This invention is related to methods to calibrate phasor measurement unit and its applications. More particularly, this invention presents a novel framework for online error detection and calibration of PMU measurement using density-based spatial clustering of applications with noise (DBSCAN) based on much relaxed assumptions.
A phasor measurement unit (PMU) is a device which measures the 50/60 Hz AC waveform (voltages and currents) on an electricity grid using a common time source Global Positioning System (GPS) radio clock for synchronization. Time synchronization allows synchronized real-time measurements of multiple remote measurement points on the grid. The resulting measurement is known as a synchrophasor. The obtained synchrophasor measurement is of great importance in tremendous modern power system applications, for instance, support demand response mechanism to manage a power system, detect early fault allowing for isolation of operative system and prevent power outages, provide trustful information for power system state estimation, etc. Phasor measurement unit (PMU) is envisioned to be one of the enabling technologies in smart grid, with the promise of massive installation in the future power systems. On one hand, most synchrophasor-based applications, especially the mission critical ones, require the measurements to be very reliable and accurate. On the other hand, although PMU data are expected to be highly accurate, this potential accuracy and reliability are not always achieved in actual field installation due to various causes [1]. It has been observed under many occasions that PMU measurements can have various types of data quality issues. To ensure accurate, reliable and consistent PMU data, there are pressing needs to calibrate PMU to fulfill the claimed performance.
As discussed in [2], the PMU device itself is typically very accurate, but the instrumental channel, where PMU gets its inputs, is usually much less accurate. Specifically, the instrumentation channel (e.g., potential and current transformers) can introduce magnitude and phase angle errors that can be magnitudes of orders higher than the typical PMU accuracy. A practically useful calibration method should be capable of handling inaccuracies originated from both PMU and its instrumentation channel.
Previously the Performance and Standards Task Team (PSTT) published a PMU system testing and calibration guide [3]. As discussed and widely accepted in the 2016 NASPI Work Group meeting, PMU data quality efforts need to be implemented to ensure the highest synchrophasor signal quality for applications. The modified IEEE C37.118 standard requires the total vector error (TVE) between a measured phasor and its true value to be well within 1% under steady-state operating conditions [4]. Towards these requirements, many PMU calibration schemes have been proposed. In general, these methods can be divided into two categories based on how they are implemented: offline testing/calibration [5-11] and model-based approaches [12-16].
The former works by comparing PMU output against standard testing signal(s), using certain types of specialized equipment or systems whose accuracies are at least one level greater than the to-be-tested PMUs. This type of methods requires specialized expensive equipment/system, and due to their offline nature, errors originated from the instrumentation channel cannot be duplicated and compensated.
The latter works by fitting PMU measurements into a mathematical model for fidelity check, assuming parameters of the system/device(s) and the model are known a priori and accurate. In [12], the authors present a phasor-data-based state estimator (PSE) that is capable of identifying and correcting bias error(s) in phase angles. This approach assumes the phasor magnitudes and network parameters are both accurate. One paper in [13] proposes the idea of a “super calibrator” for substation-level data filtering and state estimation, the input of which includes PMU data, SCADA data, and a detailed 3-phase model of the substation, etc. Despite complexity of the model, the accuracy level of SCADA data adds uncertainty, or even degrades performance of the approach. Paper [1] proposes a calibration-factor-based iterative non-linear solution approach for 3-phase PMU data calibration. Performance of the approach is highly dependent upon accuracy of the 3-phase transmission line parameters in the EMS database. The PMU data calibration approach in [14] again assumes the transmission line (TL) impedances are known to be exact. Papers [15] and [16] attempt to accomplish line parameter estimation and PMU calibration simultaneously, with the assumption that one of the two PMUs generates perfect measurements, which, in practice, is really difficult to tell. The strong assumptions used in existing model-based methods undermine their practicability.
This invention presents a novel data mining based synchrophasor measurement calibration framework which detects and corrects the overall systematic or bias error(s) introduced by both PMU and its instrumentation channel. Major contribution of the proposed method lies in that it does not require accurate prior knowledge of the system mathematical model/parameters. Furthermore, one byproduct of the proposed method is more accurate impedance parameters of the transmission line for EMS database and protective relay settings. By relaxing those strong assumptions employed in existing model based approaches, the proposed method advances the practicability of online PMU calibration.
The remainder of this patent application is organized as follows. Section I describes the problem and related mathematical models. Section I presents the proposed framework. Case studies are presented in section III while conclusion and advantages are discussed in section IV.
This invention presents a novel approach for online calibration of PMU by using density-based spatial clustering. As compared to existing methods, this invention has two major advantages: 1) it identifies the overall bias errors introduced by both PMU and its instrumentation channel; 2) it does not require accurate system model/parameters. Therefore, it is applicable across a wide spectrum of practical conditions. In addition, one by-product of the proposed approach is more accurate transmission line (TL) impedance estimation for improved system modeling, more accurate protective relay settings, and other related applications.
Generally speaking, errors in synchrophasor measurements can originate from three possible sources as discussed in [17]: transducers, synchronization, and phasor estimation algorithm. Impacts of these three sources can be summarized into two categories: random error and bias (systematic) error.
Random error, as its name suggests, is random in either direction in its nature and difficult to predict. Random error can be circumvented from measurements via statistical means. Extensive studies have been conducted in reducing random error or its influences to PMU measurements, with satisfactory results observed: unbiased linear least squares (LS) is used in [18]; non-linear LS algorithms are used in [19, 20]; total LS is introduced in [21]; other optimization procedures are discussed in [22, 23].
Systematic or bias error is reproducible inaccuracy that is consistent in the same direction. Bias error is much harder to estimate and remove. Authors of [2] have examined the maximum bias errors introduced by different portions of the measurement chain. Table I summarizes the maximum bias error for a typical 230-kV system. For example, with a 400-ft instrumentation cable, the maximum bias errors in the magnitude and phase angle of the voltage phasor are 0.709% and 1.471 degree, respectively. These bias errors are no longer negligible and a systematic approach needs to be developed to identify and remove them, which is the scope of this invention.
jθ
(1)
true=(V+∂V)·ej(θ
where V and θV are the magnitude and phase angle of phasor
A PI model as shown in
The following equations are derived from nodal analysis:
and
Z=R+jX (5)
Y=G+jB
c (6)
where G and Bc are line shunt conductance and susceptance.
Combing equations (3)-(4) to solve for Y and Z yields:
Substituting each phasor in (7)-(8) with its magnitude and phase angle according to (1) and setting phase angle of Ir, θI
where θ′V
Shunt conductance of a transmission line, G, is usually very small and therefore neglected from the PI model.
To investigate the sensitivity of line parameters to bias errors in PMU measurements, partial derivatives need to be taken for (9)-(11), all of which are complex equations. For the derivatives to be valid, they must obey the Cauchy-Riemann equations [25]. The compliance checking/procedure is not discussed here due to space consideration, but the validation has been completed. The following equations have been derived:
∂R=AR·∂Vs+BR·∂Vr+CR·∂Is+DR·∂Ir+ER··∂θ′V
∂X=AX·∂Vs+BX·∂Vr+CX·∂Is+DX·∂Ir+EX·∂θ′V
∂Bc=AB·∂Vs+BB·∂Vr+CB·∂Is+DB·∂Ir+EB·∂θ′V
where coefficients Ax˜Gx are all partial derivatives. Taking R as an example, these coefficients are:
For space consideration, detailed information of these partial derivatives is discussed in Appendix I. Put equations (12)-(14) into matrix form to obtain:
It should be noted that coefficients Ax˜Gx vary with the loading (current), as can be seen from the expression of, for example,
Assuming N sets of PMU measurements under different load conditions are collected, the following matrix can be written:
If an accurate set of line impedance parameters is known a priori, the bias errors in the PMU measurements can be easily estimated using the standard least square estimator, as:
F=(HTH)−1HTE (19)
Seven unknowns appear in F and therefore the rank of H matrix has to be no less than seven which requires 3×N≥7 or N≥3, (N∈N*). Vector E is comprised of the difference between the true line impedance values and the calculated ones using (9)-(11). With the assumption that accurate line impedances are known, here are the steps for evaluating the bias errors in PMU measurements:
Step 1: calculate line impedance parameters R, X, and B according to (9)-(11);
Step 2: evaluate vector E by comparing the calculated line impedances (from step 1) to their corresponding references obtained from the EMS database: REMS, XEMS, and BEMS;
Step 3: evaluate matrix H with the partial derivatives calculated from PMU measurements:
Step 4: solve for vector F based on (19).
The aforementioned least square estimator is able to identify bias errors in PMU measurements assuming the line's actual impedances, as the references, are known a priori. In practice, these parameters are read off from EMS database and were originally calculated based on tower geometries, conductor dimensions, estimates of line length, and conductor sags, etc. They only approximate the effects of conductor sags and ignore the dependence of impedance parameters on temperature and loading conditions [26, 27]. Therefore, the challenge is that only approximates of line impedances are known and without knowing their true values the calculated bias errors might be far from being accurate. In the following section, this invention shows how this challenge can be addressed by using data mining technology like Density-based Spatial Clustering.
This subsection conducts sensitivity analysis and investigates influence of errors in referenced line impedances on bias error estimation in PMU measurements. A simulated transmission line with specifications shown in Appendix II is used for this study. Errors are added to all three line impedance references, one at a time, and the least square estimator described in section I. C. is employed to evaluate F. As an example, results of the sensitivity analysis for line reactance X are shown in
From
A few observations can be made based on Table II, 1) PMU measurement bias error(s) estimation is generally sensitive to error(s) in line impedance references; 2) impact of reference errors to bias error estimation is linear; 3) if line impedance references are exactly known a priori, all bias error can be accurately estimated.
However, in practice, line impedance references cannot be known exactly, as discussed in section I. D. To address this challenge, a data mining approach based on DBSCAN is proposed to address the uncertainties in transmission line (TL) impedance references.
Density-based spatial clustering of applications with noise (DBSCAN) is an unsupervised data mining technique which is able to classify data points of any dimension into core points, reachable points and outliers [28]. A core point p contains at least minPts points (including p) within the designated searching distance ϵ. A reachable point q exists if there exists a path p1, p2, . . . , q, so that all points on the path, except q, are core points. Points that are not reachable from any other point are outliers. Core points and reachable points can form a cluster while outliers are excluded from such cluster.
As shown in
Although EMS references can be significantly wrong, our experience shows that the error bands are generally well within 20%. Therefore, we may define a as the error band multiplier for impedance references obtained from the EMS database (REMS, XEMS, and BEMS). The following constraints can be considered:
The corresponding feasibility region can be visualized as the cube shown in
The basic idea of the invented approach is to 1) scan every point within feasible region (a total of M points); 2) evaluate the corresponding bias errors in the PMU measurements; 3) form sets of points with each set containing seven 4-dimensional data points, and each data point has the form of (∂R, ∂X, ∂Bc, x), where x is one of the bias errors in PMU measurements (a total of M sets). 4) apply DBSCAN to cluster all the M data sets to find out the one with least number of outliers (maximum number of core and reachable points) and minimum searching distance. Once this cluster is identified, the actual bias errors in all PMU channels and errors in line impedance references can be determined accordingly.
To minimize the computation, equation (19) is extended to (21). As compared to vector E and F in (19), matrix E′(3N-by-M) and F′(7-by-M) are the extended version which relates multiple bias error sets to multiple sets of the error in referenced impedances.
Or
F′=(HTH)−1HTE′
A flowchart of the proposed data mining based PMU data calibration approach is shown in
The aforementioned discussion is for the situation without noise. When noise exists in PMU measurements, the seven curves typically will not intercept exactly at a single point but instead will stay very close to each other around one particular zone/region, which may be referred to as the “zero region”. By looking at the searching distance and number of outliers, the “zero region” can be identified and therefore the errors in EMS references and PMU measurements can be evaluated accordingly.
Five case studies are presented in this invention to demonstrate the procedure and effectiveness of the proposed PMU data calibration framework. A testing system with parameters shown in Table VIII has been set up in Matlab/Simulink for these experiments.
Objective of the first case study is to validate performance of the proposed method when no error exists in the TL impedance references. Basically, different sets of combinations of bias errors have been added to the PMU measurements and the proposed approach is used to identify them. The results for six representative cases are summarized in Table III, in which both the true bias errors and the calculated ones are presented and compared. The agreement between true bias errors and calculated ones validates the proposed approach under the ideal condition with no error in the referenced impedances.
The second case study considers error in one of the referenced impedances. Towards this goal, errors are added to each of the referenced impedances, one at a time, and different combinations of bias errors are considered for PMU measurements. For space consideration, only the result for a representative case is presented below. And in this particular case, a −2% error is considered for the series resistance, REMS, and 0.01 p.u. bias error is added to magnitude of the sending-end current phasor. A 20% error band is considered for the referenced impedances with a being set to 20%. The proposed approach scans all 4-dimensional data points collected from matrix F′, and for visualization purpose, only the relationship between bias errors and errors in R is plotted as shown in
According to Table IV, the proposed approach successfully identifies not only bias error in PMU measurements but also error in the referenced TL series resistance.
In the third case study, −4% error and −6% error are considered for REMS and XEMS, respectively; bias errors of 0.01 p.u. and 0.00175 rad are added to Vs and θVr, respectively. A 20% error band is considered for the referenced impedances with α being set to 20%.
To help illustrate the DBSCAN process,
In the fourth case study, a set of −2%, −5%, 2% errors are considered for REMS, XEMS, and BEMS, respectively; bias errors of 0.01 p.u. and 0.00175 rad are added to Vs and θVr, respectively. A 20% error band is considered for the referenced impedances with α being set to 20%. Experimental results are shown in Table VI. Table VI demonstrate again the effectiveness of the proposed method when all referenced impedance values have errors. One key value of the proposed approach lies in its capability of PMU calibration without knowing an accurate system model.
In the fifth case study, PMU data are collected for a 500-kV transmission line in Jiangsu Electricity Power Grid with the name of “Huadong-Tianhui Line #5621”. PMU data reporting rate is 25 samples per second.
Using these real PMU data, the proposed approach is applied to identify both errors from EMS database and bias errors in the measured phasors. As discussed above, cluster size and searching distance, ϵ, are used as the criteria for DBSCAN. Part of the spatial clustering results are visualized in
1) TL impedance parameters, R, X and Bc in the EMS database have errors of −14%, 5.4% and 12.6% respectively;
2) no significant bias error in the voltage phasors collected from the real PMU is identified;
3) bias errors of 0.0171 pu and 0.0164 pu are identified in the magnitudes of sending-end and receiving-end current phasors, respectively;
4) no significant bias error is identified in the phase angles of the two current phasors.
Computation time of the proposed approach is dependent upon the number of data points to scan within the feasibility region. In one experiment, a total of 1 million points (worst case scenario) are processed using a Matlab program, and the solution process takes roughly 29 seconds (recoding the program using C++ will greatly speed up the solution process). Fortunately, PMU data calibration does not need to be conducted very often, and once a week or longer will work for most cases. Structure of the proposed algorithm is suitable for parallel processing, which will further speed up the solution process.
As show in the above diagram, this invention can be implemented in hardware, firmware or software, or a combination of the three. Preferably the invention is implemented in a computer program executed on a programmable computer having a processor, a data storage system, volatile and non-volatile memory and/or storage elements, at least one input device and at least one output device.
By way of example, a block diagram of a computer to support the system is discussed next. The computer preferably includes a processor, random access memory (RAM), a program memory (preferably a writable read-only memory (ROM) such as a flash ROM) and an input/output (I/O) controller coupled by a CPU bus. The computer may optionally include a hard drive controller which is coupled to a hard disk and CPU bus. Hard disk may be used for storing application programs, such as the present invention, and data. Alternatively, application programs may be stored in RAM or ROM. I/O controller is coupled by means of an I/O bus to an I/O interface. I/O interface receives and transmits data in analog or digital form over communication links such as a serial link, local area network, wireless link, and parallel link. Optionally, a display, a keyboard and a pointing device (mouse) may also be connected to I/O bus. Alternatively, separate connections (separate buses) may be used for I/O interface, display, keyboard and pointing device. Programmable processing system may be preprogrammed or it may be programmed (and reprogrammed) by downloading a program from another source (e.g., a floppy disk, CD-ROM, or another computer).
Each computer program is tangibly stored in a machine-readable storage media or device (e.g., program memory or magnetic disk) readable by a general or special purpose programmable computer, for configuring and controlling operation of a computer when the storage media or device is read by the computer to perform the procedures described herein. The inventive system may also be considered to be embodied in a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.
The invention has been described herein in considerable detail in order to comply with the patent Statutes and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use such specialized components as are required. However, it is to be understood that the invention can be carried out by specifically different equipment and devices, and that various modifications, both as to the equipment details and operating procedures, can be accomplished without departing from the scope of the invention itself.
These are key steps of this invention:
More detailed steps of this invention:
The following flow chart shows detailed steps or procedure of this invention:
The invention proposes a data mining and least square estimation combination framework to determine the overall systematic or bias error(s) introduced by PMU and its instrumentation channel. The least square estimator is built based on general TL PI model. In this estimation, TL parameters are equally critical to the result as synchrophasor measurements. For most power systems, detailed TL specifications can be found from their affiliated utility's Energy Management System (EMS). However, the accuracy level of EMS data is even lower than PMU data itself, a sensitivity analysis we conducted shows: 1) TL parameter accuracy is essentially and linearly influential to the state estimation result; 2) the more accurate the TL parameter is the more disperse the erroneous synchrophasor measurements are from the good synchrophasor measurements. These two features recall a clustering algorithm called density-based spatial clustering of applications with noise (DBSCAN), this algorithm is capable of effectively filtering out the true synchrophasor bias errors from the massive estimation result despite the inaccurate TL parameters. This invention presents a novel approach for online calibration of PMU by using density-based spatial clustering. As compared to existing methods, this invention has two major advantages: 1) it identifies the overall bias errors introduced by both PMU and its instrumentation channel; 2) it does not require accurate system model/parameters. Therefore, it is applicable across a wide spectrum of practical conditions. In addition, one by-product of the proposed approach is more accurate TL impedance estimates for improved system modeling, more accurate protective relay settings, and other related applications. Future more, this invention could: 1) extend the invented framework to system level to achieve simultaneous calibration of multiple PMUs; 2) decompose the spatial clustering process so that state-of-the-art parallel computing techniques can be employed to speed up the computation.
This invention has the following advantages:
The framework of this bias error detection method is unique; it basically combined the least square estimation and the clustering algorithm DBSCAN. The interactive of these two tools can effectively detect the bias errors.
The calibration process is also unique, it purely based on existing data like PMU measurements and TL parameters from EMS, no additional assumptions or calibration devices are needed. This method can solve two problems at one time. Beside bias error calibration, it also can identify the true transmission line parameters.
Partial derivatives of impedance to the PMU measurements are presented as follows:
By the same means, the partial derivative equations of Y to each PMU components can be generated and AB, BB . . . GB can be calculated accordingly. Due to the space limitation, they are not presented here.
A transmission line with two PMUs installed at both terminals is simulated in this study using Matlab/Simulink with specifications shown in Table VIII.
In summary, the present invention provides a novel approach for online calibration of PMU by using density-based spatial clustering. Although the potential methods and applications of using the same according to the present invention have been described in the foregoing specification with considerable details, it is to be understood that modifications may be made to the invention which do not exceed the claimed scope of the invention and modified forms of the present invention done by others skilled in the art to which the invention pertains will be considered infringements of this invention when those modified forms fall within the claimed scope of this invention.
This application claims the benefit of the filing date of U.S. Provisional Application Ser. No. 62,429,898, entitled “A data mining based approach for online calibration of Phasor Measurement Unit (PMU)” and filed on Dec. 5, 2016. The teachings of the entire referenced application are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62429898 | Dec 2016 | US |