Damper system for transportation

Information

  • Patent Application
  • 20050016896
  • Publication Number
    20050016896
  • Date Filed
    May 26, 2004
    20 years ago
  • Date Published
    January 27, 2005
    19 years ago
Abstract
A damper system for transportation includes a packaging box for storing a container containing a work and also includes a pair of an upper damper and a lower damper each placed between the packaging box and the container. The upper and lower dampers contain foamed polyethylene or polypropylene, the upper damper includes upper impact-absorbing sections, and the lower damper includes lower impact-absorbing sections. The sum of h2 and h1 is equal to the width of an upper or lower space between the packaging box and the container, and h1 is greater than h2, wherein h2 represents the height of the upper impact-absorbing sections and h1 represents the height of the lower impact-absorbing sections. The shape of the upper and lower impact-absorbing sections is rectangular parallelepiped shape.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims, under 35 USC 119, priority of Japanese Application No. 2003-200935 filed Jul. 24, 2003.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to packaging systems for transporting containers principally storing circular works such as semiconductor wafers or magnetic disks. The present invention particularly relates to a damper system for transportation. The damper system includes a packaging box, such as a corrugated fiberboard box, for storing a container containing a work and also includes a pair of upper and lower dampers placed between the container and the packaging box. The dampers absorb impact applied from outside, whereby the container and the work placed therein are prevented from being damaged.


2. Description of the Related Art



FIG. 4 shows a known damper system for transporting semiconductor wafers or recording disks. The known damper system includes a packaging box 1 including a corrugated fiberboard; a lower damper 2, placed on a bottom section of the packaging box 1, having a recessed retaining portion 4; a container 5, made of plastic or resin, storing several tens of semiconductor wafers or recording disks; and an upper damper 3 placed on the container 5. The container 5 is retained with the recessed retaining portion 4 in a fitted manner and placed between the lower damper 2 and the upper damper 3. The packaging box 1 is sealed with staples or a strip of adhesive tape. Therefore, the container 5 is protected from impact applied from outside during the transportation thereof and therefore prevented from being injured or damaged, and the semiconductor wafers or the recording disks placed in the container 5 are also prevented from being injured or damaged.


The lower and upper dampers 2 and 3 principally include a molded article made of a thin plastic sheet; a foam-molded article made of polyethylene, polypropylene, or polyurethane; or a laminated corrugated fiberboard. Those materials can be readily distorted by impact and cannot be readily restored to their former state; hence, the lower and upper dampers 2 and 3, once distorted, cannot absorb impact continuously applied thereto.


Japanese Unexamined Patent Application Publication No. 2000-208602 discloses a shipping box that is partly reusable and hardly propagates impact. The shipping box is made of metal and includes a cushioning material placed therein. However, the shipping box is not suitable for practical use because the usage cost is high unless the box is fully reused.


On the other hand, large-diameter semiconductor wafers with a diameter of 300 mm have a weight at least twice greater than that of known semiconductor wafers with a diameter of 200 mm. Therefore, containers for storing the large-diameter semiconductor wafers have a large weight. Increase in the diameter of semiconductor wafers causes a decrease in the strength of the wafers; hence, a slight impact that does not cause damage in the 200-mm wafers during the transportation causes serious damage in the 300-mm wafers during the transportation in some cases.


For example, Japanese Unexamined Patent Application Publication No. 2002-160769 discloses a bellows, which is one of dampers for containers that do not cause an increase in the volume or size of packages and absorb impact, the bellows being made of a molded sheet containing polypropylene or polyethylene. However, the bellows has an insufficient ability to absorb impact and cannot therefore be used for transporting the 300 mm wafers.


In general, molded plastic sheets and laminated corrugated fiberboards used in known techniques have low resilience. Therefore, once the sheets and the fiberboards receive a strong impact, they are distorted and cannot function as dampers. Dampers made of foamed polyurethane can be restored to its former state if the dampers receive impact. However, in the dampers, there is a problem in that poisonous gas is generated when the dampers discarded are burned.


The inventors have investigated the ability to absorb impact, the resilience, and the disposal problem, found that foamed polyethylene and polypropylene are the best materials for forming dampers, and then developed a new type of damper that is suitable for transporting a large-diameter semiconductor wafer with a diameter of 300 mm.


Dampers containing foamed polyethylene or polypropylene will now be described with reference to FIGS. 4, 5, and 6. FIG. 5a is a plan view showing an upper damper 3 and FIG. 5b is a sectional view showing the upper damper 3 taken along the line C-C′ of FIG. 5a. FIG. 6a is a plan view showing a lower damper 2 and FIG. 6b is a sectional view showing the lower damper 2 taken along the line C-C′ of FIG. 6a and a portion of the lower damper 2 in an enlarged manner.


The upper damper 3 includes eight first impact-absorbing sections 6 and four upper impact-absorbing sections 7. The front, rear, right, and left faces of the upper damper 3 each have two of the eight first impact-absorbing sections 6 thereon and the upper face of the upper damper 3 has the upper impact-absorbing sections 7 each placed at corresponding predetermined regions (regions each corresponding to the corners of a container 5) each located close to the four corners of the upper face. When impact is applied to the upper damper 3 in a direction, some of the first impact-absorbing sections 6 and upper impact-absorbing sections 7 are pressed and thereby distorted, whereby the applied impact is absorbed. The upper damper 3 has a container-retaining section, lying over the container 5 with a size specified in the SEMI standard (M31), for retaining each of various types of containers. The lower damper 2 as well as the upper damper 3 include eight second impact-absorbing sections 9 and four lower impact-absorbing sections 10. The front, rear, right, and left faces of the lower damper 2 each have two of the eight second impact-absorbing sections 9 thereon and the lower face of the lower damper 2 has the lower impact-absorbing sections 10 each placed at corresponding predetermined regions (regions each corresponding to the corners of the container 5) each located close to the four corners of the lower face. When impact is applied to the lower damper 2 in a direction, some of the second impact-absorbing sections 9 and lower impact-absorbing sections 10 are pressed and thereby distorted, whereby the applied impact is absorbed.


The upper and lower impact-absorbing sections 7 and 10 have the same height and shape, trapezoidal, the height of the upper impact-absorbing sections 7 being represented by h1 and that of the lower impact-absorbing sections 10 being represented by h2. Therefore, when a strong impact is applied to the lower and upper dampers 2 and 3 in the lower direction, the lower and upper dampers 2 and 3 cannot sufficiently absorb the impact.


SUMMARY OF THE INVENTION

In view of the foregoing circumstances, the present invention has been made to enhance the ability to absorb impact and the resilience and made to cope with the disposal problem. It is an object of the present invention to provide a damper system for transporting a semiconductor wafer or the like. The damper system protects a product, stored in a container placed in a packaging box having a predetermined size, from a strong impact applied to the packaging box particularly in the lower direction during the transportation of the product.


In order to achieve the above object, a damper system for transportation according to the present invention includes a packaging box for storing a container containing a work and also includes a pair of an upper damper and a lower damper each placed between the packaging box and the container. The upper and lower dampers contain foamed polyethylene or polypropylene. The upper damper includes upper impact-absorbing sections and the lower damper includes lower impact-absorbing sections. The sum of h2 and h1 is equal to the width of an upper or lower space between the packaging box and the container, and h1 is greater than h2, where h2 represents the height of the upper impact-absorbing sections and h1 represents the height of the lower impact-absorbing sections.


In the damper system, h1 is within a range of 4 to 5 cm and h2 is within a range of 0.5 to 1.5 cm.


In the damper system, the lower impact-absorbing sections have a rectangular parallelepiped shape.


In the damper system, the lower damper has an opening for distributing impact, applied from outside, to the lower impact-absorbing sections, the opening being located at the center of the lower damper.


In the damper system, the percentage of Sb to Sa is within a range of 3% to 5%, wherein Sa represents the area of the upper or lower face of the packaging box and Sb represents the area of each of contact portions between the packaging box and the upper impact-absorbing sections or the lower impact-absorbing sections.


Since the upper and lower dampers contain foamed polyethylene or polypropylene and the height of the lower impact-absorbing sections is greater than that of the upper impact-absorbing sections, the damper system absorbs impact applied in the lower direction and the container or semiconductor wafers placed in the container can therefore be prevented from being damaged if the damper system is dropped from the top of triple-stacked cargo or dropped at a height of 1.5 m or more during the transportation.


The lower impact-absorbing sections have a rectangular parallelepiped shape, whereas known impact-absorbing sections have a trapezoidal shape. Therefore, when a strong impact is applied to the impact-absorbing sections, the impact-absorbing sections are uniformly distorted, whereby the impact is efficiently absorbed. Furthermore, the lower damper has the opening located at the center thereof, whereby the contact area between the container and the lower damper is minimized and an applied impact is distributed. Therefore, the damper system has a high ability to absorb impact.


The lower impact-absorbing sections preferably have a height of 4 to 5 cm. When the height is less than 4 cm, the impact-absorbing ability is low. In contrast, when the height is more than 5 cm, the upper impact-absorbing sections have an insufficient height because the packaging box has a predetermined size. Thus, the height of the lower impact-absorbing sections is preferably 4 to 5 cm in consideration of the minimum height of the upper impact-absorbing sections. The damper system preferably has a recessed portion so as to retain various types of containers specified in the SEMI standard.


Since the lower damper has the opening located at the center thereof, impact applied from outside is distributed to the lower impact-absorbing sections because the impact is prevented from being propagated to the opening. Therefore, the lower impact-absorbing sections absorb the impact and the semiconductor wafers in the container are prevented from being damaged.


When the upper impact-absorbing sections have such a size that an upper space between the container and the packaging box is occupied with the upper impact-absorbing sections or the lower impact-absorbing sections have such a size that a lower space between the container and the packaging box is occupied with the lower impact-absorbing sections, the upper and lower impact-absorbing sections are not distorted by impact applied from outside and the impact is directly propagated to the container. In contrast, when the contact portions between the packaging box and the upper impact-absorbing sections or the lower impact-absorbing sections have an extremely small area, the upper and lower impact-absorbing sections cannot endure impact and are therefore buckled, that is, the upper and lower dampers do not function well. Thus, the percentage of Sb to Sa is preferably within a range of 3% to 5% in view of the above.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a sectional view showing a damper system of the present invention;



FIG. 2
a is a plan view showing an upper damper according to the present invention;



FIG. 2
b is a sectional view showing the upper damper taken along the line C-C′ of FIG. 2a;



FIG. 3
a is a plan view showing a lower damper according to the present invention;



FIG. 3
b is a sectional view showing the lower damper taken along the line C-C′ of FIG. 3a and a portion of the lower damper in an enlarged manner;



FIG. 4 is a sectional view showing a known damper system;



FIG. 5
a is a plan view showing a known upper damper;



FIG. 5
b is a sectional view showing the known upper damper taken along the line C-C′ of FIG. 5a;



FIG. 6
a is a plan view showing a known lower damper;



FIG. 6
b is a sectional view showing the known lower damper taken along the line C-C′ of FIG. 6a and a portion of the known lower damper in an enlarged manner;



FIG. 7 is a graph showing impact values determined in a drop test in which the height of lower impact-absorbing sections and the drop height are varied; and



FIG. 8 is a graph showing impact values determined in a drop test in which the drop height is varied.




DESCRIPTION OF THE PREFERRED EMBODIMENTS

A damper system for transportation according to an embodiment of the present invention will now be described with reference to the accompanying drawings. Since the damper system of this embodiment has substantially the same configuration as that of the known damper system described above, the same components have the same reference numerals and descriptions of the components are omitted. In this embodiment, the damper system is described using a system, used for transporting a container containing a semiconductor wafer, as an example. The damper system includes a packaging box 1 and a pair of a lower damper 2 and an upper damper 3.


With reference to FIG. 1, a container 5 stores semiconductor wafers W, for example, 25 silicon wafers, having a diameter of 300 mm, prepared according to the following procedure: a silicon ingot prepared by the Czochralski process is shaped into a block having a predetermined size, the block is sliced into sheets, and the sheets are chamfered, lapped, etched, and then polished. Other components shown in FIG. 5 are substantially the same as those shown in FIG. 4 and have the same reference numerals as those shown in FIG. 4, and descriptions of the components are omitted.


The upper damper 3 includes eight first impact-absorbing sections 6 and four upper impact-absorbing sections 7A. The front, rear, right, and left faces of the upper damper 3 each have two of the eight first impact-absorbing sections 6 thereon and the upper face of the upper damper 3 has the upper impact-absorbing sections 7A each placed at corresponding predetermined regions (regions each corresponding to the corners of the container 5) each located close to the four corners of the upper face. When impact is applied to the upper damper 3 in a direction, some of the first impact-absorbing sections 6 and upper impact-absorbing sections 7A are pressed and thereby distorted, whereby the applied impact is absorbed. The upper impact-absorbing sections 7A have a rectangular parallelepiped shape and a height of 0.5 to 1.5 cm, the height being represented by h2.


The upper damper 3 has a container-retaining section, lying over the container 5 with a size specified in the SEMI standard (M31), for retaining each of various types of containers.


The upper damper 3 has a first opening 8 located at the center thereof. The first opening 8 allows the upper damper 3 to be in contact only with outer portions of the container 5. According to such a configuration, impact applied to the upper damper 3 in the upper direction is distributed to the upper impact-absorbing sections 7A, which are distorted, whereby the impact is absorbed. Therefore, the semiconductor wafers W placed in the container 5 are protected from the impact. Furthermore, the first opening 8 allows observers to confirm if there is the container 5 in the packaging box 1 and to see a label or the like placed on the upper face of the container 5.


The lower damper 2 as well as the upper damper 3 include eight second impact-absorbing sections 9 and four lower impact-absorbing sections 10A. The front, rear, right, and left faces of the lower damper 2 each have two of the eight second impact-absorbing sections 9 thereon and the lower face of the lower damper 2 has the lower impact-absorbing sections 10A each placed at corresponding predetermined regions (regions each corresponding to the corners of the container 5) each located close to the four corners of the lower face. The height of the lower impact-absorbing sections 10A is greater than that of the upper impact-absorbing sections 7A. When impact is applied to the lower damper 2 in a direction, some of the second impact-absorbing sections 9 and lower impact-absorbing sections 10A are pressed and thereby distorted, whereby the applied impact is absorbed. The lower impact-absorbing sections 10A have a rectangular parallelepiped shape and a height of 4 to 5 cm, the height being represented by h1. When a strong impact is applied to the lower impact-absorbing sections 10A, the lower impact-absorbing sections 10A are therefore uniformly distorted and absorb the impact slowly, whereby the semiconductor wafers W placed in the container 5 are prevented from being damaged. The upper face of the lower damper 2 has a recessed portion of which the bottom is flat and which is in contact only with a lower portion of the container 5. The weight of the container 5 is applied only to the lower portion thereof. When impact is applied to the lower damper 2 in the lower direction, only the lower impact-absorbing sections 10A are distorted, whereby the impact is absorbed.


The lower damper 2 has a second opening 11 located at the center thereof. The second opening 11 has the same function as that of the first opening 8. That is, the second opening 11 allows the lower damper 2 to be in contact only with outer portions of the container 5. According to such a configuration, impact applied to the lower damper 2 in the lower direction is distributed to the lower impact-absorbing sections 10A, which are distorted, whereby the impact is absorbed. When the lower impact-absorbing sections 10A are distorted due to the applied impact, the second opening 11 prevents the upper face of the lower damper 2 from being in contact with the lower face of the container 5; whereby the impact is prevented from being applied to the whole lower face of the container 5. The percentage of Sb to Sa is preferably within a range of 3% to 5% and more preferably 4%, wherein Sa represents the area of the upper or lower face of the packaging box 1 and Sb represents the area of each of contact portions between the packaging box 1 and the upper impact-absorbing sections 7A or the lower impact-absorbing sections 10A.


A drop test will now be described, the test being performed using a damper system for transportation according to the present invention and a known damper system for transportation. In the test, containers each containing 25 semiconductor silicon wafers with a diameter of 300 mm were each placed in corresponding packaging boxes made of a corrugated fiberboard, and the packaging boxes were sealed with staples or strips of adhesive tape.



FIG. 7 shows impact values determined in a first experiment, in which the drop height is 1, 1.2, or 1.5 m, lower dampers and upper dampers are made of foamed polyethylene expanded by 30 times, and the height of lower impact-absorbing sections is 4.5 cm. FIG. 8 shows impact values determined in a second experiment, in which the height of the lower impact-absorbing sections is 3.5, 4.0, or 4.5 cm and the drop height is 1 or 1.5 m. Conditions such as the number of the stored semiconductor silicon wafers and the material of the dampers are common to the first and second experiments.


As is clear from FIGS. 7 and 8, the damper system of the present invention more effectively absorbs impact as compared with the known damper system. Therefore, the silicon wafers placed in the container are prevented from being damaged.


As described above, a damper system of the present invention absorbs impact applied in the upper, lower, right, left, front, or back direction if the system includes a packaging box with a predetermined size. In particular, the damper system absorbs a strong impact applied to the system in the lower direction. Thus, semiconductor silicon wafers that have a large diameter and are therefore very expensive can be prevented from being chipped or cracked and can be transported safely and securely.


Examples of a material for forming the lower and upper dampers 2 and 3 include foamed polyethylene, which is used in the test described below, and polypropylene.


And if the h1, the height of the upper impact-absorbing sections 7A of the lower damper 2, is set within the range of 4 to 5 cm, the same function and effect as above-described embodiment can be obtained. In addition, the h2, the height of the lower impact-absorbing section 10A of the upper damper 3, is set within the range of 0.5 to 1.5 cm, the same function and effect as above-described embodiment can be also obtained.


The packaging box 1 and the container 5 each have a predetermined size and the size is not varied; hence, the width of spaces therebetween is not varied. Therefore, the sum of h1 and h2 is equal to the width of a lower or upper space between the packaging box 1 and the container 5.


Besides it, if the percentage of the Sb, the area of each of the contact portions, to the Sa, the area of the upper or lower face of the packaging box 1, is set within the range of 3 to 5%, the same function and effect as above-described embodiment can be also obtained.

Claims
  • 1. A damper system for transportation, comprising: a packaging box for storing a container containing a work; and a pair of an upper damper and a lower damper each placed between the packaging box and the container, wherein the upper and lower dampers contain foamed polyethylene or polypropylene, the upper damper includes upper impact-absorbing sections, the lower damper includes lower impact-absorbing sections, the sum of h2 and h1 is equal to the width of an upper or lower space between the packaging box and the container, and h1 is greater than h2, where h2 represents the height of the upper impact-absorbing sections and h1 represents the height of the lower impact-absorbing sections.
  • 2. The damper system according to claim 1, wherein h1 is within a range of 4 to 5 cm and h2 is within a range of 0.5 to 1.5 cm.
  • 3. The damper system according to claim 1, wherein the lower impact-absorbing sections have a rectangular parallelepiped shape.
  • 4. The damper system according to claim 2, wherein the lower damper has an opening for distributing impact, applied from outside, to the lower impact-absorbing sections, the opening being located at the center of the lower damper.
  • 5. The damper system according to claim 1, wherein the percentage of Sb to Sa is within a range of 3% to 5%, where Sa represents the area of the upper or lower face of the packaging box and Sb represents the area of each of contact portions between the packaging box and the upper impact-absorbing sections or the lower impact-absorbing sections.
Priority Claims (1)
Number Date Country Kind
200935 Jul 2003 JP national