Embodiments relate generally to computer data systems, and more particularly, to methods, systems and computer readable media for data partitioning and ordering.
Data sources within a computer data system may include static sources and dynamic sources. Data from these sources may be stored into one or more tables that may not preserve an ordering of the data when stored on a physical data storage. The tables may not be partitioned and/or grouped so as to maintain an order to the stored data. Thus, when data is retrieved from the tables and a need to order the data exists, there may additional computation cycles required to order the retrieved data. Also, a need may exist to provide an efficient method of data storage and retrieval for large data sets in computer data systems. Embodiments were conceived in light of the above mentioned needs, problems and/or limitations, among other things.
Some implementations can include a method for storing ordered data in a computer data system. The method can include receiving an electronic message containing one or more data items, and storing the received data items to a first set of one or more first partitions as first stored data in a first electronic data storage device. The method can also include remapping the data items stored in the first set of partitions to a second set of one or more second partitions in a second electronic data storage device, each of the second partitions having a respective grouping, and storing the remapped first stored data as second stored data in the second set of partitions in a second electronic data storage device according to the respective grouping.
The method can further include sorting each second partition of the second set of partitions according to a strict ordering to generate ordered second partitions, and storing the ordered second partitions in the second electronic data storage device so as to maintain the strict ordering. The method can also include organizing each ordered second partition into one or more groups having one or more grouping levels based on one or more column values, wherein the organizing includes generating grouping metadata associated with the respective ordered second partition.
The second partition of the second set of partitions corresponds to a directory in a file system. The first electronic data storage device and the second electronic data storage device can be different from each other. The second partitions are arranged according to an overall schema and the ordered partitions are arranged according to a partition schema associated with each respective ordered partition.
Some implementations can include a method for retrieving ordered data in a computer data system. The method can include receiving an electronic message including a computer data system query, and performing first processing of the computer data system query to identify one or more data objects within a set of partitions stored on an electronic data storage device, the one or more data objects identified as containing data responsive to the query. The method can also include generating an intermediate result data object based on the first processing, and performing second processing of the computer data system query to generate an ordered collection of index values corresponding to one or more data items from the identified data objects having data responsive to the query, wherein the ordered collection contains index values into one or more data objects maintained according to a strict ordering associated with the data objects. The method can further include generating a subsequent result data object based on the second processing, and providing a reference to the subsequent result data object containing the ordered collection as a query result, the subsequent result data object including references to data and corresponding index values for that data, wherein the subsequent result data object maintains the strict ordering associated with the data objects.
The intermediate result data object may include only locations and location keys of data responsive to the query. The subsequent result data object can include locations of data responsive to the query and one or more references to data responsive to the query. Accessing and movement of data is delayed until after the first processing of the computer data system query. The set of partitions can include a hierarchical arrangement of partitions.
Some implementations can include a method for computer data system data object schema modification. The method can include receiving a request to modify a schema associated with a data object, and retrieving schema information from metadata associated with the data object. The method can also include modifying only the schema information according to the received request, and storing the modified schema information in the metadata associated with the data object, wherein the data object is accessible according to the modified schema information.
The method can also include providing the modified schema from the metadata associated with the data object in response to a request for information about the data object. The request to modify the schema can include a request to add a column to the data object, and wherein the column can be added by schema modification without accessing any of the data in the data object. The request to modify the schema can include a request to remove a column from the data object, and wherein the column can be removed by schema modification without accessing any of the data in the data object.
The request to modify the schema can include a request to modify a data type of a column within a data object, and the modified schema information can include a modified data type for that column based on the request.
The request to modify the schema can include a request to add a formula column to the data object, wherein a definition of the formula column can reside in the schema information and the formula column may not contain stored data, and wherein when data is requested from the formula column, the computer data system can compute a response result to the request for data from the formula column based on one or more data columns referenced by the formula column and returns that result.
The request to modify the schema can include a request to add a formula column to the data object, wherein a definition of the formula column can reside in the schema information and only a portion of rows in the formula column contain stored data, and wherein when data is requested from the formula column, the computer data system can compute a response result to the request for data from the formula column based on stored data in the formula column for rows where data is present and, for rows where data is not present in the formula column, can compute a response result to the request for data from the formula column based on one or more data columns referenced by the formula column and returns that result.
Reference may be made herein to the Java programming language, Java classes, Java bytecode and the Java Virtual Machine (JVM) for purposes of illustrating example implementations. It will be appreciated that implementations can include other programming languages (e.g., groovy, Scala, R, Go, etc.), other programming language structures as an alternative to or in addition to Java classes (e.g., other language classes, objects, data structures, program units, code portions, script portions, etc.), other types of bytecode, object code and/or executable code, and/or other virtual machines or hardware implemented machines configured to execute a data system query.
The application host 102 can include one or more application processes 112, one or more log files 114 (e.g., sequential, row-oriented log files), one or more data log tailers 116 and a multicast key-value publisher 118. The periodic data import host 104 can include a local table data server, direct or remote connection to a periodic table data store 122 (e.g., a column-oriented table data store) and a data import server 120. The query server host 106 can include a multicast key-value subscriber 126, a performance table logger 128, local table data store 130 and one or more remote query processors (132, 134) each accessing one or more respective tables (136, 138). The long-term file server 108 can include a long-term data store 140. The user data import host 110 can include a remote user table server 142 and a user table data store 144. Row-oriented log files and column-oriented table data stores are discussed herein for illustration purposes and are not intended to be limiting. It will be appreciated that log files and/or data stores may be configured in other ways. In general, any data stores discussed herein could be configured in a manner suitable for a contemplated implementation.
In operation, the input data application process 112 can be configured to receive input data from a source (e.g., a securities trading data source), apply schema-specified, generated code to format the logged data as it's being prepared for output to the log file 114 and store the received data in the sequential, row-oriented log file 114 via an optional data logging process. In some implementations, the data logging process can include a daemon, or background process task, that is configured to log raw input data received from the application process 112 to the sequential, row-oriented log files on disk and/or a shared memory queue (e.g., for sending data to the multicast publisher 118). Logging raw input data to log files can additionally serve to provide a backup copy of data that can be used in the event that downstream processing of the input data is halted or interrupted or otherwise becomes unreliable.
A data log tailer 116 can be configured to access the sequential, row-oriented log file(s) 114 to retrieve input data logged by the data logging process. In some implementations, the data log tailer 116 can be configured to perform strict byte reading and transmission (e.g., to the data import server 120). The data import server 120 can be configured to store the input data into one or more corresponding data stores such as the periodic table data store 122 in a column-oriented configuration. The periodic table data store 122 can be used to store data that is being received within a time period (e.g., a minute, an hour, a day, etc.) and which may be later processed and stored in a data store of the long-term file server 108. For example, the periodic table data store 122 can include a plurality of data servers configured to store periodic securities trading data according to one or more characteristics of the data (e.g., a data value such as security symbol, the data source such as a given trading exchange, etc.).
The data import server 120 can be configured to receive and store data into the periodic table data store 122 in such a way as to provide a consistent data presentation to other parts of the system. Providing/ensuring consistent data in this context can include, for example, recording logged data to a disk or memory, ensuring rows presented externally are available for consistent reading (e.g., to help ensure that if the system has part of a record, the system has all of the record without any errors), and preserving the order of records from a given data source. If data is presented to clients, such as a remote query processor (132, 134), then the data may be persisted in some fashion (e.g., written to disk).
The local table data server 124 can be configured to retrieve data stored in the periodic table data store 122 and provide the retrieved data to one or more remote query processors (132, 134) via an optional proxy.
The remote user table server (RUTS) 142 can include a centralized consistent data writer, as well as a data server that provides processors with consistent access to the data that it is responsible for managing. For example, users can provide input to the system by writing table data that is then consumed by query processors.
The remote query processors (132, 134) can use data from the data import server 120, local table data server 124 and/or from the long-term file server 108 to perform queries. The remote query processors (132, 134) can also receive data from the multicast key-value subscriber 126, which receives data from the multicast key-value publisher 118 in the application host 102. The performance table logger 128 can log performance information about each remote query processor and its respective queries into a local table data store 130. Further, the remote query processors can also read data from the RUTS, from local table data written by the performance logger, or from user table data read over NFS, for example.
It will be appreciated that the configuration shown in
The production client host 202 can include a batch query application 212 (e.g., a query that is executed from a command line interface or the like) and a real time query data consumer process 214 (e.g., an application that connects to and listens to tables created from the execution of a separate query). The batch query application 212 and the real time query data consumer 214 can connect to a remote query dispatcher 222 and one or more remote query processors (224, 226) within the query server host 1 208.
The controller host 204 can include a persistent query controller 216 configured to connect to a remote query dispatcher 232 and one or more remote query processors 228-230. In some implementations, the persistent query controller 216 can serve as the “primary client” for persistent queries and can request remote query processors from dispatchers, and send instructions to start persistent queries. For example, a user can submit a query to 216, and 216 starts and runs the query every day. In another example, a securities trading strategy could be a persistent query. The persistent query controller can start the trading strategy query every morning before the market opened, for instance. It will be appreciated that 216 can work on times other than days. In some implementations, the controller may require its own clients to request that queries be started, stopped, etc. This can be done manually, or by scheduled (e.g., cron) jobs. Some implementations can include “advanced scheduling” (e.g., auto-start/stop/restart, time-based repeat, etc.) within the controller.
The GUI/host workstation can include a user console 218 and a user query application 220. The user console 218 can be configured to connect to the persistent query controller 216. The user query application 220 can be configured to connect to one or more remote query dispatchers (e.g., 232) and one or more remote query processors (228, 230).
In operation, the processor 302 may execute the application 310 stored in the memory 306. The application 310 can include software instructions that, when executed by the processor, cause the processor to perform operations for ordered data storage, retrieval and schema modification in accordance with the present disclosure (e.g., performing one or more of 802-812, 902-908, and/or 1002-1008 described below).
The application program 310 can operate in conjunction with the data section 312 and the operating system 304.
In general, some implementations can include a computer data system that stores and retrieves data (e.g., time series data) according to strict ordering rules. These rules ensure that data is stored in a strict order and that results of a query are evaluated and returned in the same order each time the query is executed. In some implementations, the computer data system may be configured to store and retrieve data according to a total ordering (e.g., an ordering across multiple dimensions). This can provide an advantage of optimizing the query code for query execution speed by permitting a user and query process (e.g., a remote query processor) to rely on an expected ordering and eliminate a need for performing an additional sorting operation on query results to achieve an expected or needed ordering for downstream operations. It also allows data to be ordered according to the source's data publication order without necessarily including data elements to refer to for query evaluation or result ordering purposes. It should be noted that updates from real-time or changing data, however, may not always be seen in the same order, since data is processed after asynchronous notifications and according to refresh cycles that progress at different speed and frequency in distinct remote query processors or client processes. Updates are not necessarily the results of a query, though. For some implementations order within a partition is always maintained.
For example, in the real-time (or periodic) case, a data system may store data in arrival order (which is typically time-series order) within the partition of the table that corresponds to a given data source. In the permanent-store case (or long term storage case), the computer data system starts with the real-time order and then re-partitions, optionally groups, and optionally sorts the real-time (or periodic) data according to one or more columns or formulas, otherwise respecting the retrieval order for the real-time data when producing the new stored data and its ordering.
Some implementations can include a partitioned data store that has partitions based, at least in part, on a file system and can include physical machine partitions, virtual machine partitions and/or file system directory structure partitions. For example, partitions A, B and C of a data store (e.g., a column data source) may reside in different directories of a file system. In addition to different directories, the data store may be distributed across a plurality of data servers (physical or virtual) such that the data is partitioned to a given server and within that server, the data may be sub-partitioned to one or more directories, and within each directory, the data may be further partitioned into one or more sub-directories and/or one or more files.
Partitioning the data using a file system provides an advantage in that the location keys and retrieval instructions for storage locations of interest for potential query result data can be discovered by means of traversing a directory structure, rather than a separately-maintained location key and location retrieval information discovery service. Once discovered, locations can be narrowed from the full set of locations to a sub-set according to query instructions, which can help speed up query operations by permitting the data system to defer accessing actual data (“lazy loading”) and begin to narrow down the set of rows to evaluate without handling data (e.g., in memory and/or transmitting via a communication network). This is further enhanced by support in the data system's query engine for partitioning columns—columns of the data that are a property of all rows in any location retrieved from a given partition of the location key space, typically embodied in the name of a sub-directory when a file system is used in this way. Certain query operations can thus be executed in whole or in part against location key fields on a per-partition basis rather than against column data on a per-row basis. This may greatly improve execution performance by decreasing the input size of the calculations by several orders of magnitude.
Within a partition, data may be grouped according to a column value. The grouping may have one or more levels, with a multi-level grouping having a logical hierarchy based on the values of two or more columns, such that groups in “higher-level” columns fully-enclose groups in “lower-level” columns. Further, within a partition or group, the data can be ordered according to a given ordering scheme, e.g. strictly by the real-time recording order, or according to some sorting criteria. Grouping in this way can enhance query performance by allowing for very simple, high performance data indexing, and by increasing the physical locality of related data, which in turn can reduce the number of rows or blocks that must be evaluated, and/or allow for extremely performant data caching and pre-fetching, with high cache hit ratios achieved with smaller cache sizes than some other data systems.
For example, securities trading data may be partitioned across servers by a formula that takes ticker symbol as input. Within each server, the data may be partitioned by a directory corresponding to trade data date. Within each date partition directory, data may be in a file grouped by one or more ticker symbol values. Within each ticker symbol group, the data may be ordered by time.
In another example, when generating a query result table, the data system can first focus on a server (or servers) for the symbol (or symbols) being accessed, then one or more partitions for the date(s) of interest, then one or more files and group(s) within the file(s) before any data is actually accessed or moved. Once the data system resolves the actual data responsive to the query, the data (or references to the data in one or more data sources) can be retrieved and stored into a query result table according to a strict ordering and will be evaluated and returned in that same order each time the query is executed.
It will be appreciated that some data stores or tables can include data that may be partitioned, grouped, and/or ordered. For example, some data may be partitioned and ordered, but not grouped (e.g., periodic data such as intraday trading data). Other data may be partitioned, grouped and ordered (e.g., long-term storage data such as historical trading data). Also it will be appreciated that any individual table, partition or group can be ordered. Partitions can be grouped according to a grouping and/or ordering specific to each partition.
A data object (such as a table) within the computer data system can include a definition that provides information used to access and/or modify the data object. The data object definition information can include a namespace, a data object name (e.g., a table name), and an ordered list of column definitions. Each column definition can include one or more of a column name, a column type (e.g., partitioning, grouping, normal, etc.), data type, component type (for arrays), and storage hint information for columns having variable sized or encoded data.
Each column partition (the data stored under a given partition column value-named directory) (e.g., 506-510) can include zero or more table locations (516, 518). The table location data is identified by a table location key comprised of the partition identifiers that are used to find the location, in this case a storage unit identifier and a partitioning column value. For example, table location data 1 516 could have a table location key of “A/2016-05-01”, which can refer to storage unit “A” and the partitioning column value of the date “2016-05-01.” While a tree structure is shown in
The table 520 can include one or more locations (528-532). Each table location (528-532) can include table location key information (e.g., 534-538, respectively) and table location metadata (540-544, respectively). Each table location (528-532) can also include column location data (546-548, 550-552, and 554-556, respectively). In some implementations, a column location is a table location's information for the ordered values that belong to a column such as column location metadata (grouping index info, for example) and column location data. Column data can include the data that the column location presents.
The table location key (e.g., 534-538 can include storage information (path, address, etc.), and partitioning column value(s) (e.g., date). The table location metadata (e.g., 540-544) can include table location size, modification time, etc.).
Column location data (e.g., 546-556) can be represented by one or more files with per position (e.g., row number in this table location) access at the outermost level.
Details of a grouped column (e.g., 546) are shown in
Details of an example group of data (e.g., 604) are shown in
The data item(s) can be obtained by receiving input from another system, by receiving input from a process running within the same system, by requesting data from an internal or external process, or the like. Processing continues to 804.
At 804, the data items are recorded to a first set of partitions (P1). The initial recording to the first partition may be performed without grouping or ordering in order to maintain performance. For example, if the first partition is configured for storing periodic data (e.g., intraday trading data) that may be needed for real-time or near real-time processing, the data may be stored in the order received without grouping or ordering in order to facilitate making the data available to other processes with lower-latency, at the cost of additional data transfer and/or computation at data consuming processes (e.g., remote query processors). Processing continues to 806.
At 806, data from P1 is remapped into a second set of grouped partitions (P2), while preserving relative order from the initial recorded data items and partitions within the new partitions. The remapping process may be part of a conversion process to take periodic data and prepare it for long-term storage. Processing continues to 808.
At 808, each partition is optionally grouped into one or more groups each having one or more grouping levels, while preserving relative order from the initial recorded data items and partitions within the new groups. The grouping can be performed based on one or more data columns. The grouping process can provide improved disk access times in view of the tendency for related data to be accessed together. Processing continues to 810.
At 810, each group and/or partition is optionally sorted according to a strict ordering, while preserving relative order from the initial recorded data items and partitions within the sorted regions. The ordering can be specified by the table metadata 504 or grouping column metadata 602. The strict ordering can help provide performance benefits as discussed above. Processing continues to 812.
At 812, the sorted groups and partitions are stored to a storage (e.g., physical storage) so as to maintain the strict order. This can provide an advantage of permitting the data system to access the partitions in a deterministic order and provide results in a guaranteed, repeatable ordering.
In general, when generating a result table in response to a query, the result table can go through a lifecycle that can help ensure that a minimal amount of data is loaded. For example, as a filtering operation is executed and generates a result table for the filtering operation, the result table goes from an abstract structure having partition and schema information to a fully realized result table backed by actual data.
The lifecycle can include 1) identifying container and schema metadata, 2) identifying data locations within the container and schema, and 3) identifying one or more columns including locations and index values for the data backing the result table. An example workflow for this can include executing a given query (e.g., for intraday and/or historical securities trading data). Next, a list of locations of potential result data is assembled, where the locations are mapped in an index space having a preserved ordering. This table can now handle queries and can use “lazy data loading” or loading data only when it is necessary to provide as a result. By utilizing lazy data loading the data system provides opportunities for optimization in terms of how much data is loaded (or moved across a network) and when that data is loaded (or moved). Also, by deferring data loading as late as possible, the query operation may filter or otherwise exclude data that might otherwise have been loaded using conventional techniques.
At 904, for each table referenced within the query, a set of locations is assembled from the available partitions of data, filtered in a manner responsive to the query when possible. Processing continues to 906.
At 906, for each table referenced within the query, assemble an index list of index values to one or more data items from the identified table locations, maintaining the strict ordering of the data items as stored. Include grouping information as secondary indexing data. Processing continues to 908.
At 908, a result data object (e.g., table) is generated that contains the index list as a query result and including references to data object data and corresponding indexes into data sources. This result data object can be an intermediate query result. A subsequent query result can be generated that includes references to specific data.
At 1004, the schema of the given data object is retrieved and modified according to the type of change received. For example, the schema could be modified to include reference to a new column for a table data object without having to access any of the table data or modify the existing columns or rows of the table. In another example, the schema could be modified to remove a column from a table. The column can be removed without having to access any table data or modify any other columns or rows of the table. This provides an advantage or permitting an O(1) schema modification, which can be a significant advantage in tables having a large number of columns and in tables with columns having a large number of rows (e.g., millions of rows, billions of rows or more). Processing continues to 1006.
At 1006, the modified schema is stored in the appropriate location corresponding to the data object. The data and computational resources needed for retrieving, modifying and then storing the modified schema are minimal compared to some conventional database schema modification processes which may require accessing and manipulating rows or columns of data in the database to perform a schema modification. Processing continues to 1008.
At 1008, the modified schema is provided in response to requests for information about the data object the modified schema is associated with.
In operation, the data object schema 1112 can be modified as discussed above to remove a column (e.g., 1116) or to add a column (e.g., 1120). The data object schema 1112 can be represented in any suitable format, such as extensible markup language (XML) or the like. In addition to being able to modify a data object via its associated schema (e.g., 1112), the overall schema can also be modified to change partitioning or other attributes associated with the overall schema.
Data object schemas may be modified by processes or users having permission to modify the schema of the data object. Overall schemas may be modified by user or process (typically administrator level users or processes) having permission to modify the overall schema.
Data object metadata can also include validity information indicating whether data in the data object has been tested (or validated). A query can use the validity data as a parameter for results. For example, the query may only use valid data for providing results.
The data object 110 can be thought of as a leaf node in the schema/partition tree structure shown in
It will be appreciated that a request to modify a schema can include a request to modify a data type of a column within a data object (e.g., table), and the modified schema information includes a modified data type for that column based on the request. Thus, the data type of a column can be changed through modification of only the schema information contained in the table (or column location) metadata. without handling the data of that column. Changing data type to a wider data type (e.g., from int to long) may be accomplished through schema data modification. Also, applying a data type change to a column may be conditionally carried out based on the existing type of the column.
In some implementations, a request to modify the schema can include a request to add a formula column (e.g., average of column A and Column B values) to the data object. A definition of the formula column can be added to the schema information and the formula column may not contain stored data. When data is requested from the formula column, the computer data system computes a response result to the request (e.g., “on the fly”) for data from the formula column based on one or more data columns referenced by the formula column and returns that result. In other implementations, the formula column may only contain data in a partial number of the rows in the table. In this instance, the computer data system computes a response result to the request for data from the formula column based on stored data in the formula column for rows where data is present and, for rows where data is not present, computes a response result (e.g., “on the fly”) to the request for data from the formula column based on one or more data columns referenced by the formula column and returns that result.
It will be appreciated that the modules, processes, systems, and sections described above can be implemented in hardware, hardware programmed by software, software instructions stored on a nontransitory computer readable medium or a combination of the above. A system as described above, for example, can include a processor configured to execute a sequence of programmed instructions stored on a nontransitory computer readable medium. For example, the processor can include, but not be limited to, a personal computer or workstation or other such computing system that includes a processor, microprocessor, microcontroller device, or is comprised of control logic including integrated circuits such as, for example, an Application Specific Integrated Circuit (ASIC), a field programmable gate array (FPGA), graphics processing unit (GPU) or the like. The instructions can be compiled from source code instructions provided in accordance with a programming language such as Java, C, C++, C#.net, assembly or the like. The instructions can also comprise code and data objects provided in accordance with, for example, the Visual Basic™ language, a specialized database query language, or another structured or object-oriented programming language. The sequence of programmed instructions, or programmable logic device configuration software, and data associated therewith can be stored in a nontransitory computer-readable medium such as a computer memory or storage device which may be any suitable memory apparatus, such as, but not limited to ROM, PROM, EEPROM, RAM, flash memory, disk drive and the like.
Furthermore, the modules, processes systems, and sections can be implemented as a single processor or as a distributed processor. Further, it should be appreciated that the steps mentioned above may be performed on a single or distributed processor (single and/or multi-core, or cloud computing system). Also, the processes, system components, modules, and sub-modules described in the various figures of and for embodiments above may be distributed across multiple computers or systems or may be co-located in a single processor or system. Example structural embodiment alternatives suitable for implementing the modules, sections, systems, means, or processes described herein are provided below.
The modules, processors or systems described above can be implemented as a programmed general purpose computer, an electronic device programmed with microcode, a hard-wired analog logic circuit, software stored on a computer-readable medium or signal, an optical computing device, a networked system of electronic and/or optical devices, a special purpose computing device, an integrated circuit device, a semiconductor chip, and/or a software module or object stored on a computer-readable medium or signal, for example.
Embodiments of the method and system (or their sub-components or modules), may be implemented on a general-purpose computer, a special-purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element, an ASIC or other integrated circuit, a digital signal processor, a hardwired electronic or logic circuit such as a discrete element circuit, a programmed logic circuit such as a PLD, PLA, FPGA, PAL, or the like. In general, any processor capable of implementing the functions or steps described herein can be used to implement embodiments of the method, system, or a computer program product (software program stored on a nontransitory computer readable medium).
Furthermore, embodiments of the disclosed method, system, and computer program product (or software instructions stored on a nontransitory computer readable medium) may be readily implemented, fully or partially, in software using, for example, object or object-oriented software development environments that provide portable source code that can be used on a variety of computer platforms. Alternatively, embodiments of the disclosed method, system, and computer program product can be implemented partially or fully in hardware using, for example, standard logic circuits or a VLSI design. Other hardware or software can be used to implement embodiments depending on the speed and/or efficiency requirements of the systems, the particular function, and/or particular software or hardware system, microprocessor, or microcomputer being utilized. Embodiments of the method, system, and computer program product can be implemented in hardware and/or software using any known or later developed systems or structures, devices and/or software by those of ordinary skill in the applicable art from the function description provided herein and with a general basic knowledge of the software engineering and computer networking arts.
Moreover, embodiments of the disclosed method, system, and computer readable media (or computer program product) can be implemented in software executed on a programmed general purpose computer, a special purpose computer, a microprocessor, or the like.
It is, therefore, apparent that there is provided, in accordance with the various embodiments disclosed herein, methods, systems and computer readable media for data partitioning and ordering.
Application Ser. No. 15/154,974, entitled “DATA PARTITIONING AND ORDERING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,975, entitled “COMPUTER DATA SYSTEM DATA SOURCE REFRESHING USING AN UPDATE PROPAGATION GRAPH” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,979, entitled “COMPUTER DATA SYSTEM POSITION-INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,980, entitled “SYSTEM PERFORMANCE LOGGING OF COMPLEX REMOTE QUERY PROCESSOR QUERY OPERATIONS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,983, entitled “DISTRIBUTED AND OPTIMIZED GARBAGE COLLECTION OF REMOTE AND EXPORTED TABLE HANDLE LINKS TO UPDATE PROPAGATION GRAPH NODES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,984, entitled “COMPUTER DATA SYSTEM CURRENT ROW POSITION QUERY LANGUAGE CONSTRUCT AND ARRAY PROCESSING QUERY LANGUAGE CONSTRUCTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,985, entitled “PARSING AND COMPILING DATA SYSTEM QUERIES” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,987, entitled “DYNAMIC FILTER PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,988, entitled “DYNAMIC JOIN PROCESSING USING REAL-TIME MERGED NOTIFICATION LISTENER” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,990, entitled “DYNAMIC TABLE INDEX MAPPING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,991, entitled “QUERY TASK PROCESSING BASED ON MEMORY ALLOCATION AND PERFORMANCE CRITERIA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,993, entitled “A MEMORY-EFFICIENT COMPUTER SYSTEM FOR DYNAMIC UPDATING OF JOIN PROCESSING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,995, entitled “QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,996, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,997, entitled “DYNAMIC UPDATING OF QUERY RESULT DISPLAYS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,998, entitled “DYNAMIC CODE LOADING” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/154,999, entitled “IMPORTATION, PRESENTATION, AND PERSISTENT STORAGE OF DATA” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,001, entitled “COMPUTER DATA DISTRIBUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,005, entitled “PERSISTENT QUERY DISPATCH AND EXECUTION ARCHITECTURE” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,006, entitled “SINGLE INPUT GRAPHICAL USER INTERFACE CONTROL ELEMENT AND METHOD” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,007, entitled “GRAPHICAL USER INTERFACE DISPLAY EFFECTS FOR A COMPUTER DISPLAY SCREEN” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,009, entitled “COMPUTER ASSISTED COMPLETION OF HYPERLINK COMMAND SEGMENTS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,010, entitled “HISTORICAL DATA REPLAY UTILIZING A COMPUTER SYSTEM” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,011, entitled “DATA STORE ACCESS PERMISSION SYSTEM WITH INTERLEAVED APPLICATION OF DEFERRED ACCESS CONTROL FILTERS” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
Application Ser. No. 15/155,012, entitled “REMOTE DATA OBJECT PUBLISHING/SUBSCRIBING SYSTEM HAVING A MULTICAST KEY-VALUE PROTOCOL” and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as if fully set forth herein.
While the disclosed subject matter has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be, or are, apparent to those of ordinary skill in the applicable arts. Accordingly, Applicants intend to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of the disclosed subject matter.
This application is a continuation of U.S. application Ser. No. 15/154,974, entitled “Data Partitioning and Ordering”, and filed on May 14, 2016, which claims the benefit of U.S. Provisional Application No. 62/161,813, entitled “Computer Data System” and filed on May 14, 2015, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5335202 | Manning et al. | Aug 1994 | A |
5452434 | Macdonald | Sep 1995 | A |
5469567 | Okada | Nov 1995 | A |
5504885 | Alashqur | Apr 1996 | A |
5530939 | Mansfield et al. | Jun 1996 | A |
5568632 | Nelson | Oct 1996 | A |
5673369 | Kim | Sep 1997 | A |
5701461 | Dalal et al. | Dec 1997 | A |
5701467 | Freeston | Dec 1997 | A |
5764953 | Collins et al. | Jun 1998 | A |
5787411 | Groff et al. | Jul 1998 | A |
5787428 | Hart | Jul 1998 | A |
5806059 | Tsuchida et al. | Sep 1998 | A |
5808911 | Tucker et al. | Sep 1998 | A |
5859972 | Subramaniam et al. | Jan 1999 | A |
5873075 | Cochrane et al. | Feb 1999 | A |
5875334 | Chow et al. | Feb 1999 | A |
5878415 | Olds | Mar 1999 | A |
5890167 | Bridge et al. | Mar 1999 | A |
5899990 | Maritzen et al. | May 1999 | A |
5920860 | Maheshwari et al. | Jul 1999 | A |
5943672 | Yoshida | Aug 1999 | A |
5960087 | Tribble et al. | Sep 1999 | A |
5991810 | Shapiro et al. | Nov 1999 | A |
5999918 | Williams et al. | Dec 1999 | A |
6006220 | Haderle et al. | Dec 1999 | A |
6026390 | Ross et al. | Feb 2000 | A |
6032144 | Srivastava et al. | Feb 2000 | A |
6032148 | Wilkes | Feb 2000 | A |
6038563 | Bapat et al. | Mar 2000 | A |
6058394 | Bakow et al. | May 2000 | A |
6061684 | Glasser et al. | May 2000 | A |
6105017 | Kleewein | Aug 2000 | A |
6122514 | Spaur et al. | Sep 2000 | A |
6138112 | Slutz | Oct 2000 | A |
6160548 | Lea et al. | Dec 2000 | A |
6253195 | Hudis et al. | Jun 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6289357 | Parker | Sep 2001 | B1 |
6292803 | Richardson et al. | Sep 2001 | B1 |
6304876 | Isip | Oct 2001 | B1 |
6317728 | Kane | Nov 2001 | B1 |
6327702 | Sauntry et al. | Dec 2001 | B1 |
6336114 | Garrison | Jan 2002 | B1 |
6353819 | Edwards et al. | Mar 2002 | B1 |
6367068 | Vaidyanathan et al. | Apr 2002 | B1 |
6389414 | Delo et al. | May 2002 | B1 |
6389462 | Cohen et al. | May 2002 | B1 |
6397206 | Hill et al. | May 2002 | B1 |
6438537 | Netz et al. | Aug 2002 | B1 |
6446069 | Yaung et al. | Sep 2002 | B1 |
6460037 | Weiss et al. | Oct 2002 | B1 |
6473750 | Petculescu et al. | Oct 2002 | B1 |
6487552 | Lei et al. | Nov 2002 | B1 |
6496833 | Goldberg et al. | Dec 2002 | B1 |
6505189 | Au et al. | Jan 2003 | B1 |
6505241 | Pitts | Jan 2003 | B2 |
6510551 | Miller | Jan 2003 | B1 |
6519604 | Acharya et al. | Feb 2003 | B1 |
6530075 | Beadle et al. | Mar 2003 | B1 |
6538651 | Hayman et al. | Mar 2003 | B1 |
6546402 | Beyer et al. | Apr 2003 | B1 |
6553375 | Huang et al. | Apr 2003 | B1 |
6584474 | Pereira | Jun 2003 | B1 |
6604104 | Smith | Aug 2003 | B1 |
6618720 | Au et al. | Sep 2003 | B1 |
6631374 | Klein et al. | Oct 2003 | B1 |
6640234 | Coffen et al. | Oct 2003 | B1 |
6697880 | Dougherty | Feb 2004 | B1 |
6701415 | Hendren | Mar 2004 | B1 |
6714962 | Helland et al. | Mar 2004 | B1 |
6725243 | Snapp | Apr 2004 | B2 |
6732100 | Brodersen et al. | May 2004 | B1 |
6745332 | Wong et al. | Jun 2004 | B1 |
6748374 | Madan et al. | Jun 2004 | B1 |
6748455 | Hinson et al. | Jun 2004 | B1 |
6760719 | Hanson et al. | Jul 2004 | B1 |
6775660 | Lin et al. | Aug 2004 | B2 |
6785668 | Polo et al. | Aug 2004 | B1 |
6795851 | Noy | Sep 2004 | B1 |
6801908 | Fuloria et al. | Oct 2004 | B1 |
6816855 | Hartel et al. | Nov 2004 | B2 |
6820082 | Cook et al. | Nov 2004 | B1 |
6829620 | Michael et al. | Dec 2004 | B2 |
6832229 | Reed | Dec 2004 | B2 |
6851088 | Conner et al. | Feb 2005 | B1 |
6882994 | Yoshimura et al. | Apr 2005 | B2 |
6925472 | Kong | Aug 2005 | B2 |
6934717 | James | Aug 2005 | B1 |
6947928 | Dettinger et al. | Sep 2005 | B2 |
6983291 | Cochrane et al. | Jan 2006 | B1 |
6985895 | Witkowski et al. | Jan 2006 | B2 |
6985899 | Chan et al. | Jan 2006 | B2 |
6985904 | Kaluskar et al. | Jan 2006 | B1 |
7020649 | Cochrane et al. | Mar 2006 | B2 |
7024414 | Sah et al. | Apr 2006 | B2 |
7031962 | Moses | Apr 2006 | B2 |
7047484 | Becker et al. | May 2006 | B1 |
7058657 | Berno | Jun 2006 | B1 |
7089228 | Arnold et al. | Aug 2006 | B2 |
7089245 | George et al. | Aug 2006 | B1 |
7096216 | Anonsen | Aug 2006 | B2 |
7099927 | Cudd et al. | Aug 2006 | B2 |
7103608 | Ozbutun et al. | Sep 2006 | B1 |
7110997 | Turkel et al. | Sep 2006 | B1 |
7127462 | Hiraga et al. | Oct 2006 | B2 |
7146357 | Suzuki et al. | Dec 2006 | B2 |
7149742 | Eastham et al. | Dec 2006 | B1 |
7167870 | Avvari et al. | Jan 2007 | B2 |
7171469 | Ackaouy et al. | Jan 2007 | B2 |
7174341 | Ghukasyan et al. | Feb 2007 | B2 |
7181686 | Bahrs | Feb 2007 | B1 |
7188105 | Dettinger et al. | Mar 2007 | B2 |
7200620 | Gupta | Apr 2007 | B2 |
7216115 | Walters et al. | May 2007 | B1 |
7216116 | Nilsson et al. | May 2007 | B1 |
7219302 | O'Shaughnessy | May 2007 | B1 |
7225189 | McCormack et al. | May 2007 | B1 |
7254808 | Trappen et al. | Aug 2007 | B2 |
7257689 | Baird | Aug 2007 | B1 |
7272605 | Hinshaw et al. | Sep 2007 | B1 |
7308580 | Nelson et al. | Dec 2007 | B2 |
7316003 | Dulepet et al. | Jan 2008 | B1 |
7330969 | Harrison et al. | Feb 2008 | B2 |
7333941 | Choi | Feb 2008 | B1 |
7343585 | Lau et al. | Mar 2008 | B1 |
7350237 | Vogel et al. | Mar 2008 | B2 |
7380242 | Alaluf | May 2008 | B2 |
7401088 | Chintakayala et al. | Jul 2008 | B2 |
7426521 | Harter | Sep 2008 | B2 |
7430549 | Zane et al. | Sep 2008 | B2 |
7433863 | Zane et al. | Oct 2008 | B2 |
7447865 | Uppala et al. | Nov 2008 | B2 |
7478094 | Ho et al. | Jan 2009 | B2 |
7484096 | Garg et al. | Jan 2009 | B1 |
7493311 | Cutsinger et al. | Feb 2009 | B1 |
7506055 | McClain et al. | Mar 2009 | B2 |
7523462 | Nesamoney et al. | Apr 2009 | B1 |
7529734 | Dirisala | May 2009 | B2 |
7529750 | Bair | May 2009 | B2 |
7542958 | Warren et al. | Jun 2009 | B1 |
7552223 | Ackaouy et al. | Jun 2009 | B1 |
7596550 | Mordvinov et al. | Sep 2009 | B2 |
7610351 | Gollapudi et al. | Oct 2009 | B1 |
7620687 | Chen et al. | Nov 2009 | B2 |
7624126 | Pizzo et al. | Nov 2009 | B2 |
7627603 | Rosenblum et al. | Dec 2009 | B2 |
7661141 | Dutta et al. | Feb 2010 | B2 |
7664778 | Yagoub et al. | Feb 2010 | B2 |
7672275 | Yajnik et al. | Mar 2010 | B2 |
7680782 | Chen et al. | Mar 2010 | B2 |
7711716 | Stonecipher | May 2010 | B2 |
7711740 | Minore et al. | May 2010 | B2 |
7711788 | Ran et al. | May 2010 | B2 |
7747640 | Dettinger et al. | Jun 2010 | B2 |
7761444 | Zhang et al. | Jul 2010 | B2 |
7797356 | Iyer et al. | Sep 2010 | B2 |
7827204 | Heinzel et al. | Nov 2010 | B2 |
7827403 | Wong et al. | Nov 2010 | B2 |
7827523 | Ahmed et al. | Nov 2010 | B2 |
7882121 | Bruno et al. | Feb 2011 | B2 |
7882132 | Ghatare | Feb 2011 | B2 |
7895191 | Colossi et al. | Feb 2011 | B2 |
7904487 | Ghatare | Mar 2011 | B2 |
7908259 | Branscome et al. | Mar 2011 | B2 |
7908266 | Zeringue et al. | Mar 2011 | B2 |
7930412 | Yeap et al. | Apr 2011 | B2 |
7966311 | Haase | Jun 2011 | B2 |
7966312 | Nolan et al. | Jun 2011 | B2 |
7966343 | Yang et al. | Jun 2011 | B2 |
7970777 | Saxena et al. | Jun 2011 | B2 |
7979431 | Qazi et al. | Jul 2011 | B2 |
7984043 | Waas | Jul 2011 | B1 |
8019795 | Anderson et al. | Sep 2011 | B2 |
8027293 | Spaur et al. | Sep 2011 | B2 |
8032525 | Bowers et al. | Oct 2011 | B2 |
8037542 | Taylor et al. | Oct 2011 | B2 |
8046394 | Shatdal | Oct 2011 | B1 |
8046749 | Owen et al. | Oct 2011 | B1 |
8055672 | Djugash et al. | Nov 2011 | B2 |
8060484 | Bandera et al. | Nov 2011 | B2 |
8171018 | Zane et al. | May 2012 | B2 |
8180623 | Lendermann et al. | May 2012 | B2 |
8180789 | Wasserman et al. | May 2012 | B1 |
8196121 | Peshansky et al. | Jun 2012 | B2 |
8209356 | Roesler | Jun 2012 | B1 |
8286189 | Kukreja et al. | Oct 2012 | B2 |
8321833 | Langworthy et al. | Nov 2012 | B2 |
8332435 | Ballard et al. | Dec 2012 | B2 |
8359305 | Burke et al. | Jan 2013 | B1 |
8375127 | Lita | Feb 2013 | B1 |
8380757 | Bailey et al. | Feb 2013 | B1 |
8418142 | Ao et al. | Apr 2013 | B2 |
8433701 | Sargeant et al. | Apr 2013 | B2 |
8458218 | Wildermuth | Jun 2013 | B2 |
8473897 | Box et al. | Jun 2013 | B2 |
8478713 | Cotner et al. | Jul 2013 | B2 |
8515942 | Marum et al. | Aug 2013 | B2 |
8543620 | Ching | Sep 2013 | B2 |
8553028 | Urbach | Oct 2013 | B1 |
8555263 | Allen et al. | Oct 2013 | B2 |
8560502 | Vora | Oct 2013 | B2 |
8595151 | Hao et al. | Nov 2013 | B2 |
8601016 | Briggs et al. | Dec 2013 | B2 |
8621424 | Kejariwal et al. | Dec 2013 | B2 |
8631034 | Peloski | Jan 2014 | B1 |
8635251 | Chan | Jan 2014 | B1 |
8650182 | Murthy | Feb 2014 | B2 |
8660869 | Macintyre et al. | Feb 2014 | B2 |
8676863 | Connell et al. | Mar 2014 | B1 |
8683488 | Kukreja et al. | Mar 2014 | B2 |
8713518 | Pointer et al. | Apr 2014 | B2 |
8719252 | Miranker et al. | May 2014 | B2 |
8725707 | Chen et al. | May 2014 | B2 |
8726254 | Rohde et al. | May 2014 | B2 |
8745014 | Travis | Jun 2014 | B2 |
8745510 | D'Alo' et al. | Jun 2014 | B2 |
8751823 | Myles et al. | Jun 2014 | B2 |
8768961 | Krishnamurthy | Jul 2014 | B2 |
8775412 | Day et al. | Jul 2014 | B2 |
8788254 | Peloski | Jul 2014 | B2 |
8793243 | Weyerhaeuser et al. | Jul 2014 | B2 |
8805875 | Bawcom et al. | Aug 2014 | B1 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806133 | Hay et al. | Aug 2014 | B2 |
8812625 | Chitilian et al. | Aug 2014 | B1 |
8838656 | Cheriton | Sep 2014 | B1 |
8855999 | Elliot | Oct 2014 | B1 |
8863156 | Lepanto et al. | Oct 2014 | B1 |
8874512 | Jin et al. | Oct 2014 | B2 |
8880569 | Draper et al. | Nov 2014 | B2 |
8880787 | Kimmel et al. | Nov 2014 | B1 |
8881121 | Ali | Nov 2014 | B2 |
8886631 | Abadi et al. | Nov 2014 | B2 |
8903717 | Elliot | Dec 2014 | B2 |
8903842 | Bloesch et al. | Dec 2014 | B2 |
8922579 | Mi et al. | Dec 2014 | B2 |
8924384 | Driesen et al. | Dec 2014 | B2 |
8930892 | Pointer et al. | Jan 2015 | B2 |
8954418 | Faerber et al. | Feb 2015 | B2 |
8959495 | Chafi et al. | Feb 2015 | B2 |
8996864 | Maigne et al. | Mar 2015 | B2 |
9002876 | Gatter | Apr 2015 | B2 |
9031930 | Valentin | May 2015 | B2 |
9077611 | Cordray et al. | Jul 2015 | B2 |
9122765 | Chen | Sep 2015 | B1 |
9177079 | Ramachandran et al. | Nov 2015 | B1 |
9195712 | Freedman et al. | Nov 2015 | B2 |
9298768 | Varakin et al. | Mar 2016 | B2 |
9311357 | Ramesh et al. | Apr 2016 | B2 |
9372671 | Balan et al. | Jun 2016 | B2 |
9384184 | Acuña et al. | Jul 2016 | B2 |
9477702 | Ramachandran et al. | Oct 2016 | B1 |
9612959 | Caudy et al. | Apr 2017 | B2 |
9613018 | Zeldis et al. | Apr 2017 | B2 |
9613109 | Wright et al. | Apr 2017 | B2 |
9619210 | Kent et al. | Apr 2017 | B2 |
9633060 | Caudy et al. | Apr 2017 | B2 |
9639570 | Wright et al. | May 2017 | B2 |
9672238 | Wright et al. | Jun 2017 | B2 |
9679006 | Wright et al. | Jun 2017 | B2 |
9690821 | Wright et al. | Jun 2017 | B2 |
9710511 | Wright et al. | Jul 2017 | B2 |
9760591 | Caudy et al. | Sep 2017 | B2 |
9805084 | Wright et al. | Oct 2017 | B2 |
9832068 | McSherry et al. | Nov 2017 | B2 |
9836494 | Caudy et al. | Dec 2017 | B2 |
9836495 | Wright | Dec 2017 | B2 |
9847917 | Varney et al. | Dec 2017 | B2 |
9852231 | Ravi et al. | Dec 2017 | B1 |
9886469 | Kent et al. | Feb 2018 | B2 |
9898496 | Caudy et al. | Feb 2018 | B2 |
9934266 | Wright et al. | Apr 2018 | B2 |
10002153 | Teodorescu et al. | Jun 2018 | B2 |
10002154 | Kent et al. | Jun 2018 | B1 |
10002155 | Caudy et al. | Jun 2018 | B1 |
10003673 | Caudy et al. | Jun 2018 | B2 |
10019138 | Zeldis et al. | Jul 2018 | B2 |
10069943 | Teodorescu et al. | Sep 2018 | B2 |
10521449 | Schwartz et al. | Dec 2019 | B1 |
20020002576 | Wollrath et al. | Jan 2002 | A1 |
20020007331 | Lo et al. | Jan 2002 | A1 |
20020054587 | Baker et al. | May 2002 | A1 |
20020065981 | Jenne et al. | May 2002 | A1 |
20020129168 | Kanai et al. | Sep 2002 | A1 |
20020156722 | Greenwood | Oct 2002 | A1 |
20030004952 | Nixon et al. | Jan 2003 | A1 |
20030004964 | Cameron et al. | Jan 2003 | A1 |
20030061216 | Moses | Mar 2003 | A1 |
20030074400 | Brooks et al. | Apr 2003 | A1 |
20030110416 | Morrison et al. | Jun 2003 | A1 |
20030115212 | Hornibrook et al. | Jun 2003 | A1 |
20030167261 | Grust et al. | Sep 2003 | A1 |
20030177139 | Cameron et al. | Sep 2003 | A1 |
20030182261 | Patterson | Sep 2003 | A1 |
20030187744 | Goodridge | Oct 2003 | A1 |
20030208484 | Chang et al. | Nov 2003 | A1 |
20030208505 | Mullins et al. | Nov 2003 | A1 |
20030233632 | Aigen et al. | Dec 2003 | A1 |
20040002961 | Dettinger et al. | Jan 2004 | A1 |
20040015566 | Anderson et al. | Jan 2004 | A1 |
20040076155 | Yajnik et al. | Apr 2004 | A1 |
20040090472 | Risch et al. | May 2004 | A1 |
20040111492 | Nakahara et al. | Jun 2004 | A1 |
20040148630 | Choi | Jul 2004 | A1 |
20040186813 | Tedesco et al. | Sep 2004 | A1 |
20040205048 | Pizzo et al. | Oct 2004 | A1 |
20040216150 | Scheifler et al. | Oct 2004 | A1 |
20040220923 | Nica | Nov 2004 | A1 |
20040254876 | Coval et al. | Dec 2004 | A1 |
20040267824 | Pizzo et al. | Dec 2004 | A1 |
20050015490 | Saare et al. | Jan 2005 | A1 |
20050060693 | Robison et al. | Mar 2005 | A1 |
20050097447 | Serra et al. | May 2005 | A1 |
20050102284 | Srinivasan et al. | May 2005 | A1 |
20050102636 | McKeon et al. | May 2005 | A1 |
20050131893 | Glan | Jun 2005 | A1 |
20050132384 | Morrison et al. | Jun 2005 | A1 |
20050138624 | Morrison et al. | Jun 2005 | A1 |
20050144189 | Edwards et al. | Jun 2005 | A1 |
20050165866 | Bohannon et al. | Jul 2005 | A1 |
20050198001 | Cunningham et al. | Sep 2005 | A1 |
20050228828 | Chandrasekar et al. | Oct 2005 | A1 |
20060059253 | Goodman et al. | Mar 2006 | A1 |
20060074901 | Pirahesh et al. | Apr 2006 | A1 |
20060085490 | Baron et al. | Apr 2006 | A1 |
20060100989 | Chinchwadkar et al. | May 2006 | A1 |
20060101019 | Nelson et al. | May 2006 | A1 |
20060116983 | Dettinger et al. | Jun 2006 | A1 |
20060116999 | Dettinger et al. | Jun 2006 | A1 |
20060123024 | Sathyanarayan et al. | Jun 2006 | A1 |
20060131383 | Battagin et al. | Jun 2006 | A1 |
20060136361 | Peri et al. | Jun 2006 | A1 |
20060136380 | Purcell | Jun 2006 | A1 |
20060173693 | Arazi et al. | Aug 2006 | A1 |
20060195460 | Nori et al. | Aug 2006 | A1 |
20060212847 | Tarditi et al. | Sep 2006 | A1 |
20060218123 | Chowdhuri et al. | Sep 2006 | A1 |
20060218200 | Factor et al. | Sep 2006 | A1 |
20060230016 | Cunningham et al. | Oct 2006 | A1 |
20060235786 | DiSalvo | Oct 2006 | A1 |
20060253311 | Yin et al. | Nov 2006 | A1 |
20060268712 | Deen et al. | Nov 2006 | A1 |
20060271510 | Harward et al. | Nov 2006 | A1 |
20060277162 | Smith | Dec 2006 | A1 |
20060277319 | Elien et al. | Dec 2006 | A1 |
20070011211 | Reeves et al. | Jan 2007 | A1 |
20070027884 | Heger et al. | Feb 2007 | A1 |
20070033518 | Kenna et al. | Feb 2007 | A1 |
20070073765 | Chen | Mar 2007 | A1 |
20070101252 | Chamberlain et al. | May 2007 | A1 |
20070113014 | Manolov et al. | May 2007 | A1 |
20070116287 | Rasizade | May 2007 | A1 |
20070118619 | Schwesig et al. | May 2007 | A1 |
20070140480 | Yao | Jun 2007 | A1 |
20070169003 | Branda et al. | Jul 2007 | A1 |
20070198479 | Cai et al. | Aug 2007 | A1 |
20070256060 | Ryu et al. | Nov 2007 | A1 |
20070258508 | Werb et al. | Nov 2007 | A1 |
20070271280 | Chandasekaran | Nov 2007 | A1 |
20070294217 | Chen et al. | Dec 2007 | A1 |
20070294319 | Mankad et al. | Dec 2007 | A1 |
20070299822 | Jopp et al. | Dec 2007 | A1 |
20080022136 | Mattsson et al. | Jan 2008 | A1 |
20080033907 | Woehler et al. | Feb 2008 | A1 |
20080034084 | Pandya | Feb 2008 | A1 |
20080046804 | Rui et al. | Feb 2008 | A1 |
20080072150 | Chan et al. | Mar 2008 | A1 |
20080097748 | Haley et al. | Apr 2008 | A1 |
20080120283 | Liu et al. | May 2008 | A1 |
20080155565 | Poduri | Jun 2008 | A1 |
20080168135 | Redlich et al. | Jul 2008 | A1 |
20080172639 | Keysar et al. | Jul 2008 | A1 |
20080235238 | Jalobeanu et al. | Sep 2008 | A1 |
20080263179 | Buttner et al. | Oct 2008 | A1 |
20080276241 | Bajpai et al. | Nov 2008 | A1 |
20080319951 | Ueno et al. | Dec 2008 | A1 |
20090019029 | Tommaney et al. | Jan 2009 | A1 |
20090022095 | Spaur et al. | Jan 2009 | A1 |
20090024615 | Pedro et al. | Jan 2009 | A1 |
20090037391 | Agrawal et al. | Feb 2009 | A1 |
20090037500 | Kirshenbaum | Feb 2009 | A1 |
20090055370 | Dagum et al. | Feb 2009 | A1 |
20090083215 | Burger | Mar 2009 | A1 |
20090089312 | Chi et al. | Apr 2009 | A1 |
20090157723 | Peuter et al. | Jun 2009 | A1 |
20090248618 | Carlson et al. | Oct 2009 | A1 |
20090248902 | Blue | Oct 2009 | A1 |
20090254516 | Meiyyappan et al. | Oct 2009 | A1 |
20090271472 | Scheifler et al. | Oct 2009 | A1 |
20090300770 | Rowney et al. | Dec 2009 | A1 |
20090319058 | Rovaglio et al. | Dec 2009 | A1 |
20090319484 | Golbandi et al. | Dec 2009 | A1 |
20090327242 | Brown et al. | Dec 2009 | A1 |
20100023952 | Sandoval et al. | Jan 2010 | A1 |
20100036801 | Pirvali et al. | Feb 2010 | A1 |
20100042587 | Johnson | Feb 2010 | A1 |
20100047760 | Best et al. | Feb 2010 | A1 |
20100049715 | Jacobsen et al. | Feb 2010 | A1 |
20100057835 | Little | Mar 2010 | A1 |
20100070721 | Pugh et al. | Mar 2010 | A1 |
20100088309 | Petculescu | Apr 2010 | A1 |
20100114890 | Hagar et al. | May 2010 | A1 |
20100161555 | Nica et al. | Jun 2010 | A1 |
20100161565 | Lee | Jun 2010 | A1 |
20100186082 | Ladki et al. | Jul 2010 | A1 |
20100199161 | Aureglia et al. | Aug 2010 | A1 |
20100205017 | Sichelman et al. | Aug 2010 | A1 |
20100205351 | Wiener et al. | Aug 2010 | A1 |
20100281005 | Carlin et al. | Nov 2010 | A1 |
20100281071 | Ben-Zvi et al. | Nov 2010 | A1 |
20100293334 | Xun et al. | Nov 2010 | A1 |
20110126110 | Vilke et al. | May 2011 | A1 |
20110126154 | Boehler et al. | May 2011 | A1 |
20110153603 | Adiba et al. | Jun 2011 | A1 |
20110161378 | Williamson | Jun 2011 | A1 |
20110167020 | Yang et al. | Jul 2011 | A1 |
20110178984 | Talius | Jul 2011 | A1 |
20110194563 | Shen et al. | Aug 2011 | A1 |
20110213775 | Franke | Sep 2011 | A1 |
20110219020 | Oks et al. | Sep 2011 | A1 |
20110231389 | Suma et al. | Sep 2011 | A1 |
20110314019 | Peris | Dec 2011 | A1 |
20120005238 | Jebara et al. | Jan 2012 | A1 |
20120110030 | Pomponio | May 2012 | A1 |
20120144234 | Clark et al. | Jun 2012 | A1 |
20120159303 | Friedrich et al. | Jun 2012 | A1 |
20120191446 | Binsztok et al. | Jul 2012 | A1 |
20120191582 | Rance et al. | Jul 2012 | A1 |
20120192096 | Bowman et al. | Jul 2012 | A1 |
20120197868 | Fauser et al. | Aug 2012 | A1 |
20120209886 | Henderson | Aug 2012 | A1 |
20120215741 | Poole et al. | Aug 2012 | A1 |
20120221528 | Renkes | Aug 2012 | A1 |
20120246052 | Taylor et al. | Sep 2012 | A1 |
20120246094 | Hsu et al. | Sep 2012 | A1 |
20120254143 | Varma et al. | Oct 2012 | A1 |
20120259759 | Crist et al. | Oct 2012 | A1 |
20120296846 | Teeter | Nov 2012 | A1 |
20130041946 | Joel et al. | Feb 2013 | A1 |
20130080514 | Gupta et al. | Mar 2013 | A1 |
20130086107 | Genochio et al. | Apr 2013 | A1 |
20130166551 | Wong et al. | Jun 2013 | A1 |
20130166556 | Baeumges et al. | Jun 2013 | A1 |
20130173667 | Soderberg et al. | Jul 2013 | A1 |
20130179460 | Cervantes et al. | Jul 2013 | A1 |
20130185619 | Ludwig | Jul 2013 | A1 |
20130191370 | Chen et al. | Jul 2013 | A1 |
20130198232 | Shamgunov et al. | Aug 2013 | A1 |
20130226959 | Dittrich et al. | Aug 2013 | A1 |
20130246560 | Feng et al. | Sep 2013 | A1 |
20130263123 | Zhou et al. | Oct 2013 | A1 |
20130290243 | Hazel et al. | Oct 2013 | A1 |
20130304725 | Nee et al. | Nov 2013 | A1 |
20130304744 | McSherry et al. | Nov 2013 | A1 |
20130311352 | Kayanuma et al. | Nov 2013 | A1 |
20130311488 | Erdogan et al. | Nov 2013 | A1 |
20130318129 | Vingralek et al. | Nov 2013 | A1 |
20130332487 | Ramesh et al. | Dec 2013 | A1 |
20130346365 | Kan et al. | Dec 2013 | A1 |
20140019494 | Tang | Jan 2014 | A1 |
20140026121 | Jackson et al. | Jan 2014 | A1 |
20140040203 | Lu et al. | Feb 2014 | A1 |
20140046638 | Peloski | Feb 2014 | A1 |
20140059646 | Hannel et al. | Feb 2014 | A1 |
20140082470 | Trebas et al. | Mar 2014 | A1 |
20140082724 | Pearson et al. | Mar 2014 | A1 |
20140095365 | Potekhina et al. | Apr 2014 | A1 |
20140115037 | Liu et al. | Apr 2014 | A1 |
20140136521 | Pappas | May 2014 | A1 |
20140143123 | Banke et al. | May 2014 | A1 |
20140149947 | Blyumen | May 2014 | A1 |
20140149997 | Kukreja et al. | May 2014 | A1 |
20140156618 | Castellano | Jun 2014 | A1 |
20140156632 | Yu et al. | Jun 2014 | A1 |
20140173023 | Varney et al. | Jun 2014 | A1 |
20140181036 | Dhamankar et al. | Jun 2014 | A1 |
20140181081 | Veldhuizen | Jun 2014 | A1 |
20140188924 | Ma et al. | Jul 2014 | A1 |
20140195558 | Murthy et al. | Jul 2014 | A1 |
20140201194 | Reddy et al. | Jul 2014 | A1 |
20140215446 | Araya et al. | Jul 2014 | A1 |
20140222768 | Rambo et al. | Aug 2014 | A1 |
20140229506 | Lee | Aug 2014 | A1 |
20140229874 | Strauss | Aug 2014 | A1 |
20140244687 | Shmueli et al. | Aug 2014 | A1 |
20140279810 | Mann et al. | Sep 2014 | A1 |
20140280029 | Ding et al. | Sep 2014 | A1 |
20140280372 | Huras | Sep 2014 | A1 |
20140280522 | Watte | Sep 2014 | A1 |
20140282227 | Nixon et al. | Sep 2014 | A1 |
20140282444 | Araya et al. | Sep 2014 | A1 |
20140282540 | Bonnet et al. | Sep 2014 | A1 |
20140289700 | Srinivasaraghavan et al. | Sep 2014 | A1 |
20140292765 | Maruyama et al. | Oct 2014 | A1 |
20140297611 | Abbour et al. | Oct 2014 | A1 |
20140317084 | Chaudhry et al. | Oct 2014 | A1 |
20140321280 | Evans | Oct 2014 | A1 |
20140324821 | Meiyyappan et al. | Oct 2014 | A1 |
20140330700 | Studnitzer et al. | Nov 2014 | A1 |
20140330807 | Weyerhaeuser et al. | Nov 2014 | A1 |
20140344186 | Nadler | Nov 2014 | A1 |
20140344391 | Varney et al. | Nov 2014 | A1 |
20140358892 | Nizami et al. | Dec 2014 | A1 |
20140359574 | Beckwith et al. | Dec 2014 | A1 |
20140369550 | Davis et al. | Dec 2014 | A1 |
20140372482 | Martin et al. | Dec 2014 | A1 |
20140380051 | Edward et al. | Dec 2014 | A1 |
20150019516 | Wein et al. | Jan 2015 | A1 |
20150026155 | Martin | Jan 2015 | A1 |
20150032789 | Nguyen et al. | Jan 2015 | A1 |
20150067640 | Booker et al. | Mar 2015 | A1 |
20150074066 | Li et al. | Mar 2015 | A1 |
20150082218 | Affoneh et al. | Mar 2015 | A1 |
20150088894 | Czarlinska et al. | Mar 2015 | A1 |
20150095381 | Chen et al. | Apr 2015 | A1 |
20150120261 | Giannacopoulos et al. | Apr 2015 | A1 |
20150127599 | Schiebeler | May 2015 | A1 |
20150154262 | Yang et al. | Jun 2015 | A1 |
20150172117 | Dolinsky et al. | Jun 2015 | A1 |
20150188778 | Asayag et al. | Jul 2015 | A1 |
20150205588 | Bates et al. | Jul 2015 | A1 |
20150205589 | Dally | Jul 2015 | A1 |
20150254298 | Bourbonnais et al. | Sep 2015 | A1 |
20150269199 | McHugh et al. | Sep 2015 | A1 |
20150304182 | Brodsky et al. | Oct 2015 | A1 |
20150310051 | An | Oct 2015 | A1 |
20150317359 | Tran et al. | Nov 2015 | A1 |
20150356157 | Anderson et al. | Dec 2015 | A1 |
20160026383 | Lee et al. | Jan 2016 | A1 |
20160026442 | Chhaparia | Jan 2016 | A1 |
20160026684 | Mukherjee et al. | Jan 2016 | A1 |
20160065670 | Kimmel et al. | Mar 2016 | A1 |
20160085772 | Vermeulen et al. | Mar 2016 | A1 |
20160092599 | Barsness et al. | Mar 2016 | A1 |
20160103897 | Nysewander et al. | Apr 2016 | A1 |
20160125018 | Tomoda et al. | May 2016 | A1 |
20160147748 | Florendo et al. | May 2016 | A1 |
20160171070 | Hrle et al. | Jun 2016 | A1 |
20160179754 | Borza et al. | Jun 2016 | A1 |
20160253294 | Allen et al. | Sep 2016 | A1 |
20160316038 | Jolfaei | Oct 2016 | A1 |
20160335281 | Teodorescu et al. | Nov 2016 | A1 |
20160335304 | Teodorescu et al. | Nov 2016 | A1 |
20160335317 | Teodorescu et al. | Nov 2016 | A1 |
20160335323 | Teodorescu et al. | Nov 2016 | A1 |
20160335330 | Teodorescu et al. | Nov 2016 | A1 |
20160335361 | Teodorescu et al. | Nov 2016 | A1 |
20170032016 | Zinner et al. | Feb 2017 | A1 |
20170048774 | Cheng et al. | Feb 2017 | A1 |
20170161514 | Dettinger et al. | Jun 2017 | A1 |
20170177677 | Wright et al. | Jun 2017 | A1 |
20170185385 | Kent et al. | Jun 2017 | A1 |
20170192910 | Wright et al. | Jul 2017 | A1 |
20170206229 | Caudy et al. | Jul 2017 | A1 |
20170206256 | Tsirogiannis et al. | Jul 2017 | A1 |
20170235794 | Wright et al. | Aug 2017 | A1 |
20170235798 | Wright et al. | Aug 2017 | A1 |
20170249350 | Wright et al. | Aug 2017 | A1 |
20170270150 | Wright et al. | Sep 2017 | A1 |
20170316046 | Caudy et al. | Nov 2017 | A1 |
20170329740 | Crawford et al. | Nov 2017 | A1 |
20170357708 | Ramachandran et al. | Dec 2017 | A1 |
20170359415 | Venkatraman et al. | Dec 2017 | A1 |
20180004796 | Kent et al. | Jan 2018 | A1 |
20180011891 | Wright et al. | Jan 2018 | A1 |
20180052879 | Wright | Feb 2018 | A1 |
20180137175 | Teodorescu et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2309462 | Dec 2000 | CA |
1406463 | Apr 2004 | EP |
1198769 | Jun 2008 | EP |
2199961 | Jun 2010 | EP |
2423816 | Feb 2012 | EP |
2743839 | Jun 2014 | EP |
2397906 | Aug 2004 | GB |
2421798 | Jun 2011 | RU |
2000000879 | Jan 2000 | WO |
2001079964 | Oct 2001 | WO |
2011120161 | Oct 2011 | WO |
2012136627 | Oct 2012 | WO |
2014026220 | Feb 2014 | WO |
2014143208 | Sep 2014 | WO |
2016183563 | Nov 2016 | WO |
Entry |
---|
“About Entering Commands in the Command Window”, dated Dec. 16, 2015. Retrieved from https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/AutoCAD-Core/files/GUID-BB0C3E79-66AF-4557-9140-D31B4CF3C9CF-htm.html (last accessed Jun. 16, 2016). |
“Change Data Capture”, Oracle Database Online Documentation 11g Release 1 (11.1), dated Apr. 5, 2016. Retreived from https://web.archive.org/web/20160405032625/http://docs.oracle.com/cd/B28359_01/server.111/b28313/cdc.htm. |
“Chapter 24. Query access plans”, Tuning Database Performance, DB2 Version 9.5 for Linux, UNIX, and Windows, pp. 301-462, dated Dec. 2010. Retreived from http://public.dhe.ibm.com/ps/products/db2/info/vr95/pdf/en_US/DB2PerfTuneTroubleshoot-db2d3e953.pdf. |
“GNU Emacs Manual”, dated Apr. 15, 2016, pp. 43-47. Retrieved from https://web.archive.org/web/20160415175915/http://www.gnu.org/software/emacs/manual/html_mono/emacs.html. |
“Google Protocol RPC Library Overview”, dated Apr. 27, 2016. Retrieved from https://cloud.google.com/appengine/docs/python/tools/protorpc/ (last accessed Jun. 16, 2016). |
“IBM—What is HBase?”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906022050/http://www-01.ibm.com/software/data/infosphere/hadoop/hbase/. |
“IBM Informix TimeSeries data management”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118072141/http://www-01.ibm.com/software/data/informix/timeseries/. |
“IBM InfoSphere BigInsights 3.0.0—Importing data from and exporting data to DB2 by using Sqoop”, dated Jan. 15, 2015. Retrieved from https://web.archive.org/web/20150115034058/http://www-01.ibm.com/support/knowledgecenter/SSPT3X_3.0.0/com.ibm.swg.im.infosphere.biginsights.import.doc/doc/data_warehouse_sqoop.html. |
“Maximize Data Value with Very Large Database Management by SAP Sybase IQ”, dated 2013. Retrieved from http://www.sap.com/bin/sapcom/en_us/downloadasset.2013-06-jun-11-11.maximize-data-value-with-very-large-database-management-by-sap-sybase-iq-pdf.html. |
“Microsoft Azure—Managing Access Control Lists (ACLs) for Endpoints by using PowerShell”, dated Nov. 12, 2014. Retrieved from https://web.archive.org/web/20150110170715/http://msdn. microsoft.com/en-us/library/azure/dn376543.aspx. |
“Oracle Big Data Appliance—Perfect Balance Java API”, dated Sep. 20, 2015. Retrieved from https://web.archive.org/web/20131220040005/http://docs.oracle.com/cd/E41604_01/doc.22/e41667/toc.htm. |
“Oracle Big Data Appliance—X5-2”, dated Sep. 6, 2015. Retrieved from https://web.archive.org/web/20150906185409/http://www.oracle.com/technetwork/database/bigdata-appliance/overview/bigdataappliance-datasheet-1883358.pdf. |
“Oracle Big Data Appliance Software User's Guide”, dated Feb. 2015. Retrieved from https://docs.oracle.com/cd/E55905_01/doc.40/e55814.pdf. |
“SAP HANA Administration Guide”, dated Mar. 29, 2016, pp. 290-294. Retrieved from https://web.archive.org/web/20160417053656/http://help.sap.com/hana/SAP_HANA_Administration_Guide_en.pdf. |
“Sophia Database—Architecture”, dated Jan. 18, 2016. Retrieved from https://web.archive.org/web/20160118052919/http://sphia.org/architecture.html. |
“Tracking Data Changes”, SQL Server 2008 R2, dated Sep. 22, 2015. Retreived from https://web.archive.org/web/20150922000614/https://technet.microsoft.com/en-us/library/bb933994(v=sql.105).aspx. |
“Use Formula AutoComplete”, dated 2010. Retrieved from https://support.office.com/en-us/article/Use-Formula-AutoComplete-c7c46fa6-3a94-4150-a2f7-34140c1ee4d9 (last accessed Jun. 16, 2016). |
Adelfio et al. “Schema Extraction for Tabular Data on the Web”, Proceedings of the VLDB Endowment, vol. 6, No. 6. Apr. 2013. Retrieved from http://www.cs.umd.edu/˜hjs/pubs/spreadsheets-vldb13.pdf. |
Advisory Action dated Apr. 19, 2017, in U.S. Appl. No. 15/154,999. |
Advisory Action dated Apr. 20, 2017, in U.S. Appl. No. 15/154,980. |
Advisory Action dated Apr. 6, 2017, in U.S. Appl. No. 15/154,995. |
Advisory Action dated Dec. 21, 2017, in U.S. Appl. No. 15/154,984. |
Advisory Action dated Mar. 31, 2017, in U.S. Appl. No. 15/154,996. |
Advisory Action dated May 3, 2017, in U.S. Appl. No. 15/154,993. |
Borror, Jefferey A. “Q for Mortals 2.0”, dated Nov. 1, 2011. Retreived from http://code.kx.com/wiki/JB:QforMortals2/contents. |
Breitbart, Update Propagation Protocols For Replicated Databases, SIGMOD '99 Philadelphia PA, 1999, pp. 97-108. |
Cheusheva, Svetlana. “How to change the row color based on a cell's value in Excel”, dated Oct. 29, 2013. Retrieved from https://www.ablebits.com/office-addins-blog/2013/10/29/excel-change-row-background-color/ (last accessed Jun. 16, 2016). |
Corrected Notice of Allowability dated Aug. 9, 2017, in U.S. Appl. No. 15/154,980. |
Corrected Notice of Allowability dated Jul. 31, 2017, in U.S. Appl. No. 15/154,999. |
Corrected Notice of Allowability dated Mar. 10, 2017, in U.S. Appl. No. 15/154,979. |
Corrected Notice of Allowability dated Oct. 26, 2017, in U.S. Appl. No. 15/610,162. |
Decision on Pre-Appeal Conference Request mailed Nov. 20, 2017, in U.S. Appl. No. 15/154,997. |
Ex Parte Quayle Action mailed Aug. 8, 2016, in U.S. Appl. No. 15/154,999. |
Final Office Action dated Apr. 10, 2017, in U.S. Appl. No. 15/155,006. |
Final Office Action dated Aug. 10, 2018, in U.S. Appl. No. 15/796,230. |
Final Office Action dated Aug. 2, 2018, in U.S. Appl. No. 15/154,996. |
Final Office Action dated Aug. 28, 2018, in U.S. Appl. No. 15/813,119. |
Final Office Action dated Dec. 19, 2016, in U.S. Appl. No. 15/154,995. |
Final Office Action dated Dec. 29, 2017, in U.S. Appl. No. 15/154,974. |
Final Office Action dated Feb. 24, 2017, in U.S. Appl. No. 15/154,993. |
Final Office Action dated Jan. 27, 2017, in U.S. Appl. No. 15/154,980. |
Final Office Action dated Jan. 31, 2017, in U.S. Appl. No. 15/154,996. |
Final Office Action dated Jul. 27, 2017, in U.S. Appl. No. 15/154,993. |
Final Office Action dated Jun. 18, 2018, in U.S. Appl. No. 15/155,005. |
Final Office Action dated Jun. 23, 2017, in U.S. Appl. No. 15/154,997. |
Final Office Action dated Mar. 1, 2017, in U.S. Appl. No. 15/154,975. |
Final Office Action dated Mar. 13, 2017, in U.S. Appl. No. 15/155,012. |
Final Office Action dated Mar. 31, 2017, in U.S. Appl. No. 15/155,005. |
Final Office Action dated May 15, 2017, in U.S. Appl. No. 15/155,010. |
Final Office Action dated May 18, 2018, in U.S. Appl. No. 15/654,461. |
Non-final Office Action dated Dec. 13, 2017, in U.S. Appl. No. 15/608,963. |
Non-final Office Action dated Dec. 28, 2017, in U.S. Appl. No. 15/154,996. |
Non-final Office Action dated Dec. 28, 2017, in U.S. Appl. No. 15/796,230. |
Non-final Office Action dated Feb. 12, 2018, in U.S. Appl. No. 15/466,836. |
Non-final Office Action dated Feb. 15, 2018, in U.S. Appl. No. 15/813,112. |
Non-final Office Action dated Feb. 28, 2018, in U.S. Appl. No. 15/813,119. |
Non-final Office Action dated Feb. 8, 2017, in U.S. Appl. No. 15/154,997. |
Non-final Office Action dated Jan. 4, 2018, in U.S. Appl. No. 15/583,777. |
Non-final Office Action dated Jul. 27, 2017, in U.S. Appl. No. 15/154,995. |
Non-final Office Action dated Jun. 29, 2018, in U.S. Appl. No. 15/154,974. |
Non-final Office Action dated Jun. 8, 2018, in U.S. Appl. No. 15/452,574. |
Non-final Office Action dated Mar. 2, 2017, in U.S. Appl. No. 15/154,984. |
Non-final Office Action dated Mar. 20, 2018, in U.S. Appl. No. 15/155,006. |
Non-final Office Action dated Nov. 15, 2017, in U.S. Appl. No. 15/654,461. |
Non-final Office Action dated Nov. 17, 2016, in U.S. Appl. No. 15/154,999. |
Non-final Office Action dated Nov. 21, 2017, in U.S. Appl. No. 15/155,005. |
Non-final Office Action dated Nov. 30, 2017, in U.S. Appl. No. 15/155,012. |
Non-final Office Action dated Oct. 13, 2016, in U.S. Appl. No. 15/155,009. |
Non-final Office Action dated Oct. 27, 2016, in U.S. Appl. No. 15/155,006. |
Non-final Office Action dated Oct. 5, 2017, in U.S. Appl. No. 15/428,145. |
Non-final Office Action dated Oct. 7, 2016, in U.S. Appl. No. 15/154,998. |
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/154,979. |
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,011. |
Non-final Office Action dated Sep. 1, 2016, in U.S. Appl. No. 15/155,012. |
Non-final Office Action dated Sep. 14, 2016, in U.S. Appl. No. 15/154,984. |
Non-final Office Action dated Sep. 16, 2016, in U.S. Appl. No. 15/154,988. |
Non-final Office Action dated Sep. 22, 2016, in U.S. Appl. No. 15/154,987. |
Non-final Office Action dated Sep. 26, 2016, in U.S. Appl. No. 15/155,005. |
Non-final Office Action dated Sep. 29, 2016, in U.S. Appl. No. 15/154,990. |
Non-final Office Action dated Sep. 8, 2016, in U.S. Appl. No. 15/154,975. |
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/154,996. |
Non-final Office Action dated Sep. 9, 2016, in U.S. Appl. No. 15/155,010. |
Notice of Allowance dated Apr. 30, 2018, in U.S. Appl. No. 15/155,012. |
Notice of Allowance dated Dec. 19, 2016, in U.S. Appl. No. 15/155,001. |
Notice of Allowance dated Dec. 22, 2016, in U.S. Appl. No. 15/155,011. |
Notice of Allowance dated Dec. 7, 2016, in U.S. Appl. No. 15/154,985. |
Notice of Allowance dated Feb. 1, 2017, in U.S. Appl. No. 15/154,988. |
Notice of Allowance dated Feb. 12, 2018, in U.S. Appl. No. 15/813,142. |
Notice of Allowance dated Feb. 14, 2017, in U.S. Appl. No. 15/154,979. |
Notice of Allowance dated Feb. 26, 2018, in U.S. Appl. No. 15/428,145. |
Notice of Allowance dated Feb. 28, 2017, in U.S. Appl. No. 15/154,990. |
Notice of Allowance dated Jan. 30, 2017, in U.S. Appl. No. 15/154,987. |
Notice of Allowance dated Jul. 11, 2018, in U.S. Appl. No. 15/154,995. |
Notice of Allowance dated Jul. 28, 2017, in U.S. Appl. No. 15/155,009. |
Notice of Allowance dated Jun. 19, 2017, in U.S. Appl. No. 15/154,980. |
Notice of Allowance dated Jun. 20, 2017, in U.S. Appl. No. 15/154,975. |
Notice of Allowance dated Mar. 1, 2018, in U.S. Appl. No. 15/464,314. |
Notice of Allowance dated Mar. 2, 2017, in U.S. Appl. No. 15/154,998. |
Notice of Allowance dated Mar. 31, 2017, in U.S. Appl. No. 15/154,998. |
Notice of Allowance dated May 10, 2017, in U.S. Appl. No. 15/154,988. |
Notice of Allowance dated May 4, 2018, in U.S. Appl. No. 15/897,547. |
Notice of Allowance dated Nov. 17, 2016, in U.S. Appl. No. 15/154,991. |
Notice of Allowance dated Nov. 17, 2017, in U.S. Appl. No. 15/154,993. |
Notice of Allowance dated Nov. 21, 2016, in U.S. Appl. No. 15/154,983. |
Notice of Allowance dated Nov. 8, 2016, in U.S. Appl. No. 15/155,007. |
Notice of Allowance dated Oct. 11, 2016, in U.S. Appl. No. 15/155,007. |
Notice of Allowance dated Oct. 21, 2016, in U.S. Appl. No. 15/154,999. |
Notice of Allowance dated Oct. 6, 2017, in U.S. Appl. No. 15/610,162. |
Notice of Allowance dated Sep. 11, 2018, in U.S. Appl. No. 15/608,963. |
Palpanas, Themistoklis et al. “Incremental Maintenance for Non-Distributive Aggregate Functions”, Proceedings of the 28th VLDB Conference, 2002. Retreived from http://www.vldb.org/conf/2002/S22P04.pdf. |
PowerShell Team, Intellisense in Windows PowerShell ISE 3.0, dated Jun. 12, 2012, Windows PowerShell Blog, pp. 1-6 Retrieved: https://biogs.msdn.microsoft.com/powershell/2012/06/12/intellisense-in-windows-powershell-ise-3-0/. |
Smith, Ian. “Guide to Using SQL: Computed and Automatic Columns.” Rdb Jornal, dated Sep. 2008, retrieved Aug. 15, 2016, retrieved from the Internet <URL: http://www.oracle.com/technetwork/products/rdb/automatic-columns-132042.pdf>. |
Sobell, Mark G. “A Practical Guide to Linux, Commands, Editors and Shell Programming.” Third Edition, dated Sep. 14, 2012. Retrieved from: http://techbus.safaribooksonline.com/book/operating-systems-and-server-administration/linux/9780133085129. |
Svetlana Cheusheve, Excel formulas for conditional formatting based on another cell AbleBits (2014), https://www.ablebits.com/office-addins-blog/2014/06/10/excel-conditional-formatting-formulas/comment-page-6/ (last visited Jan. 14, 2019). |
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.16.1” Dated May 11, 2015. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.16.1/index.html. |
Wes McKinney & PyData Development Team. “pandas: powerful Python data analysis toolkit, Release 0.18.1” Dated May 3, 2016. Retrieved from: http://pandas.pydata.org/pandas-docs/version/0.18.1/index.html. |
Wu, Buwen et al. “Scalable SPARQL Querying using Path Partitioning”, 31st IEEE International Conference on Data Engineering (ICDE 2015), Seoul, Korea, Apr. 13-17, 2015. Retreived from http://imada.sdu.dk/˜zhou/papers/icde2015.pdf. |
Final Office Action dated May 4, 2017, in U.S. Appl. No. 15/155,009. |
Final Office Action dated Oct. 1, 2018, in U.S. Appl. No. 15/154,993. |
Gai, Lei et al. “An Efficient Summary Graph Driven Method for RDF Query Processing”, dated Oct. 27, 2015. Retreived from http://arxiv.org/pdf/1510.07749.pdf. |
Hartle, Thom, Conditional Formatting in Excel using CQG's RTD Bate Function (2011), http://news.cqg.com/blogs/exce/l2011/05/conditional-formatting-excel-using-cqgs-rtd-bate-function (last visited Apr. 3, 2019). |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032582 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032584 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032588 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032593 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032597 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032599 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 18, 2016, in International Appln. No. PCT/US2016/032605 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032590 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 25, 2016, in International Appln. No. PCT/US2016/032592 filed May 14, 2016. |
International Search Report and Written Opinion dated Aug. 4, 2016, in International Appln. No. PCT/US2016/032581 filed May 14, 2016. |
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032586 filed May 14, 2016. |
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032587 filed May 14, 2016. |
International Search Report and Written Opinion dated Jul. 28, 2016, in International Appln. No. PCT/US2016/032589 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032596 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032598 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032601 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032602 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 1, 2016, in International Appln. No. PCT/US2016/032607 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032591 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032594 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 15, 2016, in International Appln. No. PCT/US2016/032600 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032595 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 29, 2016, in International Appln. No. PCT/US2016/032606 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032603 filed May 14, 2016. |
International Search Report and Written Opinion dated Sep. 8, 2016, in International Appln. No. PCT/US2016/032604 filed May 14, 2016. |
Jellema, Lucas. “Implementing Cell Highlighting in JSF-based Rich Enterprise Apps (Part 1)”, dated Nov. 2008. Retrieved from http://www.oracle.com/technetwork/articles/adf/jellema-adfcellhighlighting-087850.html (last accessed Jun. 16, 2016). |
Kramer, The Combining DAG: A Technique for Parallel Data Flow Analysis, IEEE Transactions on Parallel and Distributed Systems, vol. 5, No. 8, Aug. 1994, pp. 805-813. |
Lou, Yuan. “A Multi-Agent Decision Support System for Stock Trading”, IEEE Network, Jan./Feb. 2002. Retreived from http://www.reading.ac.uk/AcaDepts/si/sisweb13/ais/papers/journal12-A%20multi-agent%20Framework.pdf. |
Mallet, “Relational Database Support for Spatio-Temporal Data”, Technical Report TR 04-21, Sep. 2004, University of Alberta, Department of Computing Science. |
Maria Azbel, How to hide and group columns in Excel AbleBits (2014), https://www.ablebits.com/office-addins-blog/2014/08/06/excel-hide-columns/ (last visited Jan. 18, 2019). |
Mariyappan, Balakrishnan. “10 Useful Linux Bash_Completion Complete Command Examples (Bash Command Line Completion on Steroids)”, dated Dec. 2, 2013. Retrieved from http://www.thegeekstuff.com/2013/12/bash-completion-complete/ (last accessed Jun. 16, 2016). |
Mark Dodge & Craig Stinson, Microsoft Excel 2010 inside out (2011). |
Murray, Derek G. et al. “Naiad: a timely dataflow system.” SOSP '13 Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. pp. 439-455. Nov. 2013. |
Non-final Office Action dated Apr. 12, 2018, in U.S. Appl. No. 15/154,997. |
Non-final Office Action dated Apr. 19, 2017, in U.S. Appl. No. 15/154,974. |
Non-final Office Action dated Apr. 23, 2018, in U.S. Appl. No. 15/813,127. |
Non-final Office Action dated Apr. 5, 2018, in U.S. Appl. No. 15/154,984. |
Non-final Office Action dated Aug. 10, 2018, in U.S. Appl. No. 16/004,578. |
Non-final Office Action dated Aug. 12, 2016, in U.S. Appl. No. 15/155,001. |
Non-final Office Action dated Aug. 14, 2017, in U.S. Appl. No. 15/464,314. |
Non-final Office Action dated Aug. 16, 2016, in U.S. Appl. No. 15/154,993. |
Non-final Office Action dated Aug. 19, 2016, in U.S. Appl. No. 15/154,991. |
Non-final Office Action dated Aug. 25, 2016, in U.S. Appl. No. 15/154,980. |
Non-final Office Action dated Aug. 26, 2016, in U.S. Appl. No. 15/154,995. |
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,983. |
Non-final Office Action dated Aug. 8, 2016, in U.S. Appl. No. 15/154,985. |
“Definition of Multicast” by Lexico powered by Oxford at https://www.lexico.com/en/definition/multicast, 2019, p. 1. |
“What is a Key-Value Database?” at https://database.guide/what-is-a-key-value-database, Database Concepts, NOSQL, 2019 Database.guide, Jun. 21, 2016, pp. 1-7. |
Posey, Brien, “How to Combine PowerShell Cmdlets”, Jun. 14, 2013 Redmond the Independent Voice of the Microsoft Community (Year: 2013), pp. 1-10. |
Number | Date | Country | |
---|---|---|---|
20190258625 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62161813 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15154974 | May 2016 | US |
Child | 16398586 | US |