The invention relates an identification method and process for objects from digitally captured images thereof that uses data characteristics to identify an object from a plurality of objects in a database.
There is a need to identify an object that has been digitally captured from a database of images without requiring modification or disfiguring of the object. Examples include:
identifying pictures or other art in a large museum, where it is desired to provide additional information about objects in the museum by means of a mobile display so that the museum may display objects of interest in the museum and ensure that displays are not hidden or crowded out by signs or computer screens;
establishing a communications link with a machine by merely taking a visual data of the machine; and
calculating the position and orientation of an object based on the appearance of the object in a data despite shadows, reflections, partial obscuration, and variations in viewing geometry, or other obstructions to obtaining a complete image. Data capture hardware such as a portable telephones with digital cameras included are now coming on the market and it is desirable that they be useful for duties other than picture taking for transmission to a remote location. It is also desirable that any identification system uses available computing power efficiently so that the computing required for such identification can be performed locally, shared with an Internet connected computer or performed remotely, depending on the database size and the available computing power. In addition, it is desirable that any such identification system can use existing identification markings such as barcodes, special targets, or written language when such is available to speed up searches and data information retrieval.
The present invention solves the above stated needs. Once a data is captured digitally, a search of the data determines whether symbolic content is included in the image. If so the symbol is decoded and communication is opened with the proper database, usually using the Internet, wherein the best match for the symbol is returned. In some instances, a symbol may be detected, but non-ambiguous identification is not possible. In that case and when a symbolic data can not be detected, the data is decomposed through identification algorithms where unique characteristics of the data are determined. These characteristics are then used to provide the best match or matches in the data-base, the “best” determination being assisted by the partial symbolic information, if that is available.
Therefore the present invention provides technology and processes that can accommodate linking objects and images to information via a network such as the Internet, which requires no modification to the linked object. Traditional methods for linking objects to digital information, including applying a barcode, radio or optical transceiver or transmitter, or some other means of identification to the object, or modifying the data or object so as to encode detectable information in it, are not required because the data or object can be identified solely by its visual appearance. The users or devices may even interact with objects by “linking” to them. For example, a user may link to a vending machine by “pointing and clicking” on it. His device would be connected over the Internet to the company that owns the vending machine. The company would in turn establish a connection to the vending machine, and thus the user would have a communication channel established with the vending machine and could interact with it.
The decomposition algorithms of the present invention allow fast and reliable detection and recognition of images and/or objects based on their visual appearance in an image, no matter whether shadows, reflections, partial obscuration, and variations in viewing geometry are present. As stated above, the present invention also can detect, decode, and identify images and objects based on traditional symbols which may appear on the object, such as alphanumeric characters, barcodes, or 2-dimensional matrix codes.
When a particular object is identified, the position and orientation of an object with respect to the user at the time the data was captured can be determined based on the appearance of the object in an image. This can be the location and/or identity of people scanned by multiple cameras in a security system, a passive locator system more accurate than GPS or usable in areas where GPS signals cannot be received, the location of specific vehicles without requiring a transmission from the vehicle, and many other uses.
When the present invention is incorporated into a mobile device, such as a portable telephone, the user of the device can link to images and objects in his or her environment by pointing the device at the object of interest, then “pointing and clicking” to capture an image. Thereafter, the device transmits the data to another computer (“Server”), wherein the data is analyzed and the object or data of interest is detected and recognized. Then the network address of information corresponding to that object is transmitted from the (“Server”) back to the mobile device, allowing the mobile device to access information using the network address so that only a portion of the information concerning the object needs to be stored in the systems database.
Some or all of the data processing, including image/object detection and/or decoding of symbols detected in the data, may be distributed arbitrarily between the mobile (Client) device and the Server. In other words, some processing may be performed in the Client device and some in the Server. Additionally the processing may be performed without specification of which particular processing is performed in each. However all processing may be performed on one platform or the other, or the platforms may be combined so that there is only one platform. The data processing can be implemented in a parallel computing manner, thus facilitating scaling of the system with respect to database size and input traffic loading.
Therefore, it is an object of the present invention to provide a system and process for identifying digitally captured images without requiring modification to the object.
Another object is to use digital capture devices in ways never contemplated by their manufacturer.
Another object is to allow identification of objects from partial views of the object.
Another object is to provide communication means with operative devices without requiring a public connection therewith.
Another object is to allow the telephony device to transmit information and data derived from the captured data to the server.
Still another object of the invention is to provide a telephony device that may transmit motion imagery to the server.
Another object is to provide a communication means wherein the telephony device may transmit information/data derived from the data to the server, as opposed to transmitting the data itself.
Yet another object of the present invention is to allow the telephony device to transmit either motion imagery and/or still images to the server.
Another object of the present invention is to allow the server to send an item of information to another distal device.
Yet another object of the present invention is to allow the system to perform data processing, data contrast enhancement, noise removal and de-blurring thereof.
Yet another object of the present invention is to allow the system to perform data processing prior to the recognition and/or search process.
Still another object of the present invention is to allow the system to perform data processing even if the data recognition and/or search process fails.
Another object of the present invention is to allow the system to perform data processing after a prior data recognition and/or search process fails.
These and other objects and advantages of the present invention will become apparent to those skilled in the art after considering the following detailed specification, together with the accompanying drawings wherein:
The present invention includes a novel process whereby information such as Internet content is presented to a user, based solely on a remotely acquired data of a physical object. Although coded information can be included in the remotely acquired image, it is not required since no additional information about a physical object, other than its image, needs to be encoded in the linked object. There is no need for any additional code or device, radio, optical or otherwise, to be embedded in or affixed to the object. Image-linked objects can be located and identified within user-acquired imagery solely by means of digital data processing, with the address of pertinent information being returned to the device used to acquire the data and perform the link. This process is robust against digital data noise and corruption (as can result from lossy data compression/decompression), perspective error, rotation, translation, scale differences, illumination variations caused by different lighting sources, and partial obscuration of the target that results from shadowing, reflection or blockage.
Many different variations on machine vision “target location and identification” exist in the current art. However, they all tend to provide optimal solutions for an arbitrarily restricted search space. At the heart of the present invention is a high-speed data matching engine that returns unambiguous matches to target objects contained in a wide variety of potential input images. This unique approach to data matching takes advantage of the fact that at least some portion of the target object will be found in the user-acquired image. Additionally, another unique approach is to allow for data processing by either the capturing device or the server prior to identification and transmission. The parallel data comparison processes embodied in the present search technique are, when taken together, unique to the process. Further, additional refinement of the process, with the inclusion of more and/or different decomposition-parameterization functions, utilized within the overall structure of the search loops is not restricted. The detailed process is described in the following
For data capture 10, the User 12 (
If the Data/Server 20 is physically separate from the device 14, then user acquired images are transmitted from the device 14 to the Data/Server 20 using a conventional digital network or wireless network means. However, prior to transmitting the data to the data/server 20, the device 14 used to capture the data may first conduct data processing, such as contrast enhancement, noise removal, de-blurring and the like. This procedure of data processing may be done prior to transmission of the data to the data/server 20, or after search results have been returned to the device 14.
If the data 18 has been compressed (e.g. via lossy JPEG DCT) in a manner that introduces compression artifacts into the reconstructed data 18, these artifacts may be partially removed by, for example, applying a conventional despeckle filter to the reconstructed data prior to additional processing. Additionally, the device 14 may transmit motion imagery, such as, for example, video transmissions. The motion imagery may be transferred to the server instead of, or in conjunction with one or more still images.
The Data Type Determination 26 is accomplished with a discriminator algorithm which operates on the input data 18 and determines whether the input data contains recognizable symbols, such as barcodes, matrix codes, or alphanumeric characters. If such symbols are found, the data 18 is sent to the Decode Symbol 28 process. Depending on the confidence level with which the discriminator algorithm finds the symbols, the data 18 also may or alternatively contain an object of interest and may therefore also or alternatively be sent to the Object Data branch of the process flow. For example, if an input data 18 contains both a barcode and an object, depending on the clarity with which the barcode is detected, the data may be analyzed by both the Object Data and Symbolic Data branches, and that branch which has the highest success in identification will be used to identify and link from the object.
The data may be analyzed to determine the location, size, and nature of the symbols in the Decode Symbol 28. The symbols are analyzed according to their type, and their content information is extracted. For example, barcodes and alphanumeric characters will result in numerical and/or text information.
For object images, the present invention performs a “decomposition”, in the Input Data Decomposition 34, of a high-resolution input data into several different types of quantifiable salient parameters. This allows for multiple independent convergent search processes of the database to occur in parallel, which greatly improves data match speed and match robustness in the Database Matching 36. As illustrated above, a portion of the decomposition may be divided arbitrarily between the device 14 and the server 20. The Best Match 38 from either the Decode Symbol 28, or the data Database Matching 36, or both, is then determined. If a specific URL (or other online address) is associated with the image, then an URL Lookup 40 is performed and the Internet address is returned by the URL Return 42. Additionally, during processing, the server may send an item of information to another distal device (not shown). For example, if an data of a TV listing in a magazine is transmitted to the server 20, the server may recognize the data as a TV listing wherein the server 20 may send a command to a Internet-connected television to change to the channel in the listing.
The overall flow of the Input Data Decomposition process is as follows:
Radiometric Correction
Segmentation
Segment Group Generation
FOR Each Segment Group
Bounding Box Generation
Geometric Normalization
Wavelet Decomposition
Color Cube Decomposition
Shape Decomposition
Low-Resolution Grayscale Image Generation
FOR END
Each of the above steps is explained in further detail below. For Radiometric Correction, the input image typically is transformed to an 8-bit per color plane, RGB representation. The RGB image is radiometrically normalized in all three channels. This normalization is accomplished by linear gain and offset transformations that result in the pixel values within each color channel spanning a full 8-bit dynamic range (256 possible discrete values). An 8-bit dynamic range is adequate but, of course, as optical capture devices produce higher resolution images and computers get faster and memory gets cheaper, higher bit dynamic ranges, such as 16-bit, 32-bit or more may be used.
For Segmentation, the radiometrically normalized RGB image is analyzed for “segments,” or regions of similar color, i.e. near equal pixel values for red, green, and blue. These segments are defined by their boundaries, which consist of sets of (x, y) point pairs. A map of segment boundaries is produced, which is maintained separately from the RGB input image and is formatted as an x, y binary image map of the same aspect ratio as the RGB image.
For Segment Group Generation, the segments are grouped into all possible combinations. These groups are known as “segment groups” and represent all possible potential images or objects of interest in the input image. The segment groups are sorted based on the order in which they will be evaluated. Various evaluation order schemes are possible. The particular embodiment explained herein utilizes the following “center-out” scheme: The first segment group comprises only the segment that includes the center of the image. The next segment group comprises the previous segment plus the segment which is the largest (in number of pixels) and which is adjacent to (touching) the previous segment group. Additional segments are added using the segment criteria above until no segments remain. Each step, in which a new segment is added, creates a new and unique segment group.
For Bounding Box Generation, the elliptical major axis of the segment group under consideration (the major axis of an ellipse just large enough to contain the entire segment group) is computed. Then a rectangle is constructed within the image coordinate system, with long sides parallel to the elliptical major axis, of a size just large enough to completely contain every pixel in the segment group.
For Geometric Normalization, a copy of the input image is modified such that all pixels not included in the segment group under consideration are set to mid-level gray. The result is then resampled and mapped into a “standard aspect” output test image space such that the corners of the bounding box are mapped into the corners of the output test image. The standard aspect is the same size and aspect ratio as the Reference images used to create the database.
For Wavelet Decomposition, a grayscale representation of the full-color image is produced from the geometrically normalized image that resulted from the Geometric Normalization step. The following procedure is used to derive the grayscale representation. Reduce the three color planes into one grayscale image by proportionately adding each R, G, and B pixel of the standard corrected color image using the following formula:
L.sub.x,y=0.34*R.sub.x,y+0.55*G.sub.x,y+0.11*B.sub.x,y
then round to nearest integer value. Truncate at 0 and 255, if necessary. The resulting matrix L is a standard grayscale image. This grayscale representation is at the same spatial resolution as the full color image, with an 8-bit dynamic range. A multi-resolution Wavelet Decomposition of the grayscale image is performed, yielding wavelet coefficients for several scale factors. The Wavelet coefficients at various scales are ranked according to their weight within the image.
For Color Cube Decomposition, an image segmentation is performed (see “Segmentation” above), on the RGB image that results from Geometric Normalization. Then the RGB image is transformed to a normalized Intensity, In-phase and Quadrature-phase color image (YIQ). The segment map is used to identify the principal color regions of the image, since each segment boundary encloses pixels of similar color. The average Y, I, and Q values of each segment, and their individual component standard deviations, are computed. The following set of parameters result, representing the colors, color variation, and size for each segment:
Y.sub.avg=Average Intensity
I.sub.avg=Average In-phase
Q.sub.avg=Average Quadrature
Y.sub.sigma=Intensity standard deviation
I.sub.sigma=In-phase standard deviation
Q.sub.sigma=Quadrature standard deviation
N.sub.pixels=number of pixels in the segment
The parameters comprise a representation of the color intensity and variation in each segment. When taken together for all segments in a segment group, these parameters comprise points (or more accurately, regions, if the standard deviations are taken into account) in a three-dimensional color space and describe the intensity and variation of color in the segment group.
For Shape Decomposition, the map resulting from the segmentation performed in the Color Cube Generation step is used and the segment group is evaluated to extract the group outer edge boundary, the total area enclosed by the boundary, and its area centroid. Additionally, the net ellipticity (semi-major axis divided by semi-minor axis of the closest fit ellipse to the group) is determined.
For Low-Resolution Grayscale Image Generation, the full-resolution grayscale representation of the image that was derived in the Wavelet Generation step is now subsampled by a factor in both x and y directions. For the example of this embodiment, a 3:1 subsampling is assumed. The subsampled image is produced by weighted averaging of pixels within each 3.times.3 cell. The result is contrast binned, by reducing the number of discrete values assignable to each pixel based upon substituting a “binned average” value for all pixels that fall within a discrete (TBD) number of brightness bins.
The above discussion of the particular decomposition methods incorporated into this embodiment are not intended to indicate that more, or alternate, decomposition methods may not also be employed within the context of this invention.
In other words:
Each of the above steps is explained in further detail below.
FOR Each Input Image Segment Group
This loop considers each combination of segment groups in the input image, in the order in which they were sorted in the “Segment Group Generation” step. Each segment group, as it is considered, is a candidate for the object of interest in the image, and it is compared against database objects using various tests.
One favored implementation, of many possible, for the order in which the segment groups are considered within this loop is the “center-out” approach mentioned previously in the “Segment Group Generation” section. This scheme considers segment groups in a sequence that represents the addition of adjacent segments to the group, starting at the center of the image. In this scheme, each new group that is considered comprises the previous group plus one additional adjacent image segment. The new group is compared against the database. If the new group results in a higher database matching score than the previous group, then new group is retained. If the new group has a lower matching score then the previous group, then it is discarded and the loop starts again. If a particular segment group results in a match score which is extremely high, then this is considered to be an exact match and no further searching is warranted; in this case the current group and matching database group are selected as the match and this loop is exited.
FOR Each Database Object
This loop considers each object in the database for comparison against the current input segment group.
FOR Each View of This Object
This loop considers each view of the current database object for comparison against the current input segment group. The database contains, for each object, multiple views from different viewing angles.
FOR Each Segment Group in This View of This Database Object
This loop considers each combination of segment groups in the current view of the database object. These segment groups were created in the same manner as the input image segment groups.
Shape Comparison
Inputs
For the input image and all database images:
I. Segment group outline
I. Segment group area
III. Segment group centroid location
IV. Segment group bounding ellipse ellipticity
Algorithm
V. Identify those database segment groups with an area approximately equal to that of the input segment group, within TBD limits, and calculate an area matching score for each of these “matches.”
VI. Within the set of matches identified in the previous step, identify those database segment groups with an ellipticity approximately equal to that of the input segment group, within TBD limits, and calculate an ellipticity position matching score for each of these “matches.”
VII. Within the set of matches identified in the previous step, identify those database segment groups with a centroid position approximately equal to that of the input segment group, within TBD limits, and calculate a centroid position matching score for each of these “matches.”
VIII. Within the set of matches identified in the previous step, identify those database segment groups with an outline shape approximately equal to that of the input segment group, within TBD limits, and calculate an outline matching score for each of these “matches.” This is done by comparing the two outlines and analytically determining the extent to which they match.
Note: this algorithm need not necessarily be performed in the order of Steps 1 to 4. It could alternatively proceed as follows:
Grayscale Comparison
Inputs
For the input image and all database images:
IX. Low-resolution, normalized, contrast-binned, grayscale image of pixels within segment group bounding box, with pixels outside of the segment group set to a standard background color.
Algorithm
Given a series of concentric rectangular “tiers” of pixels within the low-resolution images, compare the input image pixel values to those of all database images, calculate a matching score for each comparison and identify those database images with matching scores within TBD limits, as follows:
FOR each database image
FOR each tier, starting with the innermost and progressing to the outermost
Compare the pixel values between the input and database image
Calculate an aggregate matching score IF matching score is greater than some TBD limit (i.e., close match)
Wavelet Comparison
Inputs
For the input image and all database images:
X. Wavelet coefficients from high-resolution grayscale image within segment group bounding box.
Algorithm
Successively compare the wavelet coefficients of the input segment group image and each database segment group image, starting with the lowest-order coefficients and progressing to the highest order coefficients. For each comparison, compute a matching score. For each new coefficient, only consider those database groups that had matching scores, at the previous (next lower order) coefficient within TBD limits.
Color Cube Comparison
Inputs
[Y.sub.avg, I.sub.avg, Q.sub.avg, Ysigma, I.sub.sigma, Q.sub.sigma, Npixels] data sets (“Color Cube Points”) for each segment in:
I. The input segment group image
II. Each database segment group image
Algorithm
Calculate Combined Match Score
The four Object Image comparisons (Shape Comparison, Grayscale Comparison, Wavelet Comparison, Color Cube Comparison) each return a normalized matching score. These are independent assessments of the match of salient features of the input image to database images. To minimize the effect of uncertainties in any single comparison process, and to thus minimize the likelihood of returning a false match, the following root sum of squares relationship is used to combine the results of the individual comparisons into a combined match score for an image:
The unique database search methodology and subsequent object match scoring criteria are novel aspects of the present invention that deserve special attention. Each decomposition of the Reference image and Input image regions represent an independent characterization of salient characteristics of the image. The Wavelet Decomposition, Color Cube Decomposition, Shape Decomposition, and evaluation of a sub-sampled low-resolution Grayscale representation of an input image all produce sets of parameters that describe the image in independent ways. Once all four of these processes are completed on the image to be tested, the parameters provided by each characterization are compared to the results of identical characterizations of the Reference images, which have been previously calculated and stored in the database. These comparisons, or searches, are carried out in parallel. The result of each search is a numerical score that is a weighted measure of the number of salient characteristics that “match” (i.e. that are statistically equivalent). Near equivalencies are also noted, and are counted in the cumulative score, but at a significantly reduced weighting.
One novel aspect of the database search methodology in the present invention is that not only are these independent searches carried out in parallel, but also, all but the low-resolution grayscale compares are “convergent.” By convergent, it is meant that input image parameters are searched sequentially over increasingly smaller subsets of the entire database. The parameter carrying greatest weight from the input image is compared first to find statistical matches and near-matches in all database records. A normalized interim score (e.g., scaled value from zero to one, where one is perfect match and zero is no match) is computed based on the results of this comparison. The next heaviest weighted parameter from the input image characterization is then searched on only those database records having initial interim scores above a minimum acceptable threshold value. This results in an incremental score that is incorporated into the interim score in a cumulative fashion. Then, subsequent comparisons of increasingly lesser-weighted parameters are assessed only on those database records that have cumulative interim scores above the same minimum acceptable threshold value in the previous accumulated set of tests.
This search technique results in quick completion of robust matches, establishes limits on the domain of database elements that will be compared in a subsequent combined match calculation and therefore speeds up the process. The convergent nature of the search in these comparisons yields a ranked subset of the entire database.
The result of each of these database comparisons is a ranking of the match quality of each image, as a function of decomposition search technique. Only those images with final cumulative scores above the acceptable match threshold will be assessed in the next step, a Combined Match Score evaluation.
Four database comparison processes, Shape Comparison, Grayscale Comparison, Wavelet Comparison, and Color Cube Comparison, are performed. These processes may occur sequentially, but generally are preferably performed in parallel on a parallel computing platform. Each comparison technique searches the entire image database and returns those images that provide the best matches for the particular algorithm, along with the matching scores for these images. These comparison algorithms are performed on segment groups, with each input image segment group being compared to each segment group for each database image.
Preferably, parallel processing is used to divide tasks between multiple CPUs (Central Processing Units), the telephony device 14 and/or computers. The overall algorithm may be divided in several ways, such as:
Actual implementations can be some combination of the above techniques that optimizes the process on the available hardware.
Another technique employed to maximize speed is data indexing. This technique involves using a prior knowledge of where data resides to only search in those parts of the database that contain potential matches. Various forms of indexing may be used, such as hash tables, data compartmentalization (i.e., data within certain value ranges are stored in certain locations), data sorting, and database table indexing. An example of such techniques is in the Shape Comparison algorithm (see below). If a database is to be searched for an entry with an Area with a value of A, the algorithm would know which database entries or data areas have this approximate value and would not need to search the entire database.
Thus, there has been shown novel identification methods and processes for objects from digitally captured images thereof that uses image characteristics to identify an object from a plurality of objects in a database apparatus and which fulfill all of the objects and advantages sought therefor. Many changes, alterations, modifications and other uses and applications of the subject invention will become apparent to those skilled in the art after considering the specification together with the accompanying drawings. All such changes, alterations and modifications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention which is limited only by the claims that follow.
This application is a divisional of application Ser. No. 14/251,480, filed Apr. 11, 2014, which is a divisional of application Ser. No. 13/968,666, filed Aug. 16, 2013, which is a divisional of Ser. No. 13/633,533, filed Oct. 2, 2012 and issued Nov. 12, 2013 as U.S. Pat. No. 8,582,817, which is a divisional of Ser. No. 13/464,410, filed May 4, 2012 and issued Jul. 23, 2013 as U.S. Pat. No. 8,494,264, which is a divisional of Ser. No. 13/005,716, filed Jan. 13, 2011 and issued Jul. 17, 2012 as U.S. Pat. No. 8,224,077, which is a Continuation of Ser. No. 12/505,714 filed Jul. 20, 2009 and issued Feb. 1, 2011 as U.S. Pat. No. 7,881,529, which is a Continuation of Ser. No. 11/342,094 filed Jan. 26, 2006 and issued Jul. 21, 2009 as U.S. Pat. No. 7,565,008, which is a Continuation-In-Part of Ser. No. 09/992,942, filed Nov. 5, 2001 and issued Mar. 21, 2006 as U.S. Pat. No. 7,016,532, which claims the benefit of priority to U.S. Provisional Application No. 60/317,521 filed Sep. 5, 2001, and U.S. Provisional Application No. 60/246,295 filed Nov. 6, 2000. These and all other extrinsic references are incorporated herein by reference in their entirety. Where a definition or use of a term in an incorporated reference is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply.
Number | Name | Date | Kind |
---|---|---|---|
3800082 | Fish | Mar 1974 | A |
4947321 | Spence et al. | Aug 1990 | A |
4991008 | Nama | Feb 1991 | A |
5034812 | Rawlings | Jul 1991 | A |
5241671 | Reed et al. | Aug 1993 | A |
5259037 | Plunk | Nov 1993 | A |
5497314 | Novak | Mar 1996 | A |
5576950 | Tonomura et al. | Nov 1996 | A |
5579471 | Barber et al. | Nov 1996 | A |
5594806 | Colbert | Jan 1997 | A |
5615324 | Kuboyama | Mar 1997 | A |
5625765 | Ellenby et al. | Apr 1997 | A |
5682332 | Ellenby et al. | Oct 1997 | A |
5724579 | Suzuki | Mar 1998 | A |
5742521 | Ellenby et al. | Apr 1998 | A |
5742815 | Stern | Apr 1998 | A |
5751286 | Barber et al. | May 1998 | A |
5768633 | Allen et al. | Jun 1998 | A |
5768663 | Lin | Jun 1998 | A |
5771307 | Lu et al. | Jun 1998 | A |
5787186 | Schroeder | Jul 1998 | A |
5815411 | Ellenby et al. | Sep 1998 | A |
5832464 | Houvener et al. | Nov 1998 | A |
5893095 | Jain et al. | Apr 1999 | A |
5894323 | Kain et al. | Apr 1999 | A |
5897625 | Gustin et al. | Apr 1999 | A |
5911827 | Heller | Jun 1999 | A |
5915038 | Abdel-Mottaleb et al. | Jun 1999 | A |
5917930 | Kayani et al. | Jun 1999 | A |
5926116 | Kitano et al. | Jul 1999 | A |
5933823 | Cullen et al. | Aug 1999 | A |
5933829 | Durst et al. | Aug 1999 | A |
5933923 | Catlos et al. | Aug 1999 | A |
5937079 | Franke | Aug 1999 | A |
5945982 | Higashio et al. | Aug 1999 | A |
5970473 | Gerszberg et al. | Oct 1999 | A |
5971277 | Cragun et al. | Oct 1999 | A |
5978773 | Hudetz et al. | Nov 1999 | A |
5982912 | Fukui et al. | Nov 1999 | A |
5991827 | Ellenby et al. | Nov 1999 | A |
5992752 | Wilz, Sr. et al. | Nov 1999 | A |
6009204 | Ahmad | Dec 1999 | A |
6031545 | Ellenby et al. | Feb 2000 | A |
6037936 | Ellenby et al. | Mar 2000 | A |
6037963 | Denton et al. | Mar 2000 | A |
6038295 | Mattes | Mar 2000 | A |
6038333 | Wang | Mar 2000 | A |
6045039 | Stinson et al. | Apr 2000 | A |
6055536 | Shimakawa et al. | Apr 2000 | A |
6061478 | Kanoh et al. | May 2000 | A |
6064398 | Ellenby et al. | May 2000 | A |
6064979 | Perkowski | May 2000 | A |
6072904 | Desai et al. | Jun 2000 | A |
6081612 | Gutkowicz-Krusin et al. | Jun 2000 | A |
6098118 | Ellenby et al. | Aug 2000 | A |
6108656 | Durst et al. | Aug 2000 | A |
6134548 | Gottsman et al. | Oct 2000 | A |
6144848 | Walsh et al. | Nov 2000 | A |
6173239 | Ellenby | Jan 2001 | B1 |
6181817 | Zabih et al. | Jan 2001 | B1 |
6182090 | Peairs | Jan 2001 | B1 |
6199048 | Hudetz et al. | Mar 2001 | B1 |
6202055 | Houvener et al. | Mar 2001 | B1 |
6208353 | Ayer et al. | Mar 2001 | B1 |
6208749 | Gutkowicz-Krusin et al. | Mar 2001 | B1 |
6208933 | Lazar | Mar 2001 | B1 |
6256409 | Wang | Jul 2001 | B1 |
6278461 | Ellenby et al. | Aug 2001 | B1 |
6286036 | Rhoads | Sep 2001 | B1 |
6307556 | Ellenby et al. | Oct 2001 | B1 |
6307957 | Gutkowicz-Krusin et al. | Oct 2001 | B1 |
6317718 | Fano | Nov 2001 | B1 |
6393147 | Danneels et al. | May 2002 | B2 |
6396475 | Ellenby et al. | May 2002 | B1 |
6396537 | Squilla et al. | May 2002 | B1 |
6396963 | Shaffer et al. | May 2002 | B2 |
6404975 | Bopardikar et al. | Jun 2002 | B1 |
6405975 | Sankrithi et al. | Jun 2002 | B1 |
6411725 | Rhoads | Jun 2002 | B1 |
6411953 | Ganapathy et al. | Jun 2002 | B1 |
6414696 | Ellenby et al. | Jul 2002 | B1 |
6430554 | Rothschild | Aug 2002 | B1 |
6434561 | Durst, Jr. et al. | Aug 2002 | B1 |
6445834 | Rising, III | Sep 2002 | B1 |
6446076 | Burkey et al. | Sep 2002 | B1 |
6453361 | Morris | Sep 2002 | B1 |
6490443 | Freeny, Jr. | Dec 2002 | B1 |
6501854 | Konishi et al. | Dec 2002 | B1 |
6502756 | Faahraeus | Jan 2003 | B1 |
6510238 | Haycock | Jan 2003 | B2 |
6522292 | Ellenby et al. | Feb 2003 | B1 |
6522772 | Morrison et al. | Feb 2003 | B1 |
6522889 | Aarnio | Feb 2003 | B1 |
6526158 | Goldberg | Feb 2003 | B1 |
6532298 | Cambier et al. | Mar 2003 | B1 |
6533392 | Koitabashi | Mar 2003 | B1 |
6535210 | Ellenby et al. | Mar 2003 | B1 |
6542933 | Durst, Jr. et al. | Apr 2003 | B1 |
6563959 | Troyanker | May 2003 | B1 |
6567122 | Anderson et al. | May 2003 | B1 |
6578017 | Ebersole et al. | Jun 2003 | B1 |
6580385 | Winner et al. | Jun 2003 | B1 |
6597818 | Kumar et al. | Jul 2003 | B2 |
6601026 | Appelt et al. | Jul 2003 | B2 |
6609103 | Kolls | Aug 2003 | B1 |
6650794 | Aoki | Nov 2003 | B1 |
6651053 | Rothschild | Nov 2003 | B1 |
6658389 | Alpdemir | Dec 2003 | B1 |
6674923 | Shih et al. | Jan 2004 | B1 |
6674993 | Tarbouriech | Jan 2004 | B1 |
6675165 | Rothschild | Jan 2004 | B1 |
6689966 | Wiebe | Feb 2004 | B2 |
6690370 | Ellenby et al. | Feb 2004 | B2 |
6691914 | Isherwood et al. | Feb 2004 | B2 |
6711278 | Gu et al. | Mar 2004 | B1 |
6714969 | Klein et al. | Mar 2004 | B1 |
6724914 | Brundage et al. | Apr 2004 | B2 |
6738630 | Ashmore | May 2004 | B2 |
6744935 | Choi et al. | Jun 2004 | B2 |
6748122 | Ihara et al. | Jun 2004 | B1 |
6754636 | Walker | Jun 2004 | B1 |
6765569 | Neumann et al. | Jul 2004 | B2 |
6766363 | Rothschild | Jul 2004 | B1 |
6771294 | Pulli et al. | Aug 2004 | B1 |
6788800 | Carr et al. | Sep 2004 | B1 |
6801657 | Cieplinski | Oct 2004 | B1 |
6804726 | Ellenby et al. | Oct 2004 | B1 |
6842181 | Acharya | Jan 2005 | B2 |
6853750 | Aoki | Feb 2005 | B2 |
6856965 | Stinson et al. | Feb 2005 | B1 |
6865608 | Hunter | Mar 2005 | B2 |
6866196 | Rathus et al. | Mar 2005 | B1 |
6868415 | Kageyama et al. | Mar 2005 | B2 |
6882756 | Bober | Apr 2005 | B1 |
6885771 | Takahashi | Apr 2005 | B2 |
6912464 | Parker | Jun 2005 | B1 |
6925196 | Kass et al. | Aug 2005 | B2 |
6950800 | McIntyre et al. | Sep 2005 | B1 |
6956593 | Gupta et al. | Oct 2005 | B1 |
6963656 | Persaud et al. | Nov 2005 | B1 |
6968453 | Doyle et al. | Nov 2005 | B2 |
6974078 | Simon | Dec 2005 | B1 |
6985240 | Benke et al. | Jan 2006 | B2 |
6990235 | Katsuyama | Jan 2006 | B2 |
6993573 | Hunter | Jan 2006 | B2 |
6996251 | Malone et al. | Feb 2006 | B2 |
7002551 | Azuma et al. | Feb 2006 | B2 |
7016532 | Boncyk | Mar 2006 | B2 |
7016889 | Bazoon | Mar 2006 | B2 |
7016899 | Stern et al. | Mar 2006 | B1 |
7027652 | I'Anson | Apr 2006 | B1 |
7031496 | Shimano et al. | Apr 2006 | B2 |
7031536 | Kajiwara | Apr 2006 | B2 |
7031875 | Ellenby | Apr 2006 | B2 |
7050653 | Edso et al. | May 2006 | B2 |
7053916 | Kobayashi et al. | May 2006 | B2 |
7062454 | Giannini et al. | Jun 2006 | B1 |
7072669 | Duckworth | Jul 2006 | B1 |
7103772 | Jorgensen et al. | Sep 2006 | B2 |
7104444 | Suzuki | Sep 2006 | B2 |
7113867 | Stein | Sep 2006 | B1 |
7119831 | Ohto et al. | Oct 2006 | B2 |
7121469 | Dorai et al. | Oct 2006 | B2 |
7127094 | Elbaum et al. | Oct 2006 | B1 |
7143949 | Hannigan | Dec 2006 | B1 |
7167164 | Ericson et al. | Jan 2007 | B2 |
7175095 | Pettersson et al. | Feb 2007 | B2 |
7190833 | Kagehiro et al. | Mar 2007 | B2 |
7224995 | Rhoads | May 2007 | B2 |
7245273 | Eberl et al. | Jul 2007 | B2 |
7254548 | Tannenbaum | Aug 2007 | B1 |
7266545 | Bergman et al. | Sep 2007 | B2 |
7283983 | Dooley et al. | Oct 2007 | B2 |
7295718 | Park et al. | Nov 2007 | B2 |
7296747 | Rohs | Nov 2007 | B2 |
7301536 | Ellenby et al. | Nov 2007 | B2 |
7305354 | Rodriguez et al. | Dec 2007 | B2 |
7309015 | Frantz et al. | Dec 2007 | B2 |
7310605 | Janakiraman et al. | Dec 2007 | B2 |
7333947 | Wiebe et al. | Feb 2008 | B2 |
7334728 | Williams | Feb 2008 | B2 |
7345673 | Ericson et al. | Mar 2008 | B2 |
7353182 | Missinhoun et al. | Apr 2008 | B1 |
7353184 | Kirshenbaum et al. | Apr 2008 | B2 |
7353990 | Elliot et al. | Apr 2008 | B2 |
7356705 | Ting | Apr 2008 | B2 |
7362922 | Nishiyama et al. | Apr 2008 | B2 |
7376645 | Bernard | May 2008 | B2 |
7383209 | Hudetz et al. | Jun 2008 | B2 |
7410099 | Fukasawa et al. | Aug 2008 | B2 |
7427980 | Partridge et al. | Sep 2008 | B1 |
7430588 | Hunter | Sep 2008 | B2 |
7477909 | Roth et al. | Jan 2009 | B2 |
7526440 | Walker et al. | Apr 2009 | B2 |
7548915 | Ramer et al. | Jun 2009 | B2 |
7558595 | Angelhag | Jul 2009 | B2 |
7564469 | Cohen | Jul 2009 | B2 |
7580061 | Toyoda | Aug 2009 | B2 |
7595816 | Enright et al. | Sep 2009 | B1 |
7599847 | Block et al. | Oct 2009 | B2 |
7631336 | Diaz Perez | Dec 2009 | B2 |
7641342 | Eberl et al. | Jan 2010 | B2 |
7680324 | Boncyk et al. | Mar 2010 | B2 |
7696905 | Ellenby et al. | Apr 2010 | B2 |
7707218 | Gocht et al. | Apr 2010 | B2 |
7711598 | Perkowski | May 2010 | B2 |
7720436 | Hamynen et al. | May 2010 | B2 |
7734507 | Ritter | Jun 2010 | B2 |
7737965 | Alter et al. | Jun 2010 | B2 |
7751805 | Neven et al. | Jul 2010 | B2 |
7756755 | Ghosh et al. | Jul 2010 | B2 |
7764808 | Zhu et al. | Jul 2010 | B2 |
7765126 | Hudetz et al. | Jul 2010 | B2 |
7768534 | Pentenrieder et al. | Aug 2010 | B2 |
7769228 | Bahlmann et al. | Aug 2010 | B2 |
7774283 | Das et al. | Aug 2010 | B2 |
7775437 | Cohen | Aug 2010 | B2 |
7797204 | Balent | Sep 2010 | B2 |
7830417 | Liu et al. | Nov 2010 | B2 |
7843488 | Stapleton | Nov 2010 | B2 |
7845558 | Beemer et al. | Dec 2010 | B2 |
7853875 | Cohen | Dec 2010 | B2 |
7872669 | Darrell et al. | Jan 2011 | B2 |
7889193 | Platonov et al. | Feb 2011 | B2 |
7896235 | Ramachandran | Mar 2011 | B2 |
7903838 | Hudnut et al. | Mar 2011 | B2 |
7916138 | John et al. | Mar 2011 | B2 |
8090616 | Proctor, Jr. et al. | Jan 2012 | B2 |
8090657 | Mitchell et al. | Jan 2012 | B2 |
8099332 | Lemay et al. | Jan 2012 | B2 |
8121944 | Norman et al. | Feb 2012 | B2 |
8130242 | Cohen | Mar 2012 | B2 |
8131118 | Jing et al. | Mar 2012 | B1 |
8131595 | Lee et al. | Mar 2012 | B2 |
8187045 | Thibodaux | May 2012 | B2 |
8189964 | Flynn et al. | May 2012 | B2 |
8190645 | Bashaw | May 2012 | B1 |
8218874 | Boncyk et al. | Jul 2012 | B2 |
8219146 | Connors et al. | Jul 2012 | B2 |
8255291 | Nair | Aug 2012 | B1 |
8312168 | Rhoads et al. | Nov 2012 | B2 |
8320615 | Hamza et al. | Nov 2012 | B2 |
8326031 | Boncyk et al. | Dec 2012 | B2 |
8335351 | Boncyk et al. | Dec 2012 | B2 |
8386918 | Do et al. | Feb 2013 | B2 |
8442500 | Gupta et al. | May 2013 | B2 |
8447066 | King et al. | May 2013 | B2 |
8477202 | Asano | Jul 2013 | B2 |
8483715 | Chen | Jul 2013 | B2 |
8494274 | Badharudeen et al. | Jul 2013 | B2 |
8497939 | Cuttner | Jul 2013 | B2 |
8523075 | van der Merwe | Sep 2013 | B2 |
8542906 | Persson et al. | Sep 2013 | B1 |
8550903 | Lyons et al. | Oct 2013 | B2 |
8559671 | Milanfar et al. | Oct 2013 | B2 |
8577810 | Dalit et al. | Nov 2013 | B1 |
8588527 | Boncyk et al. | Nov 2013 | B2 |
8605141 | Dialameh et al. | Dec 2013 | B2 |
8626602 | George | Jan 2014 | B2 |
8751316 | Fletchall et al. | Jun 2014 | B1 |
8756659 | Ruckart | Jun 2014 | B2 |
8824738 | Boncyk et al. | Sep 2014 | B2 |
8831279 | Rodriguez et al. | Sep 2014 | B2 |
8831677 | Villa-Real | Sep 2014 | B2 |
8838477 | Moshfeghi | Sep 2014 | B2 |
8863183 | Kutaragi | Oct 2014 | B2 |
8903430 | Sands et al. | Dec 2014 | B2 |
8990235 | King | Mar 2015 | B2 |
20010011276 | Durst Jr. et al. | Aug 2001 | A1 |
20010032252 | Durst et al. | Oct 2001 | A1 |
20010044824 | Hunter et al. | Nov 2001 | A1 |
20010047426 | Hunter | Nov 2001 | A1 |
20010053252 | Creque | Dec 2001 | A1 |
20020001398 | Shimano et al. | Jan 2002 | A1 |
20020006602 | Masters | Jan 2002 | A1 |
20020019819 | Sekiguchi et al. | Feb 2002 | A1 |
20020048403 | Guerreri | Apr 2002 | A1 |
20020055957 | Ohsawa | May 2002 | A1 |
20020084328 | Kim | Jul 2002 | A1 |
20020089524 | Ikeda | Jul 2002 | A1 |
20020090132 | Boncyk et al. | Jul 2002 | A1 |
20020102966 | Lev | Aug 2002 | A1 |
20020103813 | Frigon | Aug 2002 | A1 |
20020124188 | Sherman et al. | Sep 2002 | A1 |
20020140988 | Cheatle et al. | Oct 2002 | A1 |
20020150298 | Rajagopal et al. | Oct 2002 | A1 |
20020156866 | Schneider | Oct 2002 | A1 |
20020163521 | Ellenby et al. | Nov 2002 | A1 |
20020167536 | Valdes et al. | Nov 2002 | A1 |
20030064705 | Desiderio | Apr 2003 | A1 |
20030095681 | Burg et al. | May 2003 | A1 |
20030116478 | Laskowski | Jun 2003 | A1 |
20030132974 | Bodin | Jul 2003 | A1 |
20030164819 | Waibel | Sep 2003 | A1 |
20040208372 | Boncyk et al. | Oct 2004 | A1 |
20050015370 | Stavely et al. | Jan 2005 | A1 |
20050024501 | Ellenby et al. | Feb 2005 | A1 |
20050055281 | Williams | Mar 2005 | A1 |
20050102233 | Park et al. | May 2005 | A1 |
20050162523 | Darrell et al. | Jul 2005 | A1 |
20050162532 | Toyoda | Jul 2005 | A1 |
20050185060 | Neven | Aug 2005 | A1 |
20050206654 | Vaha-Sipila | Sep 2005 | A1 |
20050252966 | Kulas | Nov 2005 | A1 |
20060008124 | Ewe et al. | Jan 2006 | A1 |
20060038833 | Mallinson et al. | Feb 2006 | A1 |
20060161379 | Ellenby et al. | Jul 2006 | A1 |
20060190812 | Ellenby et al. | Aug 2006 | A1 |
20060223635 | Rosenberg | Oct 2006 | A1 |
20070109619 | Eberl et al. | May 2007 | A1 |
20070146391 | Pentenrieder et al. | Jun 2007 | A1 |
20070182739 | Platonov et al. | Aug 2007 | A1 |
20070230792 | Shashua et al. | Oct 2007 | A1 |
20080021953 | Gil | Jan 2008 | A1 |
20080133555 | Rhoads et al. | Jun 2008 | A1 |
20080157946 | Eberl et al. | Jul 2008 | A1 |
20080189185 | Matsuo et al. | Aug 2008 | A1 |
20080207296 | Lutnick | Aug 2008 | A1 |
20080243721 | Joao | Oct 2008 | A1 |
20080279481 | Ando | Nov 2008 | A1 |
20090027337 | Hildreth | Jan 2009 | A1 |
20090030900 | Iwasaki | Jan 2009 | A1 |
20100045933 | Eberl et al. | Feb 2010 | A1 |
20100106720 | Chao et al. | Apr 2010 | A1 |
20100188638 | Eberl et al. | Jul 2010 | A1 |
20110131241 | Petrou et al. | Jun 2011 | A1 |
20110173100 | Boncyk et al. | Jul 2011 | A1 |
20110282785 | Chin | Nov 2011 | A1 |
20120002872 | Boncyk et al. | Jan 2012 | A1 |
20120011119 | Baheti et al. | Jan 2012 | A1 |
20120011142 | Baheti et al. | Jan 2012 | A1 |
20120027290 | Baheti et al. | Feb 2012 | A1 |
20120072353 | Boone et al. | Mar 2012 | A1 |
20120095857 | Mckelvey et al. | Apr 2012 | A1 |
20120231887 | Lee et al. | Sep 2012 | A1 |
20120263388 | Vaddadi et al. | Oct 2012 | A1 |
20130013414 | Haff | Jan 2013 | A1 |
20130046602 | Grigg et al. | Feb 2013 | A1 |
20130265450 | Barnes, Jr. | Oct 2013 | A1 |
20130304609 | Keonorasak | Nov 2013 | A1 |
20140006165 | Grigg et al. | Jan 2014 | A1 |
20140007012 | Govande et al. | Jan 2014 | A1 |
20140101048 | Gardiner et al. | Apr 2014 | A1 |
20140129942 | Rathod | May 2014 | A1 |
20140162598 | Villa-Real | Jun 2014 | A1 |
20150026785 | Soon-Shiong | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
10050486 | Apr 2002 | DE |
0614559 | Jan 1999 | EP |
0920179 | Jun 1999 | EP |
0967574 | Dec 1999 | EP |
1012725 | Jun 2000 | EP |
0920179 | Sep 2000 | EP |
1354260 | Oct 2003 | EP |
1355258 | Oct 2003 | EP |
2264669 | Dec 2010 | EP |
2407230 | Apr 2005 | GB |
S6314297 | Jan 1988 | JP |
H09231244 | Sep 1997 | JP |
H1091634 | Apr 1998 | JP |
H10289243 | Oct 1998 | JP |
H11265391 | Sep 1999 | JP |
2001101191 | Apr 2001 | JP |
2001160057 | Jun 2001 | JP |
2001256500 | Sep 2001 | JP |
2001265970 | Sep 2001 | JP |
2001282825 | Oct 2001 | JP |
2002197103 | Jul 2002 | JP |
2002297648 | Oct 2002 | JP |
2003178067 | Jun 2003 | JP |
2003323440 | Nov 2003 | JP |
2004005314 | Jan 2004 | JP |
2004030377 | Jan 2004 | JP |
2004118384 | Apr 2004 | JP |
2005011180 | Jan 2005 | JP |
2005038421 | Feb 2005 | JP |
2005049920 | Feb 2005 | JP |
2005509219 | Apr 2005 | JP |
2007509392 | Apr 2007 | JP |
9744737 | Nov 1997 | WO |
9749060 | Dec 1997 | WO |
9837811 | Sep 1998 | WO |
9846323 | Oct 1998 | WO |
9916024 | Apr 1999 | WO |
9942946 | Aug 1999 | WO |
9942947 | Aug 1999 | WO |
9944010 | Sep 1999 | WO |
9942946 | Oct 1999 | WO |
9942947 | Dec 1999 | WO |
9967695 | Dec 1999 | WO |
0124050 | Apr 2001 | WO |
0149056 | Jul 2001 | WO |
0163487 | Aug 2001 | WO |
0171282 | Sep 2001 | WO |
0173603 | Oct 2001 | WO |
0201143 | Jan 2002 | WO |
02059716 | Aug 2002 | WO |
02073818 | Sep 2002 | WO |
02082799 | Oct 2002 | WO |
03041000 | May 2003 | WO |
Entry |
---|
Arai T., et al., “PaperLink: A Technique for Hyperlinking from Real Paper to Electronic Content,” CHI 97 Electronic Publications: Papers, Conference on Human Factors in Computer Systems, Atlanta, Georgia, Mar. 22-27, 1997, pp. 327-334. |
Bulman J., et al., “Mixed Reality Applications in Urban Environments,” BT Technology Journal, 2004, vol. 22 (3), pp. 84-94. |
Carswell J.D., et al., “An Environment for Mobile Context-Based Hypermedia Retrieval,” IEEE: Proceedings of the 13th International Workshop on Database and Expert Systems Applications, 1529-4188/02, 2002, 5 pages. |
Chang S.F., et al., “Visual Information Retrieval from Large Distributed Online Respositories,” Communication of Association for Computing Machinery, ISSN:0001-0782, 1997, vol. 40 (12), pp. 64-71. |
Chang W., et al., “Efficient Resource Selection in Distributed Visual Information Systems,” ACM Multimedia, 1997, pp. 203-213. |
Diverdi S., et al., “ARWin—A Desktop Augmented Reality Window Manager,” UCSB Tech Report Dec. 2003, University of California Santa Barbara, May 2003, 7 pages. |
Diverdi S., et al., “Level of Detail Interfaces,” Proc. ISMAR 2004, IEEE/ACM IHyf Symp on Mixed and Augmented Reality, Arlington, Virginia, 2004, 2 pages. |
European Search Report for Application No. EP06018047, mailed on Oct. 30, 2008, 2 pages. |
Feiner S., et al., “A Touring Machine: Prototyping 3D Mobile Augmented Reality Systems for Exploring the Urban Environment,” Personal Technologies, 1997, vol. 1 (4), pp. 208-217. |
Fernandez F., “Responsive Environments: Digital Objects in the Landscape,” Thesis submitted to Department of Landscape Architecture, University of Manitoba, Winnipeg, Manitoba, Mar. 2004, 124 pages. |
Geiger C., et al., “Mobile AR4ALL,” Proceedings of the IEEE and ACM Intl Symposium on Augmented Reality (ISAR'01), Oct. 29-30, 2001, Columbia University, New York, 2 pages. |
Gevers T., et al., “PicToSeek: Combining Color and Shape Invariant Features for Image Retrieval,” IEEE Transactions on Image Processing, 2000, vol. 9 (1), pp. 102-119. |
Haritaoglu I., “InfoScope: Link from Real World to Digital Information Space,” IBM Almaden Research, UbiComp, Lecture Notes in Computer Science, 2001, vol. 2201, pp. 247-255. |
Hollerer T., et al., “Chapter Nine: Mobile Augmented Reality,” in: Telegeoinformatics: Location Based Computing and Services, Karimi H., eds., Taylor & Francis Books, Ltd., 2004, Chapter 9, 39 pages. |
International Search Report and Written Opinion for Application No. PCT/US2007/02010, mailed on Nov. 16, 2007, 5 pages. |
Iwamoto T., et al., “Digital Safari Guidebook With Image Retrieval,” International Conference on Advances in Mathematical Computations and Statistical Computing, 1999, vol. 2, pp. 1011-1012. |
Iwamoto T., et al., “u-Photo: A Design and Implementation of a Snapshot Based Method for Capturing Contextual Information,” The Second International Conference on Pervasive Computing Pervasive, 2004, Advances in Pervasive Computing, LinzNienna, Austria, 6 pages. |
Jebara T., et al., “Stochasticks: Augmenting the Billiards Experience With Probabilistic Vision and Wearable Computers,” International Symposium on Wearable Computers, 1997, IEEE Computer Society, pp. 138-145. |
Kangas K., et al., “Using Code Mobility to Create Ubiquitous and Active Augmented Reality in Mobile Computing,” Mobicom, 1999, Seattle, Washington, pp. 48-58. |
Kato H., et al., “Marker Tracking and HMD Calibration for a Video-Based Augmented Reality Conferencing System,” Proceedings of the 2nd IEEE and ACM Intl Workshop on Augmented Reality, San Francisco, California, 1999, pp. 85-94. |
Klinker G., “Augmented Maintenance of Powerplants: A Prototyping Case Study of a Mobile AR System,” International Symposium on Augmented Reality, 2001, IEEE Computer Society, pp. 124-136. |
Levine J.M., “Real-Time Target and Pose Recognition for 3-D Graphical Overlay,” Master's thesis, 1997, 48 pages. |
Ljungstrand P., et al., “WebStickers: Using Physical Tokens to Access, Manage and Share Bookmarks on the Web,” Proceedings of the 2000 ACM Conference on Designing Augmented Reality Environments (DARE 2000), 2000, pp. 23-31. |
Rekimoto J., et al., “Augment-able Reality: Situated Communication Through Physical and Digital Spaces,” Wearable Computers, Second International Symposium, 1998, pp. 68-75. |
Rekimoto J., et al., “CyberCode: Designing Augmented Reality Environments With Visual Tags,” Proceedings of the 2000 ACM Conference on Designing Augmented Reality Environments, 2000, pp. 1-10. |
Rekimoto J., et al., “The World Through the Computer: Computer Augmented Interaction With Real World Environments,” ACM Symposium on User Interface Software and Technology, 1995, pp. 29-36. |
Rekimoto J., “NaviCam: A Palmtop Device Approach to Augmented Reality,” Fundamentals of Wearable Computers and Augmented Reality, 2001, Barfield and Caudell, Eds., pp. 353-377. |
Rohs M., et al., “A Conceptual Framework for Camera Phone-Based Interaction Techniques,” Pervasive Computing. Lecture Notes in Computer Science, 2005, vol. 3468, pp. 171-189. |
Siltanen S., et al., “Implementing a Natural User Interface for Camera Phones Using Visual Tags,” Proceedings of the 7th Australasian User interface conference, 2006, vol. 50, pp. 113-116. |
Smailagic A, et al., “Metronaut: A Wearable Computer With Sensing and Global Communication Capabilities,” First International Symposium on Wearable Computers, Oct. 13-14, 1997, Cambridge, Massachusetts; Digest of Papers, pp. 116-122. |
Smith J.R., et al., “VisualSEEk: A Fully Automated Content-Based Image Query System,” Proceedings of the fourth ACM international conference on Multimedia, ACM New York, 1996, pp. 87-98. |
Starner T., et al., “Augmented Reality Through Wearable Computing,” Presence: Teleoper. Virtual Environ. 6, 4, Massachusetts Institute of Technology, 1997, 24 pages. |
Supplementary European Search Report for Application No. EP02778730, mailed on May 14, 2007, 3 pages. |
Supplementary European Search Report for Application No. EP06801326, mailed on Aug. 12, 2008, 8 pages. |
Suzuki G., et al., “u-Photo: Interacting with Pervasive Services Using Digital Still Images,” Pervasive Computing. Lecture Notes in Computer Science, vol. 3468, 2005, pp. 190-207. |
Toye E., et al., “Interacting with Mobile Services: An Evaluation of Camera-Phones and Visual Tags,” in: Personal and Ubiquitous Computing, vol. 11 (2), Springer-Verlag, London Limited, 2007, pp. 97-106. |
Wagner D., et al., “First Steps Towards Handheld Augmented Reality,” Vienna University of Technology, Proceedings of Seventh IEEE International Symposium on Wearable Computers, Oct. 18-21, 2003, 9 pages. |
Yang J., et al., “Smart Sight: A Tourist Assistant System,” Digest of Papers, Third International Symposium on Wearable Computers, Oct. 18-19, 1999, San Francisco, California, pp. 73-78. |
Yeh T., et al., “Searching the Web with Mobile Images for location Recognition,” IEEE: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'04), 1063-6919/04, 2004, 6 pages. |
Zhang X., et al., “Taking AR Into Large Scale Industrial Environments: Navigation and Information Access With Mobile Computers,” Proceedings of the IEEE and ACM Intl Symposium on Augmented Reality, 2001, pp. 179-180. |
Number | Date | Country | |
---|---|---|---|
20160012077 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
60317521 | Sep 2001 | US | |
60246295 | Nov 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14251480 | Apr 2014 | US |
Child | 14615162 | US | |
Parent | 13968666 | Aug 2013 | US |
Child | 14251480 | US | |
Parent | 13633533 | Oct 2012 | US |
Child | 13968666 | US | |
Parent | 13464410 | May 2012 | US |
Child | 13633533 | US | |
Parent | 13005716 | Jan 2011 | US |
Child | 13464410 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12505714 | Jul 2009 | US |
Child | 13005716 | US | |
Parent | 11342094 | Jan 2006 | US |
Child | 12505714 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09992942 | Nov 2001 | US |
Child | 11342094 | US |