Large scale data centers and the Internet provide a global infrastructure for a wide variety of web-based services. Managers of such services aim to ensure excellent quality at reasonable costs. To achieve these goals, a manager of a web-based service typically enters negotiations with one or more data center operators. For example, to ensure excellent quality, a web-service may require a certain amount of memory, CPU and bandwidth. A data center operator may base the purchase price of such resources on a long-term model that accounts for sunk costs, power costs, expected demand for resources, etc. Such negotiations may take considerable time and have lengthy terms. In turn, the lengthy terms bind the resources and make overall operation of the global infrastructure inflexible, fraught with risk and market inefficiencies.
As described herein, various exemplary technologies allow for optimal provisioning of global computing resources. Such technologies can also drive out market inefficiencies and account for associated traffic and events that impact availability and cost of computing resources.
An exemplary data stream includes value information for use by consumers of global computing resources in making requests for global computing resources. An exemplary method includes receiving information from one or more data centers, based at least in part on the information, estimating value information for consumption of the computing resources and streaming the value information via a network. An exemplary medium or media includes instructions to instruct a computing device to receive, from a data stream, value information for computing resources of one or more data centers, to format the value information for display and to issue requests for consumption of at least some of the computing resources. Other methods, devices and systems are also disclosed.
Non-limiting and non-exhaustive examples are described with reference to the following figures:
Various exemplary methods, devices and systems described herein pertain to streaming data that can assist in resource provisioning. A data stream can carry any of a variety of metrics associated with resource provisioning. For example, a data stream can include a value metric (i.e., value information) for a particular resource that can be used to make decisions about that resource. While various examples refer to price information, metrics other than price may be used, additionally or alternatively (e.g., a monetized unit of capacity, a unit based on type of capacity such as guaranteed bandwidth or best case delivery, etc.). As described herein, a data stream may be viewed as somewhat analogous to a stock ticker that streams price information for stocks traded on a stock exchange; noting that where derivatives are available, a ticker may stream prices for derivatives as well. In the context of computing resources, an exemplary data stream can carry information as to past, present and/or future values of computing resources. For example, past values may be used to benchmark, present values for near real-time resource provisioning and future values for resource provisioning to meet future resource needs. As explained, at present, purchases of global computing resources typically occur via infrequent negotiations between a data center operator and a manager of a web-based service or application. Various exemplary techniques described herein allow for more incremental and/or frequent purchases of computing resources. Such techniques can make the market for computing resources more efficient, which can benefit all players (e.g., users, web-based service/app managers, data center operators, etc.).
The exemplary data streaming service 120 includes modules 130, 140 and 150. The module 130 is labeled “ground truth” as it acquires “raw” data about at least some of the global resources 110. For example, the module 130 may acquire information from a data center as to the number of blades, the amount of memory per blade, the availability of the memory for the next two months, the bandwidth of communications links to the data center, the cost of power to the data center, the geographical location of the data center, etc.
The module 140 is an optimization engine that transforms the raw data to meaningful information using one or more algorithms. Such algorithms may be learning algorithms that can receive input related to trends in computing, measured or prospective benchmarks for equipment, trends in demand for resources (e.g., night, day, geographic, time of week, etc.), etc. In turn, the module 140 can output a variety of information relevant to current and possible future states of the resources. The module 140 can also include value information such as pricing information, for example, that assigns a price to a resource based on time, quantity, location, etc.
The module 150 receives information from the optimization engine 140 and then transforms the information to a standard form relevant to prospective purchasers, for example, the module 150 may operate according to a general schema that specifies resource type, quantity, value (e.g., price), availability, etc.
As mentioned, the consumption mechanism 160 consumes the data output by the service 120 (e.g., a consumer). This consumption mechanism 160 allows computing devices (e.g., automatically or by manual operation by managers or buyers of resources) to readily make requests or place bids for resources. These requests are sent to the provisioning mechanism 170, which includes a Traffic Management (TM) component 180 and an intra data center provisioning component 190. An example of a TM component 180 is described in more detail with respect to
As described herein, an exemplary data streaming service receives inputs, analyzes the inputs and streams advertisements that allow others to make strategic decisions as to managing, scheduling, purchasing, etc., resources. Such a service promotes efficient markets for global computing resources and, in turn, promotes efficiency of the global computing system or “cloud”. The inputs can be any of a variety of inputs including, but not limited, to electrical capacity, electrical redundancy, cooling capacity, temperature thresholds, physical limitations (e.g., as to network ports), logical limitations (e.g., as to active directory authentications), etc. While inputs may be typically provided by one or more data centers, other global resources may also provide inputs. Such other resources that can provide inputs include, for example, DNS equipment, satellite equipment, fiber optic equipment, weather monitoring equipment, power generation equipment, etc. With respect to networking, inputs may pertain to network availability, bandwidth at access, core and edge layers, BGP routing, QoS, peering price, etc.
With respect to the taps module 136, one may expect that a standardized communication interface and standardized set of data may not exist globally. The taps module 136 can account for such lack of standards by ensuring that every resource has some interface or other mechanism to provide data. In an alternative example, the service 120 sets a standard for resources and receives input from those resources that comply with the standard.
With respect to the timings module 138, the timings for tapping information may be unique to a particular resource or standardized across resources and suitably multiplexed for ease of acquisition. For example, a large data center that serves a diverse set of web-based applications may have a timing frequency of once a minute whereas a small data center that serves a single web-based application may have a timing frequency of about once an hour. Alternatively, both data centers may be tapped at the same frequency.
As shown in
The resource status/advertisement component 150 receives the optimized information 141 as output by the optimization engine component 140. The resource status/advertisement component 150 includes a schema module 152 and APIs 154. The schema module 152 dictates the schema or schemas by which data is streamed to the world per data stream(s) 151. For example, the information may be broadcast via satellite, fiber cable, etc. The data stream(s) 151 may be broadcast from more than one site to ensure ready access and to provide redundancy. In general, the service 120 streams information in a manner whereby no consumer (whether automated or manually operated) can gain advantage by getting the information “sooner” than another consumer. With respect to the APIs 154, such APIs are available to allow consumers to subscribe to the service 120. For example, a consumer may register with the service akin to how a consumer would subscribe to a news service (e.g., The Bloomberg News Service, AP, etc.). The data stream 151 may be continuous or broadcast at pre-determined times (e.g., on-the-hour). An exemplary data stream may be looped and information may be ordered according to location, alphabetical or numeric code, type of resource(s), etc. For example, information about a data center in Chicago may appear just after information about a data center in Beijing. As described herein, a data stream may include information clustered in any of a variety of manners (e.g., data center clusters, memory/CPU clusters, bandwidth/route clusters, etc.).
As described herein, the streamed data may be encoded, compressed and/or encrypted. The streamed data may require specialized hardware and/or specialized software for ready consumption. Such techniques are typically found in set-top boxes for cable television services and some news services. A subscriber may have various privileges based on a fee schedule where a higher fee corresponds to more privileges, which may include rich information as to future trends in estimated pricing. Other value-added features for subscribers may include enhanced software for deep analysis of streamed data.
As described herein, an exemplary data stream may be output by a computing device via the Internet (or other network such as an intranet) and include information about global computing resources accessible via the Internet where the information includes value information for use by consumers of global computing resources in making requests for global computing resources. Such consumers may be computing devices operated automatically for or by managers of web-based services or web-based applications accessible via the Internet. With respect to the computing device, it may include an algorithm to estimate value information based at least in part on data acquired from the global computing resources. A data stream may include memory information, CPU information and bandwidth information about the global computing resources and associated value information. A data stream may include geographic information about the global computing resources. A data stream may include information as to routing (e.g., how traffic is being directed in a “cloud” of global computing resources).
As described herein, an exemplary method includes receiving information from one or more data centers (e.g., information about data center resources); based at least in part on the information, estimating value information for consumption of computing resources of the one or more data centers; and streaming the value information via a network. Such a method can include estimating relative pricing for consumption of the data center computing resources. Such a method may stream the value information to potential consumers of the computing resources. Such a method can include receiving subscriptions from potential consumers of the computing resources. Accordingly, potential consumers may be subscribers to a data streaming service that performs the streaming.
Referring again to the method 500, a sanity check block 530 performs a sanity check on each of the one or more received requests based in part on the acquired related data. If the sanity check decides that a particular request is sane (i.e., OK), then the method 500 continues to a placement block 540 where it places the request (e.g., a placement 171) and issues a confirmation 173. The sanity check block 530 may act on a series of requests iteratively and the method 500 may include logic that prevents placement of all requests if one request is found to be suspect or not sane. In the instance that the sanity check block 530 finds a request not sane (i.e., Not OK), then the method 500 enters an issuance block 535 that issues an alert. Such an alert may be a “request declined” alert to consumer 160 and issued by the provisioning mechanism 170 in a manner akin to the confirmation 173.
As described herein, an alert is typically issued to the consumer 160 but may also be issued to the service 120 and kept on record and optionally streamed to the provisioning mechanism 170 to notify the provisioning mechanism 170 of the consumer's history as to bad requests. In an alternative scheme, the provisioning mechanism 170 that issued the alert may record the incident and use the record for making future decisions about the requesting consumer and/or the type of request that generated the alert.
In the example of
As described herein, one or more exemplary computer-readable media include computer-executable instructions to instruct a computing device to receive, from a data stream, value information for computing resources of one or more data centers, to format the value information for display and to issue requests for consumption of at least some of the computing resources. Such a medium or media may include instructions to login to a data streaming service that provides the data stream. Such a data stream may be received via the Internet. Such a medium or media may include instructions to receive confirmations for issued requests. Further, instructions may be included to access an information reservoir that comprises historical price information (see, e.g., reservoir 620 of
In the method 800, an acquisition block 804 acquires information about the client 820 and the web servers 830_1, 830_2 and 830_3 in relationship to the three beacons 815_2, 815_3 and 815_4. In the example of
While the example of
As described herein, an ILC can represent latencies in a network. As latencies may change over time, an ILC may be updated. For example, as peak usage nears, a participant may see its respective beacon RTTs increase; whereas, during non-peak (e.g., late night, early morning, holidays, etc.), the participant may see its respective beacon RTTs decrease.
An exemplary ILC may include information such as a time of “measurement” for a tuple received in response to a DNS request. Such information may be generated upon transmission of a packet or upon receipt of a packet. An exemplary method records a RTT for a beacon along with a “freshness” time; where a stale time may indicate a problem with a participant.
In various examples, participants may rely on the same set of beacons. In other examples, the beacons for a client and a web server or group of web servers associated with a domain name may differ. In such circumstances, additional information about the beacons may be used in selecting the best participant amongst a group of participants.
Referring again to the method 800 of
Further, as shown in the method 900, the information may be used in a re-provisioning block 912 to re-provision existing placements that can no longer be fulfilled as the web server 830_1 is off line. In such situations, fall back or other policies may be implemented to smooth costs for a manager having a pre-existing placement that can no longer be fulfilled. In a particular scheme, the consumer 160 may acquire more expensive resources and then demand compensation from the operators of the failed system.
As described herein, various exemplary techniques can help make the market for data center and related resources more efficient. Current practice relies on a data store or data reservoir where data may be quite stale (i.e., outdated). In contrast, an exemplary system provides one or more real-time data streams, for example, akin to a stock ticker feed or news feed. Such a feed can include information pertaining to data center operation, even including scheduled events, weather, etc. In a variation, a specialized data stream for management of one or more data center and/or one or more other resources may be provided with or without information such as price (e.g., depending on management needs). In this variation, a manager may monitor a specialized data stream for any of a variety of purposes, including upgrading equipment or software, maintaining hardware or infrastructure, etc.
An exemplary data streaming service can include an optimization algorithm to analyze information (e.g., raw data) and to output meaningful data to managers of applications/services—including prices/costs. In turn, the managers can make requests. A provisioning mechanism can provision resources based on requests and forms part of a feedback loop. Overall, the flow of information allows for decision making by app/service managers and developers and drives market efficiency.
In a very basic configuration, computing device 1000 typically includes at least one processing unit 1002 and system memory 1004. Depending on the exact configuration and type of computing device, system memory 1004 may be volatile (such as RAM), non-volatile (such as ROM, flash memory, etc.) or some combination of the two. System memory 1004 typically includes an operating system 1005, one or more program modules 1006, and may include program data 1007. The operating system 1005 include a component-based framework 1020 that supports components (including properties and events), objects, inheritance, polymorphism, reflection, and provides an object-oriented component-based application programming interface (API), such as that of the .NET™ Framework marketed by Microsoft Corporation, Redmond, Wash. The device 1000 is of a very basic configuration demarcated by a dashed line 1008. Again, a terminal may have fewer components but will interact with a computing device that may have such a basic configuration.
Computing device 1000 may have additional features or functionality. For example, computing device 1000 may also include additional data storage devices (removable and/or non-removable) such as, for example, magnetic disks, optical disks, or tape. Such additional storage is illustrated in
Computing device 1000 may also contain communication connections 1016 that allow the device to communicate with other computing devices 1018, such as over a network. Communication connections 1016 are one example of communication media. Communication media may typically be embodied by computer readable instructions, data structures, program modules, or other data forms. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.
While a general computing device is shown in
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
This application is a continuation of prior pending U.S. patent application Ser. No. 12/163,161, filed Jun. 27, 2008, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5958016 | Chang et al. | Sep 1999 | A |
6253241 | Chaddha | Jun 2001 | B1 |
6516350 | Lumelsky et al. | Feb 2003 | B1 |
6615258 | Barry et al. | Sep 2003 | B1 |
6631411 | Welter et al. | Oct 2003 | B1 |
6785704 | McCanne | Aug 2004 | B1 |
7155380 | Hunt et al. | Dec 2006 | B2 |
7200589 | Graupner | Apr 2007 | B1 |
7213065 | Watt | May 2007 | B2 |
7320131 | O'Toole, Jr. | Jan 2008 | B1 |
7421695 | Murray et al. | Sep 2008 | B2 |
7475160 | Shah et al. | Jan 2009 | B1 |
7483984 | Jonker et al. | Jan 2009 | B1 |
7590746 | Slater et al. | Sep 2009 | B2 |
7600014 | Russell et al. | Oct 2009 | B2 |
7627658 | Levett et al. | Dec 2009 | B2 |
7698146 | Cullen, III | Apr 2010 | B2 |
7860973 | Gauthier et al. | Dec 2010 | B2 |
20010032262 | Sundqvist et al. | Oct 2001 | A1 |
20020120727 | Curley et al. | Aug 2002 | A1 |
20020129123 | Johnson et al. | Sep 2002 | A1 |
20030115244 | Molloy et al. | Jun 2003 | A1 |
20030145080 | Breese et al. | Jul 2003 | A1 |
20030149685 | Trossman et al. | Aug 2003 | A1 |
20040010544 | Slater et al. | Jan 2004 | A1 |
20040073673 | Santos et al. | Apr 2004 | A1 |
20040116115 | Ertel | Jun 2004 | A1 |
20040193476 | Aerdts | Sep 2004 | A1 |
20040267897 | Hill et al. | Dec 2004 | A1 |
20050004929 | Stephenson | Jan 2005 | A1 |
20050131773 | Daur et al. | Jun 2005 | A1 |
20050251572 | McMahan et al. | Nov 2005 | A1 |
20060059265 | Keronen | Mar 2006 | A1 |
20060149652 | Fellenstein et al. | Jul 2006 | A1 |
20060218278 | Uyama et al. | Sep 2006 | A1 |
20060250977 | Gao et al. | Nov 2006 | A1 |
20070027973 | Stein et al. | Feb 2007 | A1 |
20070143767 | Attanasio et al. | Jun 2007 | A1 |
20070180020 | Woods | Aug 2007 | A1 |
20070260723 | Cohen et al. | Nov 2007 | A1 |
20080031136 | Gavette et al. | Feb 2008 | A1 |
20080155015 | Jensen et al. | Jun 2008 | A1 |
20090177760 | Gonzalez et al. | Jul 2009 | A1 |
20090180430 | Fadell | Jul 2009 | A1 |
20100169490 | McNair | Jul 2010 | A1 |
20110066728 | Gauthier et al. | Mar 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20110066728 A1 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12163161 | Jun 2008 | US |
Child | 12946593 | US |