Over the past years, privacy and security policies, and related operations have become increasingly important with respect to the handling of personal data (which may include sensitive personal data). Such personal data may include, but is not limited to, personally identifiable information (PII), which may be information that directly (or indirectly) identifies an individual or entity. Examples of PII include names, addresses, dates of birth, social security numbers, and biometric identifiers such as a person's fingerprints or picture. Other personal data may include, for example, customers' Internet browsing habits, purchase history, or even their preferences (e.g., likes and dislikes, such as provided or obtained through social media).
To manage personal data, many organizations have implemented operational processes that comply with certain rights related to a data subject's personal data that is collected, stored, or otherwise processed by an organization. These rights may include, for example, a right to obtain confirmation of whether a particular organization is processing their personal data, a right to obtain information about the purpose of the processing (e.g., one or more reasons for which the personal data was collected), and other such rights. Some regulations require organizations to comply with requests for such information (e.g., Data Subject Access Requests) within relatively short periods of time (e.g., 30 days). Accordingly, an organization's processing of such requests can require a significant amount of computing resources, especially when the organization is required to comply with such requests in a relatively short period of time. A significant challenge encountered by many organizations is that requests for personal data are not necessarily legitimate, but instead are submitted for malicious purposes such as to overexert the organizations' computing resources in processing the requests. For example, a malicious party may submit an excessive number of requests for personal data for the purpose of taxing an organization's computing resources in processing the requests. Therefore, a need exists in the arts for improved systems and methods for identifying and handling malicious requests associated with rights related to personal data.
It should be appreciated that this Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to be used to limit the scope of the claimed subject matter.
In general, various embodiments of the present invention provide methods, apparatuses, systems, computing devices, computing entities, and/or the like for identifying a data subject access request is subject to fulfillment constraint data and processing the data subject access request accordingly. In accordance with various embodiments, a method is provided. According, the method comprises: providing, by computing hardware, a query interface that is accessible via a public data network and that is configured for querying a plurality of data storage systems included in a private data network; determining, with the computing hardware, that a plurality of queries comprising data subject access requests have been received via the query interface from an Internet Protocol (IP) address; responsive to determining that the plurality of queries have originated from the IP address, adding a processing constraint for the IP address to fulfillment constraint data in a data repository; receiving, via the query interface and the public data network, a query comprising a data subject access request from a computing device; determining, by the computing hardware, that the computing device is associated with the IP address; querying, by the computing hardware and using the IP address, the fulfillment constraint data from the data repository to identify the processing constraint; determining, by the computing hardware, that the data subject access request is subject to the processing constraint; and preventing, based on the determining that the data subject access request is subject to the processing constraint, the plurality of data storage systems from executing processing operations or performing network communication for retrieving data responsive to the data subject access request from a plurality of data sources included in the private data network.
According to particular embodiments, the method further comprises: providing, by the computing hardware, an authorization interface that is accessible via the public data network and that is configured for requesting authorization data from the computing device; receiving, by the computing hardware and via the authorization interface, the authorization data from the computing device; and overriding, by the computing hardware, the processing constraint based on receiving the authorization data, wherein overriding the processing constraint permits retrieval of the data responsive to the data subject access request from the plurality of data sources included in the private data network. In some embodiments, the authorization data comprises at least one of a username, a password, an authorization code, or data confirming payment of a processing fee associated with fulfilling the data subject access request.
According to particular embodiments, adding the processing constraint for the IP address to the fulfillment constraint data in the data repository is based on a number of the plurality of queries originating from the IP address satisfying a threshold quantity within a threshold period of time. According to other embodiments, adding the processing constraint for the IP address to the fulfillment constraint data is based on the IP address being associated with at least one of a competitor of an entity associated with the plurality of data storage systems, a geographic region, a particular political group, or a particular protesting group.
According to particular embodiments, the method further comprises storing, by the computing hardware, documentation supporting preventing retrieval of the data responsive to the data subject access request from the plurality of data sources included in the private data network. According to particular embodiments, the method further comprises providing, by the computing hardware, for display on the query interface, a reason for preventing retrieval of the data responsive to the data subject access request from the plurality of data sources included in the private data network.
In accordance with various embodiments, a system is provided comprising a non-transitory computer-readable medium storing instructions and a processing device communicatively coupled to the non-transitory computer-readable medium. Accordingly, the processing device is configured to execute the instructions and thereby perform operations comprising: determining that a plurality of queries comprising data subject access requests have been received via a query interface from a domain, wherein the query interface is accessible via a public data network and is configured for querying a plurality of data storage systems included in a private data network; responsive to determining that the plurality of queries have originated from the domain, adding a processing constraint for the domain to fulfillment constraint data in a data repository; receiving, via the query interface and the public data network, a query comprising a data subject access request from a computing device; determining that the computing device is associated with the domain; querying, using the domain, the fulfillment constraint data from the data repository to identify the processing constraint; determining that the data subject access request is subject to the processing constraint; and preventing, based on the determining that the data subject access request is subject to the processing constraint, the plurality of data storage systems from executing processing operations or performing network communication for retrieving data responsive to the data subject access request from a plurality of data sources included in the private data network.
According to particular embodiments, the operations further comprise: providing an authorization interface that is accessible via the public data network and that is configured for requesting authorization data from the computing device; receiving, via the authorization interface, the authorization data from the computing device; and overriding the processing constraint based on receiving the authorization data, wherein overriding the processing constraint permits retrieval of the data responsive to the data subject access request from the plurality of data sources included in the private data network. In some embodiments, the authorization data comprises at least one of a username, a password, an authorization code, or data confirming payment of a processing fee associated with fulfilling the data subject access request.
According to particular embodiments, adding the processing constraint for the domain to the fulfillment constraint data in the data repository is based on a number of the plurality of queries originating from the domain satisfying a threshold quantity within a threshold period of time. According to other embodiments, adding the processing constraint for the domain to the fulfillment constraint data is based on the domain being associated with at least one of a competitor of an entity associated with the plurality of data storage systems, a geographic region, a particular political group, or a particular protesting group.
According to particular embodiments, the operations further comprise storing documentation supporting preventing retrieval of the data responsive to the data subject access request from the plurality of data sources included in the private data network. According to particular embodiments, the operations further comprise providing, for display on the query interface, a reason for preventing retrieval of the data responsive to the data subject access request from the plurality of data sources included in the private data network.
In accordance with various aspects, a non-transitory computer-readable medium having program code that is stored thereon is provided. Accordingly, the program code is executable by one or more processing devices for performing operations comprising: determining that a first query has been received via a query interface from at least one of an Internet Protocol (IP) address, a domain, or a geographic location wherein the query interface is accessible via a public data network and is configured for querying a data storage system included in a private data network; responsive to determining the first query has originated from at least one of the IP address, the domain, or the geographic location, adding a processing constraint for at least one of the IP address, the domain, or the geographic location to fulfillment constraint data in a data repository; receiving, via the query interface and the public data network, a second query from a computing device; determining that the computing device is associated with at least one of the IP address, the domain, or the geographic location; querying, using at least one of the IP address, the domain, or the geographic location, the fulfillment constraint data from the data repository to identify the processing constraint; determining that the second query is subject to the processing constraint; and preventing, based on the determining that the second query is subject to the processing constraint, the data storage system from executing processing operations or performing network communication for retrieving data responsive to the second query from a data source included in the private data network.
According to particular embodiments, the operations further comprise: providing an authorization interface that is accessible via the public data network and that is configured for requesting authorization data from the computing device; receiving, via the authorization interface, the authorization data from the computing device; and overriding the processing constraint based on receiving the authorization data, wherein overriding the processing constraint permits retrieval of the data responsive to the second query from the data source included in the private data network. In some embodiments, the authorization data comprises at least one of a username, a password, an authorization code, or data confirming payment of a processing fee associated with fulfilling the data subject access request.
According to particular embodiments, adding the processing constraint for at least one of the IP address, the domain, or the geographic location to the fulfillment constraint data is based on at least one of the IP address or the domain being associated with at least one of a competitor of an entity associated with the data storage system, a geographic region, a particular political group, or a particular protesting group. According to particular embodiments, the operations further comprise storing documentation supporting preventing retrieval of the data responsive to the second query from the data source included in the private data network. According to particular embodiments, the operations further comprise providing a reason for display on the query interface for preventing retrieval of the data responsive to the second query from the data source included in the private data network.
The features, functions, and advantages that have been discussed can be achieved independently in various embodiments of the present disclosure or may be combined in yet other embodiments, further details of which can be seen with reference to the following description and drawings.
Various embodiments of a data subject access request fulfillment system are described below. In the course of this description, reference will be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Various embodiments now will be described more fully hereinafter with reference to the accompanying drawings. It should be understood that the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
As previously noted, privacy and security policies, and related operations, have become increasingly important over the past years. As a result, many organizations have attempted to implement operational processes that comply with certain rights related to a data subject's personal data that is collected, stored, or otherwise processed by an organization. These rights may include, for example, a right to obtain confirmation of whether a particular organization is processing their personal data, a right to obtain information about the purpose of the processing (e.g., one or more reasons for which the personal data was collected), and other such rights. Some regulations require organizations to comply with requests for such information (e.g., Data Subject Access Requests) within relatively short periods of time (e.g., 30 days).
However, a technical challenge often encountered by many organizations in their processing of personal data while complying with a data subject's rights related to their personal data that is collected, stored, or otherwise processed by an organization is facilitating (e.g., allowing) the data subject's exercise of such rights when the personal data involved may exist over multiple data sources (e.g., computing devices, data storage, and/or the like) found within multiple data storage systems. As a result, an organization's processing of requests received from data subjects (e.g., individuals) who are exercising their rights related to their personal data can require a significant amount of computing resources.
For instance, many organizations provide a publicly accessible query interface through which data subjects (or lawful representatives thereof) can submit requests (e.g., data subject access requests) related to their personal data being processed by the organizations. For example, many organizations provide a website that is accessible by data subjects over a public data network such as the Internet. Here, the website may include a web form that can be used by the data subjects to submit requests related to the data subjects' personal data being processed by the organizations. Therefore, a data subject wishing to exercise their rights can simply visit an organization's website and use the webform to submit a query that includes a request related to a personal data right that is then often required to be fulfilled by the organization in a timely manner. Since the query interface (e.g., website) is often publicly available, an organization can receive a considerable number of requests at any given time that then requires the organization to devote a significant number of computing resources to timely fulfill the requests. This can become even more of a substantial challenge as personal data collected, stored, or otherwise processed by an organization increases in volume and/or is collected, stored, or otherwise processed over an increasing number of data sources involving multiple data storage systems that are in communication over one or more private data networks.
Another technical challenge encountered by many organizations is the receiving and processing of requests by data subjects, or those who pretend to be data subjects, that are not submitted for valid/legitimate reasons (also referred to as malicious requests). Such actions can prove to be a technical challenge for many organizations in that the organizations can be subject to a wasteful devotion of computing resources in processing such requests when the resources could be used for more meaningful, valid, and/or legitimate purposes. For example, a malicious requestor or source may include a requestor (e.g., an individual) or source that submits an excessive or redundant number of data subject access requests for the purpose of tying up an organization's computing resources unnecessarily, expending the organization's computing resources, disrupting the organization's operations and/or computing resources, and/or the like. Since many organizations provide publicly accessible query interfaces for submitting requests, malicious requestors and/or sources can easily take advantage of such interfaces in submitting malicious requests. Therefore, many organizations are faced with the challenge of recognizing when malicious requests are being submitted, as opposed to valid/legitimate requests, and to eliminate and/or limit such malicious request to avoid wasteful use of computing resources.
Accordingly, various embodiments of the present disclosure overcome many of the technical challenges mentioned above by providing a fulfillment constraint determination system configured to maintain a “blacklist” of malicious requestors and/or sources. As described in further detail herein, this blacklist may include fulfillment constraint data that may be cross-referenced upon receipt of a data subject access request to determine if the data subject access request is subject to one or more response fulfillment (processing) constraints. If the data subject access request is subject to one or more response fulfillment constraints, then the system in particular embodiments initially prevents one or more data storage systems from executing processing operations or performing network communication for retrieving data responsive to the data subject access request from one or more data sources included in a private data network.
In addition, the system in various embodiments may take action on the data subject access request according to one or more limitations. Such actions may entail an action denying a data subject access request (a deny action) or an action fulfilling a data subject access request (a fulfillment action). For instance, a deny action may involve permanently preventing the one or more data storage systems from executing processing operations or performing network communication for retrieving data responsive to the data subject access request. In addition, the system may provide the requestor with information on the reason for denying the request. Such an action thus may entirely eliminate the need for using computing resources unnecessarily for processing a malicious data subject access request.
A fulfillment action may involve fulfilling the request, but only upon a condition and/or requirement being met. For instance, a fulfillment action may involve the system requiring the requestor and/or other system to provide some form of authorization data before allowing the one or more storage systems to execute processing operations or perform network communication for retrieving data responsive to the data subject access request. For example, the authorization data may involve the requestor providing a username, password, authorization code, and/or the like. In another example, the requestor may be required to pay a processing fee to have the request fulfilled. Here, the authorization data may involve data confirming payment of the processing fee. Accordingly, the system may provide the requestor with an authorization interface that requests the authorization data from the requestor and/or is used to acquire the authorization data.
Therefore, the requestor has the choice of meeting the condition and/or requirement or not. This can serve as a further stipulation in having the data subject access request processed. If the requestor refuses to meet the condition and/or requirement, then the system can permanently prevent the one or more data storage systems from executing processing operations or performing network communication for retrieving data responsive to the data subject access request. If the requestor meets the condition and/or requirement, then the system can override the one or more response fulfillment (processing) constraints and permit the one or more data storage systems to execute the processing operations or perform the network communication for retrieving data responsive to the data subject access request. Thus, such action may further help to ensure or verify that the data subject access request is not malicious (is valid/legitimate) before allowing the processing of the request, and again can avoid using computing resources unnecessarily for processing a malicious data subject access request.
Accordingly, in various embodiments, a data subject access request fulfillment system may be implemented in the context of any suitable privacy management system that is configured to ensure compliance with one or more legal or industry standards related to the collection and/or storage of private information (e.g., such as personal data). In various embodiments, a particular organization, sub-group, or other entity may initiate a privacy campaign or other activity (e.g., processing activity) as part of its business activities. In such embodiments, the privacy campaign may include any undertaking by a particular organization (e.g., such as a project or other activity) that includes the collection, entry, and/or storage (e.g., in computer memory) of any personal data associated with one or more individuals (e.g., data subjects). In particular embodiments, a privacy campaign may include any project undertaken by an organization that includes the use of personal data, or any other activity that could have an impact on the privacy of one or more individuals.
In any embodiment described herein, personal data may include, for example: (1) the name of a particular data subject (which may be a particular individual); (2) the data subject's address; (3) the data subject's telephone number; (4) the data subject's e-mail address; (5) the data subject's social security number; (6) information associated with one or more of the data subject's credit accounts (e.g., credit card numbers); (7) banking information for the data subject; (8) location data for the data subject (e.g., their present or past location); (9) internet search history for the data subject; and/or (10) any other suitable personal information, such as other personal information discussed herein. In particular embodiments, such personal data may include one or more cookies (e.g., where the individual is directly identifiable or may be identifiable based at least in part on information stored in the one or more cookies).
Various privacy and security policies (e.g., such as the European Union's General Data Protection Regulation, and other such policies) may provide data subjects (e.g., individuals, organizations, or other entities) with certain rights related to the data subject's personal data that is collected, stored, or otherwise processed by an organization. These rights may include, for example: (1) a right to obtain confirmation of whether a particular organization is processing their personal data; (2) a right to obtain information about the purpose of the processing (e.g., one or more reasons for which the personal data was collected); (3) a right to obtain information about one or more categories of data being processed (e.g., what type of personal data is being collected, stored, etc.); (4) a right to obtain information about one or more categories of recipients with whom their personal data may be shared (e.g., both internally within the organization or externally); (5) a right to obtain information about a time period for which their personal data will be stored (e.g., or one or more criteria used to determine that time period); (6) a right to obtain a copy of any personal data being processed (e.g., a right to receive a copy of their personal data in a commonly used, machine-readable format); (7) a right to request erasure (e.g., the right to be forgotten), rectification (e.g., correction or deletion of inaccurate data), or restriction of processing of their personal data; and (8) any other suitable rights related to the collection, storage, and/or processing of their personal data (e.g., which may be provided by law, policy, industry or organizational practice, etc.).
As may be understood in light of this disclosure, a particular organization may undertake a plurality of different privacy campaigns, processing activities, etc. that involve the collection and storage of personal data. In some embodiments, each of the plurality of different processing activities may collect redundant data (e.g., may collect the same personal data for a particular individual more than once), and may store data and/or redundant data in one or more particular locations that serve as data sources (e.g., on one or more different servers, in one or more different databases, etc.). In this way, a particular organization may store personal data in a plurality of different locations which may include one or more known and/or unknown locations. As such, complying with particular privacy and security policies related to personal data (e.g., such as responding to one or more requests by data subjects related to their personal data) may be particularly difficult (e.g., in terms of cost, time, etc.). In particular embodiments, the data subject access request fulfillment system may utilize one or more data model generation and population techniques to create a centralized data map with which the system can identify personal data stored, collected, or processed for a particular data subject, a reason for the processing, and any other information related to the processing.
In particular embodiments, the data subject access request fulfillment system is configured to: (1) receive a data subject access request from a data subject, the data subject access request comprising one or more requests related to the one or more rights described above (e.g., a request for a copy of the data subject's personal data, a request regarding how long personal data associated with the data subject is being stored by the system, etc.); (2) process the request; and (3) fulfill the request based at least in part on one or more request parameters.
Automatic Identity Validation Systems
In particular embodiments, when processing a data subject access request, the system may be configured to verify an identity of the data subject prior to processing the request (e.g., or as part of the processing step). In various embodiments, confirming the identity of the data subject may, for example, limit a risk that a third-party or other entity may gain unlawful or unconsented to access to the requestor's personal data. The system may, for example, limit processing and fulfillment of requests relating to a particular data subject to requests that are originated by (e.g., received from) the particular data subject. When processing a data subject access request, the system may be configured to use all reasonable measures to verify the identity of the data subject who requests access (e.g., in particular in the context of online services and online identifiers). In particular embodiments, the system is configured to substantially automatically validate an identity of a data subject when processing the data subject access request.
For example, in particular embodiments, the system may be configured to substantially automatically (e.g., automatically) authenticate and/or validate an identity of a data subject using any suitable technique. These techniques may include, for example: (1) one or more credit-based and/or public- or private-information-based verification techniques; (2) one or more company verification techniques (e.g., in the case of a business-to-business data subject access request); (3) one or more techniques involving integration with a company's employee authentication system; (4) one or more techniques involving a company's (e.g., organization's) consumer portal authentication process; (5) etc. Various exemplary techniques for authenticating a data subject are discussed more fully below.
In particular embodiments, when authenticating a data subject (e.g., validating the data subject's identity), the system may be configured to execute particular identity confirmation steps, for example, by interfacing with one or more external systems (e.g., one or more third-party data aggregation systems). For example, the system, when validating a data subject's identity, may begin by verifying that a person with the data subject's name, address, social security number, or other identifying characteristic (e.g., which may have been provided by the data subject as part of the data subject access request) actually exists. In various embodiments, the system is configured to interface with (e.g., transmit a search request to) one or more credit reporting agencies (e.g., Experian, Equifax, TransUnion, etc.) to confirm that a person with one or more characteristics provided by the data subject exists. The system may, for example, interface with such credit reporting agencies via a suitable plugin (e.g., software plugin). Additionally, there might be a verification on behalf of a trusted third-party system (e.g., the controller).
In still other embodiments, the system may be configured to utilize one or more other third-party systems (e.g., such as LexisNexis, IDology, RSA, etc.), which may, for example, compile utility and phone bill data, property deeds, rental agreement data, and other public records for various individuals. The system may be configured to interface with one or more such third-party systems to confirm that a person with one or more characteristics provided by the data subject exists.
After the step of confirming the existence of a person with the one or more characteristics provided by the data subject, the system may be configured to confirm that the person making the data subject access request is, in fact, the data subject. The system may, for example, verify that the requestor is the data subject by prompting the requestor to answer one or more knowledge-based authentication questions (e.g., out-of-wallet questions). In particular embodiments, the system is configured to utilize one or more third-party services as a source of such questions (e.g., any of the suitable third-party sources discussed immediately above). The system may use third-party data from the one or more third-party sources to generate one or more questions. These one or more questions may include questions that a data subject should know an answer to without knowing the question ahead of time (e.g., one or more previous addresses, a parent or spouse name and/or maiden name, etc.).
In still other embodiments, the system may be configured to prompt a requestor to provide one or more additional pieces of information in order to validate the requestor's identity. This information may include, for example: (1) at least a portion of the requestor's social security number (e.g., last four digits); (2) a name and/or place of birth of the requestor's father; (3) a name, maiden name, and/or place of birth of the requestor's mother; and/or (4) any other information which may be useful for confirming the requestor's identity (e.g., such as information available on the requestor's birth certificate). In other embodiments, the system may be configured to prompt the requestor to provide authorization for the company to check the requestor's social security or other private records (e.g., credit check authorization, etc.) to obtain information that the system may use to confirm the requestor's identity. In other embodiments, the system may prompt the user to provide one or more images (e.g., using a suitable mobile computing device) of an identifying document (e.g., a birth certificate, social security card, driver's license, etc.).
The system may, in response to a user providing one or more responses that matches information that the system receives from one or more third-party data aggregators or through any other suitable background, credit, or other search, substantially automatically authenticate the requestor as the data subject. The system may then continue processing the data subject's request, and ultimately fulfill their request.
In particular embodiments, such as embodiments in which the requestor includes a business (e.g., as in a business to business data subject access request), the system may be configured to authenticate the requesting business using one or more company verification techniques. These one or more company validation techniques may include, for example, validating a vendor contract (e.g., between the requesting business and the company receiving the data subject access request); receiving a matching token, code, or other unique identifier provided by the company receiving the data subject access request to the requesting business; receiving a matching file in possession of both the requesting business and the company receiving the data subject access request; receiving a signed contract, certificate (e.g., digital or physical), or other document memorializing an association between the requesting business and the company receiving the data subject access request; and/or any other suitable method of validating that a particular request is actually made on behalf of the requesting business (e.g., by requesting the requesting business to provide one or more pieces of information, one or more files, one or more documents, etc. that may only be accessible to the requesting business).
In other embodiments, the system may be configured to authenticate a request via integration with a company's employee or customer (e.g., consumer) authentication process. For example, in response to receiving a data subject access request that indicates that the data subject is an employee of the company receiving the data subject access request, the system may be configured to prompt the employee to login to the company's employee authentication system (e.g., Okta, Azure, AD, etc.) In this way, the system may be configured to authenticate the requestor based at least in part on the requestor successfully logging into the authentication system using the data subject's credentials. Similarly, in response to receiving a data subject access request that indicates that the data subject is a customer of the company receiving the data subject access request, the system may be configured to prompt the customer to login to an account associated with the company (e.g., via a consumer portal authentication process). In a particular example, this may include, for example, an Apple ID (for data subject access requests received by Apple). In this way, the system may be configured to authenticate the requestor based at least in part on the requestor successfully logging into the authentication system using the data subject's credentials. In some embodiments, the system may be configured to require the requestor to login using two-factor authentication or other suitable existing employee or consumer authentication process.
Data Subject Request Fulfillment Constraints
A particular organization (e.g., entity) may not be required to respond to a data subject access request that originates from (e.g., is received from) a malicious requestor or source. A malicious requestor or source may include, for example: a requestor (e.g., an individual) or source that submits excessive or redundant data subject access requests; a requestor who is a disgruntled employee that was previously and not currently employed by the organization receiving the data subject access request that is submitting such requests to tie up the organization's resources unnecessarily; a group of requestors such as researchers, professors, students, NGOs, etc. that submit a plurality of requests for reasons other than those reasons provided by policy, law, etc.; a competitor of the organization receiving the data subject access request that is submitting such requests to tie up the organization's resources unnecessarily; a group of requestors originating from a particular geographic region (e.g., a country) that may submit excessive data subject access requests to disrupt the organization's operations or tie up the organization's resources unnecessarily for economic or other reasons; a group of requestors associated with a particular political organization that may submit excessive data subject access requests to expend the organization's resources for economic or retaliatory reasons; a group of requestors associated with a particular protesting organization (e.g., a group protesting the organization, the organization's employees, or the any entities affiliated with the organization for any reason) that may submit excessive data subject access requests to expend the organization's resources; a terrorist or other organization that may spam requests to disrupt the organization's operation and response to valid/legitimate requests; and/or any other request that may fall outside the scope of valid/legitimate requests made for reasons proscribed by public policy, company policy, or law.
In particular embodiments, the system is configured to maintain a “blacklist” of such malicious requestors and/or sources. As will be described in detail below, this virtual blacklist may include fulfillment constraint data that may be cross-referenced upon receipt of a data subject access request to determine if the data subject access request is subject to one or more response fulfillment (processing) constraints. If the data subject access request is subject to one or more response fulfillment constraints, then the system may take action on the request according to one or more limitations.
Looking now at
According to various embodiments, a Data Subject Access Request (DSAR) 102 is submitted by a requestor and received at a DSAR Processing and Fulfillment Server 170. The DSAR 102 may be submitted and authenticated in the manner described above. The DSAR Processing and Fulfillment Server 170 may utilize one or more databases 140 and/or one or more third party servers 160 (discussed in greater detail below with respect to the example system architecture and
After verifying the existence of any Fulfillment Constraint Data 106, the DSAR Processing and Fulfillment Server 170 may initially prevent the DSAR 102 from being processed. For instance, the DSAR Processing and Fulfillment Server 170 may prevent one or more data storage systems from executing processing operations or performing network communication for retrieving data responsive to the DSAR 102 from one or more data sources included in a private data network. In addition, the DSAR Processing and Fulfillment Server 170 may take action, either by a Fulfillment Action 180 or a Deny Action 190. The action taken by the DSAR Processing and Fulfillment Server 170 may be subject to One or More Limitations 192 (indicated in
Looking at the system 5000 now in greater detail, the DSAR 102 may be submitted using the exemplary data subject access request form shown and described above with respect to
According to various embodiments, the system is configured to track a requestor and/or a source associated with each DSAR 102 and analyze each DSAR 102 to identify requestors and/or sources from which: (1) the organization receives a large volume of requests; (2) the organization receives a large number of repeat requests; (3) the organization receives a request from a requestor or source for which the organization does not legally have to respond, or does not have to respond at no cost. The sources may include, for example: (1) one or more particular IP addresses; (2) one or more particular domains; (3) one or more particular countries; (4) one or more particular institutions; (5) one or more particular geographic regions; (6) one or more political group; and/or (7) one or more protesting group. In response to analyzing the requestors and/or sources of the requests, the system may identify one or more requestors or sources that may be malicious (e.g., are submitting excessive requests).
As an example, the system may be configured to fulfill data subject access requests for the purpose of providing a data subject with information regarding what data the organization collects and for what purpose. A typical DSAR 102 may be made so that the data subject can ensure that the organization is collecting data for lawful reasons. As such, the system may be configured to identify requestors and other sources of data requests that are made for other reasons (e.g., a malicious reason or one or more reasons that would not obligate the organization to respond to the request). These reasons may include, for example, malicious or other reasons. One example includes requests made for research by an academic institution by one or more students or professors. While not malicious in the traditional sense, these requests may be categorized as malicious by the system since they tie up a large amount of company resources and do not require a free response by law. Anticompetitive requests by one or more competitors may be maliciously submitted with the intention to expend organizational time and resources. Requests by disgruntled former employees may be submitted for nefarious reasons. Requests from a particular country or geographic region may have malicious interests in tying up the resources of the organization by submitting excessive or frivolous DSARs 102. Requests from a particular political group may be made with malicious interests in tying up the resources of the organization. Similarly, one or more protesting groups or organizations may have the purpose of submitting one or more DSARs 102 to expend time and resources of the organization and its employees. It should be appreciated that the disclosure herein encompasses any response fulfillment constraints based on the submission of any DSAR 102 that is not submitted for lawful, valid, and/or legitimate reasons.
In various embodiments, the system is configured to maintain a database of the identified one or more requestors and sources (e.g., in computer memory). In particular embodiments, the database may store a listing of identities, data sources, etc. that have been found (e.g., by the system) to result in one or more response fulfillment (processing) constraints that lead to a denial of the request or a fulfillment subject to one or more conditions and/or requirements. This listing is stored in One or More Databases 140 or resides on One or More Third Party Servers 160 (
The Third Party Repository Server 104 can act as a central data-storage repository (e.g., one or more servers, databases, etc.), for the centralized storage of personally identifiable information (PII) and/or Personal Data 108 for one or more particular data subjects. In particular embodiments, the Third Party Repository Server 104 may enable the system to populate one or more data models (e.g., using one or more suitable techniques described herein) substantially on-the-fly (e.g., as the system collects, processes, stores, etc. Personal Data 108 regarding a particular data subject). In this way, in particular embodiments the system is configured to maintain a substantially up-to-date data model for a plurality of data subjects (e.g., each particular data subject for whom the system collects, processes, stores, etc. Personal Data 108). The system may then be configured to substantially automatically respond to one or more data access requests by a data subject (e.g., individual, entity, organization, etc.), for example, using the substantially up-to-date data model.
A particular organization may undertake a plurality of different privacy campaigns, processing activities, etc. that involve the collection and storage of Personal Data 108. In some embodiments, each of the plurality of different processing activities may collect redundant data (e.g., may collect the same Personal Data 108 for a particular individual more than once), and may store data and/or redundant data in one or more particular locations (e.g., on one or more different servers, in one or more different databases, etc.). In this way, a particular organization may store Personal Data 108 in a plurality of different locations which may include one or more known and/or unknown locations. As such, complying with particular privacy and security policies related to Personal Data 108 (e.g., such as responding to one or more requests by data subjects related to their Personal Data 108) may be particularly difficult (e.g., in terms of cost, time, etc.). Accordingly, utilizing and maintaining a Third Party Repository Server 104 for PII may enable the system to more quickly and accurately respond to DSARs 102 and other requests related to collected, stored, and processed Personal Data 108.
In various embodiments, a Third Party Repository Server 104 is configured to facilitate the receipt and centralized storage of Personal Data 108 for each of a plurality of respective data subjects. In particular embodiments, the system may be configured to: (1) receive Personal Data 108 associated with a particular data subject (e.g., a copy of the data, a link to a location of where the data is stored, etc.); and (2) store the Personal Data 108 in a suitable data format (e.g., a data model, a reference table, etc.) for later retrieval.
In particular embodiments, the Third Party Repository Server 104 is configured to: (1) receive an indication that a first party system (e.g., entity) has collected and/or processed a piece of Personal Data 108 for a data subject; (2) determine a location in which the first party system has stored the piece of Personal Data 108; (3) optionally digitally store (e.g., in computer memory) a copy of the piece of Personal Data 108 and associate, in memory, the piece of Personal Data 108 with the data subject; and (4) optionally digitally store an indication of the storage location utilized by the first party system for the piece of Personal Data 108. In particular embodiments, the system is configured to provide a centralized database, for each particular data subject, of any Personal Data 108 processed and/or collected by a particular entity.
Referring again to
In particular embodiments, the system may, for example, maintain a database (e.g., in computer memory) of former employees that are no longer employed by the company. When comparing the identity of the requesting party with the Requestor 112 identities and corresponding information stored as Fulfillment Constraint Data 106 in the Third Party Repository Server 104, DSAR Processing and Fulfillment Server 170 may determine that being a former employee alone is not enough to subject the DSAR 102 to one or more response fulfillment constraints, specifically imposing one or more limitations such as a fulfillment of the request subject to an authorization code, a processing fee, and/or the like or the denial of the request absent such limitations. Rather, the DSAR Processing and Fulfillment Server 170 may impose one or more limitations only if a former employee is further flagged or identified with a malicious history of requests (e.g., excessive requests or requests exceeding a threshold number) or potential for malicious requests. With respect to determining that a requestor possesses a potential for malicious requests, this potential may be stored as a rating or value assigned to the Requestor 112 in the Fulfillment Constraint Data 106 based on historical actions or special circumstances with respect to the requestor's departure from the company. It should be appreciated that any criteria may be used to determine that the Requestor 112 is subject to one or more response fulfillment constraints within the limits of guiding laws and regulations.
According to other embodiments, an example of Fulfillment Constraint Data 106 related to the identities of one or more Requestors 112 includes a customer history associated with the data subjects. The customer history may include one or more spending characteristics of the one or more Requestors 112, as well as any complaint history of the one or more Requestors 112. For example, the spending characteristics or other applicable relationship that a Requestor 112 has with the company may be a factor in determining whether the company fulfills the DSAR 102 at no cost even though not legally obligated to do so, fulfills the DSAR 102 for a processing fee, fulfills the DSAR 102 based upon some other condition being met, or denies the DSAR 102. In one embodiment, if a second or subsequent DSAR 102 is received from a Requestor 112 within a threshold period of time (e.g., within a year of the first DSAR 102), then the company may determine that it is worth expending the necessary resources to fulfill the DSAR 102, even though not legally required to do so, because the Requestor 112 is a good customer or holds a particular standing or status recognized by the company. For example, in making this determination, the DSAR Processing and Fulfillment Server 170 may determine if the one or more spending characteristics of the Requestor 112 includes an amount spent over a reference time period that exceeds a spending threshold. If so, then the DSAR Processing and Fulfillment Server 170 may fulfill the DSAR 102 without requesting one or more processing fees.
Similar to a purchase history, a complaint history may comprise valuable Fulfillment Constraint Data 106 utilized by the system to determine how or if to respond to the DSAR 102. For example, it may be beneficial to fulfill a second or subsequent DSAR 102 from a Requestor 112 that has never submitted a complaint or bad review of the organization during a substantial period of time even though that subsequent DSAR 102 does not legally require a response. Conversely, it may be determined that the benefits of fulfilling a subsequent DSAR 102 from a person with an extensive complaint history outweigh the costs of denying or charging a fee for the request. It should be appreciated that any quantity and type of weighting and prioritization of Fulfillment Constraint Data 106 may be utilized in a decision to fulfill, fulfill with limitations, or deny a DSAR 102. Regardless of the precise manner in which the Fulfillment Constraint Data 106 is used by the DSAR Processing and Fulfillment Server 170 in determining the action to take on the DSAR 102, the data used in the determination may be digitally attached to the identity of the Requestor 112 and stored in the Third Party Repository Server 104 (or One or More Databases 140 or One or More Third Party Servers 160) as Fulfillment Constraint Data 106.
An example of Fulfillment Constraint Data 106 related to one or more Sources 114 of malicious DSAR 102 submissions includes a particular domain and/or a particular IP address. If a requestor submits an excessive quantity of DSARs 102 using the same computer, then the DSAR Processing and Fulfillment Server 170 may store the domain or IP address associated with those electronic submission as Fulfillment Constraint Data 106 to identify that domain or IP address as a Source 114 of malicious DSAR 102 submissions. In doing so, future DSARs 102 originating from the domain or IP address stored as Fulfillment Constraint Data 106 will be identified by the DSAR Processing and Fulfillment Server 170 as being malicious or potentially malicious. According to one embodiment, one or more particular domains or IP addresses associated with a competitor of the organization are stored as Fulfillment Constraint Data 106 to identify that competitor's domain or IP address as a Source 114 of malicious DSAR 102 submissions. A subsequent search by the DSAR Processing and Fulfillment Server 170 for Fulfillment Constraint Data 106 associated with a DSAR 102 will result in a determination that the DSAR 102 originated from a competitor, which flags the submission as being potentially malicious.
Another example of Fulfillment Constraint Data 106 related to one or more Sources 114 of malicious DSAR 102 submissions includes a geographic location or region from which the DSAR 102 is submitted. For example, if the DSAR 102 originates from a country or specific geographic region commonly affiliated with terrorist or other organizations that may spam requests to disrupt the organization's operation and response to valid requests, then that country or geographic region may be stored as Fulfillment Constraint Data 106 that flags DSARs 102 originating from that country or geographic region as being malicious or potentially malicious.
Similarly, Fulfillment Constraint Data 106 may include identifications of political groups or organizations, protesting groups or organizations that commonly protest or object to the operations of the organization, religious groups or organizations, or any other group or organization that may have views, beliefs, or causes that are contrary to those of the organization. Any DSARs 102 submitted by a Requestor 112 or a Source 114 that may be affiliated with these groups or organizations may be flagged as being malicious or potentially malicious.
Handling of DSARs that are flagged or otherwise identified as being malicious or potentially malicious may be guided by company policy, applicable laws, and/or regulations. According to various embodiments, if the DSAR 102 is subject to one or more response fulfillment constraints, as determined from the presence of applicable Fulfillment Constraint Data 106 associated with the request, then the DSAR Processing and Fulfillment Server 170 acts on the DSAR 102 according to One or More Limitations 192. The One or More Limitations 192 may include a Fulfillment Action 180 or a Deny Action 190. The Fulfillment Action 180 includes fulfilling the DSAR 102 conditioned upon some requirement being met, such as payment of a processing fee. The Deny Action 190 includes denying or rejecting the DSAR 102. Accordingly, performing such actions can assist in the identification and/or handling of malicious DSARs and thus, assist in eliminating and/or limiting the wasteful use of computing resources in processing the malicious DSARs.
In particular embodiments, if the DSAR Processing and Fulfillment Server 170 acts on the DSAR 102 according to One or More Limitations 192, then a Notification 194 is provided to the requestor. According to these embodiments, the Notification 194 may include a reason for the One or More Limitations 192, such as the presence of one or more response fulfillment constraints. The Notification 194 may further provide the requestor of their right to communicate with a supervisory authority regarding the One or More Limitations 192, and inform the requestor of their right to a judicial remedy without delay. The Notification 194 may include any information mandated by applicable law or regulations, or desired according to company policy.
In addition to providing the Notification 194 to the requestor upon acting on the DSAR 102 according to One or More Limitations 192, the DSAR Processing and Fulfillment Server 170 according to particular embodiments may store or identify Supporting Documents 118 in the Third Party Repository Server 104. Judicial or other review actions taken by a supervisory authority after the denial of a DSAR 102, or fulfillment requiring a condition and/or requirement to be met (e.g., payment of a processing fee), may require documentation that identifies the applicable Fulfillment Constraint Data 106 and supports the associated response fulfillment constraints. In this situation, the Third Party Repository Server 104 provides a central storage location for the Supporting Documents 118. It should be appreciated that the Supporting Documents 118 may include links or locations to the electronic or physical documentation stored in locations outside of the Third Party Repository Server 104 (e.g., One or More Databases 140 or One or More Third Party Servers 160).
If the DSAR Processing and Fulfillment Server 170 does not find applicable Fulfillment Constraint Data 106, then the routine 5100 proceeds from operation 5106 to operation 5108, where the DSAR Processing and Fulfillment Server 170 takes a Fulfillment Action 180 and processes or fulfills the DSAR 102 and the routine 5100 ends. However, if at operation 5106, the DSAR Processing and Fulfillment Server 170 finds applicable Fulfillment Constraint Data 106, then the routine 5100 proceeds from operation 5106 to operation 5110, where the DSAR Processing and Fulfillment Server 170 provides a Notification 194 to the Requestor 112 and ensures Supporting Documents 118 are properly stored or indexed to support the One or More Limitations 192 imposed on the DSAR 102. In addition, in particular embodiments, the DSAR Processing and Fulfillment Server 170 prevents the DSAR 102 from being processed. For instance, the DSAR Processing and Fulfillment Server 170 prevents one or more data storage systems from executing processing operations or performing network communication for retrieving data responsive to the DSAR 102 from one or more data sources included in a private data network. At operation 5112, the DSAR Processing and Fulfillment Server 170 takes the appropriate action according to the One or More Limitations 192 and the routine 5100 ends. As discussed above, the One or More Limitations 192 may result in the DSAR 102 being fulfilled after one or more conditions and/or requirements have been met (e.g., such as payment of a processing fee), or a Deny Action 190.
Accordingly, in particular embodiments, the DSAR Processing and Fulfillment Server 170 may use authorization data in evaluating whether the one or more conditions and/or requirements have been met. Here, an authorization interface may be provided to the requestor that requests the authorization data from the requestor. For example, the authorization interface may ask the requestor to enter a username, password, an authorization code, and/or the like. In another example, the authorization interface may require the requestor to enter credit card information to pay a processing fee. The credit card information may then be processed to charge for the processing fee for processing the DSAR 102 and the authorization data may entail data confirming the payment of the fee. Upon the one or more conditions and/or requirements being met, the DSAR Processing and Fulfillment Server 170 may then override the One or More Limitations 192 (e.g., one or more processing constraints) to permit retrieval of the data responsive to the DSAR 102 from the one or more data sources included in the private data network.
Turning now to
Returning now to
Data Subject Access Request Fulfillment Cost Determination
In various embodiments, as may be understood in light of this disclosure, fulfilling a data subject access request may be particularly costly. In some embodiments, a company may store data regarding a particular data subject in multiple different locations for a plurality of different reasons as part of a plurality of different processing and other business activities. For example, a particular data subject may be both a customer and an employee of a particular company or organization. Accordingly, in some embodiments, fulfilling a data subject access request for a particular data subject may involve a plurality of different information technology (IT) professionals in a plurality of different departments of a particular company or organization. As such, it may be useful to determine a cost of a particular data subject access request (e.g., particularly because, in some cases, a data subject is entitled to a response to their data subject access request as a matter of right at no charge).
In particular embodiments, in response to receiving a data subject access request, the system may be configured to: (1) assign the request to at least one privacy team member; (2) identify one or more IT teams required to fulfill the request (e.g., one or more IT teams associated with one or more business units that may store Personal Data 108 related to the request); (3) delegate one or more subtasks of the request to each of the one or more IT teams; (4) receive one or more time logs from each individual involved in the processing and fulfillment of the data subject access request; (5) calculate an effective rate of each individual's time (e.g., based at least in part on the individual's salary, bonus, benefits, chair cost, etc.); (6) calculate an effective cost of fulfilling the data subject access request based at least in part on the one or more time logs and effective rate of each of the individual's time; and (7) apply an adjustment to the calculated effective cost that accounts for one or more external factors (e.g., overhead, etc.) in order to calculate a cost of fulfilling the data subject access request.
In particular embodiments, the system is configured to substantially automatically track an amount of time spent by each individual involved in the processing and fulfillment of the data subject access request. The system may, for example, automatically track an amount of time between each individual opening and closing a ticket assigned to them as part of their role in processing or fulfilling the data subject access request. In other embodiments, the system may determine the time spent based on an amount of time provided by each respective individual (e.g., the individual may track their own time and submit it to the system).
In various embodiments, the system is configured to measure a cost of each particular data subject access request received, and analyze one or more trends in costs of, for example: (1) data subject access requests over time; (2) related data subject access requests; (3) etc. For example, the system may be configured to track and analyze cost and time-to-process trends for one or more social groups, one or more political groups, one or more class action groups, etc. In particular, the system may be configured to identify a particular group from which the system receives particularly costly data subject access request (e.g., former and/or current employees, members of a particular social group, members of a particular political group, etc.).
In particular embodiments, the system may be configured to utilize data subject access request cost data when processing, assigning, and/or fulfilling future data subject access requests (e.g., from a particular identified group, individual, etc.). For example, the system may be configured to prioritize requests that are expected to be less costly and time-consuming (e.g., based on past cost data) over requests identified as being likely more expensive. Alternatively, the system may prioritize more costly and time-consuming requests over less costly ones in the interest of ensuring that the system is able to respond to each request in a reasonable amount of time (e.g., within a time required by law, such as a thirty-day period, or any other suitable time period). Moreover, the cost data associated with processing, assigning, and/or fulfilling data subject access requests may be a factor utilized by the DSAR Processing and Fulfillment Server 170 in determining whether to deny a DSAR 102 or request a processing fee prior to fulfilling a DSAR 102 after determining that the DSAR 102 is subject to one or more response fulfillment constraints, as discussed above.
Customer Satisfaction Integration with Data Subject Access Requests
In various embodiments, the system may be configured to collect customer satisfaction data, for example: (1) as part of a data subject access request submission form; (2) when providing one or more results of a data subject access request to the data subject; or (3) at any other suitable time. In various embodiments, the customer satisfaction data may be collected in the form of a suitable survey, free-form response questionnaire, or other suitable satisfaction data collection format (e.g., thumbs up vs. thumbs down, etc.).
In particular embodiments, the question depicted in
In various embodiments, the system may be configured to measure data related to any other suitable customer satisfaction method (e.g., in addition to NPS). By integrating a customer satisfaction survey with the data subject access request process, the system may increase a number of consumers that provide one or more responses to the customer satisfaction survey. In particular embodiments, the system is configured to require the requestor to respond to the customer satisfaction survey prior to submitting the data subject access request.
Exemplary Technical Platforms
As will be appreciated by one skilled in the relevant field, the present invention may be, for example, embodied as a computer system, a method, or a computer program product. Accordingly, various embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, particular embodiments may take the form of a computer program product stored on a computer-readable storage medium having computer-readable instructions (e.g., software) embodied in the storage medium. Various embodiments may take the form of web-implemented computer software. Any suitable computer-readable storage medium may be utilized including, for example, hard disks, compact disks, DVDs, optical storage devices, and/or magnetic storage devices.
Various embodiments are described below with reference to block diagrams and flowchart illustrations of methods, apparatuses (e.g., systems), and computer program products. It should be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, respectively, can be implemented by a computer executing computer program instructions. These computer program instructions may be loaded onto a general-purpose computer, special-purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus to create means for implementing the functions specified in the flowchart block or blocks.
These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner such that the instructions stored in the computer-readable memory produce an article of manufacture that is configured for implementing the function specified in the flowchart block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions that execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart block or blocks.
Accordingly, blocks of the block diagrams and flowchart illustrations support combinations of mechanisms for performing the specified functions, combinations of steps for performing the specified functions, and program instructions for performing the specified functions. It should also be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, can be implemented by special purpose hardware-based computer systems that perform the specified functions or steps, or combinations of special purpose hardware and other hardware executing appropriate computer instructions.
Example System Architecture
As may be understood from
The one or more computer networks 115 may include any of a variety of types of wired or wireless computer networks such as the Internet, a private intranet, a public switch telephone network (PSTN), or any other type of network. The communication link between The Intelligent Identity Scanning Server 130 and the One or More Third Party Servers 160 may be, for example, implemented via a Local Area Network (LAN) or via the Internet. In other embodiments, the One or More Databases 140 may be stored either fully or partially on any suitable server or combination of servers described herein.
In particular embodiments, the computer 200 may be connected (e.g., networked) to other computers in a LAN, an intranet, an extranet, and/or the Internet. As noted above, the computer 200 may operate in the capacity of a server or a client computer in a client-server network environment, or as a peer computer in a peer-to-peer (or distributed) network environment. The computer 200 may be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a server, a network router, a switch or bridge, or any other computer capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that computer. Further, while only a single computer is illustrated, the term “computer” shall also be taken to include any collection of computers that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
An exemplary computer 200 includes a processing device 202, a main memory 204 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), static memory 206 (e.g., flash memory, static random access memory (SRAM), etc.), and a data storage device 218, which communicate with each other via a bus 232.
The processing device 202 represents one or more general-purpose processing devices such as a microprocessor, a central processing unit, or the like. More particularly, the processing device 202 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or processor implementing other instruction sets, or processors implementing a combination of instruction sets. The processing device 202 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. The processing device 202 may be configured to execute processing logic 226 for performing various operations and steps discussed herein.
The computer 200 may further include a network interface device 208. The computer 200 also may include a video display unit 210 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device 212 (e.g., a keyboard), a cursor control device 214 (e.g., a mouse), and a signal generation device 216 (e.g., a speaker).
The data storage device 218 may include a non-transitory computer-accessible storage medium 230 (also known as a non-transitory computer-readable storage medium or a non-transitory computer-readable medium) on which is stored one or more sets of instructions (e.g., software instructions 222) embodying any one or more of the methodologies or functions described herein. The software instructions 222 may also reside, completely or at least partially, within main memory 204 and/or within processing device 202 during execution thereof by computer 200—main memory 204 and processing device 202 also constituting computer-accessible storage media. The software instructions 222 may further be transmitted or received over a network 115 via network interface device 208.
While the computer-accessible storage medium 230 is shown in an exemplary embodiment to be a single medium, the term “computer-accessible storage medium” should be understood to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-accessible storage medium” should also be understood to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the computer and that cause the computer to perform any one or more of the methodologies of the present invention. The term “computer-accessible storage medium” should accordingly be understood to include, but not be limited to, solid-state memories, optical and magnetic media, etc.
Systems for Managing Data Subject Access Requests
In various embodiments, the system may include a ticket management system and/or other systems for managing data subject access requests. Various embodiments of such systems are described below.
Overview
Ticket management systems, according to various embodiments, are adapted to receive data subject access requests (DSAR's) from particular data subjects, and to facilitate the timely processing of valid DSAR's by an appropriate respondent. In particular embodiments, the ticket management system receives DSAR's via one or more webforms that each may be accessed via an appropriate link on a respective web page. In other embodiments, the system may receive DSAR's through any other suitable mechanism, such as via a computer software application (e.g., a messaging application such as Slack, Twitter), or through entry by a representative who may receive the information, for example, via suitable paper forms or over the phone.
The ticket management system may include a webform creation tool that is adapted to allow a user to create customized webforms for receiving DSAR's from various different data subject types and for routing the requests to appropriate individuals for processing. The webform creation tool may, for example, allow the user to specify the language that the form will be displayed in, what particular information is to be requested for the data subject and/or provided by the data subject, who any DSAR's that are received via the webform will be routed to, etc. In particular embodiments, after the user completes their design of the webform, the webform creation tool generates code for the webform that may be cut and then pasted into a particular web page.
The system may be further adapted to facilitate processing of DSAR's that are received via the webforms, or any other suitable mechanism. For example, the ticket management system may be adapted to execute one or more of the following steps for each particular DSAR received via the webforms (or other suitable mechanism) described above: (1) before processing the DSAR, confirm that the DSAR request was actually submitted by the particular data subject of the DSAR (or, for example, by an individual authorized to make the DSAR request on the data subject's behalf, such as a parent, guardian, power-of-attorney holder, etc.)—any suitable method may be used to confirm the identity of the entity/individual submitting the DSAR—for example, if the system receives the DSAR via a third-party computer system, the system may validate authentication via API secret, or by requiring a copy of one or more particular legal documents (e.g., a particular contract between two particular entities)—the system may validate the identity of an individual by, for example, requiring the individual (e.g., data subject) to provide particular account credentials, by requiring the individual to provide particular out-of-wallet information, through biometric scanning of the individual (e.g., finger or retinal scan), or via any other suitable identity verification technique; (2) if the DSAR was not submitted by the particular data subject, deny the request; (3) if the DSAR was submitted by the particular data subject, advance the processing of the DSAR; (4) route the DSAR to the correct individual(s) or groups internally for handling; (5) facilitate the assignment of the DSAR to one or more other individuals for handling of one or more portions of the DSAR; and/or (6) facilitate the suspension of the data subject access request. In particular embodiments, the system may perform any one or more of the above steps automatically. The system then generates a receipt for the DSAR request that the user can use for a transactional record of their submitted request.
In particular embodiments, the ticket management system may be adapted to generate a graphical user interface (e.g., a DSAR request-processing dashboard) that is adapted to allow a user (e.g., a privacy officer of an organization that is receiving the DSAR) to monitor the progress of any the DSAR requests. The GUI interface may display, for each DSAR, for example, an indication of how much time is left (e.g., quantified in days and/or hours) before a legal and/or internal deadline to fulfill the request. The system may also display, for each DSAR, a respective user-selectable indicium that, when selected, may facilitate one or more of the following: (1) verification of the request; (2) assignment of the request to another individual; (3) requesting an extension to fulfill the request; (4) rejection of the request; or (5) suspension of the request.
As noted immediately above, and elsewhere in this application, in particular embodiments, any one or more of the above steps may be executed by the system automatically. As a particular example, the system may be adapted to automatically verify the identity of the DSAR requestor and then automatically fulfill the DSAR request by, for example, obtaining the requested information via a suitable data model and communicating the information to the requestor. As another particular example, the system may be configured to automatically route the DSAR to the correct individual for handling based at least in part on one or more pieces of information provided (e.g., in the webform).
Operation of Example Implementation
In other embodiments, the system is configured to enable a user to specify, when configuring a new webform, what individual at a particular organization (e.g., company) will be responsible for responding to requests made via the webform. The system may, for example, enable the user to define a specific default sub-organization (e.g., within the organization) responsible for responding to DSAR's submitted via the new webform. As such, the system may be configured to automatically route a new DSAR made via the new webform to the appropriate sub-organization for processing and fulfillment. In various embodiments, the system is configured to route one or more various aspects of the DSAR to one or more different sub-organizations within the organization.
In still other embodiments, the system is configured to enable a user generating webforms to assign multiple webforms to multiple different suborganizations within an organization. For example, an organization called ACME, Inc. may have a website for each of a plurality of different brands (e.g., sub-organizations) under which ACME sells products (e.g., UNICORN Brand T-shirts, GRIPP Brand Jeans, etc.). As may be understood in light of this disclosure, each website for each of the particular brands may include an associated webform for submitting DSAR's. Each respective webform may be configured to route a DSAR made via its associated brand website to a particular sub-organization within ACME for handling DSAR's related to the brand.
As noted above, after the user uses the webform construction tool to design a particular webform for use on a particular web page, the webform construction tool generates code (e.g., HTML code) that may be pasted into the particular web page to run the designed webform page.
As shown in
In various embodiments, the system includes a dashboard that may be used by various individuals within an organization (e.g., one or more privacy officers of an organization) to manage multiple DSAR requests. As discussed above, the dashboard may display DSAR's submitted, respectively, to a single organization, any of multiple different sub-organizations (divisions, departments, subsidiaries etc.) of a particular organization, and/or any of multiple independent organizations. For example, the dashboard may display DSAR's that were submitted from a parent organization and from the parent organization's U.S. and European subsidiaries. This may be advantageous, for example, because it may allow an organization to manage all DSAR requests of all of its sub-organizations centrally.
As shown in
In other embodiments, the input field may enable the respondent to provide one or more supporting reasons for a decision, by the respondent, to authenticate the request. The respondent may also upload one or more supporting documents (such as an attachment). The supporting documents or information may include, for example, one or more documents utilized in confirming the requestor's identity, etc.
In response to the respondent selecting the Submit button, the system changes the status of the request to “In Progress” and also changes the color of the request's status from orange to blue (or to any other suitable color)—see
As shown in
As shown in
As shown in
In particular embodiments, the system may include logic for automatically determining whether a requested extension complies with one or more applicable laws or internal policies and, in response, either automatically grant or reject the requested extension. For example, if the maximum allowable time for replying to a particular request is 90 days under the controlling laws and the respondent requests an extension that would result in the fulfillment of the request 91 or more days from the date that the request was submitted, the system may automatically reject the extension request. In various embodiments, the system may also communicate to the respondent (e.g., via a suitable electronic message or text display on a system user interface) an explanation as to why the extension request was denied, and/or a maximum amount of time (e.g., a maximum number of days) that the deadline may be extended under the applicable laws or policies. In various embodiments, if the system determines that the requested extension is permissible under the applicable laws and/or policies, the system may automatically grant the extension. In other embodiments, the system may be configured to automatically modify a length of the requested extension to conform with one or more applicable laws and/or policies.
As shown in
As shown in
As shown in
Additional Concepts
Automated Data Subject Verification
In various embodiments, before a data subject request can be processed, the data subject's identity needs to be verified. In various embodiments, the system provides a mechanism to automatically detect the type of authentication required for a particular data subject based on the type of Data Subject Access Request being made and automatically issues a request to the data subject to verify their identity against that form of identification. For example, a subject rights request might only require two types of authentication, but a deletion request may require four types of data to verify authentication. The system may automatically detect which is type of authentication is required based on the DSAR and send an appropriate request to the data subject to verify their identity.
Intelligent Prioritization of DSAR's
In various embodiments, the system may be adapted to prioritize the processing of DSAR's based on metadata about the data subject of the DSAR. For example, the system may be adapted for: (1) in response to receiving a DSAR, obtaining metadata regarding the data subject; (2) using the metadata to determine whether a priority of the DSAR should be adjusted based on the obtained metadata; and (3) in response to determining that the priority of the DSAR should be adjusted based on the obtained metadata, adjusting the priority of the DSAR.
Examples of metadata that may be used to determine whether to adjust the priority of a particular DSAR include: (1) the type of request, (2) the location from which the request is being made, (3) current sensitivities to world events, (4) a status of the requestor (e.g., especially loyal customer), or (5) any other suitable metadata.
In various embodiments, in response to the system determining that the priority of a particular DSAR should be elevated, the system may automatically adjust the deadline for responding to the DSAR. For example, the system may update the deadline in the system's memory and/or modify the “Days Left to Respond” field (See
In various embodiments, in response to the system determining that the priority of a particular DSAR should be lowered, the system may automatically adjust the deadline for responding to the DSAR by adding to the number of days left to respond to the request.
Automatic Deletion of Data Subject Records Based on Detected Systems
In particular embodiments, in response a data subject submitting a request to delete their Personal Data 108 from an organization's systems, the system may: (1) automatically determine where the data subject's Personal Data 108 is stored; and (2) in response to determining the location of the data (which may be on multiple computing systems), automatically facilitate the deletion of the data subject's Personal Data 108 from the various systems (e.g., by automatically assigning a plurality of tasks to delete data across multiple business systems to effectively delete the data subject's Personal Data 108 from the systems). In particular embodiments, the step of facilitating the deletion may comprise, for example: (1) overwriting the data in memory; (2) marking the data for overwrite; (2) marking the data as free (e.g., and deleting a directory entry associated with the data); and/or (3) any other suitable technique for deleting the Personal Data 108. In particular embodiments, as part of this process, the system uses an appropriate data model (see discussion above) to efficiently determine where all of the data subject's Personal Data 108 is stored.
Automatic Determination of Business Processes that Increase Chance of Deletion Requests
In various embodiments, the system is adapted to store, in memory, a log of DSAR actions. The system may also store, in memory, additional information regarding the data subjects of each of the requests. The system may use this information, for example, to determine which business processes are most commonly associated with a data subject submitting a request to have their personal information deleted from the organization's systems. The organization may then use this information to revise the identified business processes in an effort to reduce the number of deletion requests issued by data subjects associated with the business processes.
As a particular example, the system may analyze stored information to determine that a high number (e.g., 15%) of all participants in a company's loyalty program submit requests to have their personal information deleted from the company's systems. In response to making this determination, the system may issue an electronic alert to an appropriate individual (e.g., a privacy officer of the company), informing them of the high rate of members of the company's loyalty program issuing Personal Data 108 delete requests. This alert may prompt the individual to research the issue and try to resolve it.
Although embodiments above are described in reference to various privacy compliance monitoring systems, it should be understood that various aspects of the system described above may be applicable to other privacy-related systems, or to other types of systems, in general.
While this specification contains many specific embodiment details, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this specification in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems may generally be integrated together in a single software product or packaged into multiple software products.
Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for the purposes of limitation.
This application is a continuation-in-part of U.S. patent application Ser. No. 17/201,040, filed Mar. 15, 2021, which is a continuation of U.S. patent application Ser. No. 17/019,771, filed Sep. 14, 2020, now U.S. Pat. No. 10,949,567, issued Mar. 16, 2021, which is a continuation of U.S. patent application Ser. No. 16/786,196, filed Feb. 10, 2020, now U.S. Pat. No. 10,776,515, issued Sep. 15, 2020, which is a continuation of U.S. patent application Ser. No. 16/512,011, filed Jul. 15, 2019, now U.S. Pat. No. 10,558,821, issued Feb. 11, 2020, which is a continuation of U.S. patent application Ser. No. 16/226,290, filed Dec. 19, 2018, now U.S. Pat. No. 10,354,089, issued Jul. 16, 2019, which is a continuation of U.S. patent application Ser. No. 16/054,672, filed Aug. 3, 2018, now U.S. Pat. No. 10,169,609, issued Jan. 1, 2019, which claims priority from U.S. Provisional Patent Application Ser. No. 62/547,530, filed Aug. 18, 2017, and which is also a continuation-in-part of U.S. patent application Ser. No. 15/996,208, filed Jun. 1, 2018, now U.S. Pat. No. 10,181,051, issued Jan. 15, 2019, which claims priority from U.S. Provisional Patent Application Ser. No. 62/537,839, filed Jul. 27, 2017, and is also a continuation-in-part of U.S. patent application Ser. No. 15/853,674, filed Dec. 22, 2017, now U.S. Pat. No. 10,019,597, issued Jul. 10, 2018, which claims priority from U.S. Provisional Patent Application Ser. No. 62/541,613, filed Aug. 4, 2017, and is also a continuation-in-part of U.S. patent application Ser. No. 15/619,455, filed Jun. 10, 2017, now U.S. Pat. No. 9,851,966, issued Dec. 26, 2017, which is a continuation-in-part of U.S. patent application Ser. No. 15/254,901, filed Sep. 1, 2016, now U.S. Pat. No. 9,729,583, issued Aug. 8, 2017, which claims priority from: (1) U.S. Provisional Patent Application Ser. No. 62/360,123, filed Jul. 8, 2016; (2) U.S. Provisional Patent Application Ser. No. 62/353,802, filed Jun. 23, 2016; and (3) U.S. Provisional Patent Application Ser. No. 62/348,695, filed Jun. 10, 2016. The disclosures of all of the above patent applications are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4536866 | Jerome et al. | Aug 1985 | A |
4574350 | Starr | Mar 1986 | A |
5193162 | Bordsen et al. | Mar 1993 | A |
5276735 | Boebert et al. | Jan 1994 | A |
5329447 | Leedom, Jr. | Jul 1994 | A |
5404299 | Tsurubayashi et al. | Apr 1995 | A |
5535393 | Reeve et al. | Jul 1996 | A |
5560005 | Hoover et al. | Sep 1996 | A |
5668986 | Nilsen et al. | Sep 1997 | A |
5710917 | Musa et al. | Jan 1998 | A |
5761529 | Raji | Jun 1998 | A |
5764906 | Edelstein et al. | Jun 1998 | A |
5872973 | Mitchell et al. | Feb 1999 | A |
5913041 | Ramanathan et al. | Jun 1999 | A |
5913214 | Madnick et al. | Jun 1999 | A |
6016394 | Walker | Jan 2000 | A |
6122627 | Carey et al. | Sep 2000 | A |
6148297 | Swor et al. | Nov 2000 | A |
6148342 | Ho | Nov 2000 | A |
6240416 | Immon et al. | May 2001 | B1 |
6240422 | Atkins et al. | May 2001 | B1 |
6243816 | Fang et al. | Jun 2001 | B1 |
6253203 | Oflaherty et al. | Jun 2001 | B1 |
6263335 | Paik et al. | Jul 2001 | B1 |
6272631 | Thomlinson et al. | Aug 2001 | B1 |
6275824 | Oflaherty et al. | Aug 2001 | B1 |
6282548 | Burner et al. | Aug 2001 | B1 |
6330562 | Boden et al. | Dec 2001 | B1 |
6363488 | Ginter et al. | Mar 2002 | B1 |
6374237 | Reese | Apr 2002 | B1 |
6374252 | Althoff et al. | Apr 2002 | B1 |
6408336 | Schneider et al. | Jun 2002 | B1 |
6427230 | Goiffon et al. | Jul 2002 | B1 |
6442688 | Moses et al. | Aug 2002 | B1 |
6446120 | Dantressangle | Sep 2002 | B1 |
6463488 | San Juan | Oct 2002 | B1 |
6484149 | Jammes et al. | Nov 2002 | B1 |
6484180 | Lyons et al. | Nov 2002 | B1 |
6516314 | Birkler et al. | Feb 2003 | B1 |
6516337 | Tripp et al. | Feb 2003 | B1 |
6519571 | Guheen et al. | Feb 2003 | B1 |
6574631 | Subramanian et al. | Jun 2003 | B1 |
6591272 | Williams | Jul 2003 | B1 |
6601233 | Underwood | Jul 2003 | B1 |
6606744 | Mikurak | Aug 2003 | B1 |
6611812 | Hurtado et al. | Aug 2003 | B2 |
6625602 | Meredith et al. | Sep 2003 | B1 |
6629081 | Cornelius et al. | Sep 2003 | B1 |
6633878 | Underwood | Oct 2003 | B1 |
6662192 | Rebane | Dec 2003 | B1 |
6662357 | Bowman-Amuah | Dec 2003 | B1 |
6697824 | Bowman-Amuah | Feb 2004 | B1 |
6699042 | Smith et al. | Mar 2004 | B2 |
6701314 | Conover et al. | Mar 2004 | B1 |
6721713 | Guheen et al. | Apr 2004 | B1 |
6725200 | Rost | Apr 2004 | B1 |
6732109 | Lindberg et al. | May 2004 | B2 |
6754665 | Futagami et al. | Jun 2004 | B1 |
6755344 | Mollett et al. | Jun 2004 | B1 |
6757685 | Raffaele et al. | Jun 2004 | B2 |
6757888 | Knutson et al. | Jun 2004 | B1 |
6816944 | Peng | Nov 2004 | B2 |
6826693 | Koshida et al. | Nov 2004 | B1 |
6850252 | Hoffberg | Feb 2005 | B1 |
6886101 | Glazer et al. | Apr 2005 | B2 |
6901346 | Tracy et al. | May 2005 | B2 |
6904417 | Clayton et al. | Jun 2005 | B2 |
6909897 | Kikuchi | Jun 2005 | B2 |
6925443 | Baggei, Jr. et al. | Aug 2005 | B1 |
6938041 | Brandow et al. | Aug 2005 | B1 |
6956845 | Baker et al. | Oct 2005 | B2 |
6978270 | Carty et al. | Dec 2005 | B1 |
6980927 | Tracy et al. | Dec 2005 | B2 |
6980987 | Kaminer | Dec 2005 | B2 |
6983221 | Tracy et al. | Jan 2006 | B2 |
6985887 | Sunstein et al. | Jan 2006 | B1 |
6990454 | McIntosh | Jan 2006 | B2 |
6993448 | Tracy et al. | Jan 2006 | B2 |
6993495 | Smith, Jr. et al. | Jan 2006 | B2 |
6996807 | Vardi et al. | Feb 2006 | B1 |
7003560 | Mullen et al. | Feb 2006 | B1 |
7003662 | Genty et al. | Feb 2006 | B2 |
7013290 | Ananian | Mar 2006 | B2 |
7017105 | Flanagin et al. | Mar 2006 | B2 |
7023979 | Wu et al. | Apr 2006 | B1 |
7039594 | Gersting | May 2006 | B1 |
7039654 | Eder | May 2006 | B1 |
7047517 | Brown et al. | May 2006 | B1 |
7051036 | Rosnow et al. | May 2006 | B2 |
7051038 | Yeh et al. | May 2006 | B1 |
7058970 | Shaw | Jun 2006 | B2 |
7069427 | Adler et al. | Jun 2006 | B2 |
7076558 | Dunn | Jul 2006 | B1 |
7093200 | Schreiber et al. | Aug 2006 | B2 |
7095854 | Ginter et al. | Aug 2006 | B1 |
7100195 | Underwood | Aug 2006 | B1 |
7120800 | Ginter et al. | Oct 2006 | B2 |
7124101 | Mikurak | Oct 2006 | B1 |
7124107 | Pishevar et al. | Oct 2006 | B1 |
7127705 | Christfort et al. | Oct 2006 | B2 |
7127741 | Bandini et al. | Oct 2006 | B2 |
7133845 | Ginter et al. | Nov 2006 | B1 |
7139999 | Bowman-Amuah | Nov 2006 | B2 |
7143091 | Charnock et al. | Nov 2006 | B2 |
7149698 | Guheen et al. | Dec 2006 | B2 |
7165041 | Guheen et al. | Jan 2007 | B1 |
7167842 | Josephson, II et al. | Jan 2007 | B1 |
7167844 | Leong et al. | Jan 2007 | B1 |
7171379 | Menninger et al. | Jan 2007 | B2 |
7181438 | Szabo | Feb 2007 | B1 |
7203929 | Vinodkrishnan et al. | Apr 2007 | B1 |
7213233 | Vinodkrishnan et al. | May 2007 | B1 |
7216340 | Vinodkrishnan et al. | May 2007 | B1 |
7219066 | Parks et al. | May 2007 | B2 |
7223234 | Stupp et al. | May 2007 | B2 |
7225460 | Barzilai et al. | May 2007 | B2 |
7234065 | Breslin | Jun 2007 | B2 |
7247625 | Zhang et al. | Jul 2007 | B2 |
7251624 | Lee et al. | Jul 2007 | B1 |
7260830 | Sugimoto | Aug 2007 | B2 |
7266566 | Kennaley et al. | Sep 2007 | B1 |
7272818 | Ishimitsu et al. | Sep 2007 | B2 |
7275063 | Horn | Sep 2007 | B2 |
7281020 | Fine | Oct 2007 | B2 |
7284232 | Bates et al. | Oct 2007 | B1 |
7284271 | Lucovsky et al. | Oct 2007 | B2 |
7287280 | Young | Oct 2007 | B2 |
7290275 | Baudoin et al. | Oct 2007 | B2 |
7293119 | Beale | Nov 2007 | B2 |
7299299 | Hollenbeck et al. | Nov 2007 | B2 |
7302569 | Betz et al. | Nov 2007 | B2 |
7313575 | Carr et al. | Dec 2007 | B2 |
7313699 | Koga | Dec 2007 | B2 |
7313825 | Redlich et al. | Dec 2007 | B2 |
7315826 | Guheen et al. | Jan 2008 | B1 |
7315849 | Bakalash et al. | Jan 2008 | B2 |
7322047 | Redlich et al. | Jan 2008 | B2 |
7330850 | Seibel et al. | Feb 2008 | B1 |
7340447 | Ghatare | Mar 2008 | B2 |
7340776 | Zobel et al. | Mar 2008 | B2 |
7343434 | Kapoor et al. | Mar 2008 | B2 |
7346518 | Frank et al. | Mar 2008 | B1 |
7353204 | Liu | Apr 2008 | B2 |
7356559 | Jacobs et al. | Apr 2008 | B1 |
7367014 | Griffin | Apr 2008 | B2 |
7370025 | Pandit | May 2008 | B1 |
7376835 | Olkin et al. | May 2008 | B2 |
7380120 | Garcia | May 2008 | B1 |
7382903 | Ray | Jun 2008 | B2 |
7383570 | Pinkas et al. | Jun 2008 | B2 |
7391854 | Salonen et al. | Jun 2008 | B2 |
7398393 | Mont et al. | Jul 2008 | B2 |
7401235 | Mowers et al. | Jul 2008 | B2 |
7403942 | Bayliss | Jul 2008 | B1 |
7409354 | Putnam et al. | Aug 2008 | B2 |
7412402 | Cooper | Aug 2008 | B2 |
7424680 | Carpenter | Sep 2008 | B2 |
7428546 | Nori et al. | Sep 2008 | B2 |
7430585 | Sibert | Sep 2008 | B2 |
7454457 | Lowery et al. | Nov 2008 | B1 |
7454508 | Mathew et al. | Nov 2008 | B2 |
7478157 | Bohrer et al. | Jan 2009 | B2 |
7480755 | Herrell et al. | Jan 2009 | B2 |
7487170 | Stevens | Feb 2009 | B2 |
7493282 | Manly et al. | Feb 2009 | B2 |
7512987 | Williams | Mar 2009 | B2 |
7516882 | Cucinotta | Apr 2009 | B2 |
7523053 | Pudhukottai et al. | Apr 2009 | B2 |
7529836 | Bolen | May 2009 | B1 |
7548968 | Bura et al. | Jun 2009 | B1 |
7552480 | Voss | Jun 2009 | B1 |
7562339 | Racca et al. | Jul 2009 | B2 |
7565685 | Ross et al. | Jul 2009 | B2 |
7567541 | Karimi et al. | Jul 2009 | B2 |
7584505 | Mondri et al. | Sep 2009 | B2 |
7584508 | Kashchenko et al. | Sep 2009 | B1 |
7587749 | Leser et al. | Sep 2009 | B2 |
7590705 | Mathew et al. | Sep 2009 | B2 |
7590972 | Axelrod et al. | Sep 2009 | B2 |
7603356 | Schran et al. | Oct 2009 | B2 |
7606783 | Carter | Oct 2009 | B1 |
7606790 | Levy | Oct 2009 | B2 |
7607120 | Sanyal et al. | Oct 2009 | B2 |
7613700 | Lobo et al. | Nov 2009 | B1 |
7617136 | Lessing et al. | Nov 2009 | B1 |
7617167 | Griffis et al. | Nov 2009 | B2 |
7620644 | Cote et al. | Nov 2009 | B2 |
7627666 | Degiulio et al. | Dec 2009 | B1 |
7630874 | Fables et al. | Dec 2009 | B2 |
7630998 | Zhou et al. | Dec 2009 | B2 |
7636742 | Olavarrieta et al. | Dec 2009 | B1 |
7640322 | Wendkos et al. | Dec 2009 | B2 |
7650497 | Thornton et al. | Jan 2010 | B2 |
7653592 | Flaxman et al. | Jan 2010 | B1 |
7657476 | Barney | Feb 2010 | B2 |
7657694 | Mansell et al. | Feb 2010 | B2 |
7665073 | Meijer et al. | Feb 2010 | B2 |
7665125 | Heard et al. | Feb 2010 | B2 |
7668947 | Hutchinson et al. | Feb 2010 | B2 |
7673282 | Amaru et al. | Mar 2010 | B2 |
7676034 | Wu et al. | Mar 2010 | B1 |
7681034 | Lee et al. | Mar 2010 | B1 |
7681140 | Ebert | Mar 2010 | B2 |
7685561 | Deem et al. | Mar 2010 | B2 |
7685577 | Pace et al. | Mar 2010 | B2 |
7693593 | Ishibashi et al. | Apr 2010 | B2 |
7698398 | Lai | Apr 2010 | B1 |
7702639 | Stanley et al. | Apr 2010 | B2 |
7707224 | Chastagnol et al. | Apr 2010 | B2 |
7712029 | Ferreira et al. | May 2010 | B2 |
7716242 | Pae et al. | May 2010 | B2 |
7725474 | Tamai et al. | May 2010 | B2 |
7725875 | Waldrep | May 2010 | B2 |
7729940 | Harvey et al. | Jun 2010 | B2 |
7730142 | Levasseur et al. | Jun 2010 | B2 |
7752124 | Green et al. | Jul 2010 | B2 |
7756826 | Bots et al. | Jul 2010 | B2 |
7756987 | Wang et al. | Jul 2010 | B2 |
7761586 | Olenick et al. | Jul 2010 | B2 |
7774745 | Fildebrandt et al. | Aug 2010 | B2 |
7788212 | Beckmann et al. | Aug 2010 | B2 |
7788222 | Shah et al. | Aug 2010 | B2 |
7788632 | Kuester et al. | Aug 2010 | B2 |
7788726 | Teixeira | Aug 2010 | B2 |
7801758 | Gracie et al. | Sep 2010 | B2 |
7801826 | Labrou et al. | Sep 2010 | B2 |
7801912 | Ransil et al. | Sep 2010 | B2 |
7802305 | Leeds | Sep 2010 | B1 |
7805349 | Yu et al. | Sep 2010 | B2 |
7805451 | Hosokawa | Sep 2010 | B2 |
7813947 | Deangelis et al. | Oct 2010 | B2 |
7822620 | Dixon et al. | Oct 2010 | B2 |
7827523 | Ahmed et al. | Nov 2010 | B2 |
7836078 | Dettinger et al. | Nov 2010 | B2 |
7844640 | Bender et al. | Nov 2010 | B2 |
7849143 | Vuong | Dec 2010 | B2 |
7853468 | Callahan et al. | Dec 2010 | B2 |
7853470 | Sonnleithner et al. | Dec 2010 | B2 |
7853925 | Kemmler | Dec 2010 | B2 |
7860816 | Fokoue-Nkoutche et al. | Dec 2010 | B2 |
7870540 | Zare et al. | Jan 2011 | B2 |
7870608 | Shraim et al. | Jan 2011 | B2 |
7873541 | Klar et al. | Jan 2011 | B1 |
7877327 | Gwiazda et al. | Jan 2011 | B2 |
7877812 | Koved et al. | Jan 2011 | B2 |
7885841 | King | Feb 2011 | B2 |
7890461 | Oeda et al. | Feb 2011 | B2 |
7895260 | Archer et al. | Feb 2011 | B2 |
7904478 | Yu et al. | Mar 2011 | B2 |
7904487 | Ghatare | Mar 2011 | B2 |
7917888 | Chong et al. | Mar 2011 | B2 |
7917963 | Goyal et al. | Mar 2011 | B2 |
7921152 | Ashley et al. | Apr 2011 | B2 |
7930197 | Ozzie et al. | Apr 2011 | B2 |
7930753 | Mellinger et al. | Apr 2011 | B2 |
7953725 | Burris et al. | May 2011 | B2 |
7954150 | Croft et al. | May 2011 | B2 |
7958087 | Blumenau | Jun 2011 | B2 |
7958494 | Chaar et al. | Jun 2011 | B2 |
7962900 | Barraclough et al. | Jun 2011 | B2 |
7966310 | Sullivan et al. | Jun 2011 | B2 |
7966599 | Malasky et al. | Jun 2011 | B1 |
7966663 | Strickland et al. | Jun 2011 | B2 |
7974992 | Fastabend et al. | Jul 2011 | B2 |
7975000 | Dixon et al. | Jul 2011 | B2 |
7991559 | Dzekunov et al. | Aug 2011 | B2 |
7991747 | Upadhyay et al. | Aug 2011 | B1 |
7996372 | Rubel, Jr. | Aug 2011 | B2 |
8005891 | Knowles et al. | Aug 2011 | B2 |
8010612 | Costea et al. | Aug 2011 | B2 |
8010720 | Iwaoka et al. | Aug 2011 | B2 |
8019881 | Sandhu et al. | Sep 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8024384 | Prabhakar et al. | Sep 2011 | B2 |
8032721 | Murai | Oct 2011 | B2 |
8036374 | Noble, Jr. | Oct 2011 | B2 |
8037409 | Jacob et al. | Oct 2011 | B2 |
8041749 | Beck | Oct 2011 | B2 |
8041913 | Wang | Oct 2011 | B2 |
8069161 | Bugir et al. | Nov 2011 | B2 |
8069471 | Boren | Nov 2011 | B2 |
8082539 | Schelkogonov | Dec 2011 | B1 |
8090754 | Schmidt et al. | Jan 2012 | B2 |
8095923 | Harvey et al. | Jan 2012 | B2 |
8099709 | Baikov et al. | Jan 2012 | B2 |
8099765 | Parkinson | Jan 2012 | B2 |
8103962 | Embley et al. | Jan 2012 | B2 |
8117441 | Kurien et al. | Feb 2012 | B2 |
8135815 | Mayer | Mar 2012 | B2 |
8146054 | Baker et al. | Mar 2012 | B2 |
8146074 | Ito et al. | Mar 2012 | B2 |
8150717 | Whitmore | Apr 2012 | B2 |
8156105 | Altounian et al. | Apr 2012 | B2 |
8156158 | Rolls et al. | Apr 2012 | B2 |
8156159 | Ebrahimi et al. | Apr 2012 | B2 |
8166406 | Goldfeder et al. | Apr 2012 | B1 |
8176061 | Swanbeck et al. | May 2012 | B2 |
8176177 | Sussman et al. | May 2012 | B2 |
8176334 | Vainstein | May 2012 | B2 |
8176470 | Klumpp et al. | May 2012 | B2 |
8180759 | Hamzy | May 2012 | B2 |
8181151 | Sedukhin et al. | May 2012 | B2 |
8185409 | Putnam et al. | May 2012 | B2 |
8196176 | Berteau et al. | Jun 2012 | B2 |
8205093 | Argott | Jun 2012 | B2 |
8205140 | Hafeez et al. | Jun 2012 | B2 |
8214362 | Djabarov | Jul 2012 | B1 |
8214803 | Horii et al. | Jul 2012 | B2 |
8234377 | Cohn | Jul 2012 | B2 |
8239244 | Ginsberg et al. | Aug 2012 | B2 |
8250051 | Bugir et al. | Aug 2012 | B2 |
8255468 | Vitaldevara et al. | Aug 2012 | B2 |
8260262 | Ben Ayed | Sep 2012 | B2 |
8261362 | Goodwin et al. | Sep 2012 | B2 |
8266231 | Golovin et al. | Sep 2012 | B1 |
8275632 | Awaraji et al. | Sep 2012 | B2 |
8275793 | Ahmad et al. | Sep 2012 | B2 |
8286239 | Sutton | Oct 2012 | B1 |
8312549 | Goldberg et al. | Nov 2012 | B2 |
8316237 | Felsher et al. | Nov 2012 | B1 |
8332908 | Hatakeyama et al. | Dec 2012 | B2 |
8340999 | Kumaran et al. | Dec 2012 | B2 |
8341405 | Meijer et al. | Dec 2012 | B2 |
8346929 | Lai | Jan 2013 | B1 |
8364713 | Pollard | Jan 2013 | B2 |
8370224 | Grewal | Feb 2013 | B2 |
8370794 | Moosmann et al. | Feb 2013 | B2 |
8380630 | Felsher | Feb 2013 | B2 |
8380743 | Converting et al. | Feb 2013 | B2 |
8381180 | Rostoker | Feb 2013 | B2 |
8381297 | Touboul | Feb 2013 | B2 |
8386314 | Kirkby et al. | Feb 2013 | B2 |
8392982 | Harris et al. | Mar 2013 | B2 |
8418226 | Gardner | Apr 2013 | B2 |
8423954 | Ronen et al. | Apr 2013 | B2 |
8429179 | Mirhaji | Apr 2013 | B1 |
8429597 | Prigge | Apr 2013 | B2 |
8429630 | Nickolov et al. | Apr 2013 | B2 |
8429758 | Chen et al. | Apr 2013 | B2 |
8438644 | Watters et al. | May 2013 | B2 |
8463247 | Misiag | Jun 2013 | B2 |
8464311 | Ashley et al. | Jun 2013 | B2 |
8468244 | Redlich et al. | Jun 2013 | B2 |
8473324 | Alvarez et al. | Jun 2013 | B2 |
8474012 | Ahmed et al. | Jun 2013 | B2 |
8494894 | Jaster et al. | Jul 2013 | B2 |
8504481 | Motahari et al. | Aug 2013 | B2 |
8510199 | Erlanger | Aug 2013 | B1 |
8515988 | Jones et al. | Aug 2013 | B2 |
8516076 | Thomas | Aug 2013 | B2 |
8527337 | Lim et al. | Sep 2013 | B1 |
8533746 | Nolan et al. | Sep 2013 | B2 |
8533844 | Mahaffey et al. | Sep 2013 | B2 |
8538817 | Wilson | Sep 2013 | B2 |
8539359 | Rapaport et al. | Sep 2013 | B2 |
8539437 | Finlayson et al. | Sep 2013 | B2 |
8560645 | Linden et al. | Oct 2013 | B2 |
8560841 | Chin et al. | Oct 2013 | B2 |
8560956 | Curtis et al. | Oct 2013 | B2 |
8561100 | Hu et al. | Oct 2013 | B2 |
8561153 | Grason et al. | Oct 2013 | B2 |
8565729 | Moseler et al. | Oct 2013 | B2 |
8566726 | Dixon et al. | Oct 2013 | B2 |
8566938 | Prakash et al. | Oct 2013 | B1 |
8571909 | Miller et al. | Oct 2013 | B2 |
8572717 | Narayanaswamy | Oct 2013 | B2 |
8578036 | Holfelder et al. | Nov 2013 | B1 |
8578166 | De Monseignat et al. | Nov 2013 | B2 |
8578481 | Rowley | Nov 2013 | B2 |
8578501 | Ogilvie | Nov 2013 | B1 |
8583694 | Siegel et al. | Nov 2013 | B2 |
8583766 | Dixon et al. | Nov 2013 | B2 |
8589183 | Awaraji et al. | Nov 2013 | B2 |
8601467 | Hofhansl et al. | Dec 2013 | B2 |
8601591 | Krishnamurthy et al. | Dec 2013 | B2 |
8606746 | Yeap et al. | Dec 2013 | B2 |
8612420 | Sun et al. | Dec 2013 | B2 |
8612993 | Grant et al. | Dec 2013 | B2 |
8615549 | Knowles et al. | Dec 2013 | B2 |
8615731 | Doshi | Dec 2013 | B2 |
8620952 | Bennett et al. | Dec 2013 | B2 |
8621637 | Al-Harbi et al. | Dec 2013 | B2 |
8626671 | Federgreen | Jan 2014 | B2 |
8627114 | Resch et al. | Jan 2014 | B2 |
8630961 | Beilby et al. | Jan 2014 | B2 |
8631048 | Davis et al. | Jan 2014 | B1 |
8640110 | Kopp et al. | Jan 2014 | B2 |
8646072 | Savant | Feb 2014 | B1 |
8650399 | Le Bihan et al. | Feb 2014 | B2 |
8655939 | Redlich et al. | Feb 2014 | B2 |
8656265 | Paulin et al. | Feb 2014 | B1 |
8656456 | Maxson et al. | Feb 2014 | B2 |
8661036 | Turski et al. | Feb 2014 | B2 |
8667074 | Farkas | Mar 2014 | B1 |
8667487 | Boodman et al. | Mar 2014 | B1 |
8677472 | Dotan et al. | Mar 2014 | B1 |
8681984 | Lee et al. | Mar 2014 | B2 |
8682698 | Cashman et al. | Mar 2014 | B2 |
8683502 | Shkedi et al. | Mar 2014 | B2 |
8688601 | Jaiswal | Apr 2014 | B2 |
8689292 | Williams et al. | Apr 2014 | B2 |
8693689 | Belenkiy et al. | Apr 2014 | B2 |
8700524 | Williams et al. | Apr 2014 | B2 |
8700699 | Shen et al. | Apr 2014 | B2 |
8706742 | Ravid et al. | Apr 2014 | B1 |
8707451 | Ture et al. | Apr 2014 | B2 |
8712813 | King | Apr 2014 | B2 |
8713098 | Adya et al. | Apr 2014 | B1 |
8713638 | Hu et al. | Apr 2014 | B2 |
8719366 | Mathew et al. | May 2014 | B2 |
8732839 | Hohl | May 2014 | B2 |
8744894 | Christiansen et al. | Jun 2014 | B2 |
8751285 | Deb et al. | Jun 2014 | B2 |
8762406 | Ho et al. | Jun 2014 | B2 |
8762413 | Graham, Jr. et al. | Jun 2014 | B2 |
8763071 | Sinha et al. | Jun 2014 | B2 |
8763082 | Huber et al. | Jun 2014 | B2 |
8763131 | Archer et al. | Jun 2014 | B2 |
8767947 | Ristock et al. | Jul 2014 | B1 |
8769242 | Tkac et al. | Jul 2014 | B2 |
8769412 | Gill et al. | Jul 2014 | B2 |
8769671 | Shraim et al. | Jul 2014 | B2 |
8776241 | Zaitsev | Jul 2014 | B2 |
8788935 | Hirsch et al. | Jul 2014 | B1 |
8793614 | Wilson et al. | Jul 2014 | B2 |
8793650 | Hilerio et al. | Jul 2014 | B2 |
8793781 | Grossi et al. | Jul 2014 | B2 |
8793809 | Falkenburg et al. | Jul 2014 | B2 |
8799984 | Ahn | Aug 2014 | B2 |
8805707 | Schumann, Jr. et al. | Aug 2014 | B2 |
8805806 | Amarendran et al. | Aug 2014 | B2 |
8805925 | Price et al. | Aug 2014 | B2 |
8812342 | Barcelo et al. | Aug 2014 | B2 |
8812752 | Shih et al. | Aug 2014 | B1 |
8812766 | Kranendonk et al. | Aug 2014 | B2 |
8813028 | Farooqi | Aug 2014 | B2 |
8813214 | McNair et al. | Aug 2014 | B1 |
8819253 | Simeloff et al. | Aug 2014 | B2 |
8819617 | Koenig et al. | Aug 2014 | B1 |
8819800 | Gao et al. | Aug 2014 | B2 |
8826446 | Liu | Sep 2014 | B1 |
8832649 | Bishop et al. | Sep 2014 | B2 |
8832854 | Staddon et al. | Sep 2014 | B1 |
8839232 | Taylor et al. | Sep 2014 | B2 |
8843487 | McGraw et al. | Sep 2014 | B2 |
8843745 | Roberts, Jr. | Sep 2014 | B2 |
8849757 | Kruglick | Sep 2014 | B2 |
8856534 | Khosravi et al. | Oct 2014 | B2 |
8856936 | Datta Ray et al. | Oct 2014 | B2 |
8862507 | Sandhu et al. | Oct 2014 | B2 |
8863261 | Yang | Oct 2014 | B2 |
8875232 | Blom et al. | Oct 2014 | B2 |
8893078 | Schaude et al. | Nov 2014 | B2 |
8893286 | Oliver | Nov 2014 | B1 |
8893297 | Eversoll et al. | Nov 2014 | B2 |
8904494 | Kindler et al. | Dec 2014 | B2 |
8914263 | Shimada et al. | Dec 2014 | B2 |
8914299 | Pesci-Anderson et al. | Dec 2014 | B2 |
8914342 | Kalaboukis et al. | Dec 2014 | B2 |
8914902 | Moritz et al. | Dec 2014 | B2 |
8918306 | Cashman et al. | Dec 2014 | B2 |
8918392 | Brooker et al. | Dec 2014 | B1 |
8918632 | Sartor | Dec 2014 | B1 |
8930896 | Wiggins | Jan 2015 | B1 |
8930897 | Nassar | Jan 2015 | B2 |
8935198 | Phillips et al. | Jan 2015 | B1 |
8935266 | Wu | Jan 2015 | B2 |
8935342 | Patel | Jan 2015 | B2 |
8935804 | Clark et al. | Jan 2015 | B1 |
8938221 | Brazier et al. | Jan 2015 | B2 |
8943076 | Stewart et al. | Jan 2015 | B2 |
8943548 | Drokov et al. | Jan 2015 | B2 |
8949137 | Crapo et al. | Feb 2015 | B2 |
8955038 | Nicodemus et al. | Feb 2015 | B2 |
8959568 | Hudis et al. | Feb 2015 | B2 |
8959584 | Piliouras | Feb 2015 | B2 |
8966575 | McQuay et al. | Feb 2015 | B2 |
8966597 | Saylor et al. | Feb 2015 | B1 |
8973108 | Roth et al. | Mar 2015 | B1 |
8977234 | Chava | Mar 2015 | B2 |
8977643 | Schindlauer et al. | Mar 2015 | B2 |
8978158 | Rajkumar et al. | Mar 2015 | B2 |
8983972 | Kriebel et al. | Mar 2015 | B2 |
8984031 | Todd | Mar 2015 | B1 |
8990933 | Magdalin | Mar 2015 | B1 |
8996417 | Channakeshava | Mar 2015 | B1 |
8996480 | Agarwala et al. | Mar 2015 | B2 |
8997213 | Papakipos et al. | Mar 2015 | B2 |
9003295 | Baschy | Apr 2015 | B2 |
9003552 | Goodwin et al. | Apr 2015 | B2 |
9009851 | Droste et al. | Apr 2015 | B2 |
9014661 | Decharms | Apr 2015 | B2 |
9015796 | Fujioka | Apr 2015 | B1 |
9021469 | Hilerio et al. | Apr 2015 | B2 |
9026526 | Bau et al. | May 2015 | B1 |
9030987 | Bianchetti et al. | May 2015 | B2 |
9032067 | Prasad et al. | May 2015 | B2 |
9043217 | Cashman et al. | May 2015 | B2 |
9043480 | Barton et al. | May 2015 | B2 |
9047463 | Porras | Jun 2015 | B2 |
9047582 | Hutchinson et al. | Jun 2015 | B2 |
9047583 | Patton et al. | Jun 2015 | B2 |
9047639 | Ouintiliani et al. | Jun 2015 | B1 |
9049244 | Prince et al. | Jun 2015 | B2 |
9049314 | Pugh et al. | Jun 2015 | B2 |
9055071 | Gates et al. | Jun 2015 | B1 |
9058590 | Criddle et al. | Jun 2015 | B2 |
9064033 | Jin et al. | Jun 2015 | B2 |
9069940 | Hars | Jun 2015 | B2 |
9076231 | Hill et al. | Jul 2015 | B1 |
9077736 | Werth et al. | Jul 2015 | B2 |
9081952 | Sagi et al. | Jul 2015 | B2 |
9087090 | Cormier et al. | Jul 2015 | B1 |
9092478 | Vaitheeswaran et al. | Jul 2015 | B2 |
9092796 | Eversoll et al. | Jul 2015 | B2 |
9094434 | Williams et al. | Jul 2015 | B2 |
9098515 | Richter et al. | Aug 2015 | B2 |
9100778 | Stogaitis et al. | Aug 2015 | B2 |
9106691 | Burger et al. | Aug 2015 | B1 |
9106710 | Feimster | Aug 2015 | B1 |
9110918 | Rajaa et al. | Aug 2015 | B1 |
9111105 | Barton et al. | Aug 2015 | B2 |
9111295 | Tietzen et al. | Aug 2015 | B2 |
9123339 | Shaw et al. | Sep 2015 | B1 |
9129311 | Schoen et al. | Sep 2015 | B2 |
9135261 | Maunder et al. | Sep 2015 | B2 |
9135444 | Carter et al. | Sep 2015 | B2 |
9141823 | Dawson | Sep 2015 | B2 |
9141911 | Zhao et al. | Sep 2015 | B2 |
9152818 | Hathaway et al. | Oct 2015 | B1 |
9152820 | Pauley, Jr. et al. | Oct 2015 | B1 |
9154514 | Prakash | Oct 2015 | B1 |
9154556 | Dotan et al. | Oct 2015 | B1 |
9158655 | Wadhwani et al. | Oct 2015 | B2 |
9165036 | Mehra | Oct 2015 | B2 |
9170996 | Lovric et al. | Oct 2015 | B2 |
9172706 | Krishnamurthy et al. | Oct 2015 | B2 |
9177293 | Gagnon et al. | Nov 2015 | B1 |
9178901 | Xue et al. | Nov 2015 | B2 |
9183100 | Gventer et al. | Nov 2015 | B2 |
9189642 | Perlman | Nov 2015 | B2 |
9201572 | Lyon et al. | Dec 2015 | B2 |
9201770 | Duerk | Dec 2015 | B1 |
9202026 | Reeves | Dec 2015 | B1 |
9202085 | Mawdsley et al. | Dec 2015 | B2 |
9215076 | Roth et al. | Dec 2015 | B1 |
9215252 | Smith et al. | Dec 2015 | B2 |
9218596 | Ronca et al. | Dec 2015 | B2 |
9224009 | Liu et al. | Dec 2015 | B1 |
9230036 | Davis | Jan 2016 | B2 |
9231935 | Bridge et al. | Jan 2016 | B1 |
9232040 | Barash et al. | Jan 2016 | B2 |
9235476 | McHugh et al. | Jan 2016 | B2 |
9240987 | Barrett-Bowen et al. | Jan 2016 | B2 |
9241259 | Daniela et al. | Jan 2016 | B2 |
9245126 | Christodorescu et al. | Jan 2016 | B2 |
9245266 | Hardt | Jan 2016 | B2 |
9253609 | Hosier, Jr. | Feb 2016 | B2 |
9264443 | Weisman | Feb 2016 | B2 |
9274858 | Milliron et al. | Mar 2016 | B2 |
9280581 | Grimes et al. | Mar 2016 | B1 |
9286149 | Sampson et al. | Mar 2016 | B2 |
9286282 | Ling, III et al. | Mar 2016 | B2 |
9288118 | Pattan | Mar 2016 | B1 |
9288556 | Kim et al. | Mar 2016 | B2 |
9294498 | Yampolskiy et al. | Mar 2016 | B1 |
9299050 | Stiffler et al. | Mar 2016 | B2 |
9306939 | Chan et al. | Apr 2016 | B2 |
9317697 | Maier et al. | Apr 2016 | B2 |
9317715 | Schuette et al. | Apr 2016 | B2 |
9325731 | Mcgeehan | Apr 2016 | B2 |
9336184 | Mital et al. | May 2016 | B2 |
9336220 | Li et al. | May 2016 | B2 |
9336324 | Lomme et al. | May 2016 | B2 |
9336332 | Davis et al. | May 2016 | B2 |
9336400 | Milman et al. | May 2016 | B2 |
9338188 | Ahn | May 2016 | B1 |
9342706 | Chawla et al. | May 2016 | B2 |
9344297 | Shah et al. | May 2016 | B2 |
9344424 | Tenenboym et al. | May 2016 | B2 |
9344484 | Ferris | May 2016 | B2 |
9348802 | Massand | May 2016 | B2 |
9348862 | Kawecki, III | May 2016 | B2 |
9348929 | Eberlein | May 2016 | B2 |
9349016 | Brisebois et al. | May 2016 | B1 |
9350718 | Sondhi et al. | May 2016 | B2 |
9355157 | Mohammed et al. | May 2016 | B2 |
9356961 | Todd et al. | May 2016 | B1 |
9361446 | Demirjian et al. | Jun 2016 | B1 |
9369488 | Woods et al. | Jun 2016 | B2 |
9374693 | Olincy et al. | Jun 2016 | B1 |
9384199 | Thereska et al. | Jul 2016 | B2 |
9384357 | Patil | Jul 2016 | B2 |
9386078 | Reno et al. | Jul 2016 | B2 |
9386104 | Adams et al. | Jul 2016 | B2 |
9395959 | Hatfield et al. | Jul 2016 | B2 |
9396332 | Abrams et al. | Jul 2016 | B2 |
9401900 | Levasseur et al. | Jul 2016 | B2 |
9411967 | Parecki et al. | Aug 2016 | B2 |
9411982 | Dippenaar et al. | Aug 2016 | B1 |
9417859 | Gounares et al. | Aug 2016 | B2 |
9418221 | Turgeman | Aug 2016 | B2 |
9424021 | Zamir | Aug 2016 | B2 |
9424414 | Demirjian et al. | Aug 2016 | B1 |
9426177 | Wang et al. | Aug 2016 | B2 |
9450940 | Belov et al. | Sep 2016 | B2 |
9460136 | Todd et al. | Oct 2016 | B1 |
9460171 | Marrelli et al. | Oct 2016 | B2 |
9460307 | Breslau et al. | Oct 2016 | B2 |
9461876 | Van Dusen et al. | Oct 2016 | B2 |
9462009 | Kolman et al. | Oct 2016 | B1 |
9465702 | Gventer et al. | Oct 2016 | B2 |
9465800 | Lacey | Oct 2016 | B2 |
9473446 | Vijay et al. | Oct 2016 | B2 |
9473505 | Asano et al. | Oct 2016 | B1 |
9473535 | Sartor | Oct 2016 | B2 |
9477523 | Warman et al. | Oct 2016 | B1 |
9477660 | Scott et al. | Oct 2016 | B2 |
9477685 | Leung et al. | Oct 2016 | B1 |
9477942 | Adachi et al. | Oct 2016 | B2 |
9483659 | Bao et al. | Nov 2016 | B2 |
9489366 | Scott et al. | Nov 2016 | B2 |
9495547 | Schepis et al. | Nov 2016 | B1 |
9501523 | Hyatt et al. | Nov 2016 | B2 |
9507960 | Bell et al. | Nov 2016 | B2 |
9509674 | Nasserbakht et al. | Nov 2016 | B1 |
9509702 | Grigg et al. | Nov 2016 | B2 |
9514231 | Eden | Dec 2016 | B2 |
9516012 | Chochois et al. | Dec 2016 | B2 |
9521166 | Wilson | Dec 2016 | B2 |
9524500 | Dave et al. | Dec 2016 | B2 |
9529989 | Kling et al. | Dec 2016 | B2 |
9536108 | Powell et al. | Jan 2017 | B2 |
9537546 | Cordeiro et al. | Jan 2017 | B2 |
9542568 | Francis et al. | Jan 2017 | B2 |
9549047 | Fredinburg et al. | Jan 2017 | B1 |
9552395 | Bayer et al. | Jan 2017 | B2 |
9552470 | Turgeman et al. | Jan 2017 | B2 |
9553918 | Manion et al. | Jan 2017 | B1 |
9558497 | Carvalho | Jan 2017 | B2 |
9569752 | Deering et al. | Feb 2017 | B2 |
9571509 | Satish et al. | Feb 2017 | B1 |
9571526 | Sartor | Feb 2017 | B2 |
9571559 | Raleigh et al. | Feb 2017 | B2 |
9571991 | Brizendine et al. | Feb 2017 | B1 |
9576289 | Henderson et al. | Feb 2017 | B2 |
9578060 | Brisebois et al. | Feb 2017 | B1 |
9578173 | Sanghavi et al. | Feb 2017 | B2 |
9582681 | Mishra | Feb 2017 | B2 |
9584964 | Pelkey | Feb 2017 | B2 |
9589110 | Carey et al. | Mar 2017 | B2 |
9600181 | Patel et al. | Mar 2017 | B2 |
9602529 | Jones et al. | Mar 2017 | B2 |
9606971 | Seolas et al. | Mar 2017 | B2 |
9607041 | Himmelstein | Mar 2017 | B2 |
9619652 | Slater | Apr 2017 | B2 |
9619661 | Finkelstein | Apr 2017 | B1 |
9621357 | Williams et al. | Apr 2017 | B2 |
9621566 | Gupta et al. | Apr 2017 | B2 |
9626124 | Lipinski | Apr 2017 | B2 |
9626680 | Ryan et al. | Apr 2017 | B1 |
9629064 | Graves et al. | Apr 2017 | B2 |
9642008 | Wyatt et al. | May 2017 | B2 |
9646095 | Gottlieb et al. | May 2017 | B1 |
9647949 | Varki et al. | May 2017 | B2 |
9648036 | Seiver et al. | May 2017 | B2 |
9652314 | Mahiddini | May 2017 | B2 |
9654506 | Barrett | May 2017 | B2 |
9654541 | Kapczynski et al. | May 2017 | B1 |
9665722 | Nagasundaram et al. | May 2017 | B2 |
9665733 | Sills et al. | May 2017 | B1 |
9665883 | Roullier et al. | May 2017 | B2 |
9672053 | Tang et al. | Jun 2017 | B2 |
9672355 | Titonis et al. | Jun 2017 | B2 |
9678794 | Barrett et al. | Jun 2017 | B1 |
9691090 | Barday | Jun 2017 | B1 |
9699209 | Ng et al. | Jul 2017 | B2 |
9703549 | Dufresne | Jul 2017 | B2 |
9704103 | Suskind et al. | Jul 2017 | B2 |
9705840 | Pujare et al. | Jul 2017 | B2 |
9705880 | Siris | Jul 2017 | B2 |
9721078 | Cornick et al. | Aug 2017 | B2 |
9721108 | Krishnamurthy et al. | Aug 2017 | B2 |
9727751 | Oliver et al. | Aug 2017 | B2 |
9729583 | Barday | Aug 2017 | B1 |
9734148 | Bendersky et al. | Aug 2017 | B2 |
9734255 | Jiang | Aug 2017 | B2 |
9736004 | Jung et al. | Aug 2017 | B2 |
9740985 | Byron et al. | Aug 2017 | B2 |
9740987 | Dolan | Aug 2017 | B2 |
9749408 | Subramani et al. | Aug 2017 | B2 |
9753796 | Mahaffey et al. | Sep 2017 | B2 |
9754091 | Kode et al. | Sep 2017 | B2 |
9756059 | Demirjian et al. | Sep 2017 | B2 |
9760620 | Nachnani et al. | Sep 2017 | B2 |
9760635 | Bliss et al. | Sep 2017 | B2 |
9760697 | Walker | Sep 2017 | B1 |
9760849 | Vinnakota et al. | Sep 2017 | B2 |
9762553 | Ford et al. | Sep 2017 | B2 |
9767202 | Darby et al. | Sep 2017 | B2 |
9767309 | Patel et al. | Sep 2017 | B1 |
9769124 | Yan | Sep 2017 | B2 |
9773269 | Lazarus | Sep 2017 | B1 |
9785795 | Grondin et al. | Oct 2017 | B2 |
9787671 | Bogrett | Oct 2017 | B1 |
9798749 | Saner | Oct 2017 | B2 |
9798826 | Wilson et al. | Oct 2017 | B2 |
9798896 | Jakobsson | Oct 2017 | B2 |
9800605 | Baikalov et al. | Oct 2017 | B2 |
9800606 | Yumer | Oct 2017 | B1 |
9804649 | Cohen et al. | Oct 2017 | B2 |
9804928 | Davis et al. | Oct 2017 | B2 |
9805381 | Frank et al. | Oct 2017 | B2 |
9811532 | Parkison et al. | Nov 2017 | B2 |
9817850 | Dubbels et al. | Nov 2017 | B2 |
9817978 | Marsh et al. | Nov 2017 | B2 |
9819684 | Cernoch et al. | Nov 2017 | B2 |
9825928 | Lelcuk et al. | Nov 2017 | B2 |
9830563 | Paknad | Nov 2017 | B2 |
9832633 | Gerber, Jr. et al. | Nov 2017 | B2 |
9836598 | Iyer et al. | Dec 2017 | B2 |
9838407 | Oprea et al. | Dec 2017 | B1 |
9838839 | Vudali et al. | Dec 2017 | B2 |
9841969 | Seibert, Jr. et al. | Dec 2017 | B2 |
9842042 | Chhatwal et al. | Dec 2017 | B2 |
9842349 | Sawczuk et al. | Dec 2017 | B2 |
9848005 | Ardeli et al. | Dec 2017 | B2 |
9848061 | Jain et al. | Dec 2017 | B1 |
9852150 | Sharpe et al. | Dec 2017 | B2 |
9853959 | Kapczynski et al. | Dec 2017 | B1 |
9860226 | Thormaehlen | Jan 2018 | B2 |
9864735 | Lamprecht | Jan 2018 | B1 |
9876825 | Amar et al. | Jan 2018 | B2 |
9877138 | Franklin | Jan 2018 | B1 |
9880157 | Levak et al. | Jan 2018 | B2 |
9882935 | Barday | Jan 2018 | B2 |
9887965 | Kay et al. | Feb 2018 | B2 |
9888377 | McCorkendale et al. | Feb 2018 | B1 |
9892441 | Barday | Feb 2018 | B2 |
9892442 | Barday | Feb 2018 | B2 |
9892443 | Barday | Feb 2018 | B2 |
9892444 | Barday | Feb 2018 | B2 |
9894076 | Li et al. | Feb 2018 | B2 |
9898613 | Swerdlow et al. | Feb 2018 | B1 |
9898739 | Monastyrsky et al. | Feb 2018 | B2 |
9898769 | Barday | Feb 2018 | B2 |
9912625 | Muth et al. | Mar 2018 | B2 |
9912677 | Chien | Mar 2018 | B2 |
9912810 | Segre et al. | Mar 2018 | B2 |
9916703 | Levinson et al. | Mar 2018 | B2 |
9922124 | Rathod | Mar 2018 | B2 |
9923927 | McClintock et al. | Mar 2018 | B1 |
9928379 | Hoffer | Mar 2018 | B1 |
9934406 | Khan et al. | Apr 2018 | B2 |
9934493 | Castinado et al. | Apr 2018 | B2 |
9934544 | Whitfield et al. | Apr 2018 | B1 |
9936127 | Todasco | Apr 2018 | B2 |
9942214 | Burciu et al. | Apr 2018 | B1 |
9942244 | Lahoz et al. | Apr 2018 | B2 |
9942276 | Sartor | Apr 2018 | B2 |
9946897 | Lovin | Apr 2018 | B2 |
9948652 | Yu et al. | Apr 2018 | B2 |
9948663 | Wang et al. | Apr 2018 | B1 |
9953189 | Cook et al. | Apr 2018 | B2 |
9954879 | Sadaghiani et al. | Apr 2018 | B1 |
9954883 | Ahuja et al. | Apr 2018 | B2 |
9959551 | Schermerhorn et al. | May 2018 | B1 |
9959582 | Sukman et al. | May 2018 | B2 |
9961070 | Tang | May 2018 | B2 |
9973518 | Lee et al. | May 2018 | B2 |
9973585 | Ruback et al. | May 2018 | B2 |
9977904 | Khan et al. | May 2018 | B2 |
9977920 | Danielson et al. | May 2018 | B2 |
9983936 | Dornemann et al. | May 2018 | B2 |
9984252 | Pollard | May 2018 | B2 |
9990499 | Chan et al. | Jun 2018 | B2 |
9992213 | Sinnema | Jun 2018 | B2 |
10001975 | Bharthulwar | Jun 2018 | B2 |
10002064 | Muske | Jun 2018 | B2 |
10007895 | Vanasco | Jun 2018 | B2 |
10013577 | Beaumont et al. | Jul 2018 | B1 |
10015164 | Hamburg et al. | Jul 2018 | B2 |
10019339 | Von Hanxleden et al. | Jul 2018 | B2 |
10019588 | Garcia et al. | Jul 2018 | B2 |
10019591 | Beguin | Jul 2018 | B1 |
10019741 | Hesselink | Jul 2018 | B2 |
10021143 | Cabrera et al. | Jul 2018 | B2 |
10025804 | Vranyes et al. | Jul 2018 | B2 |
10028226 | Ayyagari et al. | Jul 2018 | B2 |
10032172 | Barday | Jul 2018 | B2 |
10044761 | Ducatel et al. | Aug 2018 | B2 |
10055426 | Arasan et al. | Aug 2018 | B2 |
10055869 | Borrelli et al. | Aug 2018 | B2 |
10061847 | Mohammed et al. | Aug 2018 | B2 |
10069858 | Robinson et al. | Sep 2018 | B2 |
10069914 | Smith | Sep 2018 | B1 |
10073924 | Karp et al. | Sep 2018 | B2 |
10075437 | Costigan et al. | Sep 2018 | B1 |
10075451 | Hall et al. | Sep 2018 | B1 |
10084817 | Saher et al. | Sep 2018 | B2 |
10091214 | Godlewski et al. | Oct 2018 | B2 |
10091312 | Khanwalkar et al. | Oct 2018 | B1 |
10097551 | Chan et al. | Oct 2018 | B2 |
10102533 | Barday | Oct 2018 | B2 |
10108409 | Pirzadeh et al. | Oct 2018 | B2 |
10122663 | Hu et al. | Nov 2018 | B2 |
10122760 | Terrill et al. | Nov 2018 | B2 |
10127403 | Kong et al. | Nov 2018 | B2 |
10129211 | Heath | Nov 2018 | B2 |
10140666 | Wang et al. | Nov 2018 | B1 |
10142113 | Zaidi et al. | Nov 2018 | B2 |
10152560 | Potiagalov et al. | Dec 2018 | B2 |
10158676 | Barday | Dec 2018 | B2 |
10165011 | Barday | Dec 2018 | B2 |
10169762 | Ogawa | Jan 2019 | B2 |
10176503 | Barday et al. | Jan 2019 | B2 |
10181043 | Pauley, Jr. et al. | Jan 2019 | B1 |
10181051 | Barday et al. | Jan 2019 | B2 |
10187363 | Smirnoff et al. | Jan 2019 | B2 |
10187394 | Bar et al. | Jan 2019 | B2 |
10204154 | Barday et al. | Feb 2019 | B2 |
10205994 | Splaine et al. | Feb 2019 | B2 |
10212134 | Rai | Feb 2019 | B2 |
10212175 | Seul et al. | Feb 2019 | B2 |
10223533 | Dawson | Mar 2019 | B2 |
10230571 | Rangasamy et al. | Mar 2019 | B2 |
10230711 | Kohli | Mar 2019 | B2 |
10250594 | Chathoth et al. | Apr 2019 | B2 |
10255602 | Wang | Apr 2019 | B2 |
10257127 | Dotan-Cohen et al. | Apr 2019 | B2 |
10257181 | Sherif et al. | Apr 2019 | B1 |
10268838 | Yadgiri et al. | Apr 2019 | B2 |
10275221 | Thattai et al. | Apr 2019 | B2 |
10275614 | Barday et al. | Apr 2019 | B2 |
10282370 | Barday et al. | May 2019 | B1 |
10282559 | Barday et al. | May 2019 | B2 |
10284604 | Barday et al. | May 2019 | B2 |
10289584 | Chiba | May 2019 | B2 |
10289857 | Brinskelle | May 2019 | B1 |
10289866 | Barday et al. | May 2019 | B2 |
10289867 | Barday et al. | May 2019 | B2 |
10289870 | Barday et al. | May 2019 | B2 |
10296504 | Hock et al. | May 2019 | B2 |
10304442 | Rudden et al. | May 2019 | B1 |
10310723 | Rathod | Jun 2019 | B2 |
10311042 | Kumar | Jun 2019 | B1 |
10311475 | Yuasa | Jun 2019 | B2 |
10311492 | Gelfenbeyn et al. | Jun 2019 | B2 |
10318761 | Barday et al. | Jun 2019 | B2 |
10320940 | Brennan et al. | Jun 2019 | B1 |
10324960 | Skvortsov et al. | Jun 2019 | B1 |
10326768 | Verweyst et al. | Jun 2019 | B2 |
10326798 | Lambert | Jun 2019 | B2 |
10326841 | Bradley et al. | Jun 2019 | B2 |
10327100 | Davis et al. | Jun 2019 | B1 |
10331689 | Sorrentino et al. | Jun 2019 | B2 |
10331904 | Sher-Jan et al. | Jun 2019 | B2 |
10333975 | Soman et al. | Jun 2019 | B2 |
10339470 | Dutta et al. | Jul 2019 | B1 |
10346186 | Kalyanpur | Jul 2019 | B2 |
10346635 | Kumar et al. | Jul 2019 | B2 |
10346637 | Barday et al. | Jul 2019 | B2 |
10346638 | Barday et al. | Jul 2019 | B2 |
10346849 | Ionescu et al. | Jul 2019 | B2 |
10348726 | Caluwaert | Jul 2019 | B2 |
10348775 | Barday | Jul 2019 | B2 |
10353673 | Barday et al. | Jul 2019 | B2 |
10361857 | Woo | Jul 2019 | B2 |
10366241 | Sartor | Jul 2019 | B2 |
10373119 | Driscoll et al. | Aug 2019 | B2 |
10373409 | White et al. | Aug 2019 | B2 |
10375115 | Mallya | Aug 2019 | B2 |
10387559 | Wendt et al. | Aug 2019 | B1 |
10387577 | Hill et al. | Aug 2019 | B2 |
10387657 | Belfiore, Jr. et al. | Aug 2019 | B2 |
10387952 | Sandhu et al. | Aug 2019 | B1 |
10395201 | Vescio | Aug 2019 | B2 |
10402545 | Gorfein et al. | Sep 2019 | B2 |
10404729 | Turgeman | Sep 2019 | B2 |
10417401 | Votaw et al. | Sep 2019 | B2 |
10417621 | Cassel et al. | Sep 2019 | B2 |
10419476 | Parekh | Sep 2019 | B2 |
10423985 | Dutta et al. | Sep 2019 | B1 |
10425492 | Comstock et al. | Sep 2019 | B2 |
10430608 | Peri et al. | Oct 2019 | B2 |
10435350 | Ito et al. | Oct 2019 | B2 |
10437412 | Barday et al. | Oct 2019 | B2 |
10437860 | Barday et al. | Oct 2019 | B2 |
10438016 | Barday et al. | Oct 2019 | B2 |
10438273 | Burns et al. | Oct 2019 | B2 |
10440062 | Barday et al. | Oct 2019 | B2 |
10445508 | Sher-Jan et al. | Oct 2019 | B2 |
10445526 | Barday et al. | Oct 2019 | B2 |
10452864 | Barday et al. | Oct 2019 | B2 |
10452866 | Barday et al. | Oct 2019 | B2 |
10453076 | Parekh et al. | Oct 2019 | B2 |
10453092 | Wang et al. | Oct 2019 | B1 |
10454934 | Parimi et al. | Oct 2019 | B2 |
10460322 | Williamson et al. | Oct 2019 | B2 |
10481763 | Bartkiewicz et al. | Nov 2019 | B2 |
10489454 | Chen | Nov 2019 | B1 |
10503926 | Barday et al. | Dec 2019 | B2 |
10510031 | Barday et al. | Dec 2019 | B2 |
10521623 | Rodriguez et al. | Dec 2019 | B2 |
10534851 | Chan et al. | Jan 2020 | B1 |
10535081 | Ferreira et al. | Jan 2020 | B2 |
10536475 | McCorkle, Jr. et al. | Jan 2020 | B1 |
10536478 | Kirti et al. | Jan 2020 | B2 |
10541938 | Timmerman et al. | Jan 2020 | B1 |
10546135 | Kassoumeh et al. | Jan 2020 | B1 |
10552462 | Hart | Feb 2020 | B1 |
10558809 | Joyce et al. | Feb 2020 | B1 |
10558821 | Barday et al. | Feb 2020 | B2 |
10564815 | Soon-Shiong | Feb 2020 | B2 |
10564935 | Barday et al. | Feb 2020 | B2 |
10564936 | Barday et al. | Feb 2020 | B2 |
10565161 | Barday et al. | Feb 2020 | B2 |
10565236 | Barday et al. | Feb 2020 | B1 |
10567439 | Barday | Feb 2020 | B2 |
10567517 | Weinig et al. | Feb 2020 | B2 |
10572684 | Lafever et al. | Feb 2020 | B2 |
10572686 | Barday et al. | Feb 2020 | B2 |
10574705 | Barday et al. | Feb 2020 | B2 |
10581825 | Poschel et al. | Mar 2020 | B2 |
10592648 | Barday et al. | Mar 2020 | B2 |
10592692 | Brannon et al. | Mar 2020 | B2 |
10606916 | Brannon et al. | Mar 2020 | B2 |
10613971 | Vasikarla | Apr 2020 | B1 |
10614365 | Sathish et al. | Apr 2020 | B2 |
10628553 | Murrish et al. | Apr 2020 | B1 |
10645102 | Hamdi | May 2020 | B2 |
10645548 | Reynolds et al. | May 2020 | B2 |
10649630 | Vora et al. | May 2020 | B1 |
10650408 | Andersen et al. | May 2020 | B1 |
10657469 | Bade et al. | May 2020 | B2 |
10657504 | Zimmerman et al. | May 2020 | B1 |
10659566 | Luah et al. | May 2020 | B1 |
10671749 | Felice-Steele et al. | Jun 2020 | B2 |
10671760 | Esmailzadeh et al. | Jun 2020 | B2 |
10678945 | Barday et al. | Jun 2020 | B2 |
10685140 | Barday et al. | Jun 2020 | B2 |
10706176 | Brannon et al. | Jul 2020 | B2 |
10706226 | Byun et al. | Jul 2020 | B2 |
10708305 | Barday et al. | Jul 2020 | B2 |
10713387 | Brannon et al. | Jul 2020 | B2 |
10726145 | Duminy et al. | Jul 2020 | B2 |
10726153 | Nerurkar et al. | Jul 2020 | B2 |
10726158 | Brannon et al. | Jul 2020 | B2 |
10732865 | Jain et al. | Aug 2020 | B2 |
10735388 | Rose et al. | Aug 2020 | B2 |
10740487 | Barday et al. | Aug 2020 | B2 |
10747893 | Kiriyama et al. | Aug 2020 | B2 |
10747897 | Cook | Aug 2020 | B2 |
10749870 | Brouillette et al. | Aug 2020 | B2 |
10762213 | Rudek et al. | Sep 2020 | B2 |
10762236 | Brannon et al. | Sep 2020 | B2 |
10769302 | Barday et al. | Sep 2020 | B2 |
10769303 | Brannon et al. | Sep 2020 | B2 |
10776510 | Antonelli et al. | Sep 2020 | B2 |
10776518 | Barday et al. | Sep 2020 | B2 |
10778792 | Handy Bosma et al. | Sep 2020 | B1 |
10783256 | Brannon et al. | Sep 2020 | B2 |
10785173 | Willett et al. | Sep 2020 | B2 |
10785299 | Gupta et al. | Sep 2020 | B2 |
10791150 | Barday et al. | Sep 2020 | B2 |
10795527 | Legge et al. | Oct 2020 | B1 |
10796020 | Barday et al. | Oct 2020 | B2 |
10796260 | Brannon et al. | Oct 2020 | B2 |
10798133 | Barday et al. | Oct 2020 | B2 |
10803196 | Bodegas Martinez et al. | Oct 2020 | B2 |
10805331 | Boyer et al. | Oct 2020 | B2 |
10831831 | Greene | Nov 2020 | B2 |
10834590 | Turgeman et al. | Nov 2020 | B2 |
10846433 | Brannon et al. | Nov 2020 | B2 |
10853501 | Brannon | Dec 2020 | B2 |
10860721 | Gentile | Dec 2020 | B1 |
10860742 | Joseph et al. | Dec 2020 | B2 |
10860979 | Geffen et al. | Dec 2020 | B2 |
10878127 | Brannon et al. | Dec 2020 | B2 |
10885485 | Brannon et al. | Jan 2021 | B2 |
10891393 | Currier et al. | Jan 2021 | B2 |
10893074 | Sartor | Jan 2021 | B2 |
10896394 | Brannon et al. | Jan 2021 | B2 |
10902490 | He et al. | Jan 2021 | B2 |
10909488 | Hecht et al. | Feb 2021 | B2 |
10924514 | Altman et al. | Feb 2021 | B1 |
10929557 | Chavez | Feb 2021 | B2 |
10949555 | Rattan et al. | Mar 2021 | B2 |
10949565 | Barday et al. | Mar 2021 | B2 |
10956213 | Chambers et al. | Mar 2021 | B1 |
10957326 | Bhaya et al. | Mar 2021 | B2 |
10963571 | Bar Joseph et al. | Mar 2021 | B2 |
10963572 | Belfiore, Jr. et al. | Mar 2021 | B2 |
10965547 | Esposito et al. | Mar 2021 | B1 |
10970418 | Durvasula et al. | Apr 2021 | B2 |
10972509 | Barday et al. | Apr 2021 | B2 |
10976950 | Trezzo et al. | Apr 2021 | B1 |
10983963 | Venkatasubramanian et al. | Apr 2021 | B1 |
10984458 | Gutierrez | Apr 2021 | B1 |
10997318 | Barday et al. | May 2021 | B2 |
11003748 | Oliker et al. | May 2021 | B2 |
11012475 | Patnala et al. | May 2021 | B2 |
11023528 | Lee et al. | Jun 2021 | B1 |
11037168 | Lee et al. | Jun 2021 | B1 |
11057356 | Malhotra et al. | Jul 2021 | B2 |
11057427 | Wright et al. | Jul 2021 | B2 |
11062051 | Barday et al. | Jul 2021 | B2 |
11068318 | Kuesel et al. | Jul 2021 | B2 |
11068584 | Burriesci et al. | Jul 2021 | B2 |
11068618 | Brannon et al. | Jul 2021 | B2 |
11068797 | Bhide et al. | Jul 2021 | B2 |
11068847 | Boutros et al. | Jul 2021 | B2 |
11093950 | Hersh et al. | Aug 2021 | B2 |
11138299 | Brannon et al. | Oct 2021 | B2 |
11144622 | Brannon | Oct 2021 | B2 |
11144678 | Dondini et al. | Oct 2021 | B2 |
11144862 | Jackson et al. | Oct 2021 | B1 |
11195134 | Brannon et al. | Dec 2021 | B2 |
11201929 | Dudmesh et al. | Dec 2021 | B2 |
11210420 | Brannon et al. | Dec 2021 | B2 |
11238390 | Brannon et al. | Feb 2022 | B2 |
11240273 | Barday et al. | Feb 2022 | B2 |
11252159 | Kannan et al. | Feb 2022 | B2 |
11256777 | Brannon et al. | Feb 2022 | B2 |
11263262 | Chen | Mar 2022 | B2 |
11327996 | Reynolds et al. | May 2022 | B2 |
11443062 | Latka et al. | Sep 2022 | B2 |
20020004736 | Roundtree et al. | Jan 2002 | A1 |
20020049907 | Woods et al. | Apr 2002 | A1 |
20020055932 | Wheeler et al. | May 2002 | A1 |
20020077941 | Halligan et al. | Jun 2002 | A1 |
20020103854 | Okita | Aug 2002 | A1 |
20020129216 | Collins | Sep 2002 | A1 |
20020161594 | Bryan et al. | Oct 2002 | A1 |
20020161733 | Grainger | Oct 2002 | A1 |
20030041250 | Proudler | Feb 2003 | A1 |
20030065641 | Chaloux | Apr 2003 | A1 |
20030093680 | Astley et al. | May 2003 | A1 |
20030097451 | Bjorksten et al. | May 2003 | A1 |
20030097661 | Li et al. | May 2003 | A1 |
20030115142 | Brickell et al. | Jun 2003 | A1 |
20030130893 | Farmer | Jul 2003 | A1 |
20030131001 | Matsuo | Jul 2003 | A1 |
20030131093 | Aschen et al. | Jul 2003 | A1 |
20030140150 | Kemp et al. | Jul 2003 | A1 |
20030167216 | Brown et al. | Sep 2003 | A1 |
20030212604 | Cullen | Nov 2003 | A1 |
20040002818 | Kulp et al. | Jan 2004 | A1 |
20040025053 | Hayward | Feb 2004 | A1 |
20040088235 | Ziekle et al. | May 2004 | A1 |
20040098366 | Sinclair et al. | May 2004 | A1 |
20040098493 | Rees | May 2004 | A1 |
20040111359 | Hudock | Jun 2004 | A1 |
20040128508 | Wheeler et al. | Jul 2004 | A1 |
20040186912 | Harlow et al. | Sep 2004 | A1 |
20040193907 | Patanella | Sep 2004 | A1 |
20050022198 | Olapurath et al. | Jan 2005 | A1 |
20050033616 | Vavul et al. | Feb 2005 | A1 |
20050076294 | Dehamer et al. | Apr 2005 | A1 |
20050114343 | Wesinger et al. | May 2005 | A1 |
20050144066 | Cope et al. | Jun 2005 | A1 |
20050197884 | Mullen, Jr. | Sep 2005 | A1 |
20050198177 | Black | Sep 2005 | A1 |
20050198646 | Kortela | Sep 2005 | A1 |
20050246292 | Sarcanin | Nov 2005 | A1 |
20050278538 | Fowler | Dec 2005 | A1 |
20060015263 | Stupp | Jan 2006 | A1 |
20060031078 | Pizzinger et al. | Feb 2006 | A1 |
20060035204 | Lamarche et al. | Feb 2006 | A1 |
20060041507 | Novack et al. | Feb 2006 | A1 |
20060075122 | Lindskog et al. | Apr 2006 | A1 |
20060149730 | Curtis | Jul 2006 | A1 |
20060156052 | Bodnar et al. | Jul 2006 | A1 |
20060190280 | Hoebel et al. | Aug 2006 | A1 |
20060206375 | Scott et al. | Sep 2006 | A1 |
20060224422 | Cohen | Oct 2006 | A1 |
20060253597 | Mujica | Nov 2006 | A1 |
20060259416 | Johnson | Nov 2006 | A1 |
20070011058 | Dev | Jan 2007 | A1 |
20070027715 | Gropper et al. | Feb 2007 | A1 |
20070061125 | Bhatt et al. | Mar 2007 | A1 |
20070061393 | Moore | Mar 2007 | A1 |
20070130101 | Anderson et al. | Jun 2007 | A1 |
20070130323 | Landsman et al. | Jun 2007 | A1 |
20070157311 | Meier et al. | Jul 2007 | A1 |
20070173355 | Klein | Jul 2007 | A1 |
20070179793 | Bagchi et al. | Aug 2007 | A1 |
20070180490 | Renzi et al. | Aug 2007 | A1 |
20070192438 | Goei | Aug 2007 | A1 |
20070266420 | Hawkins | Nov 2007 | A1 |
20070283171 | Breslin et al. | Dec 2007 | A1 |
20080015927 | Ramirez | Jan 2008 | A1 |
20080028065 | Caso et al. | Jan 2008 | A1 |
20080028435 | Strickland | Jan 2008 | A1 |
20080047016 | Spoonamore | Feb 2008 | A1 |
20080120699 | Spear | May 2008 | A1 |
20080140696 | Mathuria | Jun 2008 | A1 |
20080189306 | Hewett et al. | Aug 2008 | A1 |
20080195436 | Whyte | Aug 2008 | A1 |
20080222271 | Spires | Sep 2008 | A1 |
20080235177 | Kim et al. | Sep 2008 | A1 |
20080270203 | Holmes et al. | Oct 2008 | A1 |
20080270351 | Thomsen | Oct 2008 | A1 |
20080270381 | Thomsen | Oct 2008 | A1 |
20080270382 | Thomsen et al. | Oct 2008 | A1 |
20080270451 | Thomsen et al. | Oct 2008 | A1 |
20080270462 | Thomsen | Oct 2008 | A1 |
20080281649 | Morris | Nov 2008 | A1 |
20080282320 | Denovo et al. | Nov 2008 | A1 |
20080288271 | Faust | Nov 2008 | A1 |
20080288299 | Schultz | Nov 2008 | A1 |
20090012896 | Arnold | Jan 2009 | A1 |
20090022301 | Mudaliar | Jan 2009 | A1 |
20090037975 | Ishikawa et al. | Feb 2009 | A1 |
20090119500 | Roth et al. | May 2009 | A1 |
20090132419 | Grammer et al. | May 2009 | A1 |
20090138276 | Hayashida et al. | May 2009 | A1 |
20090140035 | Miller | Jun 2009 | A1 |
20090144702 | Atkin et al. | Jun 2009 | A1 |
20090158249 | Tomkins et al. | Jun 2009 | A1 |
20090172705 | Cheong | Jul 2009 | A1 |
20090182818 | Krywaniuk | Jul 2009 | A1 |
20090187764 | Astakhov et al. | Jul 2009 | A1 |
20090204452 | Iskandar et al. | Aug 2009 | A1 |
20090204820 | Brandenburg et al. | Aug 2009 | A1 |
20090210347 | Sarcanin | Aug 2009 | A1 |
20090216610 | Chorny | Aug 2009 | A1 |
20090249076 | Reed et al. | Oct 2009 | A1 |
20090303237 | Liu et al. | Dec 2009 | A1 |
20100010912 | Jones et al. | Jan 2010 | A1 |
20100010968 | Redlich et al. | Jan 2010 | A1 |
20100077484 | Paretti et al. | Mar 2010 | A1 |
20100082533 | Nakamura et al. | Apr 2010 | A1 |
20100094650 | Tran et al. | Apr 2010 | A1 |
20100100398 | Auker et al. | Apr 2010 | A1 |
20100121773 | Currier et al. | May 2010 | A1 |
20100192201 | Shimoni et al. | Jul 2010 | A1 |
20100205057 | Hook et al. | Aug 2010 | A1 |
20100223349 | Thorson | Sep 2010 | A1 |
20100228786 | Török | Sep 2010 | A1 |
20100234987 | Benschop et al. | Sep 2010 | A1 |
20100235297 | Mamorsky | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100262624 | Pullikottil | Oct 2010 | A1 |
20100268628 | Pitkow et al. | Oct 2010 | A1 |
20100268932 | Bhattacharjee | Oct 2010 | A1 |
20100281313 | White et al. | Nov 2010 | A1 |
20100287114 | Bartko et al. | Nov 2010 | A1 |
20100333012 | Adachi et al. | Dec 2010 | A1 |
20110006996 | Smith et al. | Jan 2011 | A1 |
20110010202 | Neale | Jan 2011 | A1 |
20110082794 | Blechman | Apr 2011 | A1 |
20110137696 | Meyer et al. | Jun 2011 | A1 |
20110145154 | Rivers et al. | Jun 2011 | A1 |
20110153396 | Marcuvitz et al. | Jun 2011 | A1 |
20110191664 | Sheleheda et al. | Aug 2011 | A1 |
20110208850 | Sheleheda et al. | Aug 2011 | A1 |
20110209067 | Bogess et al. | Aug 2011 | A1 |
20110231896 | Tovar | Sep 2011 | A1 |
20110238573 | Varadarajan | Sep 2011 | A1 |
20110252456 | Hatakeyama | Oct 2011 | A1 |
20110302643 | Pichna et al. | Dec 2011 | A1 |
20120041939 | Amsterdamski | Feb 2012 | A1 |
20120084151 | Kozak et al. | Apr 2012 | A1 |
20120084349 | Lee et al. | Apr 2012 | A1 |
20120102411 | Sathish | Apr 2012 | A1 |
20120102543 | Kohli et al. | Apr 2012 | A1 |
20120110674 | Belani et al. | May 2012 | A1 |
20120116923 | Irving et al. | May 2012 | A1 |
20120131438 | Li et al. | May 2012 | A1 |
20120143650 | Crowley et al. | Jun 2012 | A1 |
20120144499 | Tan et al. | Jun 2012 | A1 |
20120191596 | Kremen et al. | Jul 2012 | A1 |
20120226621 | Petran et al. | Sep 2012 | A1 |
20120239557 | Weinflash et al. | Sep 2012 | A1 |
20120254320 | Dove et al. | Oct 2012 | A1 |
20120259752 | Agee | Oct 2012 | A1 |
20120323700 | Aleksandrovich et al. | Dec 2012 | A1 |
20120330769 | Arceo | Dec 2012 | A1 |
20120330869 | Durham | Dec 2012 | A1 |
20130004933 | Bhaskaran | Jan 2013 | A1 |
20130018954 | Cheng | Jan 2013 | A1 |
20130085801 | Sharpe et al. | Apr 2013 | A1 |
20130091156 | Raiche et al. | Apr 2013 | A1 |
20130103485 | Postrel | Apr 2013 | A1 |
20130111323 | Taghaddos et al. | May 2013 | A1 |
20130124257 | Schubert | May 2013 | A1 |
20130159351 | Hamann et al. | Jun 2013 | A1 |
20130171968 | Wang | Jul 2013 | A1 |
20130179982 | Bridges et al. | Jul 2013 | A1 |
20130179988 | Bekker et al. | Jul 2013 | A1 |
20130185806 | Hatakeyama | Jul 2013 | A1 |
20130211872 | Cherry et al. | Aug 2013 | A1 |
20130218829 | Martinez | Aug 2013 | A1 |
20130219459 | Bradley | Aug 2013 | A1 |
20130254649 | O'Neill et al. | Sep 2013 | A1 |
20130254699 | Bashir et al. | Sep 2013 | A1 |
20130262328 | Federgreen | Oct 2013 | A1 |
20130282466 | Hampton | Oct 2013 | A1 |
20130290169 | Bathula et al. | Oct 2013 | A1 |
20130298071 | Wine | Nov 2013 | A1 |
20130311224 | Heroux et al. | Nov 2013 | A1 |
20130318207 | Dotter | Nov 2013 | A1 |
20130326112 | Park et al. | Dec 2013 | A1 |
20130332362 | Ciurea | Dec 2013 | A1 |
20130340086 | Blom | Dec 2013 | A1 |
20140006355 | Kirihata | Jan 2014 | A1 |
20140006616 | Aad et al. | Jan 2014 | A1 |
20140012833 | Humprecht | Jan 2014 | A1 |
20140019561 | Belity et al. | Jan 2014 | A1 |
20140032259 | Lafever et al. | Jan 2014 | A1 |
20140032265 | Paprocki | Jan 2014 | A1 |
20140040134 | Ciurea | Feb 2014 | A1 |
20140040161 | Jason | Feb 2014 | A1 |
20140040979 | Barton et al. | Feb 2014 | A1 |
20140041048 | Goodwin et al. | Feb 2014 | A1 |
20140047551 | Nagasu et al. | Feb 2014 | A1 |
20140052463 | Cashman et al. | Feb 2014 | A1 |
20140067973 | Eden | Mar 2014 | A1 |
20140074550 | Chourey | Mar 2014 | A1 |
20140074645 | Ingram | Mar 2014 | A1 |
20140089027 | Brown | Mar 2014 | A1 |
20140089039 | McClellan | Mar 2014 | A1 |
20140108173 | Cooper et al. | Apr 2014 | A1 |
20140108968 | Vishria | Apr 2014 | A1 |
20140137257 | Martinez et al. | May 2014 | A1 |
20140142988 | Grosso et al. | May 2014 | A1 |
20140143011 | Mudugu et al. | May 2014 | A1 |
20140143844 | Goertzen | May 2014 | A1 |
20140164476 | Thomson | Jun 2014 | A1 |
20140188956 | Subba et al. | Jul 2014 | A1 |
20140196143 | Fliderman et al. | Jul 2014 | A1 |
20140208418 | Libin | Jul 2014 | A1 |
20140222468 | Araya et al. | Aug 2014 | A1 |
20140244309 | Francois | Aug 2014 | A1 |
20140244325 | Cartwright | Aug 2014 | A1 |
20140244375 | Kim | Aug 2014 | A1 |
20140244399 | Orduna et al. | Aug 2014 | A1 |
20140257917 | Spencer et al. | Sep 2014 | A1 |
20140258093 | Gardiner et al. | Sep 2014 | A1 |
20140278539 | Edwards | Sep 2014 | A1 |
20140278663 | Samuel et al. | Sep 2014 | A1 |
20140278730 | Muhart et al. | Sep 2014 | A1 |
20140283027 | Orona et al. | Sep 2014 | A1 |
20140283106 | Stahura et al. | Sep 2014 | A1 |
20140288971 | Whibbs, III | Sep 2014 | A1 |
20140289681 | Wielgosz | Sep 2014 | A1 |
20140289862 | Gorfein et al. | Sep 2014 | A1 |
20140317171 | Fox et al. | Oct 2014 | A1 |
20140324480 | Dufel et al. | Oct 2014 | A1 |
20140337041 | Madden et al. | Nov 2014 | A1 |
20140337466 | Li et al. | Nov 2014 | A1 |
20140344015 | Puértolas-Montañés et al. | Nov 2014 | A1 |
20150006514 | Hung | Jan 2015 | A1 |
20150012363 | Grant et al. | Jan 2015 | A1 |
20150019530 | Felch | Jan 2015 | A1 |
20150026056 | Calman et al. | Jan 2015 | A1 |
20150026260 | Worthley | Jan 2015 | A1 |
20150033112 | Norwood et al. | Jan 2015 | A1 |
20150066577 | Christiansen et al. | Mar 2015 | A1 |
20150066865 | Yara et al. | Mar 2015 | A1 |
20150088598 | Acharyya et al. | Mar 2015 | A1 |
20150089585 | Novack | Mar 2015 | A1 |
20150095352 | Lacey | Apr 2015 | A1 |
20150106264 | Johnson | Apr 2015 | A1 |
20150106867 | Liang | Apr 2015 | A1 |
20150106948 | Holman et al. | Apr 2015 | A1 |
20150106949 | Holman et al. | Apr 2015 | A1 |
20150121462 | Courage et al. | Apr 2015 | A1 |
20150143258 | Carolan et al. | May 2015 | A1 |
20150149362 | Baum et al. | May 2015 | A1 |
20150154520 | Federgreen et al. | Jun 2015 | A1 |
20150169318 | Nash | Jun 2015 | A1 |
20150172296 | Fujioka | Jun 2015 | A1 |
20150178740 | Borawski et al. | Jun 2015 | A1 |
20150199534 | Francis et al. | Jul 2015 | A1 |
20150199541 | Koch et al. | Jul 2015 | A1 |
20150199702 | Singh | Jul 2015 | A1 |
20150229664 | Hawthorn et al. | Aug 2015 | A1 |
20150235049 | Cohen et al. | Aug 2015 | A1 |
20150235050 | Wouhaybi et al. | Aug 2015 | A1 |
20150235283 | Nishikawa | Aug 2015 | A1 |
20150242778 | Wilcox et al. | Aug 2015 | A1 |
20150242858 | Smith et al. | Aug 2015 | A1 |
20150248391 | Watanabe | Sep 2015 | A1 |
20150254597 | Jahagirdar | Sep 2015 | A1 |
20150261887 | Joukov | Sep 2015 | A1 |
20150262189 | Vergeer | Sep 2015 | A1 |
20150264417 | Spitz et al. | Sep 2015 | A1 |
20150269384 | Holman et al. | Sep 2015 | A1 |
20150271167 | Kalai | Sep 2015 | A1 |
20150288715 | Hotchkiss | Oct 2015 | A1 |
20150309813 | Patel | Oct 2015 | A1 |
20150310227 | Ishida et al. | Oct 2015 | A1 |
20150310575 | Shelton | Oct 2015 | A1 |
20150348200 | Fair et al. | Dec 2015 | A1 |
20150356362 | Demos | Dec 2015 | A1 |
20150379430 | Dirac et al. | Dec 2015 | A1 |
20160006760 | Lala et al. | Jan 2016 | A1 |
20160012465 | Sharp | Jan 2016 | A1 |
20160026394 | Goto | Jan 2016 | A1 |
20160034918 | Bjelajac et al. | Feb 2016 | A1 |
20160048700 | Stransky-Heilkron | Feb 2016 | A1 |
20160050213 | Storr | Feb 2016 | A1 |
20160063523 | Nistor et al. | Mar 2016 | A1 |
20160063567 | Srivastava | Mar 2016 | A1 |
20160071112 | Unser | Mar 2016 | A1 |
20160080405 | Schler et al. | Mar 2016 | A1 |
20160087957 | Shah et al. | Mar 2016 | A1 |
20160099963 | Mahaffey et al. | Apr 2016 | A1 |
20160103963 | Mishra | Apr 2016 | A1 |
20160104259 | Menrad | Apr 2016 | A1 |
20160125550 | Joao et al. | May 2016 | A1 |
20160125749 | Delacroix et al. | May 2016 | A1 |
20160125751 | Barker et al. | May 2016 | A1 |
20160140466 | Sidebottom et al. | May 2016 | A1 |
20160143570 | Valacich et al. | May 2016 | A1 |
20160148143 | Anderson et al. | May 2016 | A1 |
20160162269 | Pogorelik et al. | Jun 2016 | A1 |
20160164915 | Cook | Jun 2016 | A1 |
20160180386 | Konig | Jun 2016 | A1 |
20160188450 | Appusamy et al. | Jun 2016 | A1 |
20160189156 | Kim et al. | Jun 2016 | A1 |
20160196189 | Miyagi et al. | Jul 2016 | A1 |
20160225000 | Glasgow | Aug 2016 | A1 |
20160232465 | Kurtz et al. | Aug 2016 | A1 |
20160232534 | Lacey et al. | Aug 2016 | A1 |
20160234319 | Griffin | Aug 2016 | A1 |
20160253497 | Christodorescu et al. | Sep 2016 | A1 |
20160255139 | Rathod | Sep 2016 | A1 |
20160261631 | Vissamsetty et al. | Sep 2016 | A1 |
20160262163 | Gonzalez Garrido et al. | Sep 2016 | A1 |
20160292453 | Patterson et al. | Oct 2016 | A1 |
20160292621 | Ciccone et al. | Oct 2016 | A1 |
20160321582 | Broudou et al. | Nov 2016 | A1 |
20160321748 | Mahatma et al. | Nov 2016 | A1 |
20160330237 | Edlabadkar | Nov 2016 | A1 |
20160335531 | Mullen et al. | Nov 2016 | A1 |
20160342811 | Whitcomb et al. | Nov 2016 | A1 |
20160359861 | Manov et al. | Dec 2016 | A1 |
20160364736 | Maugans, III | Dec 2016 | A1 |
20160370954 | Burningham et al. | Dec 2016 | A1 |
20160378762 | Rohter | Dec 2016 | A1 |
20160381064 | Chan et al. | Dec 2016 | A1 |
20160381560 | Margaliot | Dec 2016 | A1 |
20170004055 | Horan et al. | Jan 2017 | A1 |
20170032395 | Kaufman et al. | Feb 2017 | A1 |
20170032408 | Kumar et al. | Feb 2017 | A1 |
20170034101 | Kumar et al. | Feb 2017 | A1 |
20170041324 | Ionutescu et al. | Feb 2017 | A1 |
20170046399 | Sankaranarasimhan et al. | Feb 2017 | A1 |
20170046753 | Deupree, IV | Feb 2017 | A1 |
20170061501 | Horwich | Mar 2017 | A1 |
20170068785 | Experton et al. | Mar 2017 | A1 |
20170070495 | Cherry et al. | Mar 2017 | A1 |
20170093917 | Chandra et al. | Mar 2017 | A1 |
20170115864 | Thomas et al. | Apr 2017 | A1 |
20170124570 | Nidamanuri et al. | May 2017 | A1 |
20170140174 | Lacey et al. | May 2017 | A1 |
20170140467 | Neag et al. | May 2017 | A1 |
20170142158 | Laoutaris et al. | May 2017 | A1 |
20170142177 | Hu | May 2017 | A1 |
20170154188 | Meier et al. | Jun 2017 | A1 |
20170161520 | Lockhart, III et al. | Jun 2017 | A1 |
20170171235 | Mulchandani et al. | Jun 2017 | A1 |
20170171325 | Perez | Jun 2017 | A1 |
20170177324 | Frank et al. | Jun 2017 | A1 |
20170180378 | Tyler et al. | Jun 2017 | A1 |
20170180505 | Shaw | Jun 2017 | A1 |
20170193017 | Migliori | Jul 2017 | A1 |
20170193624 | Tsai | Jul 2017 | A1 |
20170201518 | Holmqvist et al. | Jul 2017 | A1 |
20170206707 | Guay et al. | Jul 2017 | A1 |
20170208084 | Steelman et al. | Jul 2017 | A1 |
20170220685 | Yan et al. | Aug 2017 | A1 |
20170220964 | Datta Ray | Aug 2017 | A1 |
20170249710 | Guillama et al. | Aug 2017 | A1 |
20170269791 | Meyerzon et al. | Sep 2017 | A1 |
20170270318 | Ritchie | Sep 2017 | A1 |
20170278004 | Mcelhinney et al. | Sep 2017 | A1 |
20170278117 | Wallace et al. | Sep 2017 | A1 |
20170286719 | Krishnamurthy et al. | Oct 2017 | A1 |
20170287031 | Barday | Oct 2017 | A1 |
20170289199 | Barday | Oct 2017 | A1 |
20170308875 | O'Regan et al. | Oct 2017 | A1 |
20170316400 | Venkatakrishnan et al. | Nov 2017 | A1 |
20170330197 | DiMaggio et al. | Nov 2017 | A1 |
20170353404 | Hodge | Dec 2017 | A1 |
20180032757 | Michael | Feb 2018 | A1 |
20180039975 | Hefetz | Feb 2018 | A1 |
20180041498 | Kikuchi | Feb 2018 | A1 |
20180046753 | Shelton | Feb 2018 | A1 |
20180046939 | Meron et al. | Feb 2018 | A1 |
20180063174 | Grill et al. | Mar 2018 | A1 |
20180063190 | Wright et al. | Mar 2018 | A1 |
20180082368 | Weinflash et al. | Mar 2018 | A1 |
20180083843 | Sambandam | Mar 2018 | A1 |
20180091476 | Jakobsson et al. | Mar 2018 | A1 |
20180131574 | Jacobs et al. | May 2018 | A1 |
20180131658 | Bhagwan et al. | May 2018 | A1 |
20180165637 | Romero et al. | Jun 2018 | A1 |
20180198614 | Neumann | Jul 2018 | A1 |
20180204281 | Painter et al. | Jul 2018 | A1 |
20180219917 | Chiang | Aug 2018 | A1 |
20180239500 | Allen et al. | Aug 2018 | A1 |
20180248914 | Sartor | Aug 2018 | A1 |
20180285887 | Crispen | Oct 2018 | A1 |
20180301222 | Dew, Sr. et al. | Oct 2018 | A1 |
20180307859 | Lafever et al. | Oct 2018 | A1 |
20180336509 | Guttmann | Nov 2018 | A1 |
20180349583 | Turgeman et al. | Dec 2018 | A1 |
20180351888 | Howard | Dec 2018 | A1 |
20180352003 | Winn et al. | Dec 2018 | A1 |
20180357243 | Yoon | Dec 2018 | A1 |
20180365720 | Goldman et al. | Dec 2018 | A1 |
20180374030 | Barday et al. | Dec 2018 | A1 |
20180375814 | Hart | Dec 2018 | A1 |
20190005210 | Wiederspohn et al. | Jan 2019 | A1 |
20190012211 | Selvaraj | Jan 2019 | A1 |
20190012672 | Francesco | Jan 2019 | A1 |
20190019184 | Lacey et al. | Jan 2019 | A1 |
20190050547 | Welsh et al. | Feb 2019 | A1 |
20190087570 | Sloane | Mar 2019 | A1 |
20190096020 | Barday et al. | Mar 2019 | A1 |
20190108353 | Sadeh et al. | Apr 2019 | A1 |
20190130132 | Barbas et al. | May 2019 | A1 |
20190132350 | Smith et al. | May 2019 | A1 |
20190138496 | Yamaguchi | May 2019 | A1 |
20190139087 | Dabbs et al. | May 2019 | A1 |
20190148003 | Van Hoe | May 2019 | A1 |
20190156053 | Vogel et al. | May 2019 | A1 |
20190156058 | Van Dyne et al. | May 2019 | A1 |
20190171801 | Barday et al. | Jun 2019 | A1 |
20190179652 | Hesener et al. | Jun 2019 | A1 |
20190180051 | Barday et al. | Jun 2019 | A1 |
20190182294 | Rieke et al. | Jun 2019 | A1 |
20190188402 | Wang et al. | Jun 2019 | A1 |
20190266200 | Francolla | Aug 2019 | A1 |
20190266201 | Barday et al. | Aug 2019 | A1 |
20190266350 | Barday et al. | Aug 2019 | A1 |
20190268343 | Barday et al. | Aug 2019 | A1 |
20190268344 | Barday et al. | Aug 2019 | A1 |
20190272492 | Elledge et al. | Sep 2019 | A1 |
20190294818 | Barday et al. | Sep 2019 | A1 |
20190332802 | Barday et al. | Oct 2019 | A1 |
20190332807 | Lafever et al. | Oct 2019 | A1 |
20190333118 | Crimmins et al. | Oct 2019 | A1 |
20190354709 | Brinskelle | Nov 2019 | A1 |
20190356684 | Sinha et al. | Nov 2019 | A1 |
20190362169 | Lin et al. | Nov 2019 | A1 |
20190362268 | Fogarty et al. | Nov 2019 | A1 |
20190377901 | Balzer et al. | Dec 2019 | A1 |
20190378073 | Lopez et al. | Dec 2019 | A1 |
20190384934 | Kim | Dec 2019 | A1 |
20190392162 | Stern et al. | Dec 2019 | A1 |
20190392170 | Barday et al. | Dec 2019 | A1 |
20190392171 | Barday et al. | Dec 2019 | A1 |
20200020454 | McGarvey et al. | Jan 2020 | A1 |
20200050966 | Enuka et al. | Feb 2020 | A1 |
20200051117 | Mitchell | Feb 2020 | A1 |
20200057781 | McCormick | Feb 2020 | A1 |
20200074471 | Adjaoute | Mar 2020 | A1 |
20200081865 | Farrar et al. | Mar 2020 | A1 |
20200082270 | Gu et al. | Mar 2020 | A1 |
20200090197 | Rodriguez et al. | Mar 2020 | A1 |
20200092179 | Chieu et al. | Mar 2020 | A1 |
20200110589 | Bequet et al. | Apr 2020 | A1 |
20200110904 | Shinde et al. | Apr 2020 | A1 |
20200117737 | Gopalakrishnan et al. | Apr 2020 | A1 |
20200137097 | Zimmermann et al. | Apr 2020 | A1 |
20200143301 | Bowers | May 2020 | A1 |
20200143797 | Manoharan et al. | May 2020 | A1 |
20200159952 | Dain et al. | May 2020 | A1 |
20200159955 | Barlik et al. | May 2020 | A1 |
20200167653 | Manjunath et al. | May 2020 | A1 |
20200175424 | Kursun | Jun 2020 | A1 |
20200183655 | Barday et al. | Jun 2020 | A1 |
20200186355 | Davies | Jun 2020 | A1 |
20200193018 | Van Dyke | Jun 2020 | A1 |
20200193022 | Lunsford et al. | Jun 2020 | A1 |
20200210558 | Barday et al. | Jul 2020 | A1 |
20200210620 | Haletky | Jul 2020 | A1 |
20200211002 | Steinberg | Jul 2020 | A1 |
20200220901 | Barday et al. | Jul 2020 | A1 |
20200226156 | Borra et al. | Jul 2020 | A1 |
20200226196 | Brannon et al. | Jul 2020 | A1 |
20200242259 | Chirravuri et al. | Jul 2020 | A1 |
20200242719 | Lee | Jul 2020 | A1 |
20200250342 | Miller et al. | Aug 2020 | A1 |
20200252413 | Buzbee et al. | Aug 2020 | A1 |
20200252817 | Brouillette et al. | Aug 2020 | A1 |
20200272764 | Brannon et al. | Aug 2020 | A1 |
20200285755 | Kassoumeh et al. | Sep 2020 | A1 |
20200293679 | Handy Bosma et al. | Sep 2020 | A1 |
20200296171 | Mocanu et al. | Sep 2020 | A1 |
20200302089 | Barday et al. | Sep 2020 | A1 |
20200310917 | Tkachev et al. | Oct 2020 | A1 |
20200311310 | Barday et al. | Oct 2020 | A1 |
20200344243 | Brannon et al. | Oct 2020 | A1 |
20200356695 | Brannon et al. | Nov 2020 | A1 |
20200364369 | Brannon et al. | Nov 2020 | A1 |
20200372178 | Barday et al. | Nov 2020 | A1 |
20200394327 | Childress et al. | Dec 2020 | A1 |
20200401380 | Jacobs et al. | Dec 2020 | A1 |
20200401962 | Gottemukkala et al. | Dec 2020 | A1 |
20200410117 | Barday et al. | Dec 2020 | A1 |
20200410131 | Barday et al. | Dec 2020 | A1 |
20200410132 | Brannon et al. | Dec 2020 | A1 |
20210012341 | Garg et al. | Jan 2021 | A1 |
20210056569 | Silberman et al. | Feb 2021 | A1 |
20210081567 | Park et al. | Mar 2021 | A1 |
20210099449 | Frederick et al. | Apr 2021 | A1 |
20210110047 | Victor | Apr 2021 | A1 |
20210125089 | Nickl et al. | Apr 2021 | A1 |
20210136065 | Liokumovich et al. | May 2021 | A1 |
20210152496 | Kim et al. | May 2021 | A1 |
20210233157 | Crutchfield, Jr. | Jul 2021 | A1 |
20210243595 | Buck et al. | Aug 2021 | A1 |
20210248247 | Poothokaran et al. | Aug 2021 | A1 |
20210256163 | Fleming et al. | Aug 2021 | A1 |
20210279360 | Gimenez Palop et al. | Sep 2021 | A1 |
20210297441 | Olalere | Sep 2021 | A1 |
20210303828 | Lafreniere et al. | Sep 2021 | A1 |
20210312061 | Schroeder et al. | Oct 2021 | A1 |
20210326786 | Sun et al. | Oct 2021 | A1 |
20210328969 | Gaddam et al. | Oct 2021 | A1 |
20210382949 | Yastrebenetsky et al. | Dec 2021 | A1 |
20210397735 | Samatov et al. | Dec 2021 | A1 |
20210400018 | Vettaikaran et al. | Dec 2021 | A1 |
20210406712 | Bhide et al. | Dec 2021 | A1 |
20220217045 | Blau et al. | Jul 2022 | A1 |
Number | Date | Country |
---|---|---|
111496802 | Aug 2020 | CN |
112115859 | Dec 2020 | CN |
1394698 | Mar 2004 | EP |
2031540 | Mar 2009 | EP |
20130062500 | Jun 2013 | KR |
2001033430 | May 2001 | WO |
20020067158 | Aug 2002 | WO |
20030050773 | Jun 2003 | WO |
2005008411 | Jan 2005 | WO |
2007002412 | Jan 2007 | WO |
2008134203 | Nov 2008 | WO |
2012174659 | Dec 2012 | WO |
2015116905 | Aug 2015 | WO |
2020146028 | Jul 2020 | WO |
2022006421 | Jan 2022 | WO |
Entry |
---|
Office Action, dated Nov. 1, 2017, from corresponding U.S. Appl. No. 15/169,658. |
Office Action, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/380,485. |
Office Action, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/409,999. |
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,355. |
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,772. |
Office Action, dated Nov. 12, 2021, from corresponding U.S. Appl. No. 17/346,586. |
Office Action, dated Nov. 12, 2021, from corresponding U.S. Appl. No. 17/373,444. |
Office Action, dated Nov. 15, 2018, from corresponding U.S. Appl. No. 16/059,911. |
Office Action, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/552,758. |
Office Action, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/370,650. |
Office Action, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/486,350. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,885. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,889. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/572,347. |
Office Action, dated Nov. 19, 2019, from corresponding U.S. Appl. No. 16/595,342. |
Office Action, dated Nov. 20, 2019, from corresponding U.S. Appl. No. 16/595,327. |
Office Action, dated Nov. 23, 2018, from corresponding U.S. Appl. No. 16/042,673. |
Office Action, dated Nov. 23, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Office Action, dated Nov. 24, 2020, from corresponding U.S. Appl. No. 16/925,628. |
Office Action, dated Nov. 26, 2021, from corresponding U.S. Appl. No. 16/925,550. |
Office Action, dated Nov. 4, 2021, from corresponding U.S. Appl. No. 17/491,906. |
Office Action, dated Nov. 8, 2021, from corresponding U.S. Appl. No. 16/872,130. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/041,563. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,083. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,944. |
Office Action, dated Oct. 12, 2021, from corresponding U.S. Appl. No. 17/346,509. |
Office Action, dated Oct. 14, 2020, from corresponding U.S. Appl. No. 16/927,658. |
Office Action, dated Oct. 15, 2018, from corresponding U.S. Appl. No. 16/054,780. |
Office Action, dated Oct. 15, 2021, from corresponding U.S. Appl. No. 16/908,081. |
Office Action, dated Oct. 16, 2019, from corresponding U.S. Appl. No. 16/557,392. |
Office Action, dated Oct. 16, 2020, from corresponding U.S. Appl. No. 16/808,489. |
Office Action, dated Oct. 23, 2018, from corresponding U.S. Appl. No. 16/055,961. |
Office Action, dated Oct. 26, 2018, from corresponding U.S. Appl. No. 16/041,468. |
Office Action, dated Oct. 8, 2019, from corresponding U.S. Appl. No. 16/552,765. |
Office Action, dated Sep. 1, 2017, from corresponding U.S. Appl. No. 15/619,459. |
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,375. |
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,478. |
Office Action, dated Sep. 15, 2021, from corresponding U.S. Appl. No. 16/623,157. |
Office Action, dated Sep. 16, 2019, from corresponding U.S. Appl. No. 16/277,715. |
Office Action, dated Sep. 19, 2017, from corresponding U.S. Appl. No. 15/671,073. |
Office Action, dated Sep. 22, 2017, from corresponding U.S. Appl. No. 15/619,278. |
Office Action, dated Sep. 24, 2021, from corresponding U.S. Appl. No. 17/342,153. |
Office Action, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/989,086. |
Office Action, dated Sep. 5, 2017, from corresponding U.S. Appl. No. 15/619,469. |
Office Action, dated Sep. 6, 2017, from corresponding U.S. Appl. No. 15/619,479. |
Office Action, dated Sep. 7, 2017, from corresponding U.S. Appl. No. 15/633,703. |
Office Action, dated Sep. 8, 2017, from corresponding U.S. Appl. No. 15/619,251. |
Notice of Allowance, dated Apr. 12, 2017, from corresponding U.S. Appl. No. 15/256,419. |
Notice of Allowance, dated Apr. 17, 2020, from corresponding U.S. Appl. No. 16/593,639. |
Notice of Allowance, dated Apr. 19, 2021, from corresponding U.S. Appl. No. 17/164,029. |
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/505,430. |
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/512,033. |
Office Action, dated Aug. 15, 2019, from corresponding U.S. Appl. No. 16/505,461. |
Office Action, dated Aug. 18, 2021, from corresponding U.S. Appl. No. 17/222,725. |
Office Action, dated Aug. 19, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Office Action, dated Aug. 20, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Office Action, dated Aug. 23, 2017, from corresponding U.S. Appl. No. 15/626,052. |
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/169,643. |
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/619,451. |
Office Action, dated Aug. 24, 2020, from corresponding U.S. Appl. No. 16/595,327. |
Office Action, dated Aug. 27, 2019, from corresponding U.S. Appl. No. 16/410,296. |
Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/187,329. |
Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/334,948. |
Office Action, dated Aug. 29, 2017, from corresponding U.S. Appl. No. 15/619,237. |
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,212. |
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,382. |
Office Action, dated Aug. 30, 2021, from corresponding U.S. Appl. No. 16/938,520. |
Office Action, dated Aug. 6, 2019, from corresponding U.S. Appl. No. 16/404,491. |
Office Action, dated Aug. 6, 2020, from corresponding U.S. Appl. No. 16/862,956. |
Office Action, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/578,712. |
Office Action, dated Dec. 14, 2018, from corresponding U.S. Appl. No. 16/104,393. |
Office Action, dated Dec. 15, 2016, from corresponding U.S. Appl. No. 15/256,419. |
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/563,754. |
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/565,265. |
Office Action, dated Dec. 16, 2020, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Dec. 18, 2020, from corresponding U.S. Appl. No. 17/030,714. |
Office Action, dated Dec. 19, 2019, from corresponding U.S. Appl. No. 16/410,866. |
Office Action, dated Dec. 2, 2019, from corresponding U.S. Appl. No. 16/560,963. |
Office Action, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/593,639. |
Office Action, dated Dec. 24, 2020, from corresponding U.S. Appl. No. 17/068,454. |
Office Action, dated Dec. 3, 2018, from corresponding U.S. Appl. No. 16/055,998. |
Office Action, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/160,577. |
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/013,758. |
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/068,198. |
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 17/106,469. |
Office Action, dated Feb. 15, 2019, from corresponding U.S. Appl. No. 16/220,899. |
Office Action, dated Feb. 17, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Office Action, dated Feb. 18, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Office Action, dated Feb. 2, 2021, from corresponding U.S. Appl. No. 17/101,915. |
Office Action, dated Feb. 26, 2019, from corresponding U.S. Appl. No. 16/228,250. |
Office Action, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/013,757. |
Office Action, dated Feb. 5, 2020, from corresponding U.S. Appl. No. 16/586,202. |
Office Action, dated Feb. 6, 2020, from corresponding U.S. Appl. No. 16/707,762. |
Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 17/139,650. |
Office Action, dated Feb. 9, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Office Action, dated Jan. 18, 2019, from corresponding U.S. Appl. No. 16/055,984. |
Office Action, dated Jan. 22, 2021, from corresponding U.S. Appl. No. 17/099,270. |
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/505,426. |
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/700,049. |
Czeskis et al., “Lightweight Server Support for Browser-based CSRF Protection,” Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 273-284 (Year: 2013). |
Final Office Action, dated Feb. 25, 2022, from corresponding U.S. Appl. No. 17/346,586. |
Final Office Action, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/373,444. |
Final Office Action, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/380,485. |
Matte et al, “Do Cookie Banners Respect my Choice?: Measuring Legal Compliance of Banners from IAB Europe's Transparency and Consent Framework,” 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 791-809 (Year: 2020). |
Notice of Allowance, dated Feb. 24, 2022, from corresponding U.S. Appl. No. 17/234,205. |
Notice of Allowance, dated Feb. 24, 2022, from corresponding U.S. Appl. No. 17/549,170. |
Notice of Allowance, dated Mar. 16, 2022, from corresponding U.S. Appl. No. 17/486,350. |
Notice of Allowance, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 16/872,130. |
Notice of Allowance, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/535,098. |
Notice of Allowance, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/366,754. |
Notice of Allowance, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/475,244. |
Notice of Allowance, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/504,102. |
Notice of Allowance, dated Mar. 28, 2022, from corresponding U.S. Appl. No. 17/499,609. |
Notice of Allowance, dated Mar. 4, 2022, from corresponding U.S. Appl. No. 17/409,999. |
Office Action, dated Mar. 1, 2022, from corresponding U.S. Appl. No. 17/119,080. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/161,159. |
Office Action, dated Mar. 2, 2022, from corresponding U.S. Appl. No. 17/200,698. |
Office Action, dated Mar. 21, 2022, from corresponding U.S. Appl. No. 17/571,871. |
Office Action, dated Mar. 22, 2022, from corresponding U.S. Appl. No. 17/187,329. |
Sanchez-Rola et al., “Can I Opt Out Yet?: GDPR and the Global Illusion of Cookie Control,” Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, 2019, pp. 340-351 (Year: 2019). |
Office Action, dated Jan. 27, 2020, from corresponding U.S. Appl. No. 16/656,895. |
Office Action, dated Jan. 28, 2020, from corresponding U.S. Appl. No. 16/712,104. |
Office Action, dated Jan. 29, 2021, from corresponding U.S. Appl. No. 17/101,106. |
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,566. |
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,628. |
Office Action, dated Jan. 4, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Office Action, dated Jan. 7, 2020, from corresponding U.S. Appl. No. 16/572,182. |
Office Action, dated Jul. 13, 2021, from corresponding U.S. Appl. No. 17/306,496. |
Office Action, dated Jul. 15, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Jul. 18, 2019, from corresponding U.S. Appl. No. 16/410,762. |
Office Action, dated Jul. 19, 2021, from corresponding U.S. Appl. No. 17/316,179. |
Office Action, dated Jul. 21, 2017, from corresponding U.S. Appl. No. 15/256,430. |
Office Action, dated Jul. 21, 2021, from corresponding U.S. Appl. No. 16/901,654. |
Office Action, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/436,616. |
Office Action, dated Jul. 24, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Office Action, dated Jul. 27, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Office Action, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/862,952. |
Office Action, dated Jun. 24, 2019, from corresponding U.S. Appl. No. 16/410,336. |
Office Action, dated Jun. 24, 2021, from corresponding U.S. Appl. No. 17/234,205. |
Office Action, dated Jun. 27, 2019, from corresponding U.S. Appl. No. 16/404,405. |
Office Action, dated Jun. 7, 2021, from corresponding U.S. Appl. No. 17/200,698. |
Office Action, dated Jun. 9, 2021, from corresponding U.S. Appl. No. 17/222,523. |
Office Action, dated Mar. 11, 2019, from corresponding U.S. Appl. No. 16/220,978. |
Office Action, dated Mar. 12, 2019, from corresponding U.S. Appl. No. 16/221,153. |
Office Action, dated Mar. 15, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Office Action, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/719,488. |
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/565,395. |
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Office Action, dated Mar. 20, 2020, from corresponding U.S. Appl. No. 16/778,709. |
Office Action, dated Mar. 23, 2020, from corresponding U.S. Appl. No. 16/671,444. |
Office Action, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/278,121. |
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/701,043. |
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/791,006. |
Office Action, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/278,120. |
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Office Action, dated Mar. 30, 2021, from corresponding U.S. Appl. No. 17/151,399. |
Office Action, dated Mar. 4, 2019, from corresponding U.S. Appl. No. 16/237,083. |
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,497. |
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,503. |
Office Action, dated May 15, 2020, from corresponding U.S. Appl. No. 16/808,493. |
Office Action, dated May 16, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Office Action, dated May 17, 2019, from corresponding U.S. Appl. No. 16/277,539. |
Office Action, dated May 18, 2021, from corresponding U.S. Appl. No. 17/196,570. |
Office Action, dated May 2, 2018, from corresponding U.S. Appl. No. 15/894,809. |
Office Action, dated May 2, 2019, from corresponding U.S. Appl. No. 16/104,628. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,944. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,948. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/863,226. |
Office Action, dated May 5, 2020, from corresponding U.S. Appl. No. 16/410,336. |
Imran et al, “Searching in Cloud Object Storage by Using a Metadata Model”, IEEE, 2014, retrieved online on Apr. 1, 2010, pp. 121 128. Retrieved from the Internet: URL: https://ieeeexplore.ieee.org/stamp/stampjsp? (Year: 2014). |
Iordanou et al, “Tracing Cross Border Web Tracking,” Oct. 31, 2018, pp. 329-342, ACM (Year: 2018). |
Islam, et al, “Mixture Model Based Label Association Techniques for Web Accessibility,” ACM, pp. 67-76 (Year: 2010). |
Jensen, et al, “Temporal Data Management,” IEEE Transactions on Knowledge and Data Engineering, vol. 11, No. 1, Jan./Feb. 1999, pp. 36-44 (Year: 1999). |
Joel Reardon et al., Secure Data Deletion from Persistent Media, ACM, Nov. 4, 2013, retrieved online on Jun. 13, 2019, pp. 271-283. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/2520000/2516699/p271-reardon.pdf? (Year: 2013). |
Joonbakhsh et al, “Mining and Extraction of Personal Software Process measures through IDE Interaction logs,” ACM/IEEE, 2018, retrieved online on Dec. 2, 2019, pp. 78-81. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/3200000/3196462/p78-joonbakhsh.pdf? (Year: 2018). |
Jun et al, “Scalable Multi-Access Flash Store for Big Data Analytics,” ACM, pp. 55-64 (Year: 2014). |
Kirkham, et al, “A Personal Data Store for an Internet of Subjects,” IEEE, pp. 92-97 (Year: 2011). |
Korba, Larry et al.; “Private Data Discovery for Privacy Compliance in Collaborative Environments”; Cooperative Design, Visualization, and Engineering; Springer Berlin Heidelberg; Sep. 21, 2008; pp. 142-150. |
Krol, Kat, et al, Control versus Effort in Privacy Warnings for Webforms, ACM, Oct. 24, 2016, pp. 13-23. |
Lamb et al, “Role-Based Access Control for Data Service Integration”, ACM, pp. 3-11 (Year: 2006). |
Leadbetter, et al, “Where Big Data Meets Linked Data: Applying Standard Data Models to Environmental Data Streams,” IEEE, pp. 2929-2937 (Year: 2016). |
Lebeau, Franck, et al, “Model-Based Vulnerability Testing for Web Applications,” 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops, pp. 445-452, IEEE, 2013 (Year: 2013). |
Li, Ninghui, et al, t-Closeness: Privacy Beyond k-Anonymity and l-Diversity, IEEE, 2014, p. 106-115. |
Liu et al, “Cross-Geography Scientific Data Transferring Trends and Behavior,” ACM, pp. 267-278 (Year: 2018). |
Liu, Kun, et al, A Framework for Computing the Privacy Scores of Users in Online Social Networks, ACM Transactions an Knowledge Discovery from Data, vol. 5, No. 1, Article 6, Dec. 2010, 30 pages. |
Liu, Yandong, et al, “Finding the Right Consumer: Optimizing for Conversion in Display Advertising Campaigns,” Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, Feb. 2, 2012, pp. 473-428 (Year: 2012). |
Lizar et al, “Usable Consents: Tracking and Managing Use of Personal Data with a Consent Transaction Receipt,” Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014, pp. 647-652 (Year: 2014). |
Luu, et al, “Combined Local and Holistic Facial Features for Age-Determination,” 2010 11th Int. Conf. Control, Automation, Robotics and Vision, Singapore, Dec. 7, 2010, IEEE, pp. 900-904 (Year: 2010). |
Ma Ziang, et al, “LibRadar: Fast and Accurate Detection of Third-Party Libraries in Android Apps,” 2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion (ICSE-C), ACM, May 14, 2016, pp. 653-656, DOI: http://dx.doi.org/10.1145/2889160.2889178, p. 653, r.col, par. 1-3; figure 3 (Year: 2016). |
Mandal, et al, “Automated Age Prediction Using Wrinkles Features of Facial Images and Neural Network,” International Journal of Emerging Engineering Research and Technology, vol. 5, Issue 2, Feb. 2017, pp. 12-20 (Year: 2017). |
Maret et al, “Multimedia Information Interchange: Web Forms Meet Data Servers”, IEEE, pp. 499-505 (Year: 1999). |
Martin, et al, “Hidden Surveillance by Web Sites: Web Bugs in Contemporary Use,” Communications of the ACM, vol. 46, No. 12, Dec. 2003, pp. 258-264. Internet source https://doi.org/10.1145/953460.953509 (Year: 2003). |
McGarth et al, “Digital Library Technology for Locating and Accessing Scientific Data”, ACM, pp. 188-194 (Year: 1999). |
Mesbah et al, “Crawling Ajax-Based Web Applications Through Dynamic Analysis of User Interface State Changes,” ACM Transactions on the Web (TWEB) vol. 6, No. 1, Article 3, Mar. 2012, pp. 1-30 (Year: 2012). |
Moiso et al, “Towards a User-Centric Personal Data Ecosystem The Role of the Bank of Individual's Data,” 2012 16th International Conference on Intelligence in Next Generation Networks, Berlin, 2012, pp. 202-209 (Year: 2012). |
Moscoso-Zea et al, “Datawarehouse Design for Educational Data Mining,” IEEE, pp. 1-6 (Year: 2016). |
Mudepalli et al, “An efficient data retrieval approach using blowfish encryption on cloud CipherText Retrieval in Cloud Computing” IEEE, pp. 267-271 (Year: 2017). |
Mundada et al, “Half-Baked Cookies: Hardening Cookie-Based Authentication for the Modem Web,” Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, 2016, pp. 675-685 (Year: 2016). |
Newman et al, “High Speed Scientific Data Transfers using Software Defined Networking,” ACM, pp. 1-9 (Year: 2015). |
Newman, “Email Archive Overviews using Subject Indexes”, ACM, pp. 652-653, 2002 (Year: 2002). |
Nishikawa, Taiji, English Translation of JP 2019154505, Aug. 27, 2019 (Year: 2019). |
Notice of Filing Date for Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Apr. 12, 2018. |
O'Keefe et al, “Privacy-Preserving Data Linkage Protocols,” Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, 2004, pp. 94-102 (Year: 2004). |
Olenski, Steve, For Consumers, Data Is A Matter Of Trust, CMO Network, Apr. 18, 2016, https://www.forbes.com/sites/steveolenski/2016/04/18/for-consumers-data-is-a-matter-of-trust/#2e48496278b3. |
Pearson, et al, “A Model-Based Privacy Compliance Checker,” IJEBR, vol. 5, No. 2, pp. 63-83, 2009, Nov. 21, 2008. [Online]. Available: http://dx.doi.org/10.4018/jebr.2009040104 (Year: 2008). |
Pechenizkiy et al., “Process Mining Online Assessment Data,” Educational Data Mining, pp. 279-288 (Year: 2009). |
Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Mar. 27, 2018. |
Petrie et al, “The Relationship between Accessibility and Usability of Websites”, ACM, pp. 397-406 (Year: 2007). |
Pfeifle, Sam, The Privacy Advisor, IAPP and AvePoint Launch New Free PIA Tool, International Association of Privacy Professionals, Mar. 5, 2014. |
Pfeifle, Sam, The Privacy Advisor, IAPP Heads to Singapore with APIA Template in Tow, International Association of Privacy Professionals, https://iapp.org/news/a/iapp-heads-to-singapore-with-apia-template_in_tow/, Mar. 28, 2014, p. 1-3. |
Ping et al, “Wide Area Placement of Data Replicas for Fast and Highly Available Data Access,” ACM, pp. 1-8 (Year: 2011). |
Popescu-Zeletin, “The Data Access and Transfer Support in a Local Heterogeneous Network (HMINET)”, IEEE, pp. 147-152 (Year: 1979). |
Porter, “De-ldentified Data and Third Party Data Mining: The Risk of Re-Identification of Personal Information,” Shidler JL Com. & Tech. 5, 2008, pp. 1-9 (Year: 2008). |
Pretorius, et al, “Attributing Users Based on Web Browser History,” 2017 IEEE Conference on Application, Information and Network Security (AINS), 2017, pp. 69-74 (Year: 2017). |
Qing-Jiang et al, “The (P, a, K) Anonymity Model for Privacy Protection of Personal Information in the Social Networks,” 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, vol. 2 IEEE, 2011, pp. 420-423 (Year: 2011). |
Qiu, et al, “Design and Application of Data Integration Platform Based on Web Services and XML,” IEEE, pp. 253-256 (Year: 2016). |
Radu, et al, “Analyzing Risk Evaluation Frameworks and Risk Assessment Methods,” IEEE, Dec. 12, 2020, pp. 1-6 (Year: 2020). |
Reardon et al., User-Level Secure Deletion on Log-Structured File Systems, ACM, 2012, retrieved online on Apr. 22, 2021, pp. 1-11. Retrieved from the Internet: URL: http://citeseerx.ist.psu.edu/viewdoc/download;isessionid=450713515DC7F19F8ED09AE961D4B60E. (Year: 2012). |
Carpineto et al, “Automatic Assessment of Website Compliance to the European Cookie Law with CooLCheck,” Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society, 2016, pp. 135-138 (Year: 2016). |
Cerpzone, “How to Access Data on Data Archival Storage and Recovery System”, https://www.saj.usace.army.mil/Portals/44/docs/Environmental/Lake%20O%20Watershed/15February2017/How%20To%20Access%20Model%20Data%20on%20DASR.pdf?ver=2017-02-16-095535-633, Feb. 16, 2017. |
Cha et al, “A Data-Driven Security Risk Assessment Scheme for Personal Data Protection,” IEEE, pp. 50510-50517 (Year: 2018). |
Cha, et al, “Process-Oriented Approach for Validating Asset Value for Evaluating Information Security Risk,” IEEE, Aug. 31, 2009, pp. 379-385 (Year: 2009). |
Chapados et al, “Scoring Models for Insurance Risk Sharing Pool Optimization,” 2008, IEEE, pp. 97-105 (Year: 2008). |
Cheng, Raymond, et al, “Radiatus: A Shared-Nothing Server-Side Web Architecture,” Proceedings of the Seventh ACM Symposium on Cloud Computing, Oct. 5, 2016, pp. 237-250 (Year: 2016). |
Choi et al, “Retrieval Effectiveness of Table of Contents and Subject Headings,” ACM, pp. 103-104 (Year: 2007). |
Chowdhury et al, “A System Architecture for Subject-Centric Data Sharing”, ACM, pp. 1-10 (Year: 2018). |
Chowdhury et al, “Managing Data Transfers in Computer Clusters with Orchestra,” ACM, pp. 98-109 (Year: 2011). |
Decision Regarding Institution of Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, Oct. 11, 2018. |
Dimou et al, “Machine-Interpretable Dataset and Service Descriptions for Heterogeneous Data Access and Retrieval”, ACM, pp. 145-152 (Year: 2015). |
Dokholyan et al, “Regulatory and Ethical Considerations for Linking Clinical and Administrative Databases,” American Heart Journal 157.6 (2009), pp. 971-982 (Year: 2009). |
Dunkel et al, “Data Organization and Access for Efficient Data Mining”, IEEE, pp. 522-529 (Year: 1999). |
Emerson, et al, “A Data Mining Driven Risk Profiling Method for Road Asset Management,” ACM, pp. 1267-1275 (Year: 2013). |
Enck, William, et al, TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones, ACM Transactions on Computer Systems, vol. 32, No. 2, Article 5, Jun. 2014, p. 5:1-5:29. |
Everypixel Team, “A New Age Recognition API Detects the Age of People on Photos,” May 20, 2019, pp. 1-5 (Year: 2019). |
Falahrastegar, Marjan, et al, Tracking Personal Identifiers Across the Web, Medical Image Computing and Computer-Assisted Intervention—Miccai 2015, 18th International Conference, Oct. 5, 2015, Munich, Germany. |
Fan et al, “Intrusion Investigations with Data-hiding for Computer Log-file Forensics,” IEEE, pp. 1-6 (Year: 2010). |
Final Written Decision Regarding Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, dated Oct. 10, 2019. |
Francis, Andre, Business Mathematics and Statistics, South-Western Cengage Learning, 2008, Sixth Edition. |
Friedman et al., “Data Mining with Differential Privacy,” ACM, Jul. 2010, pp. 493-502 (Year: 2010). |
Friedman et al, “Informed Consent in the Mozilla Browser: Implementing Value-Sensitive Design,” Proceedings of the 35th Annual Hawaii International Conference on System Sciences, 2002, IEEE, pp. 1-10 (Year: 2002). |
Frikken, Keith B., et al, Yet Another Privacy Metric for Publishing Micro-data, Miami University, Oct. 27, 2008, p. 117-121. |
Fung et al, “Discover Information and Knowledge from Websites using an Integrated Summarization and Visualization Framework”, IEEE, pp. 232-235 (Year: 2010). |
Gajare et al, “Improved Automatic Feature Selection Approach for Health Risk Prediction,” Feb. 16, 2018, IEEE, pp. 816-819 (Year: 2018). |
Ghiglieri, Marco et al.; Personal DLP for Facebook, 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (Percom Workshops); IEEE; Mar. 24, 2014; pp. 629-634. |
Gilda, et al, “Blockchain for Student Data Privacy and Consent,” 2018 International Conference on Computer Communication and Informatics, Jan. 4-6, 2018, IEEE, pp. 1-5 (Year: 2018). |
Golab, et al, “Issues in Data Stream Management,” ACM, SIGMOD Record, vol. 32, No. 2, Jun. 2003, pp. 5-14 (Year: 2003). |
Golfarelli et al, “Beyond Data Warehousing: What's Next in Business Intelligence?,” ACM, pp. 1-6 (Year: 2004). |
Gonçalves et al, “The XML Log Standard for Digital Libraries: Analysis, Evolution, and Deployment,” IEEE, pp. 312-314 (Year: 2003). |
Goni, Kyriaki, “Deletion Process_Only you can see my history: Investigating Digital Privacy, Digital Oblivion, and Control on Personal Data Through an Interactive Art Installation,” ACM, 2016, retrieved online on Oct. 3, 2019, pp. 324-333. Retrieved from the Internet URL: http://delivery.acm.org/10.1145/2920000/291. |
Gowadia et al, “RDF Metadata for XML Access Control,” ACM, pp. 31-48 (Year: 2003). |
Grolinger, et al, “Data Management in Cloud Environments: NoSQL and NewSQL Data Stores,” Journal of Cloud Computing: Advances, Systems and Applications, pp. 1-24 (Year: 2013). |
Guo, et al, “OPAL: A Passe-partout for Web Forms,” ACM, pp. 353-356 (Year: 2012). |
Gustarini, et al, “Evaluation of Challenges in Human Subject Studies “In-the-Wild” Using Subjects' Personal Smartphones,” ACM, pp. 1447-1456 (Year: 2013). |
Hacigümüs, Hakan, et al, Executing SQL over Encrypted Data in the Database-Service-Provider Model, ACM, Jun. 4, 2002, pp. 216-227. |
Halevy, et al, “Schema Mediation in Peer Data Management Systems,” IEEE, Proceedings of the 19th International Conference on Data Engineering, 2003, pp. 505-516 (Year: 2003). |
Hauch, et al, “Information Intelligence: Metadata for Information Discovery, Access, and Integration,” ACM, pp. 793-798 (Year: 2005). |
Hernandez, et al, “Data Exchange with Data-Metadata Translations,” ACM, pp. 260-273 (Year: 2008). |
Hinde, “A Model to Assess Organisational Information Privacy Maturity Against the Protection of Personal Information Act” Dissertation University of Cape Town 2014, pp. 1-121 (Year: 2014). |
Hodge, et al, “Managing Virtual Data Marts with Metapointer Tables,” pp. 1-7 (Year: 2002). |
Horrall et al, “Evaluating Risk: IBM's Country Financial Risk and Treasury Risk Scorecards,” Jul. 21, 2014, IBM, vol. 58, issue 4, pp. 2:1-2:9 (Year: 2014). |
Hu, et al, “Attribute Considerations for Access Control Systems,” NIST Special Publication 800-205, Jun. 2019, pp. 1-42 (Year: 2019). |
Hu, et al, “Guide to Attribute Based Access Control (ABAC) Definition and Considerations (Draft),” NIST Special Publication 800-162, pp. 1-54 (Year: 2013). |
Huang, et al, “A Study on Information Security Management with Personal Data Protection,” IEEE, Dec. 9, 2011, pp. 624-630 (Year: 2011). |
Huner et al, “Towards a Maturity Model for Corporate Data Quality Management”, ACM, pp. 231-238, 2009 (Year: 2009). |
Hunton & Williams LLP, The Role of Risk Management in Data Protection, Privacy Risk Framework and the Risk-based Approach to Privacy, Centre for Information Policy Leadership, Workshop II, Nov. 23, 2014. |
Huo et al, “A Cloud Storage Architecture Model for Data-lntensive Applications,” IEEE, pp. 1-4 (Year: 2011). |
IAPP, Daily Dashboard, PIA Tool Stocked With New Templates for DPI, Infosec, International Association of Privacy Professionals, Apr. 22, 2014. |
Regulation (EU) 2016/679, “On the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation),” Official Journal of the European Union, May 4, 2016, pp. L 119/1-L 119/88 (Year: 2016). |
Roesner et al, “Detecting and Defending Against Third-Party Tracking on the Web,” 9th USENIX Symposium on Networked Systems Design and Implementation, Apr. 11, 2013, pp. 1-14, ACM (Year: 2013). |
Rozepz, “What is Google Privacy Checkup? Everything You Need to Know,” Tom's Guide web post, Apr. 26, 2018, pp. 1-11 (Year: 2018). |
Salim et al, “Data Retrieval and Security using Lightweight Directory Access Protocol”, IEEE, pp. 685-688 (Year: 2009). |
Santhisree, et al, “Web Usage Data Clustering Using Dbscan Algorithm and Set Similarities,” IEEE, pp. 220-224 (Year: 2010). |
Sanzo et al, “Analytical Modeling of Lock-Based Concurrency Control with Arbitrary Transaction Data Access Patterns,” ACM, pp. 69-78 (Year: 2010). |
Schwartz, Edward J., et al, 2010 IEEE Symposium on Security and Privacy: All You Ever Wanted to Know About Dynamic Analysis and forward Symbolic Execution (but might have been afraid to ask), Carnegie Mellon University, IEEE Computer Society, 2010, p. 317-331. |
Sedinic et al., “Security Risk Management in Complex Organization,” May 29, 2015, IEEE, pp. 1331-1337 (Year: 2015). |
Singh, et al, “A Metadata Catalog Service for Data Intensive Applications,” ACM, pp. 1-17 (Year: 2003). |
Slezak, et al, “Brighthouse: An Analytic Data Warehouse for Ad-hoc Queries,” ACM, pp. 1337-1345 (Year: 2008). |
Soceanu, et al, “Managing the Privacy and Security of eHealth Data,” May 29, 2015, IEEE, pp. 1-8 (Year: 2015). |
Srinivasan et al, “Descriptive Data Analysis of File Transfer Data,” ACM, pp. 1-8 (Year: 2014). |
Srivastava, Agrima, et al, Measuring Privacy Leaks in Online Social Networks, International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013. |
Stack Overflow, “Is there a way to force a user to scroll to the bottom of a div?,” Stack Overflow, pp. 1-11, Nov. 2013. [Online], Available: https://stackoverflow.com/questions/2745935/is-there-a-way-to-force-a-user-to-scroll-to-the-bottom-of-a-div (Year: 2013). |
Stern, Joanna, “iPhone Privacy Is Broken . . . and Apps Are to Blame”, The Wall Street Journal, wsj.com, May 31, 2019. |
Strodl, et al, “Personal & SOHO Archiving,” Vienna University of Technology, Vienna, Austria, JCDL '08, Jun. 16-20, 2008, Pittsburgh, Pennsylvania, USA, pp. 115-123 (Year: 2008). |
Sukumar et al, “Review on Modern Data Preprocessing Techniques in Web Usage Mining (WUM),” IEEE, 2016, pp. 64-69 (Year: 2016). |
Symantec, Symantex Data Loss Prevention—Discover, monitor, and protect confidential data; 2008; Symantec Corporation; http://www.mssuk.com/images/Symantec%2014552315_IRC_BR_DLP_03.09_sngl.pdf. |
Tanasa et al, “Advanced Data Preprocessing for Intersites Web Usage Mining,” IEEE, Mar. 2004, pp. 59-65 (Year: 2004). |
Tanwar, et al, “Live Forensics Analysis: Violations of Business Security Policy,” 2014 International Conference on Contemporary Computing and Informatics (IC31), 2014, pp. 971-976 (Year: 2014). |
The Cookie Collective, Optanon Cookie Policy Generator, The Cookie Collective, Year 2016, http://web.archive.org/web/20160324062743/https:/optanon.com/. |
Thuraisingham, “Security Issues for the Semantic Web,” Proceedings 27th Annual International Computer Software and Applications Conference, COMPSAC 2003, Dallas, TX, USA, 2003, pp. 633-638 (Year: 2003). |
TRUSTe Announces General Availability of Assessment Manager for Enterprises to Streamline Data Privacy Management with Automation, PRNewswire, Mar. 4, 2015. |
Tsai et al, “Determinants of Intangible Assets Value: The Data Mining Approach,” Knowledge Based System, pp. 67-77 http://www.elsevier.com/locate/knosys (Year: 2012). |
Tuomas Aura et al., Scanning Electronic Documents for Personally Identifiable Information, ACM, Oct. 30, 2006, retrieved online on Jun. 13, 2019, pp. 41-49. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/1180000/1179608/p41-aura.pdf? (Year: 2006). |
Van Eijk et al, “The Impact of User Location on Cookie Notices (Inside and Outside of the European Union,” IEEE Security & Privacy Workshop on Technology and Consumer Protection (CONPRO '19), Jan. 1, 2019 (Year: 2019). |
Wang et al, “Revealing Key Non-Financial Factors for Online Credit-Scoring in E-Financing,” 2013, IEEE, pp. 1-6 (Year: 2013). |
Wang et al, “Secure and Efficient Access to Outsourced Data,” ACM, pp. 55-65 (Year: 2009). |
Weaver et al, “Understanding Information Preview in Mobile Email Processing”, ACM, pp. 303-312, 2011 (Year: 2011). |
Wu et al, “Data Mining with Big Data,” IEEE, Jan. 2014, pp. 97-107, vol. 26, No. 1, (Year: 2014). |
www.truste.com (1), 200150207, Internet Archive Wayback Machine, www.archive.org,2_7_2015. |
Xu, et al, “GatorShare: A File System Framework for High-Throughput Data Management,” ACM, pp. 776-786 (Year: 2010). |
Yang et al, “DAC-MACS: Effective Data Access Control for Multiauthority Cloud Storage Systems,” IEEE, pp. 1790-1801 (Year: 2013). |
Yang et al, “Mining Web Access Sequence with Improved Apriori Algorithm,” IEEE, 2017, pp. 780-784 (Year: 2017). |
Ye et al, “An Evolution-Based Cache Scheme for Scalable Mobile Data Access,” ACM, pp. 1-7 (Year: 2007). |
Yin et al, “Multibank Memory Optimization for Parallel Data Access in Multiple Data Arrays”, ACM, pp. 1-8 (Year: 2016). |
Yiu et al, “Outsourced Similarity Search on Metric Data Assets”, IEEE, pp. 338-352 (Year: 2012). |
Yu, “Using Data from Social Media Websites to Inspire the Design of Assistive Technology”, ACM, pp. 1-2 (Year: 2016). |
Yu, et al, “Performance and Fairness Issues in Big Data Transfers,” ACM, pp. 9-11 (Year: 2014). |
Zannone, et al, “Maintaining Privacy on Derived Objects,” ACM, pp. 10-19 (Year: 2005). |
Zhang et al, “Data Transfer Performance Issues for a Web Services Interface to Synchrotron Experiments”, ACM, pp. 59-65 (Year: 2007). |
Zhang et al, “Dynamic Topic Modeling for Monitoring Market Competition from Online Text and Image Data”, ACM, pp. 1425-1434 (Year: 2015). |
Zheng, et al, “Methodologies for Cross-Domain Data Fusion: An Overview,” IEEE, pp. 16-34 (Year: 2015). |
Zheng, et al, “Toward Assured Data Deletion in Cloud Storage,” IEEE, vol. 34, No. 3, pp. 101-107 May/Jun. 2020 (Year: 2020). |
Zhu, et al, “Dynamic Data Integration Using Web Services,” IEEE, pp. 1-8 (Year: 2004). |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Notice of Allowance, dated Jun. 11, 2021, from corresponding U.S. Appl. No. 17/216,436. |
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/278,123. |
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/363,454. |
Notice of Allowance, dated Jun. 16, 2020, from corresponding U.S. Appl. No. 16/798,818. |
Notice of Allowance, dated Jun. 17, 2020, from corresponding U.S. Appl. No. 16/656,895. |
Notice of Allowance, dated Jun. 18, 2019, from corresponding U.S. Appl. No. 16/410,566. |
Notice of Allowance, dated Jun. 19, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/042,673. |
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/055,984. |
Notice of Allowance, dated Jun. 2, 2021, from corresponding U.S. Appl. No. 17/198,581. |
Notice of Allowance, dated Jun. 21, 2019, from corresponding U.S. Appl. No. 16/404,439. |
Notice of Allowance, dated Jun. 22, 2020, from corresponding U.S. Appl. No. 16/791,337. |
Notice of Allowance, dated Jun. 27, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Notice of Allowance, dated Jun. 4, 2019, from corresponding U.S. Appl. No. 16/159,566. |
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/220,899. |
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/357,260. |
Notice of Allowance, dated Jun. 6, 2018, from corresponding U.S. Appl. No. 15/875,570. |
Notice of Allowance, dated Jun. 6, 2019, from corresponding U.S. Appl. No. 16/159,628. |
Notice of Allowance, dated Jun. 7, 2021, from corresponding U.S. Appl. No. 17/099,270. |
Notice of Allowance, dated Jun. 8, 2020, from corresponding U.S. Appl. No. 16/712,104. |
Notice of Allowance, dated Mar. 1, 2018, from corresponding U.S. Appl. No. 15/853,674. |
Notice of Allowance, dated Mar. 1, 2019, from corresponding U.S. Appl. No. 16/059,911. |
Notice of Allowance, dated Mar. 10, 2021, from corresponding U.S. Appl. No. 16/925,628. |
Notice of Allowance, dated Mar. 10, 2021, from corresponding U.S. Appl. No. 17/128,666. |
Notice of Allowance, dated Mar. 13, 2019, from corresponding U.S. Appl. No. 16/055,083. |
Notice of Allowance, dated Mar. 14, 2019, from corresponding U.S. Appl. No. 16/055,944. |
Notice of Allowance, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/778,704. |
Notice of Allowance, dated Mar. 16, 2021, from corresponding U.S. Appl. No. 17/149,380. |
Notice of Allowance, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/560,885. |
Notice of Allowance, dated Mar. 18, 2020, from corresponding U.S. Appl. No. 16/560,963. |
Notice of Allowance, dated Mar. 19, 2021, from corresponding U.S. Appl. No. 17/013,757. |
Notice of Allowance, dated Mar. 2, 2018, from corresponding U.S. Appl. No. 15/858,802. |
Notice of Allowance, dated Mar. 24, 2020, from corresponding U.S. Appl. No. 16/552,758. |
Notice of Allowance, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/054,780. |
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/560,889. |
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/578,712. |
Notice of Allowance, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/226,280. |
Notice of Allowance, dated Mar. 29, 2019, from corresponding U.S. Appl. No. 16/055,998. |
Notice of Allowance, dated Mar. 31, 2020, from corresponding U.S. Appl. No. 16/563,744. |
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/013,758. |
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/162,205. |
Notice of Allowance, dated May 1, 2020, from corresponding U.S. Appl. No. 16/586,202. |
Notice of Allowance, dated May 11, 2020, from corresponding U.S. Appl. No. 16/786,196. |
Notice of Allowance, dated May 13, 2021, from corresponding U.S. Appl. No. 17/101,915. |
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/505,430. |
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/808,496. |
Notice of Allowance, dated May 20, 2020, from corresponding U.S. Appl. No. 16/707,762. |
Notice of Allowance, dated May 21, 2018, from corresponding U.S. Appl. No. 15/896,790. |
International Search Report, dated Feb. 11, 2022, from corresponding International Application No. PCT/US2021/053518. |
Jiahao Chen et al. “Fairness Under Unawareness: Assessing Disparity when Protected Class is Unobserved,” ARXIV.ORG, Cornell University Library, 201 Olin Library Cornell University, Ithaca, NY 14853, Nov. 27, 2018 (Nov. 27, 2018), Section 2, Figure 2. (Year 2018). |
Notice of Allowance, dated Feb. 1, 2022, from corresponding U.S. Appl. No. 17/346,509. |
Notice of Allowance, dated Feb. 14, 2022, from corresponding U.S. Appl. No. 16/623,157. |
Notice of Allowance, dated Feb. 22, 2022, from corresponding U.S. Appl. No. 17/535,065. |
Notice of Allowance, dated Feb. 4, 2022, from corresponding U.S. Appl. No. 17/520,272. |
Notice of Allowance, dated Feb. 8, 2022, from corresponding U.S. Appl. No. 17/342,153. |
Notice of Allowance, dated Jan. 31, 2022, from corresponding U.S. Appl. No. 17/472,948. |
Office Action, dated Feb. 16, 2022, from corresponding U.S. Appl. No. 16/872,031. |
Office Action, dated Feb. 9, 2022, from corresponding U.S. Appl. No. 17/543,546. |
Office Action, dated Jan. 31, 2022, from corresponding U.S. Appl. No. 17/493,290. |
Sarkar et al, “Towards Enforcement of the EU GDPR: Enabling Data Erasure,” 2018 IEEE Confs on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing, Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatics, 2018, pp. 222-229, IEEE (Year: 2018). |
Written Opinion of the International Searching Authority, dated Feb. 11, 2022, from corresponding International Application No. PCT/US2021/053518. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/865,874. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 17/199,514. |
Notice of Allowance, dated May 27, 2020, from corresponding U.S. Appl. No. 16/820,208. |
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 16/927,658. |
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 17/198,757. |
Notice of Allowance, dated May 28, 2019, from corresponding U.S. Appl. No. 16/277,568. |
Notice of Allowance, dated May 28, 2020, from corresponding U.S. Appl. No. 16/799,279. |
Notice of Allowance, dated May 28, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Notice of Allowance, dated May 5, 2017, from corresponding U.S. Appl. No. 15/254,901. |
Notice of Allowance, dated May 5, 2020, from corresponding U.S. Appl. No. 16/563,754. |
Notice of Allowance, dated May 7, 2020, from corresponding U.S. Appl. No. 16/505,426. |
Notice of Allowance, dated May 7, 2021, from corresponding U.S. Appl. No. 17/194,662. |
Notice of Allowance, dated Nov. 14, 2019, from corresponding U.S. Appl. No. 16/436,616. |
Notice of Allowance, dated Nov. 16, 2021, from corresponding U.S. Appl. No. 17/491,871. |
Notice of Allowance, dated Nov. 2, 2018, from corresponding U.S. Appl. No. 16/054,762. |
Notice of Allowance, dated Nov. 22, 2021, from corresponding U.S. Appl. No. 17/383,889. |
Notice of Allowance, dated Nov. 23, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Notice of Allowance, dated Nov. 24, 2020, from corresponding U.S. Appl. No. 17/027,019. |
Notice of Allowance, dated Nov. 25, 2020, from corresponding U.S. Appl. No. 17/019,771. |
Notice of Allowance, dated Nov. 26, 2019, from corresponding U.S. Appl. No. 16/563,735. |
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/570,712. |
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/577,634. |
Notice of Allowance, dated Nov. 3, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Notice of Allowance, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/560,965. |
Notice of Allowance, dated Nov. 7, 2017, from corresponding U.S. Appl. No. 15/671,073. |
Notice of Allowance, dated Nov. 8, 2018, from corresponding U.S. Appl. No. 16/042,642. |
Notice of Allowance, dated Nov. 9, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Notice of Allowance, dated Oct. 1, 2021, from corresponding U.S. Appl. No. 17/340,395. |
Notice of Allowance, dated Oct. 10, 2019, from corresponding U.S. Appl. No. 16/277,539. |
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/054,672. |
Notice of Allowance, dated Oct. 17, 2019, from corresponding U.S. Appl. No. 16/563,741. |
Notice of Allowance, dated Oct. 21, 2019, from corresponding U.S. Appl. No. 16/404,405. |
Notice of Allowance, dated Oct. 21, 2020, from corresponding U.S. Appl. No. 16/834,812. |
Notice of Allowance, dated Oct. 22, 2021, from corresponding U.S. Appl. No. 17/346,847. |
Notice of Allowance, dated Oct. 3, 2019, from corresponding U.S. Appl. No. 16/511,700. |
Notice of Allowance, dated Sep. 1, 2021, from corresponding U.S. Appl. No. 17/196,570. |
Notice of Allowance, dated Sep. 1, 2021, from corresponding U.S. Appl. No. 17/222,556. |
Notice of Allowance, dated Sep. 12, 2019, from corresponding U.S. Appl. No. 16/512,011. |
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,809. |
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Notice of Allowance, dated Sep. 14, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Notice of Allowance, dated Sep. 16, 2020, from corresponding U.S. Appl. No. 16/915,097. |
Notice of Allowance, dated Sep. 17, 2020, from corresponding U.S. Appl. No. 16/863,226. |
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 15/894,819. |
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 16/041,545. |
Notice of Allowance, dated Sep. 18, 2020, from corresponding U.S. Appl. No. 16/812,795. |
Notice of Allowance, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/811,793. |
Notice of Allowance, dated Sep. 23, 2021, from corresponding U.S. Appl. No. 17/068,454. |
Amar et al, “Privacy-Aware Infrastructure for Managing Personal Data,” ACM, pp. 571-572, Aug. 22-26, 2016 (Year: 2016). |
Banerjee et al, “Link Before You Share: Managing Privacy Policies through Blockchain,” IEEE, pp. 4438-4447 (Year: 2017). |
Civili et al, “Mastro Studio: Managing Ontology-Based Data Access Applications,” ACM, pp. 1314-1317, Aug. 26-30, 2013 (Year: 2013). |
Degeling et al, “We Value Your Privacy . . . Now Take Some Cookies: Measuring the GDPRs Impact on Web Privacy,” ARXIV.ORG, Cornell University Library, 201 Olin Library Cornell University, Ithaca, NY 14853, Aug. 15, 2018, pp. 1-15 (Year: 2019). |
Geko et al, “An Ontology Capturing the Interdependence of the General Data Protection Regulation (GDPR) and Information Security,” ACM, pp. 1-6, Nov. 15-16, 2018 (Year: 2018). |
International Search Report, dated Jan. 5, 2022, from corresponding International Application No. PCT/US2021/050497. |
Lu, “How Machine Learning Mitigates Racial Bias in the US Housing Market,” Available as SSRN 3489519, pp. 1-73, Nov. 2019 (Year: 2019). |
Notice of Allowance, dated Dec. 30, 2021, from corresponding U.S. Appl. No. 16/938,520. |
Notice of Allowance, dated Jan. 11, 2022, from corresponding U.S. Appl. No. 17/371,350. |
Notice of Allowance, dated Jan. 12, 2022, from corresponding U.S. Appl. No. 17/334,948. |
Notice of Allowance, dated Jan. 12, 2022, from corresponding U.S. Appl. No. 17/463,775. |
Notice of Allowance, dated Jan. 24, 2022, from corresponding U.S. Appl. No. 17/340,699. |
Notice of Allowance, dated Jan. 26, 2022, from corresponding U.S. Appl. No. 17/491,906. |
Notice of Allowance, dated Jan. 5, 2022, from corresponding U.S. Appl. No. 17/475,241. |
Notice of Allowance, dated Jan. 6, 2022, from corresponding U.S. Appl. No. 17/407,765. |
Notice of Allowance, dated Jan. 7, 2022, from corresponding U.S. Appl. No. 17/222,725. |
Office Action, dated Dec. 30, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Office Action, dated Jan. 14, 2022, from corresponding U.S. Appl. No. 17/499,595. |
Office Action, dated Jan. 21, 2022, from corresponding U.S. Appl. No. 17/499,624. |
Office Action, dated Jan. 25, 2022, from corresponding U.S. Appl. No. 17/494,220. |
Office Action, dated Jan. 4, 2022, from corresponding U.S. Appl. No. 17/480,377. |
Office Action, dated Jan. 7, 2022, from corresponding U.S. Appl. No. 17/387,421. |
Rakers, “Managing Professional and Personal Sensitive Information,” ACM, pp. 9-13, Oct. 24-27, 2010 (Year: 2010). |
Sachinopoulou et al, “Ontology-Based Approach for Managing Personal Health and Wellness Information,” IEEE, pp. 1802-1805 (Year: 2007). |
Shankar et al., “Doppleganger: Better Browser Privacy Without the Bother,” Proceedings of the 13th ACM Conference on Computer and Communications Security; [ACM Conference on Computer and Communications Security], New York, NY: ACM, US, Oct. 30, 2006, pp. 154-167 (Year: 2006). |
Written Opinion of the International Searching Authority, dated Jan. 5, 2022, from corresponding International Application No. PCT/US2021/050497. |
Yue et al, “An Automatic HTTP Cookie Management System,” Computer Networks, Elsevier, Amsterdam, NL, vol. 54, No. 13, Sep. 15, 2010, pp. 2182-2198 (Year: 2010). |
Notice of Allowance, dated Apr. 2, 2019, from corresponding U.S. Appl. No. 16/160,577. |
Notice of Allowance, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/162,006. |
Notice of Allowance, dated Apr. 22, 2021, from corresponding U.S. Appl. No. 17/163,701. |
Notice of Allowance, dated Apr. 25, 2018, from corresponding U.S. Appl. No. 15/883,041. |
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/135,445. |
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/181,828. |
Notice of Allowance, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/700,049. |
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/565,265. |
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/820,346. |
Notice of Allowance, dated Apr. 30, 2021, from corresponding U.S. Appl. No. 16/410,762. |
Notice of Allowance, dated Apr. 8, 2019, from corresponding U.S. Appl. No. 16/228,250. |
Notice of Allowance, dated Apr. 8, 2020, from corresponding U.S. Appl. No. 16/791,348. |
Notice of Allowance, dated Apr. 9, 2020, from corresponding U.S. Appl. No. 16/791,075. |
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/671,444. |
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/788,633. |
Notice of Allowance, dated Aug. 12, 2020, from corresponding U.S. Appl. No. 16/719,488. |
Notice of Allowance, dated Aug. 12, 2021, from corresponding U.S. Appl. No. 16/881,832. |
Notice of Allowance, dated Aug. 14, 2018, from corresponding U.S. Appl. No. 15/989,416. |
Notice of Allowance, dated Aug. 18, 2017, from corresponding U.S. Appl. No. 15/619,455. |
Notice of Allowance, dated Aug. 20, 2019, from corresponding U.S. Appl. No. 16/241,710. |
Notice of Allowance, dated Aug. 24, 2018, from corresponding U.S. Appl. No. 15/619,479. |
Notice of Allowance, dated Aug. 26, 2019, from corresponding U.S. Appl. No. 16/443,374. |
Notice of Allowance, dated Aug. 26, 2020, from corresponding U.S. Appl. No. 16/808,503. |
Notice of Allowance, dated Aug. 28, 2019, from corresponding U.S. Appl. No. 16/278,120. |
Notice of Allowance, dated Aug. 30, 2018, from corresponding U.S. Appl. No. 15/996,208. |
Notice of Allowance, dated Aug. 31, 2021, from corresponding U.S. Appl. No. 17/326,901. |
Notice of Allowance, dated Aug. 4, 2021, from corresponding U.S. Appl. No. 16/895,278. |
Notice of Allowance, dated Aug. 7, 2020, from corresponding U.S. Appl. No. 16/901,973. |
Notice of Allowance, dated Aug. 9, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Notice of Allowance, dated Aug. 9, 2021, from corresponding U.S. Appl. No. 16/881,699. |
Notice of Allowance, dated Dec. 10, 2018, from corresponding U.S. Appl. No. 16/105,602. |
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/593,634. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/169,643. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,212. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,382. |
Notice of Allowance, dated Dec. 13, 2019, from corresponding U.S. Appl. No. 16/512,033. |
Notice of Allowance, dated Dec. 15, 2020, from corresponding U.S. Appl. No. 16/989,086. |
Notice of Allowance, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/505,461. |
Notice of Allowance, dated Dec. 17, 2020, from corresponding U.S. Appl. No. 17/034,772. |
Notice of Allowance, dated Dec. 18, 2019, from corresponding U.S. Appl. No. 16/659,437. |
Notice of Allowance, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/656,835. |
Notice of Allowance, dated Dec. 23, 2020, from corresponding U.S. Appl. No. 17/068,557. |
Notice of Allowance, dated Dec. 3, 2019, from corresponding U.S. Appl. No. 16/563,749. |
Notice of Allowance, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/159,634. |
Notice of Allowance, dated Dec. 31, 2019, from corresponding U.S. Appl. No. 16/404,399. |
Notice of Allowance, dated Dec. 4, 2019, from corresponding U.S. Appl. No. 16/594,670. |
Notice of Allowance, dated Dec. 5, 2017, from corresponding U.S. Appl. No. 15/633,703. |
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,451. |
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,459. |
Final Office Action, dated Apr. 1, 2022, from corresponding U.S. Appl. No. 17/370,650. |
Final Office Action, dated Apr. 5, 2022, from corresponding U.S. Appl. No. 17/013,756. |
International Search Report, dated Apr. 12, 2022, from corresponding International Application No. PCT/US2022/016735. |
International Search Report, dated Feb. 14, 2022, from corresponding International Application No. PCT/US2021/058274. |
International Search Report, dated Mar. 18, 2022, from corresponding International Application No. PCT/US2022/013733. |
Lewis, James et al., “Microservices,” Mar. 25, 2014 (Mar. 25, 2014),XP055907494, Retrieved from the Internet: https://martinfowler.com/articles/micr oservices.html [retrieved on Mar. 31, 2022]. |
Notice of Allowance, dated Apr. 4, 2022, from corresponding U.S. Appl. No. 17/493,332. |
Notice of Allowance, dated Apr. 4, 2022, from corresponding U.S. Appl. No. 17/572,298. |
Notice of Allowance, dated Mar. 31, 2022, from corresponding U.S. Appl. No. 17/476,209. |
Office Action, dated Apr. 8, 2022, from corresponding U.S. Appl. No. 16/938,509. |
Restriction Requirement, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/584,187. |
Written Opinion of the International Searching Authority, dated Apr. 12, 2022, from corresponding International Application No. PCT/US2022/016735. |
Written Opinion of the International Searching Authority, dated Feb. 14, 2022, from corresponding International Application No. PCT/US2021/058274. |
Written Opinion of the International Searching Authority, dated Mar. 18, 2022, from corresponding International Application No. PCT/US2022/013733. |
Ali et al, “Age Estimation from Facial Images Using Biometric Ratios and Wrinkle Analysis,” IEEE, 2015, pp. 1-5 (Year: 2015). |
Chang et al, “A Ranking Approach for Human Age Estimation Based on Face Images,” IEEE, 2010, pp. 3396-3399 (Year: 2010). |
Edinger et al, “Age and Gender Estimation of Unfiltered Faces,” IEEE, 2014, pp. 2170-2179 (Year: 2014). |
Final Office Action, dated Apr. 25, 2022, from corresponding U.S. Appl. No. 17/149,421. |
Han et al, “Demographic Estimation from Face Images: Human vs. Machine Performance,” IEEE, 2015, pp. 1148-1161 (Year: 2015). |
Huettner, “Digital Risk Management: Protecting Your Privacy, Improving Security, and Preparing for Emergencies,” IEEE, pp. 136-138 (Year: 2006). |
Jayasinghe et al, “Matching Facial Images Using Age Related Morphing Changes,” ISSRI, 2009, pp. 2901-2907 (Year: 2009). |
Khan et al, “Wrinkles Energy Based Age Estimation Using Discrete Cosine Transform,” IEEE, 2015, pp. 1-4 (Year 2015). |
Kristian et al, “Human Facial Age Classification Using Active Shape Module, Geometrical Feature, and Support Vendor Machine on Early Growth Stage,” ISICO, 2015, pp. 1-8 (Year: 2015). |
Liu et al, “Overview on Ontology Mapping and Approach,” IEEE, pp. 592-595 (Year: 2011). |
Milic et al, “Comparative Analysis of Metadata Models on e-Government Open Data Platforms,” IEEE, pp. 119-130 (Year: 2021). |
Notice of Allowance, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/479,807. |
Notice of Allowance, dated Apr. 14, 2022, from corresponding U.S. Appl. No. 17/572,276. |
Notice of Allowance, dated Apr. 20, 2022, from corresponding U.S. Appl. No. 17/573,808. |
Notice of Allowance, dated Apr. 27, 2022, from corresponding U.S. Appl. No. 17/573,999. |
Notice of Allowance, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 17/670,352. |
Office Action, dated Apr. 12, 2022, from corresponding U.S. Appl. No. 17/670,341. |
Office Action, dated Apr. 18, 2022, from corresponding U.S. Appl. No. 17/670,349. |
Office Action, dated Apr. 25, 2022, from corresponding U.S. Appl. No. 17/588,645. |
Office Action, dated Apr. 26, 2022, from corresponding U.S. Appl. No. 17/151,334. |
Qu et al., “Metadata Type System: Integrate Presentation, Data Models and Extraction to Enable Exploratory Browsing Interfaces,” ACM, pp. 107-116 (Year: 2014). |
Shulz et al., “Generative Data Models for Validation and Evaluation of Visualization Techniques,” ACM, pp. 1-13 (Year: 2016). |
Final Office Action, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 16/925,550. |
Notice of Allowance, dated Apr. 28, 2022, from corresponding U.S. Appl. No. 17/592,922. |
Notice of Allowance, dated Apr. 29, 2022, from corresponding U.S. Appl. No. 17/387,421. |
Written Opinion of the International Searching Authority, dated Jan. 14, 2019, from corresponding International Application No. PCT/US2018/046949. |
Written Opinion of the International Searching Authority, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055772. |
Written Opinion of the International Searching Authority, dated Jun. 21, 2017, from corresponding International Application No. PCT/US2017/025600. |
Written Opinion of the International Searching Authority, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025605. |
Written Opinion of the International Searching Authority, dated Mar. 14, 2019, from corresponding International Application No. PCT/US2018/055736. |
Written Opinion of the International Searching Authority, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055773. |
Written Opinion of the International Searching Authority, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055774. |
Written Opinion of the International Searching Authority, dated Nov. 12, 2021, from corresponding International Application No. PCT/US2021/043481. |
Written Opinion of the International Searching Authority, dated Nov. 19, 2018, from corresponding International Application No. PCT/US2018/046939. |
Written Opinion of the International Searching Authority, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/040893. |
Written Opinion of the International Searching Authority, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/044910. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043975. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043976. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043977. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/044026. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/045240. |
Written Opinion of the International Searching Authority, dated Oct. 12, 2017, from corresponding International Application No. PCT/US2017/036888. |
Written Opinion of the International Searching Authority, dated Oct. 12, 2018, from corresponding International Application No. PCT/US2018/044046. |
Written Opinion of the International Searching Authority, dated Oct. 16, 2018, from corresponding International Application No. PCT/US2018/045243. |
Written Opinion of the International Searching Authority, dated Oct. 18, 2018, from corresponding International Application No. PCT/US2018/045249. |
Written Opinion of the International Searching Authority, dated Oct. 20, 2017, from corresponding International Application No. PCT/US2017/036917. |
Written Opinion of the International Searching Authority, dated Oct. 3, 2017, from corresponding International Application No. PCT/US2017/036912. |
Written Opinion of the International Searching Authority, dated Sep. 1, 2017, from corresponding International Application No. PCT/US2017/036896. |
Written Opinion of the International Searching Authority, dated Sep. 12, 2018, from corresponding International Application No. PCT/US2018/037504. |
Written Opinion of the International Searching Authority, dated Sep. 15, 2021, from corresponding International Application No. PCT/US2021/033631. |
International Search Report, dated Aug. 15, 2017, from corresponding International Application No. PCT/US2017/036919. |
International Search Report, dated Aug. 21, 2017, from corresponding International Application No. PCT/US2017/036914. |
International Search Report, dated Aug. 29, 2017, from corresponding International Application No. PCT/US2017/036898. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036889. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036890. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036893. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036901. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036913. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036920. |
International Search Report, dated Dec. 14, 2018, from corresponding International Application No. PCT/US2018/045296. |
International Search Report, dated Jan. 14, 2019, from corresponding International Application No. PCT/US2018/046949. |
International Search Report, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055772. |
International Search Report, dated Jun. 21, 2017, from corresponding International Application No. PCT/US2017/025600. |
International Search Report, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025605. |
International Search Report, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025611. |
International Search Report, dated Mar. 14, 2019, from corresponding International Application No. PCT/US2018/055736. |
International Search Report, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055773. |
International Search Report, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055774. |
International Search Report, dated Nov. 12, 2021, from corresponding International Application No. PCT/US2021/043481. |
International Search Report, dated Nov. 19, 2018, from corresponding International Application No. PCT/US2018/046939. |
International Search Report, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/040893. |
International Search Report, dated Nov. 3, 2021, from corresponding International Application No. PCT/US2021/044910. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043975. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043976. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043977. |
Final Office Action, dated Apr. 23, 2020, from corresponding U.S. Appl. No. 16/572,347. |
Final Office Action, dated Apr. 27, 2021, from corresponding U.S. Appl. No. 17/068,454. |
Final Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/595,327. |
Final Office Action, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Final Office Action, dated Aug. 27, 2021, from corresponding U.S. Appl. No. 17/161,159. |
Final Office Action, dated Aug. 28, 2020, from corresponding U.S. Appl. No. 16/410,336. |
Final Office Action, dated Aug. 5, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Final Office Action, dated Aug. 9, 2021, from corresponding U.S. Appl. No. 17/119,080. |
Final Office Action, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/862,956. |
Final Office Action, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/410,336. |
Final Office Action, dated Feb. 19, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Final Office Action, dated Feb. 3, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Final Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 16/927,658. |
Final Office Action, dated Jan. 17, 2018, from corresponding U.S. Appl. No. 15/619,278. |
Final Office Action, dated Jan. 21, 2020, from corresponding U.S. Appl. No. 16/410,762. |
Final Office Action, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,479. |
Final Office Action, dated Jan. 23, 2020, from corresponding U.S. Appl. No. 16/505,430. |
Final Office Action, dated Jul. 21, 2021, from corresponding U.S. Appl. No. 17/151,334. |
Final Office Action, dated Jul. 7, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Final Office Action, dated Mar. 26, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Final Office Action, dated Mar. 5, 2019, from corresponding U.S. Appl. No. 16/055,961. |
Final Office Action, dated Mar. 6, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Final Office Action, dated May 14, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Final Office Action, dated Nov. 29, 2017, from corresponding U.S. Appl. No. 15/619,237. |
Final Office Action, dated Oct. 26, 2021, from corresponding U.S. Appl. No. 17/306,496. |
Final Office Action, dated Oct. 28, 2021, from corresponding U.S. Appl. No. 17/234,205. |
Final Office Action, dated Oct. 29, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Final Office Action, dated Sep. 17, 2021, from corresponding U.S. Appl. No. 17/200,698. |
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/808,493. |
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/862,944. |
Final Office Action, dated Sep. 22, 2020, from corresponding U.S. Appl. No. 16/808,497. |
Final Office Action, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/862,948. |
Final Office Action, dated Sep. 24, 2020, from corresponding U.S. Appl. No. 16/862,952. |
Final Office Action, dated Sep. 25, 2019, from corresponding U.S. Appl. No. 16/278,119. |
Final Office Action, dated Sep. 28, 2020, from corresponding U.S. Appl. No. 16/565,395. |
Final Office Action, dated Sep. 8, 2020, from corresponding U.S. Appl. No. 16/410,866. |
Office Action, dated Apr. 1, 2021, from corresponding U.S. Appl. No. 17/119,080. |
Office Action, dated Apr. 15, 2021, from corresponding U.S. Appl. No. 17/161,159. |
Office Action, dated Apr. 18, 2018, from corresponding U.S. Appl. No. 15/894,819. |
Office Action, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/151,334. |
Office Action, dated Apr. 20, 2020, from corresponding U.S. Appl. No. 16/812,795. |
Office Action, dated Apr. 22, 2019, from corresponding U.S. Appl. No. 16/241,710. |
Office Action, dated Apr. 22, 2020, from corresponding U.S. Appl. No. 16/811,793. |
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/798,818. |
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/808,500. |
Office Action, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Office Action, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/791,337. |
Office Action, dated Apr. 5, 2019, from corresponding U.S. Appl. No. 16/278,119. |
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/788,633. |
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Notice of Allowance, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Notice of Allowance, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,261. |
Notice of Allowance, dated Dec. 9, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Notice of Allowance, dated Feb. 10, 2020, from corresponding U.S. Appl. No. 16/552,765. |
Notice of Allowance, dated Feb. 11, 2021, from corresponding U.S. Appl. No. 17/086,732. |
Notice of Allowance, dated Feb. 12, 2020, from corresponding U.S. Appl. No. 16/572,182. |
Notice of Allowance, dated Feb. 13, 2019, from corresponding U.S. Appl. No. 16/041,563. |
Notice of Allowance, dated Feb. 14, 2019, from corresponding U.S. Appl. No. 16/226,272. |
Notice of Allowance, dated Feb. 19, 2019, from corresponding U.S. Appl. No. 16/159,632. |
Notice of Allowance, dated Feb. 19, 2021, from corresponding U.S. Appl. No. 16/832,451. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/034,355. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/068,198. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,106. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,253. |
Notice of Allowance, dated Feb. 25, 2020, from corresponding U.S. Appl. No. 16/714,355. |
Notice of Allowance, dated Feb. 25, 2021, from corresponding U.S. Appl. No. 17/106,469. |
Notice of Allowance, dated Feb. 26, 2021, from corresponding U.S. Appl. No. 17/139,650. |
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/041,468. |
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/226,290. |
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 16/827,039. |
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/068,558. |
Notice of Allowance, dated Jan. 1, 2021, from corresponding U.S. Appl. No. 17/026,727. |
Notice of Allowance, dated Jan. 14, 2020, from corresponding U.S. Appl. No. 16/277,715. |
Notice of Allowance, dated Jan. 15, 2021, from corresponding U.S. Appl. No. 17/030,714. |
Notice of Allowance, dated Jan. 18, 2018, from corresponding U.S. Appl. No. 15/619,478. |
Notice of Allowance, dated Jan. 18, 2019 from corresponding U.S. Appl. No. 16/159,635. |
Notice of Allowance, dated Jan. 2, 2020, from corresponding U.S. Appl. No. 16/410,296. |
Notice of Allowance, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,251. |
Notice of Allowance, dated Jan. 25, 2021, from corresponding U.S. Appl. No. 16/410,336. |
Notice of Allowance, dated Jan. 26, 2018, from corresponding U.S. Appl. No. 15/619,469. |
Notice of Allowance, dated Jan. 29, 2020, from corresponding U.S. Appl. No. 16/278,119. |
Notice of Allowance, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/595,327. |
Notice of Allowance, dated Jan. 8, 2020, from corresponding U.S. Appl. No. 16/600,879. |
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/237,083. |
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/403,358. |
Notice of Allowance, dated Jul. 12, 2019, from corresponding U.S. Appl. No. 16/278,121. |
Notice of Allowance, dated Jul. 14, 2020, from corresponding U.S. Appl. No. 16/701,043. |
Notice of Allowance, dated Jul. 15, 2020, from corresponding U.S. Appl. No. 16/791,006. |
Notice of Allowance, dated Jul. 16, 2020, from corresponding U.S. Appl. No. 16/901,979. |
Notice of Allowance, dated Jul. 17, 2019, from corresponding U.S. Appl. No. 16/055,961. |
Notice of Allowance, dated Jul. 17, 2020, from corresponding U.S. Appl. No. 16/778,709. |
Notice of Allowance, dated Jul. 19, 2021, from corresponding U.S. Appl. No. 17/306,252. |
Notice of Allowance, dated Jul. 21, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Notice of Allowance, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/220,978. |
Notice of Allowance, dated Jul. 26, 2019, from corresponding U.S. Appl. No. 16/409,673. |
Notice of Allowance, dated Jul. 26, 2021, from corresponding U.S. Appl. No. 17/151,399. |
Notice of Allowance, dated Jul. 26, 2021, from corresponding U.S. Appl. No. 17/207,316. |
Notice of Allowance, dated Jul. 31, 2019, from corresponding U.S. Appl. No. 16/221,153. |
Notice of Allowance, dated Jul. 8, 2021, from corresponding U.S. Appl. No. 17/201,040. |
Notice of Allowance, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/813,321. |
Bansal et al, “Integrating Big Data: A Semantic Extract-Transform-Load Framework,” IEEE, pp. 42-50 (Year: 2015). |
Bao et al, “Performance Modeling and Workflow Scheduling of Microservice-Based Applications in Clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, No. 9, Sep. 2019, pp. 2101-2116 (Year: 2019). |
Bindschaedler et al, “Privacy Through Fake Yet Semantically Real Traces,” ARXIV.ORG, Cornell University Library, 201 Olin Library Cornell University Ithaca, NY 14853, May 27, 2015 (Year: 2015). |
Castro et al, “Creating Lightweight Ontologies for Dataset Description,” IEEE, pp. 1-4 (Year: 2014). |
Ex Parte Quayle Action, dated May 10, 2022, from corresponding U.S. Appl. No. 17/668,714. |
Final Office Action, dated May 12, 2022, from corresponding U.S. Appl. No. 17/499,624. |
Final Office Action, dated May 16, 2022, from corresponding U.S. Appl. No. 17/480,377. |
Final Office Action, dated May 2, 2022, from corresponding U.S. Appl. No. 17/499,595. |
Final Office Action, dated May 24, 2022, from corresponding U.S. Appl. No. 17/499,582. |
International Search Report, dated May 12, 2022, from corresponding International Application No. PCT/US2022/015929. |
International Search Report, dated May 17, 2022, from corresponding International Application No. PCT/US2022/015241. |
International Search Report, dated May 19, 2022, from corresponding International Application No. PCT/US2022/015637. |
Lasierra et al, “Data Management in Home Scenarios Using an Autonomic Ontology-Based Approach,” IEEE, pp. 94-99 (Year: 2012). |
Lenzerini et al, “Ontology-based Data Management,” ACM, pp. 5-6 (Year: 2011). |
Niu, et al, “Achieving Data Truthfulness and Privacy Preservation in Data Markets”, IEEE Transactions on Knowledge and Data Engineering, IEEE Service Centre, Los Alamitos, CA, US, vol. 31, No. 1, Jan. 1, 2019, pp. 105-119 (Year 2019). |
Notice of Allowance, dated May 11, 2022, from corresponding U.S. Appl. No. 17/395,759. |
Notice of Allowance, dated May 18, 2022, from corresponding U.S. Appl. No. 17/670,354. |
Notice of Allowance, dated May 25, 2022, from corresponding U.S. Appl. No. 16/872,031. |
Notice of Allowance, dated May 6, 2022, from corresponding U.S. Appl. No. 17/666,886. |
Office Action, dated May 12, 2022, from corresponding U.S. Appl. No. 17/509,974. |
Office Action, dated May 16, 2022, from corresponding U.S. Appl. No. 17/679,750. |
Office Action, dated May 24, 2022, from corresponding U.S. Appl. No. 17/674,187. |
Office Action, dated May 9, 2022, from corresponding U.S. Appl. No. 16/840,943. |
Preuveneers et al, “Access Control with Delegated Authorization Policy Evaluation for Data-Driven Microservice Workflows,” Future Internet 2017, MDPI, pp. 1-21 (Year: 2017). |
Thomas et al, “MooM—A Prototype Framework for Management of Ontology Mappings,” IEEE, pp. 548-555 (Year: 2011). |
Written Opinion of the International Searching Authority, dated May 12, 2022, from corresponding International Application No. PCT/US2022/015929. |
Written Opinion of the International Searching Authority, dated May 17, 2022, from corresponding International Application No. PCT/US2022/015241. |
Written Opinion of the International Searching Authority, dated May 19, 2022, from corresponding International Application No. PCT/US2022/015637. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/044026. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/045240. |
International Search Report, dated Oct. 12, 2017, from corresponding International Application No. PCT/US2017/036888. |
International Search Report, dated Oct. 12, 2018, from corresponding International Application No. PCT/US2018/044046. |
International Search Report, dated Oct. 16, 2018, from corresponding International Application No. PCT/US2018/045243. |
International Search Report, dated Oct. 18, 2018, from corresponding International Application No. PCT/US2018/045249. |
International Search Report, dated Oct. 20, 2017, from corresponding International Application No. PCT/US2017/036917. |
International Search Report, dated Oct. 3, 2017, from corresponding International Application No. PCT/US2017/036912. |
International Search Report, dated Sep. 1, 2017, from corresponding International Application No. PCT/US2017/036896. |
International Search Report, dated Sep. 12, 2018, from corresponding International Application No. PCT/US2018/037504. |
International Search Report, dated Sep. 15, 2021, from corresponding International Application No. PCT/US2021/033631. |
Invitation to Pay Additional Search Fees, dated Aug. 10, 2017, from corresponding International Application No. PCT/US2017/036912. |
Invitation to Pay Additional Search Fees, dated Aug. 10, 2017, from corresponding International Application No. PCT/US2017/036917. |
Invitation to Pay Additional Search Fees, dated Aug. 24, 2017, from corresponding International Application No. PCT/US2017/036888. |
Invitation to Pay Additional Search Fees, dated Jan. 18, 2019, from corresponding International Application No. PCT/US2018/055736. |
Invitation to Pay Additional Search Fees, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055773. |
Invitation to Pay Additional Search Fees, dated Jan. 8, 2019, from corresponding International Application No. PCT/US2018/055774. |
Invitation to Pay Additional Search Fees, dated Oct. 23, 2018, from corresponding International Application No. PCT/US2018/045296. |
Abdullah et al, “The Mapping Process of Unstructured Data to the Structured Data”, ACM, pp. 151-155 (Yean 2013). |
Acar, Gunes, et al, The Web Never Forgets, Computerand Communications Security, ACM, Nov. 3, 2014, pp. 674-689. |
Aghasian, Erfan, et al, Scoring Users' Privacy Disclosure Across Multiple Online Social Networks,IEEE Access, Multidisciplinary Rapid Review Open Access Journal, Jul. 31, 2017, vol. 5, 2017. |
Agosti et al, “Access and Exchange of Hierarchically Structured Resources on the Web with the NESTOR Framework”, IEEE, pp. 659-662 (Year: 2009). |
Agrawal et al, “Securing Electronic Health Records Without Impeding the Flow of Information,” International Journal of Medical Informatics 76, 2007, pp. 471-479 (Year: 2007). |
Ahmad et al, “Task-Oriented Access Model for Secure Data Sharing Over Cloud,” ACM, pp. 1-7 (Year: 2015). |
Ahmad, et al, “Performance of Resource Management Algorithms for Processable Bulk Data Transfer Tasks in Grid Environments,” ACM, pp. 177-188 (Year: 2008). |
Alaa et al, “Personalized Risk Scoring for Critical Care Prognosis Using Mixtures of Gaussian Processes,” Apr. 27, 2017, IEEE, vol. 65, issue 1, pp. 207-217 (Year: 2017). |
Aman et al, “Detecting Data Tampering Attacks in Synchrophasor Networks using Time Hopping,” IEEE, pp. 1-6 (Year: 2016). |
Antunes et al, “Preserving Digital Data in Heterogeneous Environments”, ACM, pp. 345-348, 2009 (Year: 2009). |
Ardagna, et al, “A Privacy-Aware Access Control System,” Journal of Computer Security, 16:4, pp. 369-397 (Year: 2008). |
Avepoint, AvePoint Privacy Impact Assessemtn 1: User Guide, Cumulative Update 2, Revision E, Feb. 2014, AvePoint, Inc. |
Ball, et al, “Aspects of the Computer-Based Patient Record,” Computers in Healthcare, Springer-Verlag New York Inc., pp. 1-23 (Year: 1992). |
Bang et al, “Building an Effective and Efficient Continuous Web Application Security Program,” 2016 International Conference on Cyber Security Situational Awareness, Data Analytics and Assessment (CyberSA), London, 2016, pp. 1-4 (Year: 2016). |
Barker, “Personalizing Access Control by Generalizing Access Control,” ACM, pp. 149-158 (Year: 2010). |
Barr, “Amazon Rekognition Update—Estimated Age Range for Faces,” AWS News Blog, Feb. 10, 2017, pp. 1-5 (Year: 2017). |
Bayardo et al, “Technological Solutions for Protecting Privacy,” Computer 36.9 (2003), pp. 115-118, (Year: 2003). |
Berezovskiy et al, “A framework for dynamic data source identification and orchestration on the Web”, ACM, pp. 1-8 (Year: 2010). |
Bertino et al, “On Specifying Security Policies for Web Documents with an XML-based Language,” ACM, pp. 57-65 (Year: 2001). |
Bertino et al, “Towards Mechanisms for Detection and Prevention of Data Exfiltration by Insiders,” Mar. 22, 2011, ACM, pp. 10-19 (Year: 2011). |
Bhargav-Spantzel et al, Receipt Management—Transaction History based Trust Establishment, 2007, ACM, p. 82-91. |
Bhuvaneswaran et al, “Redundant Parallel Data Transfer Schemes for the Grid Environment”, ACM, pp. 18 (Year: 2006). |
Bieker, et al, “Privacy-Preserving Authentication Solutions—Best Practices for Implementation and EU Regulatory Perspectives,” Oct. 29, 2014, IEEE, pp. 1-10 (Year: 2014). |
Bin, et al, “Research on Data Mining Models for the Internet of Things,” IEEE, pp. 1-6 (Year: 2010). |
Binns, et al, “Data Havens, or Privacy Sans Frontiéres? A Study of International Personal Data Transfers,” ACM, pp. 273-274 (Year: 2002). |
Borgida, “Description Logics in Data Management,” IEEE Transactions on Knowledge and Data Engineering, vol. 7, No. 5, Oct. 1995, pp. 671-682 (Year: 1995). |
Brandt et al, “Efficient Metadata Management in Large Distributed Storage Systems,” IEEE, pp. 1-9 (Year: 2003). |
Bujlow et al, “Web Tracking: Mechanisms, Implications, and Defenses,” Proceedings of the IEEE, Aug. 1, 2017, vol. 5, No. 8, pp. 1476-1510 (Year: 2017). |
Byun, Ji-Won, Elisa Bertino, and Ninghui Li. “Purpose based access control of complex data for privacy protection.” Proceedings of the tenth ACM symposium on Access control models and technologies. ACM, 2005. (Year: 2005). |
Carminati et al, “Enforcing Access Control Over Data Streams,” ACM, pp. 21-30 (Year: 2007). |
Notice of Allowance, dated Oct. 18, 2022, from corresponding U.S. Appl. No. 16/840,943. |
Office Action, dated Sep. 16, 2022, from corresponding U.S. Appl. No. 17/306,438. |
Notice of Allowance, dated Sep. 24, 2021, from corresponding U.S. Appl. No. 17/334,939. |
Notice of Allowance, dated Sep. 25, 2020, from corresponding U.S. Appl. No. 16/983,536. |
Notice of Allowance, dated Sep. 27, 2017, from corresponding U.S. Appl. No. 15/626,052. |
Notice of Allowance, dated Sep. 27, 2021, from corresponding U.S. Appl. No. 17/222,523. |
Notice of Allowance, dated Sep. 28, 2018, from corresponding U.S. Appl. No. 16/041,520. |
Notice of Allowance, dated Sep. 29, 2021, from corresponding U.S. Appl. No. 17/316,179. |
Notice of Allowance, dated Sep. 4, 2018, from corresponding U.S. Appl. No. 15/883,041. |
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/808,500. |
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/901,662. |
Notice of Allowance, dated Sep. 9, 2021, from corresponding U.S. Appl. No. 17/334,909. |
Restriction Requirement, dated Apr. 10, 2019, from corresponding U.S. Appl. No. 16/277,715. |
Restriction Requirement, dated Apr. 13, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Restriction Requirement, dated Apr. 24, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Restriction Requirement, dated Aug. 7, 2019, from corresponding U.S. Appl. No. 16/410,866. |
Restriction Requirement, dated Aug. 9, 2019, from corresponding U.S. Appl. No. 16/404,399. |
Restriction Requirement, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 15/169,668. |
Restriction Requirement, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,395. |
Restriction Requirement, dated Jan. 18, 2017, from corresponding U.S. Appl. No. 15/256,430. |
Restriction Requirement, dated Jul. 28, 2017, from corresponding U.S. Appl. No. 15/169,658. |
Restriction Requirement, dated Jun. 15, 2021, from corresponding U.S. Appl. No. 17/187,329. |
Restriction Requirement, dated Jun. 15, 2021, from corresponding U.S. Appl. No. 17/222,556. |
Restriction Requirement, dated Jun. 9, 2021, from corresponding U.S. Appl. No. 17/222,725. |
Restriction Requirement, dated May 5, 2020, from corresponding U.S. Appl. No. 16/808,489. |
Restriction Requirement, dated Nov. 10, 2021, from corresponding U.S. Appl. No. 17/366,754. |
Restriction Requirement, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/586,202. |
Restriction Requirement, dated Nov. 21, 2016, from corresponding U.S. Appl. No. 15/254,901. |
Restriction Requirement, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/563,744. |
Restriction Requirement, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/055,984. |
Restriction Requirement, dated Oct. 6, 2021, from corresponding U.S. Appl. No. 17/340,699. |
Restriction Requirement, dated Sep. 15, 2020, from corresponding U.S. Appl. No. 16/925,628. |
Restriction Requirement, dated Sep. 9, 2019, from corresponding U.S. Appl. No. 16/505,426. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Advisory Action, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Advisory Action, dated Jun. 19, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Advisory Action, dated Jun. 2, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Advisory Action, dated May 21, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Written Opinion of the International Searching Authority, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025611. |
Written Opinion of the International Searching Authority, dated Aug. 15, 2017, from corresponding International Application No. PCT/US2017/036919. |
Written Opinion of the International Searching Authority, dated Aug. 21, 2017, from corresponding International Application No. PCT/US2017/036914. |
Written Opinion of the International Searching Authority, dated Aug. 29, 2017, from corresponding International Application No. PCT/US2017/036898. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036889. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036890. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036893. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036901. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036913. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036920. |
Written Opinion of the International Searching Authority, dated Dec. 14, 2018, from corresponding International Application No. PCT/US2018/045296. |
Choi et al, “A Survey on Ontology Mapping,” ACM, pp. 34-41 (Year: 2006). |
Cui et al, “Domain Ontology Management Environment,” IEEE, pp. 1-9 (Year: 2000). |
Falbo et al, “An Ontological Approach to Domain Engineering,” ACM, pp. 351-358 (Year: 2002). |
Final Office Action, dated Jun. 10, 2022, from corresponding U.S. Appl. No. 17/161,159. |
Final Office Action, dated Jun. 9, 2022, from corresponding U.S. Appl. No. 17/494,220. |
International Search Report, dated Jun. 1, 2022, from corresponding International Application No. PCT/US2022/016930. |
International Search Report, dated Jun. 22, 2022, from corresponding International Application No. PCT/US2022/019358. |
International Search Report, dated Jun. 24, 2022, from corresponding International Application No. PCT/US2022/019882. |
Nemec et al, “Assessment of Query Execution Performance Using Selected Business Intelligence Tools and Experimental Agile Oriented Data Modeling Approach,” Sep. 16, 2015, IEEE, pp. 1327-1333. (Year: 2015). |
Notice of Allowance, dated Jun. 14, 2022, from corresponding U.S. Appl. No. 17/679,734. |
Notice of Allowance, dated Jun. 16, 2022, from corresponding U.S. Appl. No. 17/119,080. |
Notice of Allowance, dated Jun. 2, 2022, from corresponding U.S. Appl. No. 17/493,290. |
Notice of Allowance, dated Jun. 23, 2022, from corresponding U.S. Appl. No. 17/588,645. |
Notice of Allowance, dated Jun. 8, 2022, from corresponding U.S. Appl. No. 17/722,551. |
Notice of Allowance, dated May 27, 2022, from corresponding U.S. Appl. No. 17/543,546. |
Notice of Allowance, dated May 31, 2022, from corresponding U.S. Appl. No. 17/679,715. |
Office Action, dated Jun. 1, 2022, from corresponding U.S. Appl. No. 17/306,496. |
Office Action, dated Jun. 14, 2022, from corresponding U.S. Appl. No. 17/346,586. |
Office Action, dated Jun. 16, 2022, from corresponding U.S. Appl. No. 17/689,683. |
Ozdikis et al, “Tool Support for Transformation from an OWL Ontology to an HLA Object Model,” ACM, pp. 1-6 (Year: 2010). |
Vukovic et al., “Managing Enterprise IT Systems Using Online Communities,” Jul. 9, 2011, IEEE, pp. 552-559. (Year: 2011). |
Wong et al, “Ontology Mapping for the Interoperability Problem in Network Management,” IEEE, pp. 2058-2068 (Year: 2005). |
Written Opinion of the International Searching Authority, dated Jun. 1, 2022, from corresponding International Application No. PCT/US2072/016930. |
Written Opinion of the International Searching Authority, dated Jun. 22, 2022, from corresponding International Application No. PCT/US2022/019358. |
Written Opinion of the International Searching Authority, dated Jun. 24, 2022, from corresponding International Application No. PCT/US2022/019882. |
Final Office Action, dated Sep. 19, 2022, from corresponding U.S. Appl. No. 17/306,496. |
Notice of Allowance, dated Aug. 22, 2022, from corresponding U.S. Appl. No. 17/499,595. |
Notice of Allowance, dated Sep. 12, 2022, from corresponding U.S. Appl. No. 17/674,187. |
Notice of Allowance, dated Sep. 2, 2022, from corresponding U.S. Appl. No. 17/380,485. |
Office Action, dated Jul. 28, 2022, from corresponding U.S. Appl. No. 16/925,550. |
Office Action, dated Jul. 7, 2022, from corresponding U.S. Appl. No. 17/370,650. |
Office Action, dated Sep. 2, 2022, from corresponding U.S. Appl. No. 17/499,624. |
Bjorn Greif, “Cookie Pop-up Blocker: Cliqz Automatically Denies Consent Requests,” Cliqz.com, pp. 1-9, Aug. 11, 2019 (Year: 2019). |
Final Office Action, dated Dec. 10, 2021, from corresponding U.S. Appl. No. 17/187,329. |
He et al, “A Crowdsourcing Framework for Detecting of Cross-Browser Issues in Web Application,” ACM, pp. 1-4, Nov. 6, 2015 (Year: 2015). |
International Search Report, dated Dec. 22, 2021, from corresponding International Application No. PCT/US2021/051217. |
Jones et al, “Al and the Ethics of Automating Consent,” IEEE, pp. 64-72, May 2018 (Year: 2018). |
Liu et al, “A Novel Approach for Detecting Browser-based Silent Miner,” IEEE, pp. 490-497 (Year: 2018). |
Lu et al, “An HTTP Flooding Detection Method Based on Browser Behavior,” IEEE, pp. 1151-1154 (Year: 2006). |
Notice of Allowance, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 16/908,081. |
Notice of Allowance, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 17/347,853. |
Notice of Allowance, dated Dec. 2, 2021, from corresponding U.S. Appl. No. 16/901,654. |
Notice of Allowance, dated Dec. 8, 2021, from corresponding U.S. Appl. No. 17/397,472. |
Nouwens et al, “Dark Patterns after the GDPR: Scraping Consent Pop-ups and Demonstrating their Influence,” ACM, pp. 1-13, Apr. 25, 2020 (Year: 2020). |
Office Action, dated Dec. 13, 2021, from corresponding U.S. Appl. No. 17/476,209. |
Office Action, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/395,759. |
Office Action, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/499,582. |
Office Action, dated Dec. 2, 2021, from corresponding U.S. Appl. No. 17/504,102. |
Office Action, dated Dec. 27, 2021, from corresponding U.S. Appl. No. 17/493,332. |
Office Action, dated Dec. 29, 2021, from corresponding U.S. Appl. No. 17/479,807. |
Office Action, dated December?, 2021, from corresponding U.S. Appl. No. 17/499,609. |
Paes, “Student Research Abstract: Automatic Detection of Cross-Browser Incompatibilities using Machine Learning and Screenshot Similarity,” ACM, pp. 697-698, Apr. 3, 2017 (Year: 2017). |
Restriction Requirement, dated Dec. 17, 2021, from corresponding U.S. Appl. No. 17/475,244. |
Shahriar et al, “A Model-Based Detection of Vulnerable and Malicious Browser Extensions,” IEEE, pp. 198-207 (Year: 2013). |
Sjosten et al, “Discovering Browser Extensions via Web Accessible Resources,” ACM, pp. 329-336, Mar. 22, 2017 (Year: 2017). |
Written Opinion of the International Searching Authority, dated Dec. 22, 2021, from corresponding International Application No. PCT/US2021/051217. |
Final Office Action, dated Feb. 23, 2023, from corresponding U.S. Appl. No. 17/370,650. |
Final Office Action, dated Mar. 3, 2023, from corresponding U.S. Appl. No. 17/306,438. |
Notice of Allowance, dated Feb. 8, 2023, from corresponding U.S. Appl. No. 17/831,700. |
Notice of Allowance, dated Jan. 31, 2023, from corresponding U.S. Appl. No. 17/499,624. |
Office Action, dated Feb. 15, 2023, from corresponding U.S. Appl. No. 17/499,582. |
Office Action, dated Mar. 9, 2023, from corresponding U.S. Appl. No. 17/306,496. |
Number | Date | Country | |
---|---|---|---|
20220075896 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62547530 | Aug 2017 | US | |
62541613 | Aug 2017 | US | |
62537839 | Jul 2017 | US | |
62360123 | Jul 2016 | US | |
62353802 | Jun 2016 | US | |
62348695 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17019771 | Sep 2020 | US |
Child | 17201040 | US | |
Parent | 16786196 | Feb 2020 | US |
Child | 17019771 | US | |
Parent | 16512011 | Jul 2019 | US |
Child | 16786196 | US | |
Parent | 16226290 | Dec 2018 | US |
Child | 16512011 | US | |
Parent | 16054672 | Aug 2018 | US |
Child | 16226290 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17201040 | Mar 2021 | US |
Child | 17530201 | US | |
Parent | 15996208 | Jun 2018 | US |
Child | 16054672 | US | |
Parent | 15853674 | Dec 2017 | US |
Child | 15996208 | US | |
Parent | 15619455 | Jun 2017 | US |
Child | 15853674 | US | |
Parent | 15254901 | Sep 2016 | US |
Child | 15619455 | US |