Embodiments of the invention are in the field of integrated circuit fabrication and, in particular, damascene-based approaches for fabricating a pedestal for a magnetic tunnel junction (MTJ) device, and the resulting structures.
For the past several decades, the scaling of features in integrated circuits has been a driving force behind an ever-growing semiconductor industry. Scaling to smaller and smaller features enables increased densities of functional units on the limited real estate of semiconductor chips. For example, shrinking transistor size allows for the incorporation of an increased number of memory devices on a chip, lending to the fabrication of products with increased capacity. The drive for ever-more capacity, however, is not without issue. The necessity to optimize the performance of each device becomes increasingly significant.
Non-volatile embedded memory, e.g., on-chip embedded memory with non-volatility can enable energy and computational efficiency. However, there may be density limitations for traditional spin torque transfer magnetoresistive random access memory (STT-MRAM) integration to accommodate large write switching current and select transistor requirements. Specifically, traditional STT-MRAM has a cell size limitation due to the drive transistor requirement to provide sufficient spin current. Furthermore, such memory is associated with large write current (>100 μA) and voltage (>0.7 V) requirements of conventional magnetic tunnel junction (MTJ) based devices.
As such, significant improvements are still needed in the area of non-volatile memory arrays based on MTJs.
Damascene-based approaches for fabricating a pedestal for a magnetic tunnel junction (MTJ) device, and the resulting structures, are described. In the following description, numerous specific details are set forth, such as specific magnetic tunnel junction (MTJ) layer regimes, in order to provide a thorough understanding of embodiments of the present invention. It will be apparent to one skilled in the art that embodiments of the present invention may be practiced without these specific details. In other instances, well-known features, such as operations associated with embedded memory, are not described in detail in order to not unnecessarily obscure embodiments of the present invention. Furthermore, it is to be understood that the various embodiments shown in the Figures are illustrative representations and are not necessarily drawn to scale.
One or embodiments of the present invention are directed to methods for creating an etch-free pedestal MTJ device (also referred to as a pedestal free MTJ device). Embodiments may pertain to one or more of magnetic tunnel junctions (MTJs), magnetic random access memory (MRAM), or spin transfer torque magnetoresistive random access memory (STT-MRAM).
To provide context, typical MRAM array stacks have an underlying metal layer, such as a metal line or via of a back end of line (BEOL) metallization layer. A pedestal layer is then deposited followed by MTJ layers. Reactive ion etch (RIE) chemistries used to etch such pedestal layer may cause damage to the MTJ devices and may require additional compatibility with the underlying metal layer. These constraints can be extremely challenging in the manufacturing of devices including such layers.
In accordance with one or more embodiments described herein, a metal feature such as a metal line of a metallization layer is recessed after initial formation. A conductive pedestal layer is then deposited and polished back to a flat front or uppermost surface. The need for a pedestal etch process is thus eliminated. Processing schemes described herein may further eliminate, or at least mitigate, the need for complex integration used to protect the sidewall of the MTJ layers and/or the development of new and expensive etch chemistries. In certain embodiments, the resulting pedestal layer is smooth or flat within the surrounding inter-layer dielectric (ILD), whereas previous solutions have resulted in a pedestal metal that is higher than the surrounding ILD.
To provide further context,
Referring to
Referring to
Addressing one or more of the above described issues, in accordance with one or more embodiments described herein, pedestal free processing is described, in that no etch patterning of the pedestal material is needed. In a generic embodiment, a process for fabricating a pedestal layer includes recessing a metal feature in a metallization layer, filling the recessed regions with a pedestal material, and polishing back to form a cladded metal line with pedestal material on top. Although a chemical mechanical planarization (CMP) process may be implemented to planarize the pedestal material to an underlying ILD layer, an etch of a continuous pedestal material is not required.
As an exemplary structure achieved upon implementing one or more approaches described herein,
Referring to
Referring again to
It is also to be appreciated that although the MTJ devices 202 may actually include multiple layers of very thin metal films, for the sake of simplicity the MTJ film stack is divided into 4 portions in
Using
In a first exemplary processing scheme,
Referring to
Referring to
Referring to
Referring to
In a second exemplary processing scheme,
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring again now to
Referring again to
Referring again to
Referring again to
Referring again to
Referring again to
Referring again to
Referring again to
Referring again to
It is to be appreciated that the layers and materials described in association with
Although the above damascene-based approaches for fabricating a pedestal for a magnetic tunnel junction (MTJ) device have been described in detail with respect to select operations, it is to be appreciated that additional or intermediate operations for fabrication may include standard microelectronic fabrication processes such as lithography, etch, thin films deposition, planarization (such as chemical mechanical polishing (CMP)), diffusion, metrology, the use of sacrificial layers, the use of etch stop layers, the use of planarization stop layers, and/or any other associated action with microelectronic component fabrication.
It is also to be appreciated that in certain aspects and at least some embodiments of the present invention, certain terms hold certain definable meanings. For example, a “free” magnetic layer is a magnetic layer storing a computational variable. A “fixed” magnetic layer is a magnetic layer with fixed magnetization (magnetically harder than the free magnetic layer). A tunneling barrier, such as a tunneling dielectric or tunneling oxide, is one located between free and fixed magnetic layers. A fixed magnetic layer may be patterned to create inputs and outputs to an associated circuit. Magnetization may be written by spin hall effect. Magnetization may be read via the tunneling magneto-resistance effect while applying a voltage. In an embodiment, the role of the dielectric layer is to cause a large magneto-resistance ratio. The magneto-resistance is the ratio of the difference between resistances when the two ferromagnetic layers have anti-parallel magnetizations and the resistance of the state with the parallel magnetizations over the resistance of the state with parallel magnetizations.
In an embodiment, the MTJ functions essentially as a resistor, where the resistance of an electrical path through the MTJ may exist in two resistive states, either “high” or “low,” depending on the direction or orientation of magnetization in the free magnetic layer and in the fixed magnetic layer. In the case that the spin direction is of minority in the free magnetic layer, a high resistive state exists, wherein direction of magnetization in the free magnetic layer and the fixed magnetic layer are substantially opposed or anti-parallel with one another. In the case that the spin direction is of majority in the free magnetic layer, a low resistive state exists, wherein the direction of magnetization in the free magnetic layer and the fixed magnetic layer is substantially aligned or parallel with one another. It is to be understood that the terms “low” and “high” with regard to the resistive state of the MTJ are relative to one another. In other words, the high resistive state is merely a detectibly higher resistance than the low resistive state, and vice versa. Thus, with a detectible difference in resistance, the low and high resistive states can represent different bits of information (i.e. a “0” or a “1”).
Thus, the MTJ may store a single bit of information (“0” or “1”) by its state of magnetization. The information stored in the MTJ is sensed by driving a current through the MTJ. The free magnetic layer does not require power to retain its magnetic orientations. As such, the state of the MTJ is preserved when power to the device is removed. Therefore, a memory bit cell such as depicted in
In accordance with an embodiment of the present invention, each bit of data is stored in a separate magnetic tunnel junction (MTJ). The MTJ is a magnetic element that includes two magnetic layers separated by a thin insulating tunnel barrier layer. One of the magnetic layers is referred to as the reference layer, the fixed layer, or the pinned magnetic layer, and it provides a stable reference magnetic orientation. The bit is stored in the second magnetic layer which is called the free layer, and the orientation of the magnetic moment of the free layer can be either in one of two states—parallel to the reference layer or anti-parallel to the reference layer. Because of the tunneling magneto-resistance (TMR) effect, the electrical resistance of the anti-parallel state is significantly higher compared to the parallel state. To write information in a STT-MRAM device, the spin transfer torque effect is used to switch the free layer from the parallel to anti-parallel state and vice versa. The passing of current through the MTJ produces spin polarized current, which results in a torque being applied to the magnetization of the free layer. When the spin polarized current is sufficiently strong, enough torque is applied to the free layer to cause its magnetic orientation to change, thus allowing for bits to be written. To read the stored bit, the sensing circuitry measures the resistance of the MTJ. Since the sensing circuitry needs to determine whether the MTJ is in the low resistance (e.g. parallel) state or in the high resistance state (e.g. anti-parallel) with acceptable signal-to-noise, the STT-MRAM cell needs to be designed such that the overall electrical resistance and resistance variation of the cell are minimized.
Relating to one or more embodiments described herein, it is to be appreciated that traditional DRAM memory is facing severe scaling issues and, so, other types of memory devices are being actively explored in the electronics industry. One future contender is STT-MRAM devices. Embodiments described herein include a fabrication method for embedding STT-MRAM bit cell arrays into a logic process technology. Embodiments described may be advantageous for processing schemes involving the fabrication of logic processors with embedded memory arrays.
In an embodiment, transistors associated with substrate 204 are metal-oxide-semiconductor field-effect transistors (MOSFET or simply MOS transistors), fabricated on the substrate 204. In various implementations of the invention, the MOS transistors may be planar transistors, nonplanar transistors, or a combination of both. Nonplanar transistors include FinFET transistors such as double-gate transistors and tri-gate transistors, and wrap-around or all-around gate transistors such as nanoribbon and nanowire transistors.
In an embodiment, each MOS transistor of substrate 204 includes a gate stack formed of at least two layers, a gate dielectric layer and a gate electrode layer. The gate dielectric layer may include one layer or a stack of layers. The one or more layers may include silicon oxide, silicon dioxide (Sift) and/or a high-k dielectric material. The high-k dielectric material may include elements such as hafnium, silicon, oxygen, titanium, tantalum, lanthanum, aluminum, zirconium, barium, strontium, yttrium, lead, scandium, niobium, and zinc. Examples of high-k materials that may be used in the gate dielectric layer include, but are not limited to, hafnium oxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, and lead zinc niobate. In some embodiments, an annealing process may be carried out on the gate dielectric layer to improve its quality when a high-k material is used.
The gate electrode layer of each MOS transistor of substrate 204 is formed on the gate dielectric layer and may consist of at least one P-type workfunction metal or N-type workfunction metal, depending on whether the transistor is to be a PMOS or an NMOS transistor. In some implementations, the gate electrode layer may consist of a stack of two or more metal layers, where one or more metal layers are workfunction metal layers and at least one metal layer is a fill metal layer.
For a PMOS transistor, metals that may be used for the gate electrode include, but are not limited to, ruthenium, palladium, platinum, cobalt, nickel, and conductive metal oxides, e.g., ruthenium oxide. A P-type metal layer will enable the formation of a PMOS gate electrode with a workfunction that is between about 4.9 eV and about 5.2 eV. For an NMOS transistor, metals that may be used for the gate electrode include, but are not limited to, hafnium, zirconium, titanium, tantalum, aluminum, alloys of these metals, and carbides of these metals such as hafnium carbide, zirconium carbide, titanium carbide, tantalum carbide, and aluminum carbide. An N-type metal layer will enable the formation of an NMOS gate electrode with a workfunction that is between about 3.9 eV and about 4.2 eV.
In some implementations, the gate electrode may consist of a “U”-shaped structure that includes a bottom portion substantially parallel to the surface of the substrate and two sidewall portions that are substantially perpendicular to the top surface of the substrate. In another implementation, at least one of the metal layers that form the gate electrode may simply be a planar layer that is substantially parallel to the top surface of the substrate and does not include sidewall portions substantially perpendicular to the top surface of the substrate. In further implementations of the invention, the gate electrode may consist of a combination of U-shaped structures and planar, non-U-shaped structures. For example, the gate electrode may consist of one or more U-shaped metal layers formed atop one or more planar, non-U-shaped layers.
In some implementations of the invention, a pair of sidewall spacers may be formed on opposing sides of the gate stack that bracket the gate stack. The sidewall spacers may be formed from a material such as silicon nitride, silicon oxide, silicon carbide, silicon nitride doped with carbon, and silicon oxynitride. Processes for forming sidewall spacers are well known in the art and generally include deposition and etching process steps. In an alternate implementation, a plurality of spacer pairs may be used, for instance, two pairs, three pairs, or four pairs of sidewall spacers may be formed on opposing sides of the gate stack.
As is well known in the art, source and drain regions are formed within the substrate adjacent to the gate stack of each MOS transistor. The source and drain regions are generally formed using either an implantation/diffusion process or an etching/deposition process. In the former process, dopants such as boron, aluminum, antimony, phosphorous, or arsenic may be ion-implanted into the substrate to form the source and drain regions. An annealing process that activates the dopants and causes them to diffuse further into the substrate typically follows the ion implantation process. In the latter process, the substrate may first be etched to form recesses at the locations of the source and drain regions. An epitaxial deposition process may then be carried out to fill the recesses with material that is used to fabricate the source and drain regions. In some implementations, the source and drain regions may be fabricated using a silicon alloy such as silicon germanium or silicon carbide. In some implementations the epitaxially deposited silicon alloy may be doped in situ with dopants such as boron, arsenic, or phosphorous. In further embodiments, the source and drain regions may be formed using one or more alternate semiconductor materials such as germanium or a group III-V material or alloy. And in further embodiments, one or more layers of metal and/or metal alloys may be used to form the source and drain regions.
Depending on its applications, computing device 700 may include other components that may or may not be physically and electrically coupled to the board 702. These other components include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory (e.g., ROM), flash memory, a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass, an accelerometer, a gyroscope, a speaker, a camera, and a mass storage device (such as hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth).
The communication chip 706 enables wireless communications for the transfer of data to and from the computing device 700. The term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 706 may implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The computing device 700 may include a plurality of communication chips 706. For instance, a first communication chip 706 may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 706 may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
The processor 704 of the computing device 700 includes an integrated circuit die packaged within the processor 704. In some implementations of embodiments of the invention, the integrated circuit die of the processor includes one or more arrays, such as STT-MRAM memory arrays integrated into a logic processor, built in accordance with embodiments of the present invention. The term “processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.
The communication chip 706 also includes an integrated circuit die packaged within the communication chip 706. In accordance with another implementation of an embodiment of the invention, the integrated circuit die of the communication chip includes STT-MRAM memory arrays integrated into a logic processor, built in accordance with embodiments of the present invention.
In further implementations, another component housed within the computing device 700 may contain a stand-alone integrated circuit memory die that includes one or more arrays, such as STT-MRAM memory arrays integrated into a logic processor, built in accordance with embodiments of the present invention.
In various implementations, the computing device 700 may be a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultra-mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder. In further implementations, the computing device 700 may be any other electronic device that processes data.
Accordingly, one or more embodiments of the present invention relate generally to the fabrication of embedded microelectronic memory. The microelectronic memory may be non-volatile, wherein the memory can retain stored information even when not powered. One or more embodiments of the present invention relate to the fabrication of STT-MRAM memory arrays integrated into a logic processor. Such arrays may be used in an embedded non-volatile memory, either for its non-volatility, or as a replacement for embedded dynamic random access memory (eDRAM). For example, such an array may be used for 1T-1X memory or 2T-1X memory (X=capacitor or resistor) at competitive cell sizes within a given technology node.
The interposer 800 may be formed of an epoxy resin, a fiberglass-reinforced epoxy resin, a ceramic material, or a polymer material such as polyimide. In further implementations, the interposer may be formed of alternate rigid or flexible materials that may include the same materials described above for use in a semiconductor substrate, such as silicon, germanium, and other group III-V and group IV materials.
The interposer may include metal interconnects 808 and vias 810, including but not limited to through-silicon vias (TSVs) 812. The interposer 800 may further include embedded devices 814, including both passive and active devices. Such devices include, but are not limited to, capacitors, decoupling capacitors, resistors, inductors, fuses, diodes, transformers, sensors, and electrostatic discharge (ESD) devices. More complex devices such as radio-frequency (RF) devices, power amplifiers, power management devices, antennas, arrays, sensors, and MEMS devices may also be formed on the interposer 800. In accordance with embodiments of the invention, apparatuses or processes disclosed herein may be used in the fabrication of interposer 800.
Thus, embodiments of the present invention include damascene-based approaches for fabricating a pedestal for a magnetic tunnel junction (MTJ) device, and the resulting structures.
In an embodiment, a magnetic tunnel junction (MTJ) device includes a metal line disposed in a dielectric layer disposed above a substrate, the metal line recessed below an uppermost surface of the dielectric layer. The MTJ device also includes a conductive pedestal disposed on the metal line and laterally adjacent to the dielectric layer. The MTJ device also includes a magnetic tunnel junction (MTJ) stack disposed on the conductive pedestal.
In one embodiment, an uppermost surface of the conductive pedestal is co-planar with the uppermost surface of the dielectric layer.
In one embodiment, a portion of the conductive pedestal is not covered by the MTJ stack.
In one embodiment, the MTJ device further includes a second dielectric layer disposed on the dielectric layer and laterally adjacent to the MTJ stack. A portion of the second dielectric layer is disposed on a portion of the conductive pedestal.
In one embodiment, the MTJ device further includes an upper electrode disposed on the MTJ stack. The upper electrode has, from a top-down perspective, substantially the same shape as the MTJ stack.
In one embodiment, the MTJ stack includes a fixed magnetic layer disposed above the conductive pedestal, a tunneling layer disposed on the fixed magnetic layer, and a free magnetic layer disposed on the tunneling layer.
In one embodiment, the MTJ stack further includes a synthetic antiferromagnet (SAF) layer disposed directly between the fixed magnetic layer and the conductive pedestal.
In one embodiment, the MTJ device further includes a second MTJ stack disposed on the conductive pedestal.
In an embodiment, a method of fabricating a magnetic tunnel junction (MTJ) device includes forming a metal line in a dielectric layer formed above a substrate, recessing the metal line below an uppermost surface of the dielectric layer, forming a conductive layer on the recessed metal line and over the uppermost surface of the dielectric layer, planarizing the conductive layer to form a conductive pedestal on the metal line, the conductive pedestal confined within and laterally adjacent to the dielectric layer, and forming a magnetic tunnel junction (MTJ) stack on the conductive pedestal.
In one embodiment, planarizing the conductive layer includes forming an uppermost surface of the conductive pedestal co-planar with the uppermost surface of the dielectric layer.
In one embodiment, forming the MTJ stack includes forming the MTJ stack on only a portion of the conductive pedestal.
In one embodiment, the method further includes forming a second dielectric layer on the dielectric layer and laterally adjacent to the MTJ stack, a portion of the second dielectric layer formed on a portion of the conductive pedestal.
In one embodiment, forming the MTJ stack includes forming a patterned conductive hardmask on a stack of MTJ layers, and etching the stack of MTJ layers using an etch process that terminates on the conductive pedestal.
In one embodiment, forming the MTJ stack includes forming a fixed magnetic layer above the conductive pedestal, forming a tunneling layer on the fixed magnetic layer, and forming a free magnetic layer on the tunneling layer.
In one embodiment, forming the MTJ stack further includes forming a synthetic antiferromagnet (SAF) layer on the conductive pedestal, and forming the fixed magnetic layer on the SAF layer.
In one embodiment, the method further includes forming a second MTJ stack on the conductive pedestal.
In an embodiment, a method of fabricating a magnetic tunnel junction (MTJ) device includes forming a metal line in a dielectric layer formed above a substrate, recessing the metal line below an uppermost surface of the dielectric layer, selectively forming a conductive layer on the recessed metal line to a height above the uppermost surface of the dielectric layer, planarizing the conductive layer to form a conductive pedestal on the metal line, the conductive pedestal confined within and laterally adjacent to the dielectric layer, and forming a magnetic tunnel junction (MTJ) stack on the conductive pedestal.
In one embodiment, planarizing the conductive layer includes forming an uppermost surface of the conductive pedestal co-planar with the uppermost surface of the dielectric layer.
In one embodiment, forming the MTJ stack includes forming the MTJ stack on only a portion of the conductive pedestal.
In one embodiment, the method further includes forming a second dielectric layer on the dielectric layer and laterally adjacent to the MTJ stack, a portion of the second dielectric layer formed on a portion of the conductive pedestal.
In one embodiment, forming the MTJ stack includes forming a patterned conductive hardmask on a stack of MTJ layers, and etching the stack of MTJ layers using an etch process that terminates on the conductive pedestal.
In one embodiment, forming the MTJ stack includes forming a fixed magnetic layer above the conductive pedestal, forming a tunneling layer on the fixed magnetic layer, and forming a free magnetic layer on the tunneling layer.
In one embodiment, forming the MTJ stack further includes forming a synthetic antiferromagnet (SAF) layer on the conductive pedestal, and forming the fixed magnetic layer on the SAF layer.
In one embodiment, the method further includes forming a second MTJ stack on the conductive pedestal.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/025273 | 3/31/2016 | WO | 00 |