or an Agilent ESI-TOF instrument (HRMS).
In some embodiments, General Procedure A was used for the synthesis of one or more of the small molecule fragments and/or cysteine-reactive probes described herein. The amine was dissolved in anhydrous CH2Cl2 (0.2 M) and cooled to 0° C. To this, anhydrous pyridine (1.5 equiv.) was added in one portion, then chloroacetyl chloride (1.5 equiv.) dropwise and the reaction was monitored by TLC until complete disappearance of starting material and conversion to product was detected (typically 1 h). If the reaction did not proceed to completion, additional aliquots of pyridine (0.5 equiv.) and chloroacetyl chloride (0.5 equiv.) were added. The reaction was quenched with H2O (1 mL), diluted with CH2Cl2 (20 mL), and washed twice with saturated NaHCO3 (100 mL). The organic layer was concentrated in vacuo and purified by preparatory thin layer or flash column chromatography to afford the desired product. In some embodiments, General Procedure A1 is similar to General Procedure A except triethylamine (3 equiv.) was used instead of pyridine. In some embodiments, General Procedure A2 is similar to General Procedure A except N-methylmorpholine (3 equiv.) was used instead of pyridine.
In some embodiments, General Procedure B was used for the synthesis of one or more of the small molecule fragments and/or cysteine-reactive probes described herein. The amine was dissolved in anhydrous CH2Cl2 (0.2 M) and cooled to 0° C. To this, triethylamine (TEA, 1.5 equiv.), was added in one portion, then acryloyl chloride (1.5 equiv.) dropwise, and the reaction was monitored by TLC until complete disappearance of starting material and conversion to product was detected (typically 1 h). If the reaction did not proceed to completion, additional aliquots of TEA (0.5 equiv.) and acryloyl chloride (0.5 equiv.) were added. The reaction was quenched with H2O (1 mL), diluted with CH2Cl2 (20 mL), and washed twice with saturated NaHCO3 (100 mL). The organic layer was passed through a plug of silica, after which, the eluant was concentrated in vacuo and purified by preparatory thin layer or flash column chromatography to afford the desired product.
In some embodiments, General Procedure C was used for the synthesis of one or more of the small molecule fragments and/or cysteine-reactive probes described herein. Acryloyl chloride (80.4 μL, 1.0 mmol, 2 equiv.) was dissolved in anhydrous CH2Cl2 (4 mL) and cooled to 0° C. A solution of the amine (0.5 mmol, 1 equiv.) and N-methylmorpholine (0.16 mL, 1.5 mmol, 3 equiv.) in CH2Cl2 (2 mL) was then added dropwise. The reaction was stirred for 1 hr at 0° C. then allowed to warm up to room temperature slowly. After TLC analysis showed disappearance of starting material, or 6 h, whichever was sooner, the reaction was quenched with saturated aqueous NaHCO3(5 mL) and extracted with CH2Cl2 (3×10 mL). The combined organic layers were dried over anhydrous Na2SO4, concentrated in vacuo, and the residue obtained was purified by preparatory thin layer chromatography to afford the desired product.
The following electrophilic fragments were purchased from the indicated vendors. 2 (Santa Cruz Biotechnology sc-345083), 3 (Key Organics JS-092C), 4 (Sigma Aldrich T142433-10 mg), 6 (Toronto Research Chemicals M320600), 8 (Alfa Aesar H33763), 10 (Santa Cruz Biotechnology sc-345060), 11 (Santa Cruz Biotechnology sc-354895), 12 (Santa Cruz Biotechnology sc-354966), 21 (Santa Cruz Biotechnology, sc-279681), 22 (Sigma Aldrich 699357-5G), 26 (Sigma Aldrich T109959), 27 (Santa Cruz Biotechnology sc-342184), 28 (Santa Cruz Biotechnology sc-335173), 29 (Santa Cruz Biotechnology sc-348978), 30 (Santa Cruz Biotechnology sc-355362), 32 (Santa Cruz Biotechnology sc-354613), 33 (Sigma Aldrich R996505). 34 (Santa Cruz Biotechnology sc-355477), 35 (Santa Cruz Biotechnology sc-328985), 41 (Sigma Aldrich L469769), 42 (Sigma Aldrich R901946), 43 (Santa Cruz Biotechnology sc-307626), 52 (Enamine, EN300-08075), 55 (Santa Cruz Biotechnology sc-354880), 57 (VWR 100268-442), 58 (Enzo Life Sciences ALX-430-142-M005), 62 (WuXi Apptec).
Isotopically-labeled heavy and light tags were synthesized with minor modifications to the procedure reported in Weerapana et al. Nat Protoc 2:1414-1425 (2007) and Weerapana et al. Nature 468:790-795 (2010). Fmoc-Rink-Amidc-MBHA resin (EMD Biosciences: 0.5 M, 830 mg, 0.6 mmol/g loading) was deprotected with 4-methylpiperidine in DMF (50% v/v, 2×5 mL, 1 min). Fmoc-Lys(N3)—OH (Anaspec) (500 mg, 1.26 mmol, 1.26 equiv.) was coupled to the resin overnight at room temperature with DIEA (113 μl) and 2-(6-chloro-1H-benzotriazol-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate (HCTU; 1.3 mL of 0.5 M stock in DMF) followed by a second overnight coupling with Fmoc-Lys(N3)—OH (500 mg, 1.26 mmol, 1.26 equiv.), DIEA (113 μl), O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU 1.3 mL of 0.5 M stock in DMF). Unmodified resin was then capped (2×30 min) with Ac2O (400 μL) and DIEA (700 μL) in DMF after which the resin was washed with DMF (2×1 min). Deprotection with 4-methylpiperidine in DMF (50% v/v, 2×5 mL, 1 min) and coupling cycles (4 equiv. Fmoc-protected amino acid (EMD biosciences) in DMF) with HCTU (2 mL, 0.5 M in DMF) and DIEA (347.7 μL) were then repeated for the remaining amino acids. For the heavy TEV-tag. Fmoc-Valine-OH (13C5C15H2115NO4, 13C5, 97-99, 15N, 97-99%, Cambridge Isotope Laboratories, Inc.) was used. Reactions were monitored by ninhydrin stain and dual couplings were used for all steps that did not go to completion. Biotin (0.24 g, 2 equiv.) was coupled for two days at room temperature with NHS (0.1 g, 2 equiv.). DIC (0.16 g, 2 equiv.) and DIEA (0.175 g, 2 equiv.). The resin was then washed with DMF (5 mL, 2×1 min) followed by 1:1 CH2Cl2:MeOH (5 mL, 2×1 min), dried under a stream of nitrogen and transferred to a round-bottom flask. The peptides were cleaved for 90 minutes from the resin by treatment with 95:2.5:2.5 trifluoroacetic acid:water:triisopropylsilane. The resin was removed by filtration and the remaining solution was triturated with cold ether to provide either the light or heavy TEV-tag as a white solid. HPLC-MS revealed only minor impurities and the compounds were used without further purification. HRMS-ESI (m/z): calculated for C83H128N23O23S [M+H]: (Light-TEV-Tag) 1846.9268; found: 1846.9187; calculated for C7813C5H128N2215NO23S [M+H]: (Heavy-TEV-Tag): 1852.9237; found: 1852.9309.
To a solution of 5-hexenylamine (63 mg, 0.65 mmol, 1.0 equiv.) in CH2Cl2 (3.2 mL, 0.2 M) at 0° C. was added N-methylmorpholine (215 μL, 3 equiv.) followed by chloroacetic anhydride portionwise (222 mg, 2 equiv.). The reaction was allowed to come to room temperature and then stirred overnight. The reaction was then diluted with ether (50 mL), washed with 1 M HCl, 1 M NaOH, then brine (20 mL each). The combined organic layers were dried over magnesium sulfate and concentrated to yield chloroacetamide SI-1 (74 mg, 66%). 1H NMR (400 MHz. Chloroform-d) δ 6.79 (s, 1H), 4.09 (d, J=1.1 Hz, 2H), 3.34 (q, J=6.8 Hz, 2H), 2.23 (td, J=6.9, 2.7 Hz, 2H), 1.98 (t J=2.7 Hz, 1H), 1.75-1.62 (m, 4H), 1.62-1.51 (m, 2H).
To a solution of chloroacetamide SI-1 (36.1 mg, 0.2 mmol) in acetone (1 mL, 0.2 M) was added sodium iodide (47 mg, 1.5 equiv.) and the reaction was stirred overnight. The next day the reaction was filtered through a plug of silica eluting with 20% ethyl acetate in hexanes, and the filtrate was concentrated to yield a 10:1 mixture of the desired iodoacetamide 1 and starting material. This mixture was re-subjected to the reaction conditions for one further day, at which point complete conversion was observed. The product was purified by silica gel chromatography, utilizing a gradient of 5 to 10 to 15 to 20% ethyl acetate in hexanes to yield the desired product (24 mg, 44%). In some embodiments, the reaction is performed with 2.5 equiv. of sodium iodide, in which case re-subjection is not necessary, and purification by PTLC is accomplished in 30% EtOAc/hexanes as eluent. 1H NMR (500 MHz, Chloroform-d) δ 6.16 (s, 1H), 3.69 (s, 2H), 3.30 (q. J=6.8 Hz, 2H), 2.23 (td, J=6.8, 2.6 Hz, 2H), 1.97 (t, J=2.6 Hz, 1H), 1.75-1.61 (m, 2H), 1.61-1.52 (m, 2H).
The title compound was synthesized according to General Procedure C from 4-bromophenylaniline (18.9 mg, 0.0762 mmol, 1 equiv.). Purification of the crude product by prep. TLC (30% EtOAc/hexanes) provided the title compound as a white solid (12.5 mg, 54%). 1H NMR (500 MHz, Chloroform-d) δ 7.47 (d. J=8.2 Hz, 2H), 7.39 (t, J=7.6 Hz, 2H), 7.32 (d. J=7.4 Hz, 1H), 7.21 (d, J=7.7 Hz, 2H), 7.12 (d, J=8.2 Hz, 2H), 6.48 (d, J=16.7 Hz, 1H), 6.17 (dd, J=16.8, 10.3 Hz, 1H), 5.65 (d, J=10.3 Hz, 1H); HRMS-ESI (m/z) calculated for C15H13BrNO [M+H]: 302.0175; found: 302.0176.
SI-2 was prepared according to Thoma et al, J. Med. Chem. 47:1939-1955 (2004). 1H NMR (400 MHz, Chloroform-d) δ 7.24-7.12 (m, 2H), 6.75-6.68 (m, 1H), 6.66-6.58 (m, 2H), 3.88-3.81 (m, 1H), 3.44 (tt, J=10.4, 3.9 Hz, 2H), 3.00-2.88 (m, 2H), 2.10-1.99 (m, 2H), 1.48 (bs 9H), 1.41-1.27 (m, 2H).
To a solution of aniline SI-2 (65 mg, 0.24 mmol) at 0° C. in CH2Cl2 (0.6 mL) was added pyridine (38 μL, 2 equiv.) followed by chloroacetyl chloride (37.4 μL, 2.0 equiv.) in CH2Cl2 (0.6 mL). The resulting solution was allowed to warm to room temperature and stirred overnight. The solution was then quenched with saturated aqueous sodium bicarbonate, extracted with Et2O (3×10 mL). The combined organic layers were dried over magnesium sulfate, filtered and concentrated to give an off-white solid, which was used without further purification (47 mg, 57%). 1H NMR (400 MHz, Chloroform-d) δ 7.47-7.38 (m, 3H), 7.18-7.03 (m, 2H), 4.75-4.63 (m, 1H), 4.07 (s, 2H), 3.68 (s, 2H), 2.76 (s, 2H), 1.84-1.69 (m, 2H), 1.35 (s, 9H), 1.27-1.12 (m, 2H).
To neat SI-3 (47 mg, 0.128 mmol) was added trifluoroacetic acid (0.7 mL, final 0.2 M). The resulting solution was concentrated under a stream of nitrogen until no further evaporation was observed, providing the deprotected amine as its trifluoroacetate salt. This viscous gum was then treated with triethylamine in ethyl acetate (10% v/v, 2 mL; solution smokes upon addition). The resulting solution was concentrated to afford the free base, which contained only triethylammonium trifluoroacetate and the free amine by proton NMR. A stock solution was prepared by dissolving the resulting gum in CH2Cl2 (1.2 mL, ˜0.1 M final).
The deprotected amine (0.3 mL of stock solution, 0.0319 mmol) was treated with Hunig's base (17.5 μL, 3 equiv.) and benzoyl chloride (7.6 μL, 2.0 equiv.). This solution was stirred overnight, quenched with saturated aqueous sodium bicarbonate, extracted with Et2O (3×10 mL). The resulting solution was dried over magnesium sulfate, filtered and concentrated. The resulting oil was purified by silica gel chromatography (20% EtOAc/hexanes) to afford chloroacetamide 7 as a white solid (8.6 mg, 75%). 1H NMR (500 MHz, Chloroform-d) δ 7.55 (dd, J=5.5, 3.0 Hz, 3H), 7.50-7.32 (m, 5H), 7.21 (s, 2H), 4.92 (tt, J=12.3, 4.0 Hz, 1H), 4.87 (s, 1H), 3.87 (s, 1H), 3.78 (s, 2H), 3.21 (s, 1H), 2.97-2.90 (m, 1H), 2.01 (s, 1H), 1.90 (s, 1H), 1.45 (s, 1H), 1.36-1.26 (m, 1H), HRMS-ESI (m/z) calculated for C20H22ClN2O2 [M+H]: 357.1364; found: 357.1362.
Following General Procedure A, starting from 4-benzylpiperidine (840 mg, 5.2 mmol, 1 equiv.), the desired compound was obtained after column chromatography as a yellow oil (1 g, 81%). Spectroscopic data matches those reported previously reported in Papadopoulou et al. J. Med. Chem. 55:5554-5565 (2012). 1H NMR (500 MHz, Chloroform-d) δ 7.42-7.14 (m, 5H), 4.61 (d, J=13.4 Hz, 1H), 4.14 (q. J=21.9, 11.5 Hz, 2H), 3.89 (d, J=13.5, 1H), 3.11 (td, J=13.1, 2.7 Hz, 1H), 2.69-2.57 (m, 3H), 1.92-1.75 (m, 3H), 1.40-1.21 (m, 2H); HRMS-ESI (m/z) calculated for C14H19ClNO [M+H]: 252.115; found: 252.115.
Following General Procedure A, starting from tryptamine (400 mg, 2.5 mmol, 1 equiv.), the desired compound was obtained after column chromatography as a brownish solid (460 mg, 77%). 1H NMR (500 MHz, Chloroform-d) δ 8.55 (s, 1H), 7.70 (d, J=7.9 Hz, 1H), 7.45 (d, J=8.1 Hz, 1H), 7.30 (t, J=7.5 Hz, 1H), 7.23 (t, J=7.4 Hz, 1H), 7.10 (s, 1H), 6.84 (s, 1H), 4.08 (s, 2H), 3.72 (q, J=6.4 Hz, 2H), 3.10 (t, J=6.8 Hz, 2H); HRMS-ESI (m/z) calculated for C12H14ClN2O2[M+H]: 237.0789; found: 237.0791.
Following General Procedure B, starting from 3,5-bis(trifluoromethyl)aniline (1.16 g, 5 mmol, 1 equiv.), the desired compound was obtained after column chromatography as a white solid (1.05 g, 74%). 1H NMR (500 MHz, Chloroform-d) δ 8.33 (s, 1H), 8.18 (s, 2H), 7.68 (s, 1H), 6.57 (d, J=17.5 Hz, 1H), 6.38 (dd, J=16.9, 10.3 Hz, 1H), 5.93 (d, J=12.5 Hz, 1H); HRMS-ESI (m/z) calculated for C11H8F6NO2 [M+H]: 284.0505; found: 284.0504.
4-phenoxy-3-(trifluoromethyl)aniline (260 mg, 1 mmol, 1 equiv.) (Combi-Blocks) was dissolved in TFA (5 mL). Following the reductive amination protocol reported by Boros et al. J Org. Chem 74:3587-3590 (2009), the reaction mixture was cooled to 0° C. and to this sodium triacetoxyborohydride (STAB) (270 mg, 1.3 mmol, 1.3 equiv.) was added, 3-pyridinecarboxaldehyde (200 mg, 2 mmol, 2 equiv.) was dissolved in CH2Cl2 (5 mL) and slowly added to the reaction mixture. Upon complete conversion to product, the reaction was diluted with CH2Cl2 (20 mL) and washed with saturated sodium bicarbonate solution (3×20 mL) and the organic layer was dried then concentrated under reduced pressure. Without further purification the crude material was dissolved in anhydrous CH2Cl2 and subjected to General Procedure B. The resulting crude was purified by prep. TLC to give a white solid (31 mg, 10%). 1H NMR (500 MHz, Chloroform-d) δ 8.52 (d, J=3.5 Hz, 1H), 8.39 (s, 1H), 7.68 (d, J=7.8 Hz, 1H), 7.40 (t, J=7.7 Hz, 2H), 7.34 (s, 1H), 7.28-7.18 (m, 2H), 7.07 (d, J=8.2 Hz, 2H), 6.98 (d, J=7.5 Hz, 1H), 6.82 (d, J=8.8 Hz, 1H), 6.46 (d. J=16.8 Hz, 1H), 6.01 (dd, J=16.2, 10.7 Hz, 1H), 5.64 (d, J=10.3 Hz, 1H), 4.96 (s, 2H). HRMS-ESI (m/z) calculated for C22H18F3N2O2 [M+H]: 399.1315; found: 399.1315.
5-(and-6)-((N-(5-aminopentyl)amino)carbonyl)tetramethylrhodamine (tetramethylrhodamine cadaverine) mixed isomers (60 mg, 0.12 mmol, 1 equiv.) were dissolved in anhydrous DMF (500 μL) with sonication. To this was added DIPEA (60 μL, 0.34 mmol, 3 equiv.) and chloroacetyl chloride (10 μL, 0.13 mmol, 1 equiv., diluted 1:10 in DMF) and the reaction was stirred at room temperature for 20 min until complete conversion to the product was detected by TLC. The DMF was removed under a stream of nitrogen and the reaction mixture was separated by PTLC in MeOH:CH2Cl2:TEA (15:85:0.001). The chloroacetamide rhodamine was then eluted in MeOH:CH2Cl2 (15:85), concentrated under reduced pressure and redissolved in acetone (500 μL). NaI (150 mg, 1 mmol, 10 equiv.) was added to this and the reaction was stirred for 20 min at 50° C. until complete conversion to product was detected and the crude reaction mixture was purified by reverse phase HPLC on a C18 column and concentrated to yield the title compound as a purple solid that is a mixture of 5 and 6 carboxamide tetramethylrhodamine isomers (ratio ˜6:1) (10 mg, 12%). 1H NMR (600 MHz, Methanol-d4) δ 8.87 (t, J=4.8 Hz, 0.14H), 8.80-8.71 (m, 1H), 8.41 (dd, J=8.2, 1.1 Hz, 0.86H), 8.35 (br s, 1H), 8.27 (dt, J=7.9, 1.5 Hz, 0.164H), 8.20 (dt, J=8.2, 1.5 Hz, 0.86H), 7.81 (s, 0.86H), 7.53 (d, J=7.8 Hz, 0.14H), 7.18-7.11 (m, 2H), 7.07 (d, J=9.5 Hz, 2H), 7.00 (s, 2H), 3.68-3.62 (m, 2H), 3.46-3.37 (m, 2H), 3.31 (s, 12H, obscured by solvent) 3.21-3.12 (m, 2H), 1.81-1.21 (m, 6H); HRMS-ESI (m/z) calculated for C32H36IN4O5 [M+H]: 683.1725; found: 683.1716.
Following General Procedure A, starting with 3,5-bis(trifluoromethyl)aniline (327 mg, 1.42 mmol, 1 equiv.) and acetic anhydride (200 μL, 3 mmol, 2 equiv.), the title compound was obtained after PTLC as a white solid (302 mg, 78%). 1H NMR (500 MHz, Chloroform-d) δ 8.10 (s, 2H), 7.72 (s, 1H), 7.68 (s, 1H), 2.32 (d, J=0.9 Hz, 3H). HRMS-ESI (m/z) calculated for C11H8F6NO2 [M+H]: 284.0505; found: 284.0504.
To a solution of 3-amino-5-(trifluoromethyl)benzoic acid (74 mg, 0.36 mmol) in acetonitrile (3.6 mL, 0.1 M final) was added EDCI (83 mg, 1.2 equiv.) followed by hex-5-ynamine (35 mg, 1.0 equiv.) followed by 1-hydroxybenzotriazole hydrate (HOBt, 66.3 mg, 1.2 equiv.) and the resulting solution was stirred overnight. The reaction was diluted with ethyl acetate, washed with 1 M HCl twice and then brine. The organic layer was dried over magnesium sulfate and concentrated to yield aniline SI-5 (97.4 mg, 95%) as a white solid. 1H NMR (400 MHz, Chloroform-d) δ 7.29-7.22 (m, 2H), 6.98 (t, J=1.8 Hz, 1H), 6.38 (t, J=5.5 Hz, 1H), 4.08 (s, 2H), 3.46 (td, J=7.1, 5.7 Hz, 2H), 2.25 (td, J=6.9, 2.6 Hz, 2H), 1.99 (t, J=2.7 Hz, 1H), 1.81-1.55 (m, 4H).
Following General Procedure B, starting with SI-5 (42 mg, 0.15 mmol, 1 equiv.), the title compound was obtained after column chromatography as a white solid (34 mg, 70%). 1H NMR (500 MHz, Chloroform-d) δ 8.94 (s, 1H), 8.24 (d, J=11.9 Hz, 2H), 7.71 (s, 1H), 6.87 (t, J=5.7 Hz, 1H), 6.55 (dd, J=17.4, 0.7 Hz, 1H), 6.43 (dd, J=16.9, 10.1 Hz, 1H), 5.88 (dd, J=10.1, 1.3 Hz, 1H), 3.56 (q, J=6.7 Hz, 2H), 2.33 (td, J=6.9, 2.7 Hz, 2H), 2.06 (t, J=2.7 Hz, 1H), 1.87 (p, 0.1=7.3 Hz, 2H), 1.69 (p, J=7.8 Hz, 2H); HRMS-ESI (m/z) calculated for C17H18F3N2O2 [M+H]: 339.1314; found 339.1313.
Synthesized according to General Procedure A2, starting from SI-5. 1H NMR (600 MHz, Chloroform-d) δ 8.57 (s, 1H), 8.16 (t, J=1.8 Hz, 1H), 8.05 (t, J=1.8 Hz, 1H), 7.79 (d, J=2.0 Hz, 1H), 6.38 (d, J=6.1 Hz, 1H), 4.23 (s, 2H), 3.51 (td, J=7.1, 5.7 Hz, 2H), 2.27 (td. J=6.9, 2.7 Hz, 2H), 2.00 (t, J=2.6 Hz, 1H), 1.82-1.74 (m, 2H), 1.71-1.59 (m, 2H); HRMS-ESI (m/z) calculated for C16H17ClF3N2O2 [M+H]: 361.0925; found: 361.0925.
Following General Procedure A, starting with α,α-diphenyl-4-piperidinomethanol (800 mg, 3 mmol, 1 equiv.), the title compound was obtained after column chromatography as a white solid (637 mg, 61%). 1H NMR (500 MHz, Chloroform-d) δ 7.56 (d, J=7.6 Hz, 4H), 7.39 (q, J=7.1 Hz, 4H), 7.28 (q, J=6.8 Hz, 2H), 4.66 (d, J=13.3 Hz, 1H), 4.07 (dd, J=12.2, 4.2 Hz, 2H), 3.91 (d, J=13.4 Hz, 1H), 3.18 (t, J=12.9 Hz, 1H), 2.77-2.62 (m, 3H), 1.67 (t. J=12.5 Hz, 2H), 1.56 (q, J=11.8 Hz, 1H), 1.44 (q, J=12.4, 11.8 Hz, 1H); HRMS-ESI (m/z) calculated for C20H23ClNO2 [M+H]: 344.1412; found: 344.1412.
3,5-bis(trifluoromethyl)benzaldehyde (880 mg, 3.6 mmol, 1 equiv.) and 2-cyanoacetamide (460 mg, 5.5 mmol, 1.5 equiv.) were dissolved in MeOH (10 mL). To this was added piperidine (214 mg, 0.7 equiv.) and the reaction was stirred at room temperature for 30 minutes at which point starting material was consumed. After addition of an equivalent volume of water (10 mL), the precipitate was collected by filtration and washed with water/methanol (1:1) to yield the title compound as a white solid (534 mg, 47%); 1H NMR (400 MHz, Acetone-d6) δ 8.78 (s, 2H), 8.61 (s, 1H), 8.41 (s, 1H), 7.57 (s, 1H), 7.42 (s, 1H); HRMS-ESI (m/z) calculated for C12H2F6N2O2 [M+H]: 309.0457; found: 309.0459.
Following General Procedure A1, starting with 3,5-bis(trifluoromethyl)aniline (250 mg, 1.1 mmol, 1 equiv.) and 2-bromopropionyl chloride (200 μL, 2 mmol, 1.8 equiv.) the title compound was obtained by PTLC as a white solid (130 mg, 35%). 1H NMR (500 MHz, Chloroform-d) δ 8.34 (s, 1H), 8.06 (s, 2H), 7.66 (s, 1H), 4.58 (q, J=7.0 Hz, 1H), 1.98 (d, J=7.0 Hz, 3H); HRMS-ESI (m/z) calculated for C11H7BrF6NO [M−H]: 361.9621; found: 361.9623.
Following General Procedure A1, starting with 3,5-bis(trifluoromethyl)aniline (327 mg, 1.42 mmol, 1 equiv.) and 2-chloropropionyl chloride (200 μL, 2 mmol, 1.8 equiv.) the title compound was obtained by PTLC as a white solid (250 mg, 55%). 1H NMR (500 MHz, Chloroform-d) δ 8.61 (s, 1H), 8.16 (s, 2H), 7.75 (s, 1H), 4.67 (q, J=7.1 Hz, 1H), 1.93 (d, J=7.1 Hz, 3H). HRMS-ESI (m/z) calculated for C11H7ClF6NO [M−H]: 318.0126; found: 318.0126.
3,5-bis(trifluoromethyl)aniline (350 mg, 1.6 mmol, 1 equiv.) was dissolved in TFA (5 mL). The reaction mixture was cooled to 0° C. and to this sodium triacetoxyborohydride (STAB) (400 mg, 2 mmol, 1.3 equiv.) was added, 3-pyridinecarboxaldehyde (244 mg, 1.5 mmol, 1 equiv.) was dissolved in CH2Cl2 (5 mL) and slowly added to the reaction mixture dropwise over 10 minutes. Upon complete conversion to product, the reaction mixture was diluted with CH2C2 (20 mL) and washed with saturated sodium bicarbonate solution (3×20 mL) and the organic layer was dried then concentrated under reduced pressure. Without further purification the crude material was dissolved in anhydrous CH2Cl2 and subjected to General Procedure B. The resulting crude was purified by PTLC to give a white solid (10 mg, 2%). 1H NMR (500 MHz, Chloroform-d) δ 8.63 (d. J=3.8 Hz, 1H), 8.49 (s, 1H), 7.93 (s, 1H), 7.70 (d, J=7.7 Hz, 1H), 7.55 (s, 2H), 7.35 (dd, J=7.6, 5.3 Hz, 1H), 6.60 (dd, J=16.6, 1.6 Hz, 1H), 6.02 (dd, J=16.9, 10.2 Hz, 1H), 5.79 (dd, J=10.3, 1.6 Hz, 1H), 5.11 (s, 2H). HRMS-ESI (m/z) calculated for C17H13F6N2O [M+H]: 375.0927; found: 375.0928.
To a solution of 3-amino-5-(trifluoromethyl)benzoic acid (500 mg, 2.44 mmol) in 1.5 mL of dimethylacetamide (1.6 M) at 0° C. was added chloroacetyl chloride (214 μL, 2.69 mmol, 1.1 equiv.). The resulting solution was warmed to ambient temperature and stirred for 20 minutes, at which point ethyl acetate (40 mL) and water (30 mL) were added. The pH of the aqueous layer was adjusted to pH 10 via addition of 1 N NaOH, and the phases were separated. The aqueous layer was washed with 40 mL of ethyl acetate, then acidified by adding 1 N HCl. The product was extracted with ethyl acetate (40 mL), and the organic layer was washed with IM HCl (2×40 mL), brine (40 mL), dried over magnesium sulfate and concentrated to provide the desired product (456 mg, 66%). 1H NMR (500 MHz, Chloroform-d) δ 8.31 (s, 1H), 8.27 (s, 1H), 8.14 (s, 1H), 4.13 (s, 2H); HRMS-ESI (m/z) calculated for C10H8ClF3NO3 [M+H]: 282.0139; found: 282.0141.
The title compound was obtained starting from 6-fluoro-3(4-piperidinyl)-1,2-benzisoxazole hydrochloride (53 mg, 0.2 mmol, 1 equiv.) according to General Procedure C as a colorless oil (49.1 mg, 87%). 1H NMR (400 MHz, Chloroform-d) δ 7.64 (dd, J=8.7, 5.1 Hz, 1H), 7.27 (dd, J=8.4, 2.3 Hz, 1H), 7.08 (td, J=8.9, 2.1 Hz, 1H), 6.64 (dd, J=16.8, 10.6 Hz, 1H), 6.32 (dd, J=16.9, 1.9 Hz, 1H), 5.73 (dd, J=10.6, 1.9 Hz, 1H), 4.70 (d, J=13.4 Hz, 1H), 4.15 (d, J=12.4 Hz, 1H), 3.53-3.13 (m, 2H), 2.99 (t, J=13.1 Hz, 1H), 2.25-2.07 (m, 2H), 2.00 (ddd, J=23.1, 14.2, 7.8 Hz, 2H); HRMS-ESI (m/z) calculated for C15H16FN2O [M+H]: 275.119; found: 275.119.
The title compound was obtained starting from tert-Butyl 4-(4-amino-2,6-difluorophenyl)piperazine-1-carboxylate according to General Procedure B. 1H NMR (400 MHz, Chloroform-d) δ 8.12 (s, 11), 7.13 (d, J=10.4 Hz, 2H), 6.36 (d, J=16.9 Hz, 11), 6.19 (dd, J=16.8, 10.2 Hz, 1H), 5.70 (d, J=10.2 Hz, 1H), 3.45 (t, J=4.7 Hz, 4H), 3.00 (t, J=3.7 Hz, 4H), 1.41 (s, 9H); HRMS-ESI (m/z) calculated for C18H24F2N3O3[M+H]: 368.178; found: 368.178.
Following General Procedure B, starting from 4-bromo-2,5-dimethylaniline (900 mg, 4.5 mmol, 1 equiv.), the title compound was obtained after column chromatography and recrystallization from cold CH2Cl2 as a white solid (611 mg, 40%). 1H NMR (500 MHz, Chloroform-d) δ 7.87 (s, 1H), 7.43 (s, 1H), 7.16 (s, 1H), 6.50 (d, J=16.7 Hz, 1H), 6.35 (dd, J=16.4, 10.3 Hz, 1H), 5.86 (d, J=10.3 Hz, 1H), 2.42 (s, 3H), 2.28 (s, 3H); HRMS-ESI (m/z) calculated for C11H13BrNO [M+H]: 254.0175; found: 254.0175.
To a stirred solution of hexosamine hydrochloride (590 mg, 3.39 mmol, 1 equiv.) in anhydrous MeOH (200 mL) at room temperature was added sodium metal (60 mg, 2.6 mmol, 0.78 equiv.), TEA (400 μL, 5.7 mmol, 1.8 equiv.). Chloroacetic anhydride (1 g, 5.9 mmol, 1 equiv.) was then added and the mixture stirred for 6 h, monitoring for completeness by TLC. After which, the reaction mixture was concentrated in vacuo. The crude product then was purified by two rounds of column chromatography to afford the pure title product as a white solid (610 mg, 72%). 1H NMR (500 MHz, Methanol-d4) δ 5.20 (d, J=3.7 Hz, 1Hα), 4.75 (d, J=8.3 Hz, 1Hβ), 4.19 (dd, J=20.2, 13.9 Hz, 2H), 4.19 (d, J=12.6 Hz, 1H), 3.95 (dd. J=10.6, 3.5 Hz, 1Hα), 3.83 (m, 3Hα, 3Hβ), 3.74 (d, J=5.1 Hz, 1Hβ), 3.70 (dd, J=11.4, 8.9 Hz, 1Hβ), 3.60 (dd, J=10.7, 9.5 Hz, 1Hβ), 3.46 (t, J=9.3 Hz, 11), 3.42 (t, J=10.0 Hz, 1Hβ); HRMS-ESI (m/z) calculated for C8H15ClNO6 [M+H]: 256.0582; found: 256.0582.
Chloroacetyl chloride (80.4 μL, 0.9 mmol, 1.7 equiv.) was dissolved in anhydrous CH2Cl2 (3 mL) and cooled to 0° C. A solution of 2-methyl-1,2,3,4-tetrahydroquinoline (80.1 mg, 0.544 mmol, 1 equiv.) and N-methylmorpholine (0.11 mL, 1.0 mmol, 1.8 equiv.) in CH2Cl2 (2 mL) was then added dropwise. After 6 h, the reaction was quenched with saturated aqueous NaHCO3 (5 mL) and extracted with CH2Cl2 (3×10 mL). The combined organic layers were dried over anhydrous Na2SO4 and concentrated under reduced pressure. The resultant residue was purified by prep. TLC (30% EtOAc/hexanes), providing the title compound as an off-white solid (108.8 mg, 89%). 1H NMR (400 MHz, chloroform-d) δ 7.30-7.13 (m, 4H), 4.86-4.75 (m, 1H), 4.20 (d, J=12.5 Hz, 1H), 4.09 (d, J=12.5 Hz, 1H), 2.69-2.58 (m, 1H), 2.59-2.46 (m, 1H), 2.46-2.31 (m, 1H), 1.36-1.29 (m, 1H), 1.15 (d, J=6.5 Hz, 3H); HRMS-ESI (m/z) calculated for C12H15ClNO [M+H]: 224.0837; found: 224.0836.
The title compound was synthesized according to General Procedure C from N-cyclohexylaniline (89.5 mg, 0.511 mmol, 1 equiv.). Purification of the crude product by flash column chromatography (10-20% EtOAc/hexanes) then prep. TLC (30% EtOAc/hexanes) provided the title compound as an off-white solid (53.1 mg, 45%). 1H NMR (400 MHz, chloroform-d) δ 7.42-7.33 (m, 3H), 7.10-7.06 (m, 2H), 6.31 (dd, J=16.7, 2.1 Hz, 1H), 5.77 (dd, J=16.7, 10.3 Hz, 1H), 5.41 (dd, J=10.4, 2.1 Hz, 1H), 4.65 (tt, J=12.2, 3.7 Hz, 1H), 1.85 (dt, J=11.2, 1.8 Hz, 2H), 1.75-1.68 (m, 2H), 1.61-1.53 (m, 1H), 1.40 (qt, J=13.3, 3.6 Hz, 2H), 1.07 (qd, J=12.4, 3.6 Hz, 2H), 0.91 (qt, J=13.1, 3.8 Hz, 1H); HRMS-ESI (m/z) calculated for C15H20NO [M+H]: 230.1539; found: 230.1539.
The title compound was synthesized according to General Procedure C from 5-bromoindoline (41.7 mg, 0.211 mmol, 1 equiv.), acryloyl chloride (32 μL, 0.40 mmol, 1.9 equiv.), and changing the base to pyridine (32 μL, 0.40 mmol, 1.9 equiv.). Purification of the crude product by re-precipitation from EtOAc provided the title compound as a white solid (67.8 mg, 64%). 1H NMR (400 MHz, chloroform-d) δ 8.16 (d, J=8.6 Hz, 1H), 7.33-7.25 (m, 2H), 6.60-6.42 (m, 2H), 5.84-5.76 (m, 1H), 4.15 (t, J=8.6 Hz, 2H), 3.17 (t, J=8.6 Hz, 2H); HRMS-ESI (m/z) calculated for C11H11BrNO [M+H]: 252.0018; found: 252.0017.
The title compound was synthesized according to General Procedure C from 1-benzyl-N-phenylpiperidin-4-amine (30.0 mg, 0.113 mmol, 1 equiv.), acryloyl chloride (17 μL, 0.21 mmol, 1.9 equiv.), and changing the base to pyridine (17 μL, 0.21 mmol, 1.9 equiv.). Purification of the crude product by prep. TLC provided the title compound as a white solid (22.5 mg, 64%). 1H NMR (400 MHz, chloroform-d) δ 7.62-7.56 (m, 2H), 7.43-7.36 (m, 6H), 7.05 (d, J=6.2 Hz, 2H), 6.29 (dd, J=16.8, 2.1 Hz, 1H), 5.79 (dd, J=16.8, 10.3 Hz, 1H), 5.46 (dd, J=10.3, 2.1 Hz, 1H), 4.81-4.70 (m, 1H), 4.09 (s, 2H), 3.41 (d, J=12.0 Hz, 2H), 2.82 (q, J=11.5 Hz, 2H), 2.21 (q. J=11.9 Hz, 2H), 1.94 (d, J=14.2 Hz, 2H); HRMS-ESI (m/z) calculated for C21H25N2O [M+H]: 321.1961; found: 321.1962.
The title compound was synthesized according to General Procedure A1 from 2-methyl-5-(trifluoromethyl)aniline (35.0 mg, 0.2 mmol, 1 equiv.). Purification of the crude product by prep. TLC (20% EtOAc/hexanes) provided the title compound as a white solid (48.2 mg, 95%). 1H NMR (600 MHz, chloroform-d) δ 8.31 (s, 1H), 8.25 (d, J=1.9 Hz, 1H), 7.37 (dd, J=7.9, 1.8 Hz, 1H), 7.32 (d, J=7.9 Hz, 1H), 4.25 (s, 2H), 2.36 (s, 3H); HRMS-ESI calculated for C10H10ClF3NO [M+H]: 252.0397; found: 252.0397.
The title compound was synthesized according to General Procedure A1 from 5-bromoindoline (39.6 mg, 0.2 mmol, 1 equiv.). Purification of the crude product by prep. TLC (25% EtOAc/hexanes) provided the title compound as an off-white solid (48.6 mg, 89%). 1H NMR (600 MHz, CDCl3) δ 8.07 (d, J=8.4 Hz, 1H), 7.32 (d, J=8.8 Hz, 2H), 4.17 (t, J=8.6 Hz, 2H), 4.14 (s, 2H), 3.22 (t, J=8.4 Hz, 2H); HRMS-ESI (m/z) calculated for C10H10BrClNO [M+H]: 273.9629; found: 273.9629.
To a stirring suspension of 5-aminoquinoline (28.8 mg, 0.2 mmol, 1 equiv.) and potassium carbonate (82.9 mg, 0.6 mmol, 3 equiv.) in anhydrous CH2Cl2 (3 mL) at 0° C. was added chloroacetyl chloride (24 μL, 1.5 equiv.). The reaction was allowed to slowly warm up to room temperature. After 3 hours, the mixture was filtered, washed with EtOAc (10 mL) and CH2Cl2 (10 mL). The solid cake was then eluted with MeOH (20 mL) and the filtrate concentrated in vacuo. The residue was taken up in 10% MeOH/CH2Cl2 and passed through a pad of silica to provide the title compound as an off-white solid (42.6 mg, 82%). 1H NMR (500 MHz, CDCl3) δ 8.96 (d. J=2.5 Hz, 1H), 8.71 (s, 1H), 8.20 (d, J=8.6 Hz, 1H), 8.04 (d, J=8.5 Hz, 1H), 7.94 (d, J=7.5 Hz, 1H), 7.74 (t, =8.0 Hz, 1H), 7.48 (dd, J=8.5, 4.2 Hz, 1H), 4.35 (s, 2H); HRMS-ESI (m/z) calculated for C11H9ClN2O [M+H]: 221.0476; found: 221.0477.
Following General Procedure B, starting from 4-benzylpiperidine (1 g, 5.7 mmol, 1 equiv.), the title compound was obtained after column chromatography as a yellow oil (748 mg, 57%). 1H NMR (500 MHz, Chloroform-d) δ 7.36 (t, J=7.4 Hz, 2H), 7.28 (t, J=7.4 Hz, 1H), 7.20 (d, J=7.1 Hz, 2H), 6.64 (dd, J=16.8, 10.6 Hz, 1H), 6.32 (dd, J=16.8, 1.9 Hz, 1H), 5.72 (dd, J=10.6, 1.9 Hz, 1H), 4.72 (d, J=12.7 Hz, 1H), 4.03 (d, J=13.0 Hz, 1H), 3.05 (t, J=12.7 Hz, 1H), 2.70-2.59 (m, 3H), 1.86 (ddp, J=14.6, 7.2, 3.5 Hz, 1H), 1.77 (m, 2H), 1.37-1.18 (m, 2H); HRMS-ESI (m/z) calculated for C15H20ClNO [M+H]: 230.1539; found: 230.1539.
To a stirred solution of pyridoxamine hydrochloride (150 mg, 0.64 mmol, 1 equiv.) in anhydrous MeOH (20 mL) at room temperature was added sodium metal (30 mg, 1.5 mmol, 2.3 equiv.), TEA (100 μL, 1 mmol, 1.6 equiv.). Chloroacetic anhydride (390 mg, 2.29 mmol, 3.5 equiv.) was added and the mixture stirred for 6 h, monitoring for completeness by TLC. After which, the reaction mixture was concentrated in vacuo. The crude product then was the purified by prep. TLC to afford the title compound as a white solid (46 mg, 30%). 1H NMR (500 MHz, Methanol-d4) δ 7.97 (s, 1H), 4.81 (s, 2H), 4.61 (s, 2H), 4.17 (s, 3H), 4.06 (s, 1H), 3.35 (s, 1H), 2.52 (s, 3H); HRMS-ESI (m/z) calculated for C10H14ClN2O3[M+H]: 245.0687; found: 245.0688.
To a stirring suspension of the 6,7-dimethoxy-3,4-dihydroisoquinoline (1 g, 5.2 mmol, 1 equiv.) and TEA (1800 μL, 12.6 mmol, 2.5 equiv.) in anhydrous THF (10 mL) at 0° C. was added acryloyl chloride (1320 μL, 13.2 mmol, 2.6 equiv.) and the reaction was allowed to slowly warm up to room temperature. After 2 hours, the mixture was diluted with CH2Cl2 (2×50 mL) and washed with saturated brine (2×50 mL) and the combined organics were concentrated in vacuo. The residue was taken up in 10% MeOH/CH2Cl2 and purified by column chromatography to afford the title compound as a white solid (700 mg, 54%, mixture of E/Z isomers). 1H NMR (500 MHz, Chloroform-d) δ 6.63 (m, 3H), 6.29 (d, J=16.8 Hz, 1H), 5.69 (dd, J=10.6, 1.8 Hz, 1H), 4.69 (s, 1H [major]), 4.63 (s, 0.8H [minor]), 3.82 (s, 7H), 3.73 (t, J=5.6 Hz, 1H), 2.84-2.77 (m, 2H); HRMS-ESI (m/z) calculated for C14H18NO3 [M+H]: 248.128; found: 248.1281.
To an excess of neat SI-3 was added 0.7 mL of trifluoroacetic acid (0.2 M). The resulting solution was concentrated under a stream of nitrogen until no further evaporation was observed, providing the deprotected amine as its trifluoroacetate salt. The trifluoroacetate amine salt (90.6 mg, 0.25 mmol) was taken up in DMF (0.5 mL, 0.5 M) and the resulting solution was cooled to 0° C. 3-ethynyl benzoic acid (44 mg, 1.2 equiv.), HATU (113 mg, 1.2 equiv.), and Hunig's base (86 μL, 2 equiv.) were sequentially added. The reaction was stirred for 2 hours at 0° C., diluted with Et2O, and then washed with 1 M HCl. The organic layer was dried over magnesium sulfate, concentrated, and purified by flash chromatography (gradient from 40 to 70% ethyl acetate in hexanes) to provide the title compound (87 mg, 92%). 1H NMR (400 MHz, Chloroform-d) δ 7.51 (dd, J=9.5, 5.4 Hz, 4H), 7.43 (d. J=1.9 Hz, 1H), 7.39-7.25 (m, 2H), 7.14 (d, J=10.4 Hz, 2H), 4.86 (tt, J=15.1, 5.3 Hz, 2H), 3.72 (s, 3H), 3.19 (d, J=14.0 Hz, 1H), 3.11 (s, 1H), 2.86 (s, 1H), 1.90 (d, J=36.6 Hz, 2H), 1.38 (s, 1H), 1.24 (d, J=19.9 Hz, 1H); HRMS-ESI (m/z) calculated for C22H22ClN2O2[M+H]: 381.1364; found: 381.1363.
Cysteine is unique among protein-coding amino acids owing to its high nucleophilicity and sensitivity to oxidative modification. Cysteine residues perform catalytic functions in diverse enzyme classes and represent sites for post-translational regulation of proteins through disulfide bonding, iron-sulfur cluster formation, conversion to sulfinic and sulfonic acid, nitrosylation, S-glutathionylation and lipid modification. Using a quantitative chemical proteomic method termed isoTOP-ABPP (isotopic Tandem Orthogonal Proteolysis-Activity-Based Protein Profiling), global measurements of the intrinsic reactivity of cysteine residues was carried out and their sensitivity to modification by lipid-derived electrophiles was assessed. In order to determine whether isoTOP-ABPP was adapted to perform covalent FBLD in native biological systems, a cell preparation (lysate or intact cells) was pre-treated with DMSO or one member of a library of electrophilic small-molecule fragments and then exposed to a broad-spectrum cysteine-reactive probe iodoacetamide (IA)-alkyne 1 (
A 50+ member fragment library was constructed with most compounds containing either a chloroacetamide or acrylamide electrophile (
Competitive isoTOP-ABPP was used to globally map human proteins and the cysteine residues within these proteins that were targeted by fragment electrophiles. Each fragment was tested, in general, against two distinct human cancer cell proteomes (MDA-MB-231 and Ramos cells) and most fragments were screened in duplicate against at least one of these proteomes. On average, 927 cysteines were quantified per data set, and it was required that individual cysteines were quantified in at least three data sets for interpretation. Based on these criteria, more than 6157 cysteines from 2885 proteins were quantified in aggregate across all data sets with an average quantification frequency of 22 data sets per cysteine (
Most fragment electrophiles showed a tempered reactivity across the human proteome, with a median liganded cysteine rate of 3.8% for the library (
A comparison of fragments 3, 14, 17, and 23-26 provided insights into the relative proteomic reactivity of different electrophilic groups coupled to a common recognition element (3,5-di(trifluoromethyl)phenyl group). Chloroacetamide 3 exhibited greater reactivity than acrylamide 14 (15% versus 3.4% liganded cysteines, respectively;
In some instances, these findings demonstrate that the isoTOP-ABPP platform is one method for use to competitively profile fragment electrophiles against thousands of cysteine residues in native proteomes.
Across all isoTOP-ABPP data sets combined, 758 liganded cysteines were identified on 637 distinct proteins, which corresponded to ˜12 and 22% of the total quantified cysteines and proteins, respectively (
DrugBank proteins with liganded cysteines mostly originated from classes that are regarded as “druggable”, including enzymes, channels, and transporters (
Liganded cysteines displayed strikingly distinct SARs with the fragment electrophile library (
The availability of three-dimensional structures for a subset of proteins with liganded cysteines provided an opportunity to test whether docking predicts sites of fragment electrophile reactivity. Covalent docking programs have recently been introduced to discover ligands that target pre-specified cysteines in proteins; here, however, the aim was to computationally assess the relative ligandability of all cysteines within a protein and match these outputs to the data acquired in isoTOP-ABPP experiments. First, 29 representative protein targets were scanned and 99 solvent-accessible cysteines were identified. Then, the fragment electrophile library was docked on each residue independently using a modified potential to simulate non-covalent interactions preceding the alkylation event. In cases where the fragment electrophile bound favorably near a cysteine and the reactive group was within covalent bond distance of the cysteine, the cysteine was considered to be modified by the fragment. Docking scores were then calculated based on the estimated interaction energy of each fragment in its docked pose, and the ranking of these predictions matched the experimental data in 19 out of the 29 systems (i.e., cases where the top predicted ligandable cysteine matched the liganded cysteine determined by isoTOP-ABPP) (
The next step was to confirm and determine the functional impact of ligand-cysteine interactions mapped by isoTOP-ABPP using recombinant proteins. Two proteins were selected for which the functional significance of the liganded cysteines had been previously demonstrated. The protein methyltransferase PRMT1 possesses a non-catalytic active-site cysteine (C109) that, when modified by electrophilic small molecules like 4-hydroxynonenal (HNE), results in the inhibition of PRMT1 activity27. Competitive isoTOP-ABPP revealed a very selective SAR for ligand engagement of C109 of PRMT1, with only three fragments (2, 11, and 51) blocking IA-alkyne labeling of this residue (
MLTK, or ZAK, which is a MAP3 kinase that possesses an active site-proximal cysteine residue C22 that is modified by HNE to feedback-inhibit JNK pathways under conditions of oxidative stress, was then examined. MLTK has also recently been implicated as an oncogenic driver in gastric cancer and is an off-target for ibrutinib, which reacts with C22 of MLTK. Competitive isoTOP-ABPP experiments identified a subset of fragment electrophiles that blocked IA-alkyne labeling of C22 in MLTK (
Next, proteins were evaluated that possessed previously uncharacterized liganded cysteines. IMPDH2, which is the rate-limiting enzyme in de novo synthesis of guanine nucleotides and regulates immune cell proliferation and cancer, contained two liganded cysteines—C140 and C331—that showed overlapping, but distinct SARs in competitive isoTOP-ABPP experiments (
Two liganded cysteines—C114 and C161—were also identified in the p53-induced phosphatase TIGAR (
Electrophilic Ligands that Inhibit IDH1 Activity in Cancer Cells
Isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) are mutated in a number of human cancers to produce enzyme variants with a neomorphic catalytic activity that converts isocitrate to 2-hydroxyglutarate (2-HG). Increases in 2-HG inhibit α-ketoglutarate-dependent dioxygenases that function as tumor suppressors, in particular, by methylating DNA and proteins. Competitive isoTOP-ABPP experiments identified distinct subsets of ligands that targeted a conserved cysteine in IDH1 and IDH2 (C269 and C308, respectively; Tables 1-3). This cysteine is an active site-proximal residue that is 13 Å from the NADP+ molecule in a crystal structure of IDH1 (
The functional significance of ligand interactions with IDH enzymes by recombinantly expressing wild type (WT) and a C269S mutant of IDH1 was explored. WT-, but not C269S-IDH1 reacted with the IA-rhodamine probe as detected by SDS-PAGE, and fragment electrophiles blocked this reaction with an SAR that mirrored that observed for endogenous IDH1 in competitive isoTOP-ABPP experiments (
Encouraged by the cellular activity of the IDH1 ligand 20, the capacity of fragment electrophiles to modify proteinaceous cysteines in situ was more broadly assessed. MDA-MB-231 and Ramos cells were treated with representative members of the fragment library (23 compounds tested in total; each compound tested at 200 μM, 2 h in situ treatment), and the cells were then harvested, lysed, and analyzed by isoTOP-ABPP. A handful of fragments were cytotoxic to cells and re-tested at lower (50 or 100 μM) concentrations. The tested fragments showed a broad range of in situ reactivities that generally matched their respective reactivities in vitro (
Electrophilic Ligands that Target Pro-Caspase-8 and Block Extrinsic Apoptosis
Several fragments targeted the catalytic cysteine nucleophile C360 of the protease caspase-8 (CASP8) in isoTOP-ABPP experiments performed in vitro and in situ (
Fragment 7 (50 μM) fully blocked IA-alkyne labeling of C360 of CASP8 in isoTOP-ABPP experiments performed in both Ramos and Jurkat cell lysates (
Treatment of Jurkat cell lysates with 10 or 100 μM of 61, followed by analysis of the combined samples by isoTOP-ABPP, confirmed direct labeling of C360 of CASP8 by 61 (
In some instances, the respective functions of CASP8 and CASP10 in extrinsic apoptosis and other cellular processes remain poorly understood in large part due to a lack of selective, non-peptidic, and cell-active inhibitors for these enzymes and the absence of animal models for CASP10 (which is not expressed in rodents). In some cases, the potency and selectivity of 7 was improved to address this issue. Conversion of the 4-piperidino moiety to a 3-piperidino group and addition of a p-morpholino substituent to the benzoyl ring of 7 furnished compound 63 that was separated by chiral chromatography into its two purified enantiomers, 63-R (
The effects of caspase ligands in human T cells were evaluated, where both CASP8 and CASP10 are highly expressed (
Dimethyl fumarate (DMF) is a drug used to treat autoimmune conditions, including multiple sclerosis and psoriasis. In some instances, the mechanism of action of DMF is unclear, but is proposed to involve covalent modification of proteins and/or serving as a pro-drug that is converted to monomethyl fumarate (MMF). Using an isoTOP-ABPP approach, the mechanism of action of DMF is examined.
Assays were performed with the following reagents: dimethyl fumarate (DMF; 242926; Sigma Aldrich), monomethyl fumarate (MMF; 651419; Sigma Aldrich), dimethyl succinate (DMS: W239607; Sigma Aldrich), and buthionine sulfoximine (BSO; 14484; Cayman Chemical).
All studies using samples from human volunteers follow protocols approved by the TSRI institutional review board. Blood from healthy donors (females aged 30-49) were obtained after informed consent. Peripheral blood mononuclear cells (PBMCs) were purified over Histopaque-1077 gradients (10771; Sigma) following the manufacturer's instructions. Briefly, blood (20×25 mL blood aliquots) were layered over Histopaque-1077 (12.5 mL) and the samples were then fractionated by centrifugation (2000 rpm, 20 min, 20° C., no brake). PBMC's were harvested from the Histopaque-plasma interface and washed twice with PBS. After that time, the T cells were isolated using an EasySep™ Human T Cell Isolation Kit (17951; STEMCELL) per the manufacturer's instructions.
C57BL/6J and Nrf2′ mice (Stock No:017009; Nfe212tm1Ywk; Jackson Labs) were bred and maintained in a closed breeding facility at The Scripps Research Institute and were 6-8 weeks old when used in experiments. All mice were used in accordance with guidelines from the Institutional Animal Care and Use Committee of The Scripps Research Institute.
For the PKCθ studies, C57BL/6 mice and Prkcq−/− mice were housed under specific pathogen-free conditions and used in accordance with a protocol approved by the La Jolla Institute for Allergy and Immunology Animal Care Committee.
Spleens were harvested from female mice, perfused with collagenase, and incubated at 37° C. with 5% CO2 for 30 min. After this time, the spleens were homogenized. Cells that passed through a 100 mun cell strainer were collected and washed with RPMI. T cells were isolated from the splenocytes using the EasySep™ Mouse T cell Isolation Kit (19851; STEMCELL) according to manufacturer's instructions.
For the PKCθ studies, CD4′ T cells were isolated by anti-mouse CD4 magnetic particles (L3T4; BD IMag) and were cultured in RPMI-1640 medium (Gibco) supplemented with 10% (vol/vol) heat-inactivated FBS, 2 mM glutamine, 1 mM sodium pyruvate, 1 mM MEM nonessential amino acids, 100 U/mL each of penicillin G and streptomycin (Life Technologies) and recombinant IL-2 (100 U/mL, Biolegend).
96-well plates were coated with anti-CD3 (1:200; BioXcell) and anti-CD28 (1:500; 302933; BioLegend) in PBS (100 μL/well) overnight at 4° C. The plates were then washed twice with PBS and to each well was added 500,000 primary T cells in 100 μL of RPMI supplemented with 10% FBS, glutamine, and Pen-Strep. Cells were then treated with 100 μL of media containing compound at the indicated concentrations (final well volume of 200 μL). Cells were left at 37° C. in a 5% CO2 incubator for the indicated periods of time and harvested by centrifugation (500 g, 8 min, 4° C.), followed by washing with PBS.
Cells were transferred to a round bottom 96-well plate (0720095; Fisher Scientific), harvested by centrifugation (500 g, 3 min, 4° C.), washed with PBS, and stained with LIVE/DEAD fixable cell stain (L23105; ThermoFisher) according to the manufacturer's instructions. Briefly, one vial of LIVE/DEAD stain was resuspended in 50 uL of DMSO and added to 20 mL of PBS. To each well of the 96-well plate was added 200 μL of the stain, and the cells were incubated on ice for 30 min in the dark. After this time, cells were pelleted and washed once with PBS, then stained for cell surface antigens.
Flow cytometry analysis of cell surface antigens was performed with the following antibodies: Pacific Blue-conjugated anti-CD8 (1:25 dilution; clone RPA-T8; BD Biosciences), APC-conjugated anti-CD4 (1:25 dilution; clone RPA-T4; eBioscience), phycoerythrin-conjugated anti-CD25 (1:25 dilution; clone BC96; eBioscience or PC61; BioLegend (PKCθ studies)), FITC-conjugated anti-CD69 (1:25 dilution; clone FN50; eBioscience). All antibodies were diluted in 1% FBS in PBS, and 50 μL of the stain solution was added to each well. Cells were stained for 15 min on ice in the dark, after which cells were harvested by centrifugation (500 g, 3 min, 4° C.), washed with 1% FBS in PBS, and resuspended in 200 μL/well of 4% PFA in PBS. Flow cytometrv acquisition was performed with BD FACSDiva™-driven BD™ LSR II flow cytometer (Becton, Dickinson and Company). Data was then analyzed with FlowJo software (Treestar Inc.). Data represent mean±SE for four-five experiments per group.
T cells were harvested and stimulated as described above. At the indicated time points, cell culture supernatants were collected and IL-2 levels were measured in clear microplates (991427; R&D Systems) according to the manufacturer's instructions (Human IL-2 DuoSet ELISA; DY202; R&D Systems). Plates were read in a Gemini SpectraMax 250 microplate reader set to 450 nm. Data represent mean±SE for four experiments per group.
For the PKCθ studies, aliquots of transduced Prkcq−/−CD4+ T cells (1×106) were stimulated for 48 h with anti-CD3 alone or anti-CD3 plus anti-CD28, and the concentration of IL-2 in culture supernatants was determined by enzyme-linked immunosorbent assay according to the manufacturer's instructions (BioLegend). Briefly, a 96-well plate (Corning Costar) was coated overnight at 4° C. with mAb to IL-2. Triplicates of IL-2 standards and supernatants from cultured cells were then added to the plate, followed by 2h incubation at room temperature. A biotinylated polyclonal antibody to IL-2 was added to the plate, followed by incubation for 1 h at room temperature, and then Avidin-HRP was added, followed by incubation for 30 min at room temperature. The amount of bound avidin was then assessed with TMB peroxidase that was acidified by 2 N H2SO4. The absorbance of each well at 450 nm was then measured with a spectrophotometric plate reader (BioTek).
Primary human T cells (2.5 million cells/mL, 20 mL per condition) were treated as indicated, harvested by centrifugation (500 g, 8 min, 4° C.), and washed twice with PBS. To the cell pellet was added 75 μL of lysis buffer. After vortexing, the samples were incubated on ice for 15 min, then harvested by centrifugation (16,000 g, 10 min, 4° C.). Protein concentrations were adjusted to at least 5 mg/mL and the assay performed according to manufacturer's instructions (Sigma-Aldrich, CS1020). Data represent mean±SE for two biological replicates.
Cells were lysed by sonication and diluted to a concentration of 2 mg protein/mL. Protein concentrations were measured with the Bio-Rad DC™ protein assay reagents A and B (5000113, 5000114; Bio-Rad). 500 μL of proteome sample was treated with 100 μM of IA-alkyne probe using 10 μL of a 10 mM DMSO stock. The labeling reactions were incubated at room temperature for 1 h upon which time the samples were conjugated to isotopically-labeled TEV-cleavable tags (TEV tags) by copper-catalyzed azide-alkyne cycloaddition (CuACC or ‘click chemistry’). 60 μL of heavy click chemistry reaction mixture was added to the DMSO-treated control sample and 60 μL of the light reaction mixture was added to the compound-treated sample. The click reaction mixture comprised TEV tags (10 μL of a 5 mM stock, light (fragment treated) or heavy (DMSO treated)), CuSO4 (10 μL of a 50 mM stock in water), and TBTA (30 μL of a 1.7 mM stock in 4:1 tBuOH:DMSO). To this was added TCEP (10 μL of a 50 mM stock). The reaction was performed for 1 h at room temperature.
The light- and heavy-labeled samples were then centrifuged (16.000 g, 5 min, 4° C.) to harvest the precipitated proteins. The resulting pellets were resuspended in 500 μL of cold methanol by sonication and the heavy and light samples combined pairwise. Combined pellets were then washed with cold MeOH, after which the pellet was solubilized in PBS containing 1.2% SDS by sonication. The samples were heated at 90° C. for 5 min and subjected to streptavidin enrichment of probe-labeled proteins, sequential on-bead trypsin and TEV digestion, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) according to the published isoTOP-ABPP protocols.
RAW Xtractor (version 1.9.9.2) was used to extract the MS2 spectra data from the raw files. MS2 data were searched against a reverse concatenated, nonredundant variant of the Human UniProt database (release-2012_11) using the ProLuCID algorithm. Cysteine residues were searched with a static modification for carboxyamidomethylation (+57.02146) and up to one differential modification for either the light or heavy TEV tags (+464.28595 or +470.29976, respectively). Peptides were required to have at least one tryptic terminus and to contain the TEV modification. ProLuCID data was filtered through DTASelect (version 2.0) to achieve a peptide false-positive rate below 1%.
The quantification of heavy/light ratios (isoTOP-ABPP ratios, R values) was performed by in-house CIMAGE software using default parameters (3 MS1's per peak and signal to noise threshold of 2.5). Site-specific engagement of electrophilic compounds was assessed by blockade of IA-alkyne probe labeling. For peptides that showed a=95% reduction in MS1 peak area from the compound-treated proteome (light TEV tag) when compared to the DMSO treated proteome (heavy TEV tag), a maximal ratio of 20 was assigned. Overlapping peptides with the same labeled cysteine (for example, same local sequence around the labeled cysteines but different charge states, MudPIT segment numbers, or tryptic termini) were grouped together, and the median ratio from each group was recorded as the R value of the peptide for that run.
For each human protein containing a DMF-sensitive cysteine, the mouse homolog was identified and the human and mouse sequences aligned using the Align tool on UniProt.
Primary human T cells were harvested and stimulated as described above (500,000 cells/well), with concomitant treatment with DMSO or DMF for 60 min. Cells were pelleted (500 g, 3 min, 4° C.), then each well was resuspended in 50 μL PBS and added to Poly-D-lysine coated covcrslips (12 mm; 354087; Corning® BioCoat™). Cells were allowed to adhere to the coverslips for 30-60 min at 4° C. Coverslips were transferred to a 6 well plate and fixed with 4% PFA (157-4-100; Electron Microscopy Sciences) at room temperature for 10 min. After washing three times with PBS, cells were permeabilized with 0.1% Triton X-100 in PBS at room temperature for 10 min. Cells were washed three times with PBS, then placed cell-side-up on Parafilm. To each cover slip was added 150 μL of blocking buffer (2% BSA in PBS), and the slides were blocked for 30 min at room temperature.
The blocking buffer was aspirated, coverslips placed face down in 40 μL of antibody buffer (anti-human p65; p65Ab; FivePhoton Biochemicals; 1:500 dilution in blocking buffer), and allowed to stain overnight at 4° C. in a wet chamber. Cover slips were washed three times with PBS, then incubated with 150 μL of secondary antibody (anti-rabbit Alexa Fluor 488; A21441; Life Technologies; 1:200 dilution in PBS) for 2 h at room temperature. After washing three times with PBS, 150 μL of Hoechst counter stain was added (5 μg/mL in PBS) and coverslips were left at room temperature for 30-60 min. Cells were again washed with PBS three times, then stained with Alexa Fluor 555 Phalloidin red (8953S; Cell Signaling; 1:20 dilution in PBS). The coverslips were washed with PBS a final three times, then transferred to SuperFrost Plus slides (12-550-15, Fisherbrand) spotted with 10 μL of Prolong, Gold Antifade Mountant (P36934. ThermoFisher). The circumference of each coverslip was sealed with clear nail polish (72180; Electron Microscopy Sciences).
Images were acquired using a Zeiss 780 laser scanning confocal microscope with a 63× Objective (0.3 um image step size) and the automated stitching module to merged (10% overlap) and create a three dimensional multi-paneled mega image composite. The composite image was gathered as a z-series of at least 9 individual image panels that were auto-merged using zen software. The mega-image composite was projected into a maximum image projection in the zen software then analyzed using the colocalization modual in Zen (Zeiss Inc) and Image Pro Premier (Media Cybernetics). The Mander's Correlation Coefficients (MCC), specifically M1 and M2 between the various combination of fluorescent label (Rhodamine Phalloidin vs NFkB-P65 and Hoechst vs NFkB-p65) are calculated in ZEN (Zeiss inc) per cell and displayed as a percent. Each cell was outlined using the region of interest module and the software then calculated the M1 and M2 correlation coefficients between the two fluorophores and tabulated the results. The fluorescent signal dynamic range and threshold cutoffof real signal was defined by multiple background and secondary controls. Correlation coefficient values were compared using Image Pro Premier (IPP) (Media Cybernetics), where images were imported as raw calibrated czi files and analyzed using a similar module in IPP. Similar results were obtained with both platforms (not shown). Data represent mean±SE for two-three biological replicates.
QuikChange site-directed mutagenesis was performed on a pEF4 His A plasmid containing the full length human PKCθ (residues 1-707). The PKCθ insert was excised using BamHI and Xhol, then ligated into a pMIG vector.
Platinum-E packaging cells were plated in a six-well plate in 2 mL RPMI-1640 medium plus 10% FBS. After 24 h, cells were transfected with empty pMIG vector or the appropriate PKCθ-expressing vector DNA (3 μg) with TranslT-LTI transfection reagent (Mirns Bio). After overnight incubation, the medium was replaced and cultures were maintained for another 24 h. Retroviral supernatants were then collected and filtered, supplemented with 8 μg/mL of polybrene and used to infect CD4+ T cells that had been pre-activated for 24 h with plate-bound monoclonal antibody to CD3 (8 μg/mL) and CD28 (8 μg/mL). After centrifuging plates for 1.5-2 h at 2,000 r.p.m., cell supernatants were replaced by fresh RPMI-1640 supplemented with 10% FBS and recombinant IL-2 (100 U/mL). Cells were incubated for another 24h at 37° C. On day 3, cells were washed, moved to new plates and cultured in RPMI-1640 medium containing 10% FBS and recombinant IL-2 (100 U/mL) without stimulation for 2 additional days before restimulation with mAb to CD3 alone or plus mAb to CD28.
Cells were lysed in 1% (wt/vol) digitonin (D141, Sigma) lysis buffer (20 mM Tris-HCl. pH7.5, 150 mM NaCl, 5 mM EDTA) supplemented with protease inhibitors (10 μg/mL aprotinin, 10 μg/mL leupeptin and 1 mM PMSF) and phosphatase inhibitors (5 mM sodium pyrophosphate and 1 mM Na3VO4). Supernatants were incubated 2h with 1 μg anti-CD28 mAb, and proteins were immunoprecipitated overnight at 4° C. with protein G-Sepharose beads (GE Healthcare). The immunoprecipitated proteins were resolved by SDS-PAGE, transferred onto a PVDF membrane and probed overnight at 4° C. with primary antibodies, followed by incubation for 1 h at room temperature with horseradish peroxidase (HRP)-conjugated secondary antibodies. Signals were visualized by enhanced chemiluminescence (ECL; GE Healthcare) and were exposed to X-ray film. Densitometry analysis was performed with ImageJ software. Immunoblotting antibodies to CD28 (C-20) and PKCθ (C-19) were obtained from Santa Cruz Biotechnology.
Multiple sclerosis is an autoimmune disease with a prominent T cell component; as such, it was reasoned that DMF in some cases impact primary T cell activation. Consistent with this, previous reports have shown that DMF inhibits cytokine release from mouse splenocytes and promotes a Th2 phenotype via induction of IL-10-producing type II dendritic cells. The effects of DMF and MMF (
DMF is thought to produce neuroprotective effects through activating the Nrf2-Keap1 pathway, but whether this pathway contributes to the immunomodulatory effects of DMF is unclear. A recent study showed that DMF inhibits pro-inflammatory cytokine release from primary mouse splenocytes and this effect was comparable in wild type and Nrf2(−/−) splenocytes (Gillard, et al., “DMF, but not other fumarates, inhibits NF-kappaB activity in vitro in an Nrf2-independent manner,” J. Neuroimmunol. 283, 74-85 (2015)). Consistent with this, it was found that the activation of Nrf2(+/+) and (−/−) T cells was similarly sensitive to inhibition by DMF (
The inhibition of T cell activation by DMF, but not the non-electrophilic analogues MMF and DMS, pointed to a mechanism that involves covalent reactivity with one or more proteins important for T cell function. As such, a globally inventory of DMF-sensitive Cys residues in primary human and mouse T cells were examined using the quantitative chemical proteomic platform isoTOP-ABPP. In this method, DMF is evaluated for its ability to block the reactivity of proteinaceous Cys residues with the general electrophilic probe iodoacetamide-alkyne (IA-alkyne). Using isotopically differentiated azide-biotin tags (containing a TEV protease-cleavable linker), Cys residues are identified and comparatively quantified for their IA-reactivity in cells treated with DMF versus DMSO control. Primary advantages of the isoTOP-ABPP platform include: 1) the competing electrophile does not itself need to be chemically altered for target identification, which is particularly beneficial when studying very small compounds like DMF; and 2) isotopic labeling occurs late in the sample processing, which facilitates the quantitative analysis of primary cells and tissues that are not readily amenable to metabolic labeling.
The isoTOP-ABPP method was performed on primary human T cells treated with DMSO or DMF (50 μM, 4 h). Five independent replicates were performed, and the total aggregate number of unique quantified peptides and proteins began to plateau by the fourth and fifth replicate (
The possibility that some of the alterations in Cys reactivity following DMF treatment could reflect changes in protein expression was considered; however, multiple Cys residues were quantified by isoTOP-ABPP for the majority of proteins harboring DMF-sensitive Cys residues, and, in most of these cases, the additional quantified Cys residues were clearly unaffected by DMF treatment (
Considering that DMF impaired the activation of both human and mouse T cells, it was surmised that at least a subset of Cys residues potentially important for mediating DMF action were conserved in humans and mice. Consistent with this, approximately two-thirds of the DMF-sensitive Cys residues discovered in human T cells are conserved in mice (
The proteins containing DMF-sensitive Cys residues, as a whole, originated from several functional classes, including enzymes, channels, transporters, scaffolding proteins, and transcriptional regulators (
PKCθ is a key kinase involved in T cell signaling at the immunological synapse where engagement of the T cell receptor and CD28 co-receptor initiates activation of multiple downstream pathways, including NF-κB. T cells from PKCθ(−/−) mice are defective in early activation. The isoTOP-ABPP analysis identified two DMF sensitive Cys residues—C14 and C17—in human (
The DMFsensitive Cys residue C75 is located between two amino acids—G74 and R76—that, when mutated in humans, contribute to an immunosuppressive phenotype. The amino acid 74-76 region of ADA is over 25 angstroms from the active site of the enzyme (
Table 1 illustrates a list of liganded cysteines and their reactivity profiles with the fragment electrophile library from isoTOP-ABPP experiments performed in cell lysates (in vitro). Table 1 further shows the accession number (or the protein identifier) of the protein.
Table 2 illustrates a list of liganded cysteines and their reactivity profiles with the fragment electrophile library from isoTOP-ABPP experiments performed in situ. Table 2 further shows the accession number (or the protein identifier) of the protein.
Table 3 illustrates a list of cysteine containing proteins and potential cysteine site of conjugation.
Table 4 shows representative cysteines with known covalent ligands targeted by fragment electrophiles in isoTOP-ABPP experiments.
Table 5 shows Reactive docking results for liganded cysteines.
Table 6 shows site of fragment labeling for recombinant proteins. The underlines portion indicates the fragment-modified cysteines.
Table 7 illustrates a list of DMF-sensitive Cys residues in human T cells, defined as Cys residues that showed R values (DMSO/DMF)>4 in isoTOP-ABPP experiments comparing DMSO-versus DMF-treated T cells.
Table 8 illustrates an exemplary list of DMF sensitive cysteine-containing proteins in human T cell targets. Table 8 further shows the accession number (or the protein identifier) of the protein.
Table 9 illustrates the full protein sequence of exemplary cysteine-containing proteins described herein. The cysteine residue of interest is denoted with (*).
Table 10A-Table 10E illustrate a list of cysteine containing proteins and potential cysteine site of conjugation separated by protein class. Table 10 Å illustrates cysteine containing enzymes and potential cysteine conjugation site. Table 10B shows a list of cysteine containing transcription factors and regulators. Table 10C shows an exemplary list of cysteine containing channels, transporters and receptors. Table 10D illustrates an exemplary cysteine containing adapter, scaffolding, and modulator protein. Table 10E provides an exemplary list of uncategorized cysteine containing proteins.
The examples and embodiments described herein are for illustrative purposes only and various modifications or changes suggested to persons skilled in the art are to be included within the spirit and purview of this application and scope of the appended claims.
This application is a continuation of U.S. application Ser. No. 15/331,745, filed on Oct. 21, 2016, which claims the benefit of U.S. Provisional Application No. 62/345,710, filed on Jun. 3, 2016, and U.S. Provisional Application No. 62/244,881, filed on Oct. 22, 2015, each of which are incorporated herein by reference in their entireties.
This invention was made with government support under grant numbers CA087660, GM090294, GM108208, and GM069832 awarded by the National Institutes of Health. Accordingly, the U.S. Government has certain rights in this invention. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62345710 | Jun 2016 | US | |
62244881 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15331745 | Oct 2016 | US |
Child | 16890966 | US |