Data storage and analysis for a welding training system

Information

  • Patent Grant
  • 9728103
  • Patent Number
    9,728,103
  • Date Filed
    Friday, March 15, 2013
    11 years ago
  • Date Issued
    Tuesday, August 8, 2017
    7 years ago
Abstract
A welding training system includes a camera configured to capture video data corresponding to a welding training operation. The welding training system also includes a storage device configured to store the video data, and to store welding parameter data corresponding to the welding training operation. The welding training system includes a welding training software configured to retrieve the video data from the storage device, to retrieve the welding parameter data from the storage device, to synchronize the video data with the welding parameter data, and to provide the synchronized video and welding parameter data to a display device.
Description
BACKGROUND

The invention relates generally to welding and, more particularly, to a welding training system.


Welding is a process that has increasingly become utilized in various industries and applications. Such processes may be automated in certain contexts, although a large number of applications continue to exist for manual welding operations. In both cases, such welding operations rely on a variety of types of equipment to ensure the supply of welding consumables (e.g., wire feed, shielding gas, etc.) is provided to the weld in appropriate amounts at the desired time.


In preparation for performing manual welding operations, welding operators may be trained using a welding training system. The welding training system may be designed to train welding operators with the proper techniques for performing various welding operations. Certain welding training systems may use various training methods. As may be appreciated, these training systems may be expensive to acquire and operate. Accordingly, welding training institutions may only acquire a limited number of such training systems. Furthermore, certain welding training systems may not adequately train welding operators to perform high quality welds.


BRIEF DESCRIPTION

In one embodiment, a system includes a data storage device configured to store data corresponding to a welding training certification of a welding operator. The data includes a first welding process certification status, a second welding process certification status, a first welding device certification status, a second welding device certification status, or some combination thereof. The system also includes control circuitry configured to receive a request for the first welding process certification status, the second welding process certification status, the first welding device certification status, the second welding device certification status, or some combination thereof, of the welding operator. The control circuitry is configured to provide a response to the request. The response includes the first welding process certification status, the second welding process certification status, the first welding device certification status, the second welding device certification status, or some combination thereof, of the welding operator. The welding operator is authorized to use a first welding process, a second welding process, a first welding device, a second welding device, or some combination thereof, based at least partly on the response.


In another embodiment, a welding training system includes a camera configured to capture video data corresponding to a welding training operation. The welding training system also includes a storage device configured to store the video data, and to store welding parameter data corresponding to the welding training operation. The welding training system includes a welding training software configured to retrieve the video data from the storage device, to retrieve the welding parameter data from the storage device, to synchronize the video data with the welding parameter data, and to provide the synchronized video and welding parameter data to a display device.


In another embodiment, a system includes a data storage device configured to store a first data set corresponding to training welds performed by a welding operator, and to store a second data set corresponding to non-training welds performed by the welding operator. The system also includes control circuitry configured to retrieve at least part of the first data set from the storage device, to retrieve at least part of the second data set from the storage device, to synchronize the at least part of the first data set with the at least part of the second data set, and to provide the synchronized at least part of the first data set and at least part of the second data set to a display device.


In a further embodiment, a welding training system includes a welding training software configured to provide training simulations for welding configurations. The welding configurations include a metal inert gas (MIG) welding process, a tungsten inert gas (TIG) welding process, a stick welding process, a live-arc welding mode, a simulation welding mode, a virtual reality welding mode, an augmented reality welding mode, or some combination thereof. The welding training software is configured to enable a welding instructor to restrict training of a welding operator to one or more selected welding configurations of the welding configurations.


In a further embodiment, a welding training system includes a welding torch and a welding training software. The welding training software includes an augmented reality welding mode configured to receive a position of the welding torch, to integrate a virtual welding environment with the position of the welding torch, and to provide the integrated virtual welding environment to a display device. The welding training software also includes a live-arc welding mode. The welding training software is configured to enable a welding operator to practice a weld in the augmented reality welding mode, to erase at least a portion of the virtual welding environment from the practice weld, and to perform a live weld in the live-arc welding mode.





DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:



FIG. 1 is a block diagram of an embodiment of a welding training system in accordance with aspects of the present disclosure;



FIG. 2 is a block diagram of an embodiment of portions of the welding training system of FIG. 1 in accordance with aspects of the present disclosure;



FIG. 2A is a schematic diagram of an embodiment of circuitry of the welding torch of FIG. 1 in accordance with aspects of the present disclosure;



FIG. 3 is a perspective view of an embodiment of the welding torch of FIG. 1 in accordance with aspects of the present disclosure;



FIG. 4 is a perspective view of an embodiment of the training stand of FIG. 1 in accordance with aspects of the present disclosure;



FIG. 5 is a perspective view of an embodiment of a calibration device in accordance with aspects of the present disclosure;



FIG. 6 is a perspective view of an embodiment of a fixture assembly in accordance with aspects of the present disclosure;



FIG. 7 is a perspective view of a welding wire stickout calibration tool in accordance with aspects of the present disclosure;



FIG. 8 is a top view of the welding wire stickout calibration tool of FIG. 7 in accordance with aspects of the present disclosure;



FIG. 9 is an embodiment of a method for calibrating wire stickout from a welding torch in accordance with aspects of the present disclosure;



FIG. 10 is a perspective view of an embodiment of a welding consumable having physical marks in accordance with aspects of the present disclosure;



FIG. 11 is a perspective view of an embodiment of welding wire having physical marks in accordance with aspects of the present disclosure;



FIG. 12 is a perspective view of an embodiment of a vertical arm assembly of the training stand of FIG. 1 in accordance with aspects of the present disclosure;



FIG. 13 is a perspective view of an embodiment of an overhead welding arm assembly in accordance with aspects of the present disclosure;



FIG. 14 is a block diagram of an embodiment of welding training software having multiple training modes in accordance with aspects of the present disclosure;



FIG. 15 is a block diagram of an embodiment of a virtually reality mode of welding training software in accordance with aspects of the present disclosure;



FIG. 16 is an embodiment of a method for integrating training results data in accordance with aspects of the present disclosure;



FIG. 17 is an embodiment of a chart illustrating multiple sets of welding training data for a welding operator in accordance with aspects of the present disclosure;



FIG. 18 is an embodiment of a chart illustrating welding training data for a welder compared to welding training data for a class in accordance with aspects of the present disclosure;



FIG. 19 is a block diagram of an embodiment of a data storage system for storing certification status data in accordance with aspects of the present disclosure;



FIG. 20 is an embodiment of a screen illustrating data corresponding to a training weld in accordance with aspects of the present disclosure;



FIG. 21 is an embodiment of a screen illustrating a discontinuity analysis of a training weld in accordance with aspects of the present disclosure;



FIG. 22 is a block diagram of an embodiment of a welding instructor screen of welding training software in accordance with aspects of the present disclosure;



FIG. 23 is an embodiment of a method for weld training using augmented reality in accordance with aspects of the present disclosure; and



FIG. 24 is an embodiment of another method for weld training using augmented reality in accordance with aspects of the present disclosure.





DETAILED DESCRIPTION


FIG. 1 is a block diagram of an embodiment of a welding training system 10. The welding training system 10 includes a training stand 12 for providing support for various training devices. For example, the training stand 12 may be configured to support a welding surface, a workpiece, a fixture, one or more training arms, and so forth. The welding training system 10 also includes a welding torch 14 that may be used by a welding operator (e.g., welding student) to perform training operations. As described in greater detail below, the welding torch 14 may be configured with a user interface configured to receive inputs from the welding operator, control circuitry configured to process the inputs, and a communication interface configured to provide the inputs to another device. Furthermore, the welding torch 14 may include one or more display and/or indicators to provide data to the welding operator. Moreover, the welding training system 10 includes a sensing device 16 (e.g., sensor, sensing assembly, and so forth) used to sense a position of one or more welding devices and/or to sense an orientation of one or more welding devices. For example, the sensing device 16 may be used to sense a position and/or an orientation of the training stand 12, the welding torch 14, a welding surface, a workpiece, a fixture, one or more training arms, and so forth. The sensing device 16 may include any suitable sensing device, such as a motion sensing device or a motion tracking device. Furthermore, the sensing device 16 may include one or more cameras, such as one or more infrared cameras, one or more visible spectrum cameras, one or more high dynamic range (HDR) cameras, and so forth.


The sensing device 16 is communicatively coupled to a computer 18. The sensing device 16 is configured to provide data (e.g., image data, sensed data, six degrees of freedom (6DOF) data, etc.) to the computer 18. Furthermore, the sensing device 16 may be configured to receive data (e.g., configuration data, setup data, commands, register settings, etc.) from the computer 18. The computer 18 includes one or more processors 20, memory devices 22, and storage devices 24. The processor(s) 20 may be used to execute software, such as welding training software, image processing software, sensing device software, and so forth. Moreover, the processor(s) 20 may include one or more microprocessors, such as one or more “general-purpose” microprocessors, one or more special-purpose microprocessors and/or application specific integrated circuits (ASICS), or some combination thereof. For example, the processor(s) 20 may include one or more reduced instruction set (RISC) processors.


The storage device(s) 24 (e.g., nonvolatile storage) may include ROM, flash memory, a hard drive, or any other suitable optical, magnetic, or solid-state storage medium, or a combination thereof. The storage device(s) 24 may store data (e.g., data corresponding to a training operation, video and/or parameter data corresponding to a training operation, etc.), instructions (e.g., software or firmware for the welding training system, the sensing device 16, etc.), and any other suitable data. As will be appreciated, data that corresponds to a training operation may include a video recording of the training operation, a simulated video, an orientation of the welding torch 14, a position of the welding torch 14, a work angle, a travel angle, a distance between a contact tip of the welding torch 14 and a workpiece, a travel speed, a proximity, a voltage, a current, a traversed path, a discontinuity analysis, welding device settings, and so forth.


The memory device(s) 22 may include a volatile memory, such as random access memory (RAM), and/or a nonvolatile memory, such as read-only memory (ROM). The memory device(s) 22 may store a variety of information and may be used for various purposes. For example, the memory device(s) 22 may store processor-executable instructions (e.g., firmware or software) for the processor(s) 20 to execute, such as instructions for a welding training simulation and/or for the sensing device 16. In addition, a variety of control regimes for various welding processes, along with associated settings and parameters may be stored in the storage device(s) 24 and/or memory device(s) 22, along with code configured to provide a specific output (e.g., initiate wire feed, enable gas flow, capture welding current data, detect short circuit parameters, determine amount of spatter, etc.) during operation.


As illustrated, the welding training system 10 includes a data reporting device 26; however, other embodiments may not include the data reporting device 26. The data reporting device 26 is configured to facilitate electronic communication between the computer 18, the welding torch 14, a welding power supply 28, and/or a wire feeder 30. For example, the data reporting device 26 may be configured to receive torch data from the welding torch 14, provide torch data to the computer 18, provide data to the welding torch 14, receive arc data from the wire feeder 30, provide arc data to the computer 18, and so forth. Furthermore, the data reporting device 26 may be configured to electronically communicate (e.g., either wired or wirelessly) with a device external to the welding training system 10. The welding power supply 28 may be used to provide welding power to a live-arc welding operation, and the wire feeder 30 may be used to provide welding wire to the live-arc welding operation.


The welding training system 10 includes a display 32 for displaying data and/or screens associated with welding training (e.g., to display data corresponding to a welding training software). For example, the display 32 may provide a graphical user interface to a welding operator (e.g., welding instructor, welding student). The graphical user interface may provide various screens to enable the welding instructor to organize a class, provide assignments to the class, analyze assignments performed by the class, provide assignments to an individual, analyze assignments performed by the individual, add, change, and/or delete parameters for a welding assignment, and so forth. Furthermore, the graphical user interface may provide various screens to enable a welding operator (e.g., welding student) to perform a welding training assignment, view results from prior welding assignments, and so forth. In certain embodiments, the display 32 may be a touch screen display configured to receive touch inputs, and to provide data corresponding to the touch inputs to the computer 18.


An external display 34 is coupled to the computer 18 to enable an individual located remotely from the welding training system 10 to view data corresponding to the welding training system 10. Furthermore, a network device 36 is coupled to the computer 18 to enable the computer 18 to communicate with other devices connected to the Internet or another network 38 (e.g., for providing test results to another device and/or for receiving test results from another device). For example, the network device 36 may enable the computer 18 to communicate with an external welding training system 40, a production welding system 42, and/or a remote computer 44. As may be appreciated, the welding training system 10 described herein may be used to train welding students in a cost effective manner. Furthermore, the welding training system 10 is configured to integrate real welding with simulated welding in a manner that prepares welding students for high quality production welding.


Welding Torch



FIG. 2 is a block diagram of an embodiment of portions of the welding training system 10 of FIG. 1. As illustrated, the data reporting device 26 includes control circuitry 46 configured to provide data to and/or to receive data from the wire feeder 30, the welding power supply 28, the welding torch 14, and the computer 18. The control circuitry 46 is also configured to provide power to one or more devices, such as the welding torch 14. The data reporting device 26 also includes a communication port 47 (e.g., universal serial bus (USB) port, a high speed serial bus port, etc.) and light emitting diodes (LEDs) 48 that may be used to indicate a status of the data reporting device 26, for example. The data reporting device 26 includes a network interface 49 to facilitate communication between the data reporting device 26 and an external device, such as the computer 18. The network interface 49 may be any suitable device that facilitates wired and/or wireless communication between the data reporting device 26 and the external device. The data reporting device 26 also includes a communication interface 50 to facilitate communication between the data reporting device 26 and the welding torch 14. In certain embodiments, the communication interface 50 may include an RS-232 driver.


The welding torch 14 includes control circuitry 52 configured to control the operation of the welding torch 14. In the illustrated embodiment, the control circuitry 52 includes one or more processors 54, memory devices 56, and storage devices 58. In other embodiments, the control circuitry 52 may not include the processors 54, the memory devices 56, and/or the storage devices 58. The processor(s) 54 may be used to execute software, such as welding torch software. Moreover, the processor(s) 54 may be similar to the processor(s) 20 described previously. Furthermore, the memory device(s) 56 may be similar to the memory device(s) 22, and the storage device(s) 58 may be similar to the storage device(s) 24.


The welding torch 14 includes a user interface 60 to enable a welding operator (e.g., welding student, welding instructor, etc.) to interact with the welding torch 14 and/or to provide inputs to the welding torch 14. For example, the user interface 60 may include buttons, switches, touch screens, touchpads, and so forth. The inputs provided to the welding torch 14 by the welding operator may be provided to the computer 18. For example, the inputs provided to the welding torch 14 may be used to control welding training software being executed by the computer 18. As such, the welding operator may use the user interface 60 on the welding torch 14 to navigate the welding training software screens, setup procedures, data analysis, welding courses, make selections within the welding training software, configure the welding training software, and so forth. Thus, the welding operator can use the welding torch 14 to control the welding training software (e.g., the welding operator does not have to put down the welding torch 14 to use a different input device). The welding torch 14 also includes visual indicators 61, such as a display 62 and LEDs 64. The visual indicators 61 may be configured to indicate or display data and/or images corresponding to a weld, welding training, and/or welding training software. For example, the visual indicators 61 may be configured to indicate a welding torch orientation, a welding torch travel speed, a welding torch position, a contact tip to workpiece distance, a proximity of the welding torch 14 in relation to the workpiece, an aim of the welding torch 14 (e.g., at what point the welding torch 14 is directed), training information for the welding operator, and so forth. Moreover, the visual indicators 61 may be configured to provide visual indications before a weld, during a weld, and/or after a weld. In certain embodiments, the LEDs 64 may illuminate to facilitate their detection by the sensing device 16. In such embodiments, the LEDs 64 may be positioned to enable the sensing device 16 to determine a position and/or an orientation of the welding torch 14 based on a spatial position of the LEDs 64.


In certain embodiments, the welding torch 14 includes power conversion circuitry 66 configured to receive power from the data reporting device 26 (e.g., or another device), and to convert the received power for powering the welding torch 14. In certain embodiments, the welding torch 14 may receive power that is already converted and/or does not utilize power conversion. Moreover, in some embodiments, the welding torch 14 may be powered by a battery or any suitable powering mechanism. The welding torch 14 also includes a communication interface 68 (e.g., RS-232 driver) to facilitate communication between the welding torch 14 and the data reporting device 26 (or another device). In the illustrated embodiment, the welding torch 14 may communicate with the computer 18 by providing data to the data reporting device 26 using the communication interfaces 50 and 68, then the data reporting device 26 communicates the data to the computer 18. Accordingly, inputs provided to the welding torch 14 may be provided to the computer 18. In certain embodiments, the welding torch 14 may provide inputs to the computer 18 by communicating directly with the computer 18.


The welding torch 14 includes a trigger 70 configured to mechanically actuate a trigger switch 72 between an open position (as illustrated) and a closed position. The trigger 70 provides a conductor 71 to carry a signal to the control circuitry 52 to indicate whether the trigger switch 72 is in the open position or the closed position. The wire feeder 30, the welding power supply 28, the computer 18, and/or the data reporting device 26 may determine whether there is continuity through the welding torch 14 across a first trigger conductor 74 and a second trigger conductor 76. The trigger switch 72 is electrically coupled between the first trigger conductor 74 and the second trigger conductor 76. Continuity across the first trigger conductor 74 and the second trigger conductor 76 may be determined by applying a voltage across the conductors 74 and 76, applying a current across the conductors 74 and 76, measuring a resistance across the conductors 74 and 76, and so forth. In certain embodiments, portions of the first trigger conductor 74 and/or portions of the second trigger conductor 76 may be disposed within a connector of the welding torch 14. Furthermore, in certain embodiments, the arrangement of switches and/or conductors within the welding torch 14 may be different than illustrated in FIG. 2.


The welding power supply 28 may determine whether to enable welding power to flow through the welding torch 14 based on whether there is continuity across the conductors 74 and 76. For example, the welding power supply 28 may enable welding power to flow through the welding torch 14 while there is continuity across the conductors 74 and 76, and the welding power supply 28 may block welding power from flowing through the welding torch 14 while there is an open circuit across the conductors 74 and 76. Furthermore, the wire feeder 30 may provide welding wire to the welding torch 14 while there is continuity across the conductors 74 and 76, and may block welding wire from being provided to the welding torch 14 while there is an open circuit across the conductors 74 and 76. Moreover, the computer 18 may use the continuity across the conductors 74 and 76 and/or the position of the trigger 70 or trigger switch 72 to start and/or stop a welding training operation, a welding training simulation, data recording, and so forth.


With the trigger switch 72 in the open position, there is an open circuit across the conductors 74 and 76, thus, the open position of the trigger switch 72 blocks electron flow between the conductors 74 and 76. Accordingly, the welding power supply 28 may block welding power from flowing through the welding torch 14 and the wire feeder 30 may block welding wire from being provided to the welding torch 14. Pressing the trigger 70 directs the trigger switch 72 to the closed position where the trigger switch 72 remains as long as the trigger 70 is pressed. With the trigger switch 72 in the closed position, there is continuity between the first trigger conductor 74 and a conductor 77 electrically connected to the trigger switch 72 and a training switch 78.


The training switch 78 is electrically coupled between the first trigger conductor 74 and the second trigger conductor 76. Moreover, the training switch 78 is electrically controlled by the control circuitry 52 to an open position or to a closed position. In certain embodiments, the training switch 78 may be any suitable electrically controlled switch, such as a transistor, relay, etc. The control circuitry 52 may selectively control the training switch 78 to the open position or to the closed position. For example, while welding training software of the welding training system 10 is operating in a live-arc mode, the control circuitry 52 may be configured to control the training switch 78 to the closed position to enable a live welding arc while the trigger 70 is pressed. In contrast, while welding training software of the welding training system 10 is operating in any mode other than the live-arc mode (e.g., simulation, virtual reality, augmented reality, etc.), the control circuitry 52 may be configured to control the training switch 78 to the open position to block a live welding arc (by blocking electron flow between the conductors 74 and 76).


In certain embodiments, the training switch 78 may default to the open position, thereby establishing an open circuit across the conductors 74 and 76. As may be appreciated, while the training switch 78 is in the open position, there will be an open circuit across the conductors 74 and 76 regardless of the position of the trigger switch 72 (e.g., electron flow between the conductors 74 and 76 is blocked by the open position of the training switch 78). However, while the training switch 78 is controlled to the closed position, and the trigger switch 72 is in the closed position, conductivity is established between the conductors 74 and 76 (e.g., electron flow between the conductors 74 and 76 is enabled). Accordingly, the welding power supply 28 may enable welding power to flow through the welding torch 14 only while the training switch 78 is in the closed position and while the trigger switch 72 is in the closed position. For example, welding power may flow from the welding power supply 28, through a weld cable 80, the welding torch 14, a workpiece 82, and return to the welding power supply 28 via a work cable 84 (e.g., electrode-negative, or straight polarity). Conversely, welding power may flow from the welding power supply 28, through the work cable 84, the workpiece 82, the welding torch 14, and return to the welding power supply 28 via the weld cable 80 (e.g., electrode-positive, or reverse polarity).


As may be appreciated, the training switch 78 may be physically located in any suitable portion of the welding training system 10, such as the data reporting device 26, the computer 18, and so forth. Furthermore, in certain embodiments, the functionality of the training switch 78 may be replaced by any suitable hardware and/or software in the welding training system 10.



FIG. 2A is a schematic diagram of an embodiment of circuitry of the welding torch 14 of FIG. 1. In the illustrated embodiment, the trigger switch 72 selectively connects a power supplying conductor (e.g., voltage source, etc.) to the conductor 71. Accordingly, while the trigger switch 72 is open, no voltage is applied to the conductor 71, and while the trigger switch 72 is closed, voltage from the power supplying conductor is supplied to the conductor 71. A trigger enable signal (e.g., TRIGGER_EN) may be provided by the control circuitry 52 to selectively control the training switch 78, and thereby control a feeder enable switch 85. For example, when the trigger enable signal controls the training switch 78 to an open position, no voltage is applied to the feeder enable switch 85 (e.g., via the FEEDER_EN connection), thereby maintaining the feeder enable switch 85 in the open position. Conversely, when the trigger enable signal controls the training switch 78 to a closed position, voltage is applied to the feeder enable switch 85, thereby controlling the feeder enable switch 85 to the closed position. With the feeder enable switch 85 in the closed position, conductivity between the conductors 74 and 76 is established. While one example of welding torch 14 circuitry is provided, any suitable circuitry may be used may be used within the welding torch 14.



FIG. 3 is a perspective view of an embodiment of the welding torch 14 of FIGS. 1 and 2. As illustrated, the user interface 60 includes multiple buttons 86 which may be used to provide inputs to the welding torch 14. For example, the buttons 86 may enable a welding operator to navigate through welding training software. Furthermore, the welding torch 14 includes the display 62 which may show the welding operator data corresponding to the welding training software, data corresponding to a welding operation, and so forth. As illustrated, the LEDs 64 may be positioned at various locations on the welding torch 14. Accordingly, the LEDs 64 may be illuminated to facilitate detection by the sensing device 16.


Calibration Techniques



FIG. 4 is a perspective view of an embodiment of the training stand 12 of FIG. 1. The training stand 12 includes a welding surface 88 on which live welds (e.g., real welds, actual welds) and/or simulated welds may be performed. Legs 90 provide support to the welding surface 88. The welding surface 88 includes slots 91 that may aid a welding operator in positioning and orienting the workpiece 84. In certain embodiments, the position and orientation of the workpiece 84 may be provided to welding training software of the welding training system 10 to calibrate the welding training system 10. For example, a welding operator may provide an indication to the welding training software identifying which slot 91 of the welding surface 88 the workpiece 84 is aligned with. Furthermore, a predefined welding training assignment may direct the welding operator to align the workpiece 84 with a particular slot 91. In certain embodiments, the workpiece 84 may include an extension 92 configured to extend into one or more of the slots 91 for alignment of the workpiece 84 with the one or more slots 91. As may be appreciated, each of the slots 91 may be positioned at a location corresponding to a respective location defined in the welding training software.


The welding surface 88 includes a first aperture 93 and a second aperture 94. The first and second apertures 93 and 94 may be used together to determine a position and/or an orientation of the welding surface 88. As may be appreciated, at least two apertures are used to determine the position and/or the orientation of the welding surface 88. In certain embodiments, more than two apertures may be used to determine the position and/or the orientation of the welding surface 88. The first and second apertures 93 and 94 may be positioned at any suitable location on the welding surface 88, and may be any suitable size. In certain embodiments, the position and/or orientation of the welding surface 88 relative to the sensing device 16 may be calibrated using the first and second apertures 93 and 94. For example, as described in greater detail below, a calibration device configured to be sensed by the sensing device 16 may be inserted into the first aperture 93, or touched to the first aperture 93. While the calibration device is inserted into, or touching, the first aperture 93, a user input provided to the welding training software (or other calibration software) may indicate that the calibration device is inserted into the first aperture 93. As a result, the welding training software may establish a correlation between a first data set (e.g., calibration data) received from the sensing device 16 (e.g., position and/or orientation data) at a first time and the location of first aperture 93. The calibration device may next be inserted into the second aperture 94, or touched to the second aperture 94. While the calibration device is inserted into, or touching, the second aperture 94, a user input provided to the welding training software may indicate that the calibration device is inserted into the second aperture 94. As a result, the welding training software may establish a correlation between a second data set (e.g., calibration data) received from the sensing device 16 at a second time and the location of second aperture 94. Thus, the welding training software may be able to calibrate the position and/or orientation of the welding surface 88 relative to the sensing device 16 using the first data set received at the first time and the second data set received at the second time.


The welding surface 88 also includes a first marker 95 and a second marker 96. The first and second markers 95 and 96 may be used together to determine a position and/or an orientation of the welding surface 88. As may be appreciated, at least two markers are used to determine the position and/or the orientation of the welding surface 88. In certain embodiments, more than two markers may be used to determine the position and/or the orientation of the welding surface 88. The first and second markers 95 and 96 may be formed from any suitable material. Moreover, in certain embodiments, the first and second markers 95 and 96 may be built into the welding surface 88, while in other embodiments, the first and second markers 95 and 96 may be attached to the welding surface 88. For example, the first and second markers 95 and 96 may be attached to the welding surface 88 using an adhesive and/or the first and second markers 95 and 96 may be stickers. The first and second markers 95 and 96 may have any suitable shape, size, and/or color. Furthermore, in certain embodiments, the first and second markers 95 and 96 may be a reflector formed from a reflective material. The first and second markers 95 and 96 may be used by the welding training system 10 to calibrate the position and/or orientation of the welding surface 88 relative to the sensing device 16 without a separate calibration device. Accordingly, the first and second markers 95 and 96 are configured to be detected by the sensing device 16. In certain embodiments, the first and second markers 95 and 96 may be positioned at predetermined locations on the welding surface 88. Furthermore, the welding training software may be programmed to use the predetermined locations to determine the position and/or the orientation of the welding surface 88. In other embodiments, the location of the first and second markers 95 and 96 may be provided to the welding training software during calibration. With the first and second markers 95 and 96 on the welding surface 88, the sensing device 16 may sense the position and/or orientation of the first and second markers 95 and 96 relative to the sensing device 16. Using this sensed data in conjunction with the location of the first and second markers 95 and 96 on the welding surface 88, the welding training software may be able to calibrate the position and/or orientation of the welding surface 88 relative to the sensing device 16.


In the illustrated embodiment, the workpiece 84 includes a first marker 98 and a second marker 99. The first and second markers 98 and 99 may be used together to determine a position and/or an orientation of the workpiece 84. As may be appreciated, at least two markers are used to determine the position and/or the orientation of the workpiece 84. In certain embodiments, more than two markers may be used to determine the position and/or the orientation of the workpiece 84. The first and second markers 98 and 99 may be formed from any suitable material. Moreover, in certain embodiments, the first and second markers 98 and 99 may be built into the workpiece 84, while in other embodiments, the first and second markers 98 and 99 may be attached to the workpiece 84. For example, the first and second markers 98 and 99 may be attached to the workpiece 84 using an adhesive and/or the first and second markers 98 and 99 may be stickers. The first and second markers 98 and 99 may have any suitable shape, size, and/or color. Furthermore, in certain embodiments, the first and second markers 98 and 99 may be a reflector formed from a reflective material. The first and second markers 98 and 99 may be used by the welding training system 10 to calibrate the position and/or orientation of the workpiece 84 relative to the sensing device 16 without a separate calibration device. Accordingly, the first and second markers 98 and 99 are configured to be detected by the sensing device 16. In certain embodiments, the first and second markers 98 and 99 may be positioned at predetermined locations on the workpiece 84. Furthermore, the welding training software may be programmed to use the predetermined locations to determine the position and/or the orientation of the workpiece 84. In other embodiments, the location of the first and second markers 98 and 99 may be provided to the welding training software during calibration. With the first and second markers 98 and 99 on the workpiece 84, the sensing device 16 may sense the position and/or orientation of the first and second markers 98 and 99 relative to the sensing device 16. Using this sensed data in conjunction with the location of the first and second markers 98 and 99 on the workpiece 84, the welding training software may be able to calibrate the position and/or orientation of the workpiece 84 relative to the sensing device 16. While the markers 95, 96, 98, and 99 have been described herein as being detected by the sensing device 16, in certain embodiments, the markers 95, 96, 98, and 99 may indicate locations where a calibration device is to be touched for calibration using the calibration device, as described previously.


The training stand 12 includes a first arm 100 extending vertically from the welding surface 88 and configured to provide support for the sensing device 16 and the display 32. A knob 101 is attached to the first arm 100 and may be used to adjust an orientation of the sensing device 16 relative to the first arm 100. For example, as the knob 101 is adjusted, mechanical components extending through the first arm 100 may adjust an angle of the sensing device 16. The display 32 includes a cover 102 to protect the display 32 from welding emissions that may occur during a live welding operation. The cover 102 may be made from any suitable material, such as a transparent material, a polymer, and so forth. By using a transparent material, a welding operator may view the display 32 while the cover 102 is positioned in front of the display 32, such as before, during, and/or after a welding operation. A camera 104 may be coupled to the first arm 100 for recording welding operations. In certain embodiments, the camera 104 may be a high dynamic range (HDR) camera. Furthermore, an emitter 105 may be coupled to the first arm 100. The emitter 105 may be used to calibrate the position and/or orientation of the welding surface 88 relative to the sensing device 16. For example, the emitter 105 may be configured to emit a visible pattern onto the welding surface 88. The visible pattern may be shown onto the welding surface 88. Furthermore, the visible pattern may be detected by the sensing device 16 to calibrate the position and/or the orientation of the welding surface 88 relative to the sensing device 16. For example, based on particular features of the visible pattern alignments and/or orientations may be determined by the sensing device 16 and/or the welding training software. Moreover, the visible pattern emitted by the emitter 105 may be used to facilitate positioning of the workpiece 84 on the welding surface 88.


The training stand 12 also includes a second arm 106 extending vertically from the welding surface 88 and configured to provide support for an overhead welding plate 108. The second arm 106 may be adjustable to facilitate overhead welding at different heights. Moreover, the second arm 106 may be manufactured in a number of different ways to facilitate overhead welding at different heights. The overhead welding plate 108 is coupled to the second arm 106 using a mounting assembly 110. The mounting assembly 110 facilitates rotation of the overhead welding plate 108 as illustrated by arrow 111. For example, the overhead welding plate 108 may be rotated from extending generally in the horizontal plane (e.g., for overhead welding), as illustrated, to extend generally in the vertical plane (e.g., for vertical welding). The overhead welding plate 108 includes a welding surface 112. The welding surface 112 includes slots 114 that may aid a welding operator in positioning the workpiece 84 on the welding surface 112, similar to the slots 91 on the welding surface 88. In certain embodiments, the position of the workpiece 84 may be provided to welding training software of the welding training system 10 to calibrate the welding training system 10. For example, a welding operator may provide an indication to the welding training software identifying which slot 114 of the welding surface 112 the workpiece 84 is aligned with. Furthermore, a predefined welding training assignment may direct the welding operator to align the workpiece 84 with a particular slot 114. In certain embodiments, the workpiece 84 may include an extension configured to extend into one or more of the slots 114 for alignment of the workpiece 84 with the one or more slots 114. As may be appreciated, each of the slots 114 may be positioned at a location corresponding to a respective location defined in the welding training software.


The welding surface 112 also includes a first marker 116 and a second marker 118. The first and second markers 116 and 118 may be used together to determine a position and/or an orientation of the welding surface 112. As may be appreciated, at least two markers are used to determine the position and/or the orientation of the welding surface 112. In certain embodiments, more than two markers may be used to determine the position and/or the orientation of the welding surface 112. The first and second markers 116 and 118 may be formed from any suitable material. Moreover, in certain embodiments, the first and second markers 116 and 118 may be built into the welding surface 112 (or another part of the overhead welding plate 108), while in other embodiments, the first and second markers 116 and 118 may be attached to the welding surface 112 (or another part of the overhead welding plate 108). For example, the first and second markers 116 and 118 may be attached to the welding surface 112 using an adhesive and/or the first and second markers 116 and 118 may be stickers. The first and second markers 116 and 118 may have any suitable shape, size, and/or color. Furthermore, in certain embodiments, the first and second markers 116 and 118 may be a reflector formed from a reflective material. The first and second markers 116 and 118 may be used by the welding training system 10 to calibrate the position and/or orientation of the welding surface 112 relative to the sensing device 16 without a separate calibration device. Accordingly, the first and second markers 116 and 118 are configured to be detected by the sensing device 16. In certain embodiments, the first and second markers 116 and 118 may be positioned at predetermined locations on the welding surface 112. Furthermore, the welding training software may be programmed to use the predetermined locations to determine the position and/or the orientation of the welding surface 112. In other embodiments, the location of the first and second markers 116 and 118 may be provided to the welding training software during calibration. With the first and second markers 116 and 118 on the welding surface 112, the sensing device 16 may sense the position and/or orientation of the first and second markers 116 and 118 relative to the sensing device 16. Using this sensed data in conjunction with the location of the first and second markers 116 and 118 on the welding surface 112, the welding training software may be able to calibrate the position and/or orientation of the welding surface 112 relative to the sensing device 16. Furthermore, the sensing device 16 may sense and/or track the first and second markers 116 and 118 during a weld to account for any movement of the overhead welding plate 108 that may occur during the weld. While the markers 116 and 118 have been described herein as being detected by the sensing device 16, in certain embodiments, the markers 116 and 118 may indicate locations where a calibration device is to be touched or inserted for calibration using the calibration device, as described previously.



FIG. 5 is a perspective view of an embodiment of a calibration device 120. The calibration device 120 is shaped like a torch and may be used for calibrating the position and/or orientation of the welding surfaces 88 and 112 relative to the sensing device 16, as described in greater detail above. The calibration device 120 includes a handle 122 and a nozzle 124. The nozzle 124 includes a pointed end 126 that may be used to touch a location for calibration and/or to be inserted into an aperture for calibration. The calibration device 120 also includes a user interface 128 that enables the welding operator to provide input corresponding to a time that the calibration device 120 is touching a location for calibration and/or is being inserted into an aperture for calibration. Moreover, in certain embodiments, the calibration device 120 includes markers 130 configured to be sensed by the sensing device 16. As illustrate, the markers 130 extend from the calibration device 120. However, in other embodiments, the markers 130 may not extend from the calibration device 120. The markers 130 may be any suitable marker configured to be detected by the sensing device 16. Moreover, the markers 130 may be any suitable size, shape, and/or color.


During calibration, the sensing device 16 may sense a position of the calibration device 120 and/or an orientation of the calibration device 120. The position and/or orientation of the calibration device 120 may be used by the welding training software to determine a position and/or orientation of one or more of the welding surfaces 88 and 112 relative to the sensing device 16, a position and/or orientation of the workpiece 84 relative to the sensing device 16, a position and/or orientation of a fixture relative to the sensing device 16, and so forth. Thus, the calibration device 120 may facilitate calibration of the welding training system 10.



FIG. 6 is a perspective view of an embodiment of a fixture assembly 132. The fixture assembly 132 may be positioned on the welding surface 88 and/or the welding surface 112, and may secure the workpiece 84 thereon. In certain embodiments, the fixture assembly 132 may be configured to align with one or more of the slots 92 and 114. In other embodiments, the fixture assembly 132 may be placed at any location on the welding surface 88 and/or the welding surface 122. The fixture assembly 132 also includes a first marker 134 and a second marker 136. The first and second markers 134 and 136 may be used together to determine a position and/or an orientation of the fixture assembly 132. As may be appreciated, at least two markers are used to determine the position and/or the orientation of the fixture assembly 132. The first and second markers 134 and 136 may be formed from any suitable material. Moreover, in certain embodiments, the first and second markers 134 and 136 may be built into the fixture assembly 132, while in other embodiments, the first and second markers 134 and 136 may be attached to the fixture assembly 132. For example, the first and second markers 134 and 136 may be attached to the fixture assembly 132 using an adhesive and/or the first and second markers 134 and 136 may be stickers. The first and second markers 134 and 136 may have any suitable shape, size, and/or color. Furthermore, in certain embodiments, the first and second markers 134 and 136 may be a reflector formed from a reflective material. The first and second markers 134 and 136 may be used by the welding training system 10 to calibrate the position and/or orientation of the fixture assembly 132 relative to the sensing device 16 without a separate calibration device. Accordingly, the first and second markers 134 and 136 are configured to be detected by the sensing device 16. In certain embodiments, the first and second markers 134 and 136 may be positioned at predetermined locations on the fixture assembly 132. Furthermore, the welding training software may be programmed to use the predetermined locations to determine the position and/or the orientation of the fixture assembly 132. In other embodiments, the location of the first and second markers 134 and 136 may be provided to the welding training software during calibration. With the first and second markers 134 and 136 on the fixture assembly 132, the sensing device 16 may sense the position and/or orientation of the first and second markers 134 and 136 relative to the sensing device 16. Using this sensed data in conjunction with the location of the first and second markers 134 and 136 on the fixture assembly 132, the welding training software may be able to calibrate the position and/or orientation of the fixture assembly 132 relative to the sensing device 16. While the first and second markers 134 and 136 have been described herein as being detected by the sensing device 16, in certain embodiments, the first and second markers 134 and 136 may indicate locations where a calibration device is to be touched or inserted for calibration using the calibration device 120, as described previously.


In the illustrated embodiment, the fixture assembly 132 is configured to secure a lower portion 138 of the workpiece 84 to an upper portion 140 of the workpiece 84 for performing a lap weld. In other embodiments, the fixture assembly 132 may be configured to secure portions of the workpiece 84 for performing a butt weld, a fillet weld, and so forth, to aid a welding operator in performing a weld. The fixture assembly 132 includes vertical arms 142 extending from a base 143. A cross bar 144 extends between the vertical arms 142, and is secured to the vertical arms 142. Adjustment mechanisms 146 (e.g., knobs) may be adjusted to direct locking devices 148 toward the workpiece 84 for securing the workpiece 84 between the locking devices 148 and the base 143 of the fixture assembly 132. Conversely, the adjustment mechanisms 146 may be adjusted to direct the locking devices 148 away from the workpiece 84 for removing the workpiece 84 from being between the locking devices 148 and the base 143. Accordingly, the workpiece 84 may be selectively secured to the fixture assembly 132.


Welding Training System Devices



FIG. 7 is a perspective view of a welding wire stickout calibration tool 150. The tool 150 is configured to calibrate a length of welding wire extending out of a torch nozzle to a selectable length. Accordingly, the tool 150 includes a first handle 152 and a second handle 154. The tool 150 also includes a torch nozzle holder 156 attached to a central portion 157 of the tool 150 and extending outward from the central portion 157 a selected distance. In the illustrated embodiment, the torch nozzle holder 156 has a generally cylindrical body 158 (e.g., cup shape); however, in other embodiments, the body 158 of the torch nozzle holder 156 may have any suitable shape. Moreover, the torch nozzle holder 156 is configured to receive the torch nozzle through a nozzle inlet 160 such that the torch nozzle extends into the body 158. Furthermore, the torch nozzle holder 156 includes an opening 162 configured to enable welding wire to extend out the end of the torch nozzle holder 156, and to block the torch nozzle from extending through the opening 162. As the torch nozzle extends into the torch nozzle holder 156, the welding wire extends out of the opening 162 of the torch nozzle holder 156 toward a blade assembly 164 of the tool 150. The blade assembly 164 includes one or more sides 165 and 166 configured to contact the welding wire. In certain embodiments, both of sides 165 and 166 include blades to cut opposing sides of the welding wire, while in other embodiments, only one of the sides 165 and 166 includes a blade to cut one side of the welding wire and the other side includes a surface to which the blade is directed toward. For calibrating the length of the welding wire, the welding wire may extend through the opening 162 and into the blade assembly 164. The welding wire may be cut to a selectable length by pressing the first handle 152 and the second handle 154 toward one another, thereby calibrating the length of wire extending from the torch nozzle. The calibration length may be selected using an adjustment mechanism 167 to adjust a distance 168 between the blade assembly 164 and the opening 162 of the torch nozzle holder 156. Thus, using the tool 150, the length of wire extending from the torch nozzle may be calibrated.



FIG. 8 is a top view of the welding wire stickout calibration tool 150 of FIG. 7. As illustrated, the welding torch 14 may be used with the tool 150. Specifically, a nozzle 170 of the welding torch 14 may be inserted into the torch nozzle holder 156 in a direction 172. Welding wire 174 extending from the welding torch 14 is directed through the nozzle inlet 160, the opening 162, and the blade assembly 164. Accordingly, the first and second handles 152 and 154 may be pressed together to cut the welding wire 174 to the distance 168 (e.g., the calibration length) set by the adjustment mechanism 167.



FIG. 9 is an embodiment of a method 176 for calibrating wire stickout from the welding torch 14. The tool 150 may be used to calibrate the length of welding wire 174 extending from the nozzle 170 using a variety of methods. In the method 176, the adjustment mechanism 167 of the welding wire stickout calibration tool 150 may be adjusted for a selected welding wire 174 length (block 178). For example, the distance 168 of the torch nozzle holder 156 from the tool 150 may be set to a range of between approximately 0.5 to 2.0 cm, 1.0 to 3.0 cm, and so forth. The welding torch 14 may be inserted into the torch nozzle holder 156 of the tool 150, such that the nozzle 170 of the welding torch 14 abuts the torch nozzle holder 156, and that the welding wire 174 extends through the opening 162 of the torch nozzle holder 156 (block 180). In certain embodiments, the welding wire 174 may be long enough to extend through the blade assembly 164. However, if the welding wire 174 does not extend through the blade assembly 164, a welding operator may actuate the trigger 70 of the welding torch 14 to feed welding wire 174 such that the welding wire 174 extends through the blade assembly 164 (block 182). Accordingly, the welding operator may compress handles 152 and 154 of the tool 150 to cut the welding wire 174 extending through the blade assembly 164 and thereby calibrate the length of the welding wire 174 (block 184).



FIG. 10 is a perspective view of an embodiment of a welding consumable 186 having physical marks. The welding consumable 186 may be any suitable welding consumable, such as a welding stick, welding rod, or a welding electrode. The welding consumable 186 includes physical marks 188, 190, 192, 194, 196, 198, 200, 202, and 204. The physical marks 188, 190, 192, 194, 196, 198, 200, 202, and 204 may be any suitable physical mark. For example, the physical marks 188, 190, 192, 194, 196, 198, 200, 202, and 204 may include a bar code, an image, a shape, a color, text, a set of data, and so forth. In certain embodiments, the physical marks 188, 190, 192, 194, 196, 198, 200, 202, and 204 may be laser etched. Furthermore, in certain embodiments, the physical marks 188, 190, 192, 194, 196, 198, 200, 202, and 204 may be visible with the natural eye (e.g., within the visible spectrum), while in other embodiments the physical marks 188, 190, 192, 194, 196, 198, 200, 202, and 204 may not be visible with the natural eye (e.g., not within the visible spectrum).


Each of the physical marks 188, 190, 192, 194, 196, 198, 200, 202, and 204 indicates a location on the welding consumable 186 relative to either a first end 206, or a second end 208 of the welding consumable 186. For example, the physical mark 188 may indicate a distance from the first end 206, a distance from the second end 208, or some other location relative to the welding consumable 186. In certain embodiments, the physical marks 188, 190, 192, 194, 196, 198, 200, 202, and 204 may indicate a number that corresponds to the first end 206 and/or the second end 208. For example, the physical mark 188 may indicate a number “1” indicating that it is the first physical mark from the first end 206 and/or the physical mark 188 may indicate a number “9” indicating that it is the ninth physical mark from the second end 208. A processing device may use a lookup table to determine a distance from the first end 206 or the second end 208 based on the number indicated by the physical mark.


A camera-based detection system, which may include the sensing device 16, or another type of system is configured to detect the physical marks 188, 190, 192, 194, 196, 198, 200, 202, and 204 during live arc welding or a welding simulation. Moreover, the camera-based detection system is configured to determine a remaining length of the welding consumable 186, a consumed length of the welding consumable 186, a rate of use of the welding consumable 186, a dipping rate of the welding consumable 186, and so forth, based on the detected physical marks. Accordingly, data corresponding to use of the welding consumable 186 may be tracked by the welding training system 10 for training and/or analysis.



FIG. 11 is a perspective view of an embodiment of welding wire 210 having physical marks 212, 214, 216, and 218. The physical marks 212, 214, 216, and 218 may be any suitable physical mark. For example, the physical marks 212, 214, 216, and 218 may include a bar code, an image, a shape, text, a set of data, and so forth. In certain embodiments, the physical marks 212, 214, 216, and 218 may be laser etched. Furthermore, in certain embodiments, the physical marks 212, 214, 216, and 218 may be visible with the natural eye (e.g., within the visible spectrum), while in other embodiments the physical marks 212, 214, 216, and 218 may not be visible with the natural eye (e.g., not within the visible spectrum).


Each of the physical marks 212, 214, 216, and 218 indicates a location on the welding wire 210 relative to either a first end 220, or a second end 222 of the welding wire 210. For example, the physical mark 212 may indicate a distance from the first end 220, a distance from the second end 222, or some other location relative to the welding wire 210. In certain embodiments, the physical marks 212, 214, 216, and 218 may indicate a number that corresponds to the first end 220 and/or the second end 222. For example, the physical mark 212 may indicate a number “1” indicating that it is the first physical mark from the first end 220 and/or the physical mark 212 may indicate a number “4” indicating that it is the fourth physical mark from the second end 222. A processing device may use a lookup table to determine a distance from the first end 220 or the second end 222 based on the number indicated by the physical mark.


A camera-based detection system, which may include the sensing device 16, or another type of system is configured to detect the physical marks 212, 214, 216, and 218 during live arc welding or a welding simulation. Moreover, the camera-based detection system is configured to determine a remaining length of the welding wire 210, a consumed length of the welding wire 210, a rate of use of the welding wire 210, a dipping rate of the welding wire 210, and so forth, based on the detected physical marks. Accordingly, data corresponding to use of the welding wire 210 may be tracked by the welding training system 10 for training and/or analysis.



FIG. 12 is a perspective view of an embodiment of a vertical arm assembly 223 of the training stand 12 of FIG. 4. As illustrated, the sensing device 16 is attached to the first arm 100. Furthermore, the sensing device 16 includes cameras 224, and an infrared emitter 226. However, in other embodiments, the sensing device 16 may include any suitable number of cameras, emitters, and/or other sensing devices. A pivot assembly 228 is coupled to the first arm 100 and to the sensing device 16, and enables an angle of the sensing device 16 to be adjusted while the sensing device 16 rotates as illustrated by arrow 229. As may be appreciated, adjusting the angle of the sensing device 16 relative to the first arm 100 changes the field of view of the sensing device 16 (e.g., to change the portion of the welding surface 88 and/or the welding surface 112 sensed by the sensing device 16).


A cord 230 extends between the knob 101 and the sensing device 16. The cord 230 is routed through a pulley 232 to facilitate rotation of the sensing device 16. Thus, a welding operator may rotate the knob 101 to manually adjust the angle of the sensing device 16. As may be appreciated, the combination of the cord 230 and the pulley 232 is one example of a system for rotating the sensing device 16. It should be noted that any suitable system may be used to facilitate rotation of the sensing device 16. While one embodiment of a knob 101 is illustrated, it may be appreciated that any suitable knob may be used to adjust the angle of the sensing device 16. Furthermore, the angle of the sensing device 16 may be adjusted using a motor 234 coupled to the cord 230. Accordingly, a welding operator may operate the motor 234 to adjust the angle of the sensing device 16. Moreover, in certain embodiments, control circuitry may be coupled to the motor 234 and may control the angle of the sensing device 16 based on a desired field of view of the sensing device 16 and/or based on tracking of an object within the field of view of the sensing device 16.



FIG. 13 is a perspective view of an embodiment of an overhead welding arm assembly 235. The overhead welding arm assembly 235 illustrates one embodiment of a manufacturing design that enables the second arm 106 to have an adjustable height. Accordingly, as may be appreciated, the second arm 106 may be manufactured to have an adjustable height in a number of ways. As illustrated, the overhead welding assembly 235 includes handles 236 used to vertically raise and/or lower the second arm 106 as illustrated by arrows 238. The overhead welding arm assembly 235 includes a locking device 240 to lock the second arm 106 at a desired height. For example, the locking device 240 may include a button that is pressed to disengage a latch configured to extend into openings 242, thus unlocking the second arm 106 from being secured to side rails 243. With the second arm 106 unlocked from the side rails 243, the handles 236 may be vertically adjusted to a desired height, thereby adjusting the plate 112 to a desired height. As may be appreciated, releasing the button may result in the latch extending into the openings 242 and locking the second arm 106 to the side rails 243. As may be appreciated, the locking device 240 may operate manually as described and/or the locking device 240 may be controlled by a control system (e.g., automatically controlled). Furthermore, the second arm 106 may be vertically raised and/or lowered using the control system. For example, in certain embodiments, the welding training software may control the second arm 106 to move to a desired position automatically. Thus, the plate 112 may be adjusted to a desired height for overhead welding.


Multi-Mode Welding Training Software



FIG. 14 is a block diagram of an embodiment of welding training software 244 of the welding training system 10 having multiple training modes. As illustrated, the welding training software 244 may include one or more of a live-arc mode 246 configured to enable training using a live (e.g., actual) welding arc, a simulation mode 248 configured to enable training using a welding simulation, a virtual reality (VR) mode 250 configured to enable training using a VR simulation, and/or an augmented reality mode 252 configured to enable training using augmented reality simulation.


The welding training software 244 may receive signals from an audio input 254. The audio input 254 may be configured to enable a welding operator to operate the welding training software 244 using audible commands (e.g., voice activation). Furthermore, the welding training software 244 may be configured to provide an audio output 256 and/or a video output 258. For example, the welding training software 244 may provide audible information to a welding operator using the audio output 256. Such audible information may include instructions for configuring (e.g., setting up) the welding training system 10, real-time feedback provided to a welding operator during a welding operation, instructions to a welding operator before performing a welding operation, instructions to a welding operator after performing a welding operation, warnings, and so forth.



FIG. 15 is a block diagram of an embodiment of the VR mode 250 of the welding training software 244. The VR mode 250 is configured to provide a welding operator with a VR simulation 260. The VR simulation 260 may be displayed to a welding operator through a VR headset, VR glasses, a VR display, or any suitable VR device. The VR simulation 260 may be configured to include a variety of virtual objects, such as the objects illustrated in FIG. 15, that enable interaction between a welding operator and a selected virtual object of the variety of virtual objects within the VR simulation 260. For example, virtual objects may include a virtual workpiece 262, a virtual welding stand 264, a virtual welding torch 266, virtual wire cutters 268, virtual software configuration 270, virtual training data results 272, and/or a virtual glove 274.


In certain embodiments, the welding operator may interact with the virtual objects without touching a physical object. For example, the sensing device 16 may detect movement of the welding operator and may result in similar movements occurring in the VR simulation 260 based on the welder operator's movements in the real world. In other embodiments, the welding operator may use a glove or the welding torch 14 to interact with the virtual objects. For example, the glove or the welding torch 14 may be detected by the sensing device 16, and/or the glove or the welding torch 14 may correspond to a virtual object in the VR simulation 260. Furthermore, the welding operator may be able to operate the welding training software 244 within the VR simulation 260 using the virtual software configuration 270 and/or the virtual training data results 272. For example, the welding operator may use their hand, the glove, or the welding torch 14 to select items within the welding training software 244 that are displayed virtually within the VR simulation 260. Moreover, the welding operator may perform other actions such as picking up wire cutters and cutting virtual welding wire extending from the virtual torch 266, all within the VR simulation 260.



FIG. 16 is an embodiment of a method 276 for integrating training results data. The method 276 includes the welding training software 244 of the computer 18 receiving a first set of welding training data from a storage device (e.g., storage device 24) (block 278). The first set of welding training data may include welding training data corresponding to a first welding training assignment. The method 276 also includes the welding training software 244 receiving a second set of welding training data from the storage device (block 280). In certain embodiments, the first set and/or second set of welding training data may be received from a network storage device. The network storage device may be configured to receive welding training data from and/or to provide welding training data to the welding training system 10 and/or the external welding training system 40. The welding training software 244 may integrate the first and second sets of welding training data into a chart to enable a visual comparison of the first set of welding training data with the second set of welding training data (block 282). As may be appreciated, the chart may be a bar chart, a pie chart, a line chart, a histogram, and so forth. In certain embodiments, integrating the first set of welding training data with the second set of welding training data includes filtering the first set of welding training data and the second set of welding training data to display a subset of the first set of welding training data and a subset of the second set of welding training data. The welding training software 244 may provide the chart to a display device (e.g., the display 32) (block 284). In certain embodiments, providing the chart to the display device includes providing selectable elements on the chart that when selected display data corresponding to a respective selected element of the selectable elements (e.g., selecting wire speed from the chart may change the screen to display the wire speed history for a particular welding training assignment).


The first set of welding training data and/or the second set of welding training data may include a welding torch orientation, a welding torch travel speed, a welding torch position, a contact tip to workpiece distance, a proximity of the welding torch in relation to the workpiece, an aim of the welding torch, a welding score, a welding grade, and so forth. Moreover, the first set of welding training data and the second set of welding training data may correspond to training performed by one welding operator and/or by a class of welding operators. Furthermore, the first welding training assignment and the second welding training assignment may correspond to training performed by one welding operator and/or by a class of welding operators. In certain embodiments, the first welding training assignment may correspond to training performed by a first welding operator, and the second welding training assignment may correspond to welding performed by a second welding operator. Moreover, the first training assignment and the second training assignment may correspond to the same welding training scenario.



FIG. 17 is an embodiment of a chart 285 illustrating multiple sets of welding training data for a welding operator. The chart 285 may be produced by the welding training software 244 and may be provided to the display 32 to be used by a welding instructor to review welding training operators performed by a welding student, and/or may be provided to the display 32 to be used by a welding student to review welding training operations performed by that welding student. The chart 285 illustrates a bar graph comparison between different training assignments of a first set of welding training assignments performed by a welding operator. The first set of welding training assignments includes assignments 286, 288, 290, 292, and 294. The chart 285 also illustrates a bar graph comparison between different training assignments of a second set of welding training assignments performed by the welding operator. The second set of welding training assignments includes assignments 296, 298, 300, 302, and 304. Accordingly, welding training assignments may be compared to one another for analysis, instruction, certification, and/or training purposes. As illustrated, the welding training assignments may be compared to one another using one of any number of criteria, such as a total score, a work angle, a travel angle, a travel speed, a contact to work distance, a proximity, a mode (e.g., live-arc mode, simulation mode, etc.), a completion status (e.g., complete, incomplete, partially complete, etc.), a joint type (e.g., fillet, butt, T, lap, etc.), a welding position (e.g., flat, vertical, overhead, etc.), a type of metal used, a type of filler metal, and so forth.



FIG. 18 is an embodiment of a chart 305 illustrating welding training data for a welder compared to welding training data for a class. For example, the chart 305 illustrates a score 306 of a welding operator compared to a score 308 (e.g., average, median, or some other score) of a class for a first assignment. Furthermore, a score 310 of the welding operator is compared to a score 312 (e.g., average, median, or some other score) of the class for a second assignment. Moreover, a score 314 of the welding operator is compared to a score 316 (e.g., average, median, or some other score) of the class for a third assignment. As may be appreciated, scores from one or more welding operators may be compared to scores of the entire class. Such a comparison enables a welding instructor to assess the progress of individual welding students as compared to the class of welding students. Furthermore, scores from one or more welding operators may be compared to scores of one or more other welding operators. In certain embodiments, scores from one class may be compared to scores of another class. Moreover, scores from the first assignment, the second assignment, and/or the third assignment may be selected for comparison.


Data Storage and Analysis



FIG. 19 is a block diagram of an embodiment of a data storage system 318 for storing certification status data. The certification status data may be produced as a welding operator completes various assignments in the welding training system 10. For example, a predetermined set of assignments may certify a welding operator for a particular welding device and/or welding process. The data storage system 318 includes control circuitry 320, one or more memory devices 322, and one or more storage devices 324. The control circuitry 320 may include one or more processors, which may be similar to the processor(s) 20. Furthermore, the memory device(s) 322 may be similar to the memory device(s) 22, and the storage device(s) 324 may be similar to the storage device(s) 24. The memory device(s) 322 and/or the storage device(s) 324 may be configured to store certification status data 326 corresponding to a welding training certification of a welding operator.


The certification status data 326 may include welding training data of the welding operator (e.g., any data that is related to the assignments to certify the welding operator), any data related to an actual certification (e.g., certified, not certified, qualified, not qualified, etc.), a quantity of one or more welds performed by the welding operator, a timestamp for one or more welds performed by the welding operator, welding parameter data for one or more welds performed by the welding operator, a quality ranking of the welding operator, a quality level of the welding operator, a history of training welds performed by the welding operator, a history of production welds performed by the welding operator, a first welding process (e.g., a metal inert gas (MIG) welding process, a tungsten inert gas (TIG) welding process, a stick welding process, etc.) certification status (e.g., the welding operator is certified for the first welding process, the welding operator is not certified for the first welding process), a second welding process certification status (e.g., the welding operator is certified for the second welding process, the welding operator is not certified for the second welding process), a first welding device (e.g., a wire feeder, a power supply, a model number, etc.) certification status (e.g., the welding operator is certified for the first welding device, the welding operator is not certified for the first welding device), and/or a second welding device certification status (e.g., the welding operator is certified for the second welding device, the welding operator is not certified for the second welding device).


The control circuitry 320 may be configured to receive a request for the first welding process certification status, the second welding process certification status, the first welding device certification status, and/or the second welding device certification status of the welding operator. Furthermore, the control circuitry 320 may be configured to provide a response to the request. The response to the request may include the first welding process certification status, the second welding process certification status, the first welding device certification status, and/or the second welding device certification status of the welding operator. In certain embodiments, the welding operator may be authorized to use a first welding process, a second welding process, a first welding device, and/or a second welding device based at least partly on the response. Furthermore, in some embodiments, the first welding process, the second welding process, the first welding device, and/or the second welding device of a welding system may be enabled or disabled based at least partly on the response. Moreover, in certain embodiments, the first welding process, the second welding process, the first welding device, and/or the second welding device of a welding system may be enabled or disabled automatically. Thus, a welding operator's certification data may be used to enable and/or disable that welding operator's ability to use a particular welding system, welding device, and/or welding process. For example, a welding operator may have a certification for a first welding process, but not for a second welding process. Accordingly, in certain embodiments, a welding operator may verify their identity at a welding system (e.g., by logging in or some other form of authentication). After the identity of the welding operator is verified, the welding system may check the welding operator's certification status. The welding system may enable the welding operator to perform operations using the first welding process based on the welding operator's certification status, but may block the welding operator from performing the second welding process based on the welding operator's certification status.



FIG. 20 is an embodiment of a screen 327 illustrating data corresponding to a training weld. The screen 327 may be produced by the welding training software 244 and may be displayed on the display 32. The screen 327 illustrates parameters that may be graphically displayed to a welding operator before, during, and/or after performing a welding operation. For example, the parameters may include a work angle 328, a travel angle 330, a contact tip to workpiece distance 332, a welding torch travel speed 334, a proximity of the welding torch in relation to the workpiece 336, a welding voltage 337, a welding current 338, a welding torch orientation, a welding torch position, an aim of the welding torch, and so forth.


As illustrated, graphically illustrated parameters may include an indication 339 of a current value of a parameter (e.g., while performing a welding assignment). Furthermore, a graph 340 may show a history of the value of the parameter, and a score 341 may show an overall percentage that corresponds to how much time during the welding assignment that the welding operator was within a range of acceptable values. In certain embodiments, a video replay 342 of a welding assignment may be provided on the screen 327. The video replay 342 may show live video of a welding operator performing a real weld, live video of the welding operator performing a simulated weld, live video of the welding operator performing a virtual reality weld, live video of the welding operator performing an augmented reality weld, live video of a welding arc, live video of a weld puddle, and/or simulated video of a welding operation.


In certain embodiments, the welding training system 10 may capture video data during a welding assignment, and store the video data on the storage device 24. Moreover, the welding training software 244 may be configured to retrieve the video data from the storage device 24, to retrieve welding parameter data from the storage device 24, to synchronize the video data with the welding parameter data, and to provide the synchronized video and welding parameter data to the display 32.


The welding training software 244 may analyze welding parameter data to determine a traversed path 344 that may be shown on the display 32. In some embodiments, a time 346 during a weld may be selected by a welding operator. By selecting the time 346, the welding operator may view the video replay 342 and/or the traversed path 344 in conjunction with the welding parameters as they were at the selected time 346 in order to establish a correlation between the welding parameters, the video replay 342, and/or the traversed path 344. The welding training software 244 may be configured to recreate welding training data based at least partly on welding parameter data, to synchronize the video replay 342 with the recreated welding training data, and to provide the synchronized video replay 342 and recreated welding training data to the display 32. In certain embodiments, the recreated welding training data may be weld puddle data and/or a simulated weld.


In certain embodiments, the storage device 24 may be configured to store a first data set corresponding to multiple training welds performed by a welding operator, and to store a second data set corresponding to multiple non-training welds performed by the welding operator. Furthermore, the control circuitry 320 may be configured to retrieve at least part of the first data set from the storage device 24, to retrieve at least part of the second data set from the storage device 24, to synchronize the at least part of the first data set with the at least part of the second data set, and to provide the synchronized at least part of the first data set and at least part of the second data set to the display 32.



FIG. 21 is an embodiment of a screen 347 illustrating a discontinuity analysis 348 of a training weld. The discontinuity analysis 348 includes a listing 350 that may itemize potential issues with a welding operation. The discontinuity analysis 348 provides feedback to the welding operator regarding time periods within the welding operation in which the weld does not meet a predetermined quality threshold. For example, between times 352 and 354, there is a high discontinuity (e.g., the welding quality is poor, the weld has a high probability of failure, the weld is defective). Furthermore, between times 356 and 358, there is a medium discontinuity (e.g., the welding quality is average, the weld has a medium probability of failure, the weld is partially defective). Moreover, between times 360 and 362, there is a high discontinuity, and between times 364 and 366, there is a low discontinuity (e.g., the welding quality is good, the weld has a low probability of failure, the weld is not defective). With this information a welding operator may be able to quickly analyze the quality of a welding operation.



FIG. 22 is a block diagram of an embodiment of a welding instructor screen 368 of the welding training software 244. The welding training software 244 is configured to provide training simulations for many different welding configurations. For example, the welding configurations may include a MIG welding process 370, a TIG welding process 372, a stick welding process 374, the live-arc welding mode 346, the simulation welding mode 248, the virtual reality welding mode 250, and/or the augmented reality welding mode 252.


The welding instructor screen 368 may be configured to enable a welding instructor to restrict training of a welding operator 376 (e.g., to one or more selected welding configurations), to restrict training of a class of welding operators 378 (e.g., to one or more selected welding configurations), and/or to restrict training of a portion of a class of welding operators 380 (e.g., to one or more selected welding configurations). Moreover, the welding instructor screen 368 may be configured to enable the welding instructor to assign selected training assignments to the welding operator 382, to assign selected training assignments to a class of welding operators 384, and/or to assign selected training assignments to a portion of a class of welding operators 386. Furthermore, the welding instructor screen 368 may be configured to enable the welding instructor to automatically advance the welding operator (or a class of welding operators) from a first training assignment to a second training assignment 388. For example, the welding operator may advance from a first training assignment to a second training assignment based at least partly on a quality of performing the first training assignment.



FIG. 23 is an embodiment of a method 389 for weld training using augmented reality. A welding operator may select a training mode of the welding training software 244 (block 390). The welding training software 244 determines whether the augmented reality mode 252 has been selected (block 392). If the augmented reality mode 252 has been selected, the welding training software 244 executes an augmented reality simulation. It should be noted that the welding operator may be wearing a welding helmet and/or some other headgear configured to position a display device in front of the welding operator's view. Furthermore, the display device may generally be transparent to enable the welding operator to view actual objects; however, a virtual welding environment may be portrayed on portions of the display device. As part of this augmented reality simulation, the welding training software 244 receives a position and/or an orientation of the welding torch 14, such as from the sensing device 16 (block 394). The welding training software 244 integrates the virtual welding environment with the position and/or the orientation of the welding torch 14 (block 396). Moreover, the welding training software 244 provides the integrated virtual welding environment to the display device (block 398). For example, the welding training software 244 may determine where a weld bead should be positioned within the welding operator's field of view, and the welding training software 244 may display the weld bead on the display device such that the weld bead appears to be on a workpiece. After completion of the weld, the augmented reality simulation may enable the welding operator to erase a portion of the virtual welding environment (e.g., the weld bead) (block 400), and the welding training software 244 returns to block 390.


If the augmented realty mode 252 has not been selected, the welding training software 244 determines whether the live-arc mode 246 has been selected (block 402). If the live-arc mode 246 has been selected, the welding training software 244 enters the live-arc mode 246 and the welding operator may perform the live-arc weld (block 404). If the live-arc mode 246 has not been selected and/or after executing block 404, the welding training software 244 returns to block 390. Accordingly, the welding training software 244 is configured to enable a welding operator to practice a weld in the augmented reality mode 252, to erase at least a portion of the virtual welding environment from the practice weld, and to perform a live weld in the live-arc mode 246. In certain embodiments, the welding operator may practice the weld in the augmented reality mode 252 consecutively a multiple number of times.



FIG. 24 is an embodiment of another method 406 for weld training using augmented reality. A welding operator may select a training mode of the welding training software 244 (block 408). The welding training software 244 determines whether the augmented reality mode 252 has been selected (block 410). If the augmented reality mode 252 has been selected, the welding training software 244 executes an augmented reality simulation. It should be noted that the welding operator may be wearing a welding helmet and/or some other headgear configured to position a display device in front of the welding operator's view. Furthermore, the display device may completely block the welding operator's field of vision such that images observed by the welding operator have been captured by a camera and displayed on the display device. As part of this augmented reality simulation, the welding training software 244 receives an image of the welding torch 14, such as from the sensing device 16 (block 412). The welding training software 244 integrates the virtual welding environment with the image of the welding torch 14 (block 414). Moreover, the welding training software 244 provides the integrated virtual welding environment with the image of the welding torch 14 to the display device (block 416). For example, the welding training software 244 may determine where a weld bead should be positioned within the welding operator's field of view and the welding training software 244 displays the weld bead on the display device with the image of the welding torch 14 and other objects in the welding environment. After completion of the weld, the augmented reality simulation may enable the welding operator to erase a portion of the virtual welding environment (e.g., the weld bead) (block 418), and the welding training software 244 returns to block 408.


If the augmented realty mode 252 has not been selected, the welding training software 244 determines whether the live-arc mode 246 has been selected (block 420). If the live-arc mode 246 has been selected, the welding training software 244 enters the live-arc mode 246 and the welding operator may perform the live-arc weld (block 422). If the live-arc mode 246 has not been selected and/or after executing block 422, the welding training software 244 returns to block 408. Accordingly, the welding training software 244 is configured to enable a welding operator to practice a weld in the augmented reality mode 252, to erase at least a portion of the virtual welding environment from the practice weld, and to perform a live weld in the live-arc mode 246. In certain embodiments, the welding operator may practice the weld in the augmented reality mode 252 consecutively a multiple number of times.


As may be appreciated, using the systems, devices, and techniques described herein, a welding training system 10 may be provided for training welding operators. The welding training system 10 may be cost efficient and may enable welding students to receive high quality hands on training.


While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

Claims
  • 1. A system comprising: a data storage device configured to store data corresponding to a welding training certification of a welding operator, wherein the data comprises a first welding process certification status, a second welding process certification status, a first welding device certification status, a second welding device certification status, or some combination thereof; andcontrol circuitry configured to receive a request for the first welding process certification status, the second welding process certification status, the first welding device certification status, the second welding device certification status, or some combination thereof, of the welding operator, wherein the control circuitry is configured to provide a response to the request, and wherein the response comprises the first welding process certification status, the second welding process certification status, the first welding device certification status, the second welding device certification status, or some combination thereof, of the welding operator;wherein the welding operator is authorized to use a first welding process, a second welding process, a first welding device, a second welding device, or some combination thereof, based at least partly on the response, the control circuitry is configured to enable use of one or more welding process, one or more welding devices, or some combination thereof for which the welding operator is authorized, and the control circuitry is configured to disable the use of one or more welding processes, one or more welding devices, or some combination thereof for which the welding operator is not authorized.
  • 2. The system of claim 1, wherein the data comprises welding training data of the welding operator.
  • 3. The system of claim 1, wherein the data comprises a quantity of one or more welds performed by the welding operator, a type of welds performed by the welding operator, a timestamp for one or more welds performed by the welding operator, welding parameter data for one or more welds performed by the welding operator, or some combination thereof.
  • 4. A welding training system comprising: a camera configured to capture video data corresponding to a live arc welding training operation;a storage device configured to store the video data, to store welding parameter data corresponding to the live arc welding training operation, and to store instructions for a welding training software; anda processor configured to execute the instructions for the welding training software, wherein the welding training software is configured to retrieve the video data from the storage device, to retrieve the welding parameter data from the storage device, to receive a selected time of the video data, to synchronize the video data with the welding parameter data at the selected time, and to provide the synchronized video data and welding parameter data for the selected time to a display device.
  • 5. The welding training system of claim 4, wherein the welding parameter data comprises a welding torch orientation, a welding torch travel speed, a welding torch position, a contact tip to workpiece distance, a proximity of a welding torch in relation to a workpiece, an aim of the welding torch, a welding voltage, a welding current, or some combination thereof.
  • 6. The welding training system of claim 4, wherein the welding training software is configured to recreate welding training data based at least partly on the welding parameter data, to synchronize the video data with the recreated welding training data, and to provide the synchronized video data and recreated welding training data to the display device.
  • 7. The welding training system of claim 6, wherein the recreated welding training data comprises weld puddle data.
  • 8. The welding training system of claim 4, wherein the camera comprises a high dynamic range camera.
  • 9. A system comprising: a data storage device configured to store a first data set corresponding to a plurality of training welds performed by a welding operator, and to store a second data set corresponding to a plurality of live arc non-training welds performed by the welding operator; andcontrol circuitry comprising a processor, wherein the processor is configured to retrieve at least part of the first data set from the data storage device, to retrieve at least part of the second data set from the data storage device, to synchronize the at least part of the first data set with the at least part of the second data set, and to provide the synchronized at least part of the first data set and at least part of the second data set to a display device for display to a human operator.
  • 10. A welding training system comprising: a data storage device configured to store instructions for the welding training system, wherein the instructions comprise welding training software;a processor configured to execute the instructions for the welding training software, wherein the welding training software is configured to provide training simulations for a plurality of welding configurations, wherein the plurality of welding configurations comprises a metal inert gas (MIG) welding process, a tungsten inert gas (TIG) welding process, a stick welding process, a live-arc welding mode, a simulation welding mode, a virtual reality welding mode, an augmented reality welding mode, or some combination thereof;wherein the welding training software is configured to: enable a welding instructor to select one or more welding configurations of the plurality of welding configurations; andrestrict training on the welding training system to the one or more welding configurations selected by the welding instructor, wherein the processor executes instructions of the welding training software to disable a welding operator from using restricted welding configurations of the plurality of welding configurations, and the plurality of welding configurations consists of the selected one or more welding configurations and the restricted welding configurations.
  • 11. The welding training system of claim 10, wherein the welding training software is configured to enable the welding instructor to assign selected training assignments to the welding operator.
  • 12. The welding training system of claim 10, wherein the welding training software is configured to enable the welding instructor to assign selected training assignments to a selected portion of a class of welding operators.
  • 13. The welding training system of claim 10, wherein the welding training software is configured to enable the welding instructor to assign selected training assignments to a class of welding operators.
  • 14. The welding training system of claim 10, wherein the welding training software is configured to enable the welding instructor to assign the welding operator a plurality of training assignments, and wherein the welding training software is configured to enable the welding operator to automatically advance from a first training assignment of the plurality of training assignments to a second training assignment of the plurality of training assignments.
  • 15. The welding training system of claim 14, wherein the welding training software is configured to automatically advance the welding operator from the first training assignment to the second training assignment based at least partly on a quality of performing the first training assignment.
  • 16. A welding training system comprising: a welding torch;a data storage device configured to store instructions for the welding training system, wherein the instructions comprise welding training software; anda processor configured to execute instructions for the welding training software, wherein the welding training software comprises: an augmented reality welding mode configured to receive a position of the welding torch, to integrate a virtual welding environment with the position of the welding torch, and to provide the integrated virtual welding environment to a display device; anda live-arc welding mode;wherein the welding training software is configured to enable a welding operator to practice a weld in the augmented reality welding mode to generate a weld bead in the virtual welding environment, to erase at least a portion of the weld bead of the virtual welding environment from the practice weld, and to perform a live weld in the live-arc welding mode.
  • 17. The welding training system of claim 16, wherein the at least a portion of the virtual welding environment comprises a weld bead.
  • 18. The welding training system of claim 16, wherein the welding training software is configured to enable the welding operator to practice the weld in the augmented reality welding mode a plurality of times.
US Referenced Citations (421)
Number Name Date Kind
1340270 Jahoda May 1920 A
2045800 Walther Jun 1936 A
2045801 Richter Jun 1936 A
2045802 Walther Jun 1936 A
2333192 Moberg Nov 1943 A
2351910 Blankenbuehler Jun 1944 A
3391691 Young Jul 1968 A
3679865 Jesnitzer Jul 1972 A
3867769 Schow et al. Feb 1975 A
4028522 Chihoski et al. Jun 1977 A
4041615 Whitehill Aug 1977 A
4044377 Bowerman Aug 1977 A
4124944 Blair Nov 1978 A
4132014 Schow Jan 1979 A
4144766 Wehrmeister Mar 1979 A
4224501 Lindbom Sep 1980 A
4253648 Meeks Mar 1981 A
4294440 Severt Oct 1981 A
4375026 Kearney Feb 1983 A
4375165 deSterke Mar 1983 A
4389561 Weman Jun 1983 A
4396945 DiMatteo et al. Aug 1983 A
4412121 Kremers Oct 1983 A
4452589 Denison Jun 1984 A
4459114 Barwick Jul 1984 A
4471207 Hawkes Sep 1984 A
4484059 Lillquist Nov 1984 A
4518361 Conway May 1985 A
4541055 Wolfe Sep 1985 A
4555614 Morris Nov 1985 A
4577499 Silke Mar 1986 A
4590356 Povlick May 1986 A
4591689 Brown et al. May 1986 A
4594497 Takahashi Jun 1986 A
4595186 Reed Jun 1986 A
4595368 Cole Jun 1986 A
4595820 Richardson Jun 1986 A
4609806 Grabkowski et al. Sep 1986 A
4628176 Kojima et al. Dec 1986 A
4638146 Koyama Jan 1987 A
4677277 Cook Jun 1987 A
4680014 Paton et al. Jul 1987 A
4689021 Vasiliev et al. Aug 1987 A
4716273 Paton et al. Dec 1987 A
4721947 Brown Jan 1988 A
4728768 Cueman Mar 1988 A
4739404 Richardson Apr 1988 A
4767109 Raketich Aug 1988 A
4829365 Eichenlaub May 1989 A
4830261 Mello May 1989 A
4867685 Brush et al. Sep 1989 A
4868649 Gaudin Sep 1989 A
4877940 Bangs Oct 1989 A
4881678 Gaudin Nov 1989 A
4920249 McLaughlin Apr 1990 A
4931018 Herbst et al. Jun 1990 A
4937427 McVicker Jun 1990 A
4943702 Richardson Jul 1990 A
4954690 Kensrue Sep 1990 A
4992881 Tomasek Feb 1991 A
4996409 Paton et al. Feb 1991 A
5061841 Richardson Oct 1991 A
5103376 Blonder Apr 1992 A
5185561 Good et al. Feb 1993 A
5208436 Blankenship May 1993 A
5211564 Martinez et al. May 1993 A
5231928 Phillips Aug 1993 A
5243265 Matsuura Sep 1993 A
5283418 Bellows et al. Feb 1994 A
5302799 Kennedy Apr 1994 A
5304774 Durheim Apr 1994 A
5306893 Morris Apr 1994 A
5320538 Baum Jun 1994 A
5343011 Fujii et al. Aug 1994 A
5380978 Pryor Jan 1995 A
5397872 Baker et al. Mar 1995 A
5404181 Hung Apr 1995 A
5426732 Boies et al. Jun 1995 A
5448405 Clausen Sep 1995 A
5464957 Kidwell et al. Nov 1995 A
5508757 Chen Apr 1996 A
5514846 Cecil et al. May 1996 A
5517420 Kinsman et al. May 1996 A
5521843 Hashima et al. May 1996 A
5533146 Iwai Jul 1996 A
5543863 Lin Aug 1996 A
5546476 Mitaka Aug 1996 A
5571431 Lantieri Nov 1996 A
5592241 Kita Jan 1997 A
5617335 Hashima et al. Apr 1997 A
5659479 Duley et al. Aug 1997 A
5668612 Hung Sep 1997 A
5674415 Leong et al. Oct 1997 A
5675229 Thorne Oct 1997 A
5681490 Chang Oct 1997 A
5708253 Bloch et al. Jan 1998 A
5709219 Chen Jan 1998 A
5747042 Choquet May 1998 A
5823785 Matherne, Jr. Oct 1998 A
5832139 Batterman et al. Nov 1998 A
5845053 Watanabe Dec 1998 A
5856844 Batterman et al. Jan 1999 A
5930093 Morrissett Jul 1999 A
5961859 Chou Oct 1999 A
5973677 Gibbons Oct 1999 A
5999909 Rakshit et al. Dec 1999 A
6003052 Yamagata Dec 1999 A
6018729 Zacharia et al. Jan 2000 A
6019359 Fly Feb 2000 A
6024273 Ludewig Feb 2000 A
6033226 Bullen Mar 2000 A
6039494 Pearce Mar 2000 A
6046754 Stanek Apr 2000 A
6049059 Kim Apr 2000 A
6051805 Vaidya Apr 2000 A
6101455 Davis Aug 2000 A
6107601 Shimogama Aug 2000 A
6130407 Villafuerte Oct 2000 A
6153848 Nagae Nov 2000 A
6155475 Ekelof Dec 2000 A
6163946 Pryor Dec 2000 A
6226395 Gilliland May 2001 B1
6236017 Smartt May 2001 B1
6242711 Cooper Jun 2001 B1
6271500 Hirayama Aug 2001 B1
6288359 Koch Sep 2001 B1
6290740 Schaefer Sep 2001 B1
6301763 Pryor Oct 2001 B1
6315186 Friedl Nov 2001 B1
6329635 Leong et al. Dec 2001 B1
6337458 Lepeltier Jan 2002 B1
6371765 Wall et al. Apr 2002 B1
6417894 Goff Jul 2002 B1
6441342 Hsu Aug 2002 B1
6445964 White Sep 2002 B1
6469752 Ishikawa Oct 2002 B1
6476354 Jank Nov 2002 B1
6479793 Wittmann Nov 2002 B1
6506997 Matsuyama Jan 2003 B2
6516300 Rakshit et al. Feb 2003 B1
6572379 Sears et al. Jun 2003 B1
6583386 Ivkovich Jun 2003 B1
6596972 Di Novo Jul 2003 B1
6614002 Weber Sep 2003 B2
6621049 Suzuki Sep 2003 B2
6622906 Kushibe Sep 2003 B1
6647288 Madill Nov 2003 B2
6670574 Bates Dec 2003 B1
6697761 Akatsuka et al. Feb 2004 B2
6703585 Suzuki Mar 2004 B2
6710298 Eriksson Mar 2004 B2
6728582 Wallack Apr 2004 B1
6734393 Friedl et al. May 2004 B1
6744011 Hu Jun 2004 B1
6748249 Eromaki Jun 2004 B1
6750428 Okamoto Jun 2004 B2
6753909 Westerman Jun 2004 B1
6768974 Nanjundan et al. Jul 2004 B1
6795068 Marks Sep 2004 B1
6839049 Koizumi Jan 2005 B1
6857553 Hartman Feb 2005 B1
6868726 Lemkin Mar 2005 B2
6910971 Alsenz Jun 2005 B2
6927360 Artelsmair et al. Aug 2005 B2
6937329 Esmiller Aug 2005 B2
6967635 Hung Nov 2005 B2
6977357 Hsu et al. Dec 2005 B2
6995536 Challoner Feb 2006 B2
7015419 Hackl Mar 2006 B2
7025053 Altamirano Apr 2006 B1
7032814 Blankenship Apr 2006 B2
7045742 Feichtinger May 2006 B2
7081888 Cok Jul 2006 B2
7120473 Hawkins Oct 2006 B1
7132617 Lee Nov 2006 B2
7132623 De Miranda et al. Nov 2006 B2
7150047 Fergason Dec 2006 B2
7173215 Kapoor Feb 2007 B1
7181413 Hadden et al. Feb 2007 B2
7226176 Huang Jun 2007 B1
7261261 Ligertwood Aug 2007 B2
7342210 Fergason Mar 2008 B2
7358458 Daniel Apr 2008 B2
7465230 LeMay Dec 2008 B2
7474760 Hertzman et al. Jan 2009 B2
7523069 Friedl Apr 2009 B1
7564005 Cabanaw et al. Jul 2009 B2
7574172 Clark et al. Aug 2009 B2
7577285 Schwarz Aug 2009 B2
D614217 Peters et al. Apr 2010 S
7698094 Aratani et al. Apr 2010 B2
D615573 Peters et al. May 2010 S
7766213 Henrikson Aug 2010 B2
7789811 Cooper Sep 2010 B2
7826984 Sjostrand Nov 2010 B2
7831098 Melikian Nov 2010 B2
7839416 Ebensberger et al. Nov 2010 B2
7845560 Emanuel et al. Dec 2010 B2
D631074 Peters et al. Jan 2011 S
7899618 Ledet Mar 2011 B2
8019144 Sugihara Sep 2011 B2
8044942 Leonhard Oct 2011 B1
8046178 Dai Oct 2011 B2
8100694 Portoghese et al. Jan 2012 B2
8110774 Huonker Feb 2012 B2
8235588 Louban Aug 2012 B2
8248324 Nangle Aug 2012 B2
8274013 Wallace Sep 2012 B2
8393519 Allehaux Mar 2013 B2
8406682 Elesseily Mar 2013 B2
8431862 Kachline Apr 2013 B2
8432476 Ashforth Apr 2013 B2
8512043 Choquet Aug 2013 B2
8541746 Andres Sep 2013 B2
8657605 Wallace Feb 2014 B2
8681178 Tseng Mar 2014 B1
8692157 Daniel et al. Apr 2014 B2
8698843 Tseng Apr 2014 B2
8747116 Zboray Jun 2014 B2
8777629 Kreindl Jul 2014 B2
8803908 Van Osten Aug 2014 B2
8834168 Peters et al. Sep 2014 B2
8851896 Wallace Oct 2014 B2
8860760 Chen Oct 2014 B2
8911237 Postlethwaite Dec 2014 B2
8915740 Zboray Dec 2014 B2
8946595 Ishida Feb 2015 B2
8953033 Yamane Feb 2015 B2
8953909 Guckenberger Feb 2015 B2
8987628 Daniel Mar 2015 B2
8990842 Rowley Mar 2015 B2
9011154 Kindig Apr 2015 B2
9012802 Daniel Apr 2015 B2
9050678 Daniel Jun 2015 B2
9050679 Daniel Jun 2015 B2
9089921 Daniel Jul 2015 B2
9196169 Wallace Nov 2015 B2
9218745 Choquet Dec 2015 B2
9269279 Penrod Feb 2016 B2
9293056 Zboray Mar 2016 B2
9293057 Zboray Mar 2016 B2
9318026 Peters Apr 2016 B2
9330575 Peters May 2016 B2
9336686 Peters May 2016 B2
9402122 Richardson Jul 2016 B2
20010026445 Naghi Oct 2001 A1
20010032508 Lemkin Oct 2001 A1
20020043607 Tajima Apr 2002 A1
20020071550 Pletikosa Jun 2002 A1
20020105797 Navid Aug 2002 A1
20020114653 Gatta Aug 2002 A1
20020148745 Chang Oct 2002 A1
20020153354 Norby et al. Oct 2002 A1
20030011673 Eriksson Jan 2003 A1
20030092496 Alsenz May 2003 A1
20030172032 Choquet Sep 2003 A1
20040058703 Eromaki Mar 2004 A1
20040068335 Ferla Apr 2004 A1
20040069754 Bates et al. Apr 2004 A1
20040175684 Kaasa Sep 2004 A1
20040223148 Takemura Nov 2004 A1
20040227730 Sugihara Nov 2004 A1
20040251910 Smith Dec 2004 A1
20050006363 Hsu et al. Jan 2005 A1
20050012598 Berquist Jan 2005 A1
20050016979 Stein Jan 2005 A1
20050017152 Fergason Jan 2005 A1
20050073506 Durso Apr 2005 A1
20050127052 Spencer Jun 2005 A1
20050133488 Blankenship Jun 2005 A1
20050135682 Abrams, Jr. et al. Jun 2005 A1
20050179654 Hawkins Aug 2005 A1
20050197115 Clark et al. Sep 2005 A1
20050207102 Russo Sep 2005 A1
20050227635 Hawkins Oct 2005 A1
20050256611 Pretlove Nov 2005 A1
20060010551 Bishop Jan 2006 A1
20060081740 Bellavance Apr 2006 A1
20060136183 Choquet Jun 2006 A1
20060151446 Schneider Jul 2006 A1
20060163228 Daniel Jul 2006 A1
20060173619 Brant et al. Aug 2006 A1
20060212169 Luthardt Sep 2006 A1
20060241432 Herline Oct 2006 A1
20070038400 Lee Feb 2007 A1
20070051711 Kachline Mar 2007 A1
20070114215 Bill May 2007 A1
20070115202 Kiesenhofer May 2007 A1
20070164006 Burgstaller Jul 2007 A1
20070187378 Karakas Aug 2007 A1
20070188606 Atkinson et al. Aug 2007 A1
20070221636 Monzyk Sep 2007 A1
20070247793 Carnevali Oct 2007 A1
20070248261 Zhou Oct 2007 A1
20070264620 Maddix Nov 2007 A1
20070278196 James et al. Dec 2007 A1
20070291166 Misawa Dec 2007 A1
20080030631 Gallagher Feb 2008 A1
20080038702 Choquet Feb 2008 A1
20080061113 Seki Mar 2008 A9
20080077422 Dooley Mar 2008 A1
20080124698 Ebensberger May 2008 A1
20080128395 Aigner Jun 2008 A1
20080149602 Lenzner Jun 2008 A1
20080149608 Albrecht Jun 2008 A1
20080158502 Becker et al. Jul 2008 A1
20080168290 Jobs Jul 2008 A1
20080169277 Achtner Jul 2008 A1
20080234960 Byington Sep 2008 A1
20080314887 Stoger Dec 2008 A1
20090005728 Weinert et al. Jan 2009 A1
20090057286 Ihara et al. Mar 2009 A1
20090109128 Nangle Apr 2009 A1
20090146359 Canfield Jun 2009 A1
20090152251 Dantinne Jun 2009 A1
20090161212 Gough Jun 2009 A1
20090173726 Davidson et al. Jul 2009 A1
20090189974 Deering Jul 2009 A1
20090200281 Hampton Aug 2009 A1
20090200282 Hampton Aug 2009 A1
20090230107 Ertmer Sep 2009 A1
20090231423 Becker et al. Sep 2009 A1
20090249606 Diez et al. Oct 2009 A1
20090283021 Wong Nov 2009 A1
20090298024 Batzler Dec 2009 A1
20090323121 Valkenburg Dec 2009 A1
20100020483 Ma Jan 2010 A1
20100048273 Wallace et al. Feb 2010 A1
20100062405 Zboray et al. Mar 2010 A1
20100062406 Zboray et al. Mar 2010 A1
20100088793 Ghisleni Apr 2010 A1
20100123664 Shin May 2010 A1
20100133247 Mazumder Jun 2010 A1
20100145520 Gerio Jun 2010 A1
20100201803 Melikian Aug 2010 A1
20100207620 Gies Aug 2010 A1
20100224610 Wallace Sep 2010 A1
20100238119 Dubrovsky Sep 2010 A1
20100245273 Hwang Sep 2010 A1
20100283588 Gomez Nov 2010 A1
20100291313 Ling Nov 2010 A1
20100314362 Albrecht Dec 2010 A1
20110000892 Mueller et al. Jan 2011 A1
20110006047 Penrod et al. Jan 2011 A1
20110091846 Kreindl et al. Apr 2011 A1
20110092828 Spohn Apr 2011 A1
20110114615 Daniel et al. May 2011 A1
20110117527 Conrardy et al. May 2011 A1
20110176720 VanOsten Jul 2011 A1
20110183304 Wallace et al. Jul 2011 A1
20110198329 Davidson Aug 2011 A1
20110220616 Mehn Sep 2011 A1
20110220619 Mehn Sep 2011 A1
20110240605 Takayama Oct 2011 A1
20110249090 Moore Oct 2011 A1
20110284508 Miura Nov 2011 A1
20110286005 Yamamoto Nov 2011 A1
20110290765 Albrecht et al. Dec 2011 A1
20110313731 Vock Dec 2011 A1
20120007748 Forgues Jan 2012 A1
20120048838 Ishida Mar 2012 A1
20120072021 Walser Mar 2012 A1
20120077174 DePaul Mar 2012 A1
20120105476 Tseng May 2012 A1
20120113512 Tsanev May 2012 A1
20120122062 Yang May 2012 A1
20120175834 Hamm Jul 2012 A1
20120180180 Steve et al. Jul 2012 A1
20120188365 Stork Jul 2012 A1
20120189993 Kindig et al. Jul 2012 A1
20120205359 Daniel Aug 2012 A1
20120231894 Nicora Sep 2012 A1
20120248080 Hutchison Oct 2012 A1
20120248083 Garvey Oct 2012 A1
20120291172 Wills Nov 2012 A1
20120298640 Conrardy et al. Nov 2012 A1
20120323496 Burroughs Dec 2012 A1
20130040270 Albrecht Feb 2013 A1
20130081293 Delin Apr 2013 A1
20130182070 Peters Jul 2013 A1
20130189656 Zboray et al. Jul 2013 A1
20130189657 Wallace Jul 2013 A1
20130189658 Peters Jul 2013 A1
20130200882 Almalki Aug 2013 A1
20130206741 Pfeifer Aug 2013 A1
20130209976 Postlethwaite Aug 2013 A1
20130262000 Hutchison Oct 2013 A1
20130264315 Hung Oct 2013 A1
20130264322 Bornemann Oct 2013 A1
20130288211 Patterson Oct 2013 A1
20130326842 Pearson Dec 2013 A1
20140008088 Chellew Jan 2014 A1
20140017642 Postlethwaite Jan 2014 A1
20140042135 Daniel Feb 2014 A1
20140042137 Daniel Feb 2014 A1
20140069899 Mehn Mar 2014 A1
20140131337 Williams May 2014 A1
20140134579 Becker May 2014 A1
20140134580 Becker May 2014 A1
20140184496 Gribetz et al. Jul 2014 A1
20140220522 Peters Aug 2014 A1
20140234813 Peters Aug 2014 A1
20140263224 Becker Sep 2014 A1
20140263227 Daniel Sep 2014 A1
20140267773 Jeung Sep 2014 A1
20140272835 Becker Sep 2014 A1
20140272836 Becker Sep 2014 A1
20140272837 Becker Sep 2014 A1
20140272838 Becker Sep 2014 A1
20140315167 Kreindl Oct 2014 A1
20140322684 Wallace Oct 2014 A1
20140346163 Rajagopalan Nov 2014 A1
20140346793 DeStories Nov 2014 A1
20140374396 Luo Dec 2014 A1
20150056584 Boulware Feb 2015 A1
20150056585 Boulware Feb 2015 A1
20150170539 Barrera Jun 2015 A1
20150209887 DeLisio Jul 2015 A1
20150325153 Albrecht Nov 2015 A1
20160203734 Boulware Jul 2016 A1
20160203735 Boulware Jul 2016 A1
Foreign Referenced Citations (61)
Number Date Country
2311685 Dec 2001 CA
2517874 Dec 2001 CA
2549553 Jul 2004 CA
2554498 Apr 2006 CA
1866317 Nov 2006 CN
201181527 Jan 2009 CN
102049595 May 2011 CN
202200202 Apr 2012 CN
202877704 Apr 2013 CN
202010011064 Oct 2010 DE
102010038902 Feb 2012 DE
0323277 Jul 1989 EP
0878263 Nov 1998 EP
0963744 Dec 1999 EP
1029306 Aug 2000 EP
01949147.1 Jun 2001 EP
03788729.6 Dec 2003 EP
05791580.3 Sep 2005 EP
1864744 Dec 2007 EP
2438440 Jan 2014 ES
1456780 Jul 1966 FR
2827066 Jan 2003 FR
2454232 May 2009 GB
H11146387 May 1999 JP
2000298427 Oct 2000 JP
2004181493 Jul 2004 JP
2007021542 Feb 2007 JP
2009125790 Jun 2009 JP
100876425 Dec 2008 KR
972552 Nov 1982 SU
1354234 Nov 1987 SU
1489933 Jun 1989 SU
1638145 Mar 1991 SU
9958286 Nov 1999 WO
03019349 Mar 2003 WO
2004057554 Jul 2004 WO
2005102230 Nov 2005 WO
2005110658 Nov 2005 WO
2006004427 Jan 2006 WO
2006034571 Apr 2006 WO
2007009131 Jan 2007 WO
2007044135 Apr 2007 WO
2008076777 Jun 2008 WO
2009022443 Feb 2009 WO
2009053829 Apr 2009 WO
2009060231 May 2009 WO
2009092944 Jul 2009 WO
2009146359 Dec 2009 WO
2010000003 Jan 2010 WO
2010020867 Feb 2010 WO
2010020869 Feb 2010 WO
2010020870 Feb 2010 WO
2010111722 Oct 2010 WO
2011112493 Sep 2011 WO
2012036710 Mar 2012 WO
2012137060 Oct 2012 WO
2013023012 Feb 2013 WO
2013138831 Sep 2013 WO
2014007830 Jan 2014 WO
2014074296 May 2014 WO
2014140719 Sep 2014 WO
Non-Patent Literature Citations (126)
Entry
Tschirner, Petra et al. “A Concept for the Application of Augmented Reality in Manual Gas Metal Arc Welding”. Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR'02).
International Search Report from PCT application No. PCT/US2014/065498, dated May 11, 2015, 13 pgs.
International Search Report from PCT application No. PCT/US2014/065506, dated Jun. 26, 2015, 16 pgs.
Gundersen, O., et al. “The Use of an Integrated Multiple Neural Network Structure for Simultaneous Prediction of Weld Shape, Mechanical Properties, and Distortion in 6063-T6 and 6082-T6 Aluminum Assemblies”, Mathematical Modelling of Weld Phenomena, vol. 5, Maney Publishing, 2001.
ArcSentry Weld Monitoring System, Version 3, Users Manual, Native American Technologies, Golden, CO, Dec. 10, 1999.
NAMeS, Native American Technologies Weld Measuring Software, Users Guide, 2000.
Native American Technologies, “Process Improvement Products” web page, http://web.archive.org/web/20020608050736/http://www.natech-inc.com/ products.html, published Jun. 8, 2002.
Native American Technologies, “Official NAMeS Web Site” web page, http://web.archive.org/web/20020903210256/http://www.natech-inc.com/names/names.html, published Sep. 3, 2002.
Native American Technologies, “ArcSentry Weld Quality Monitoring System” web page, http://web.archive.org/web/20020608124903/http://www.natech-inc.com/arcsentry1/index.html, published Jun. 8, 2002.
Native American Technologies, “P/NA.3 Process Modelling and Optimization” web pages, http://web.archive.org/web/20020608125619/http://www.natech-inc.com/pna3/index.html, published Jun. 8, 2002.
Native American Technologies, “ArcDirector Weld Controller” web page, http://web.archive.org/web/20020608125127/http://www.natech-inc.com/arcdirector/index.html, published Jun. 8, 2002.
International Search Report from PCT No. PCT/US2014/067951, dated Feb. 24, 2015, 10 pgs.
“Vision for Welding Industry,” American Welding Society, Apr. 22, 1999, http://www.aws.org/library/doclib/vision.pdf.
“NJC Technology Displayed at ShipTech 2005”, Welding Journal, vol. 84, No. 3, Mar. 2005, p. 54, https://app.aws.org/w/r/www/wj/2005/03/WJ—2005—03.pdf.
“Virtual Welding: A Low Cost Virtual Reality Welder Training System,” NSRP ASE, Feb. 19, 2009, http://www.nsrp.org/6-Presentations/WD/020409—Virtual—Welding—Wilbur.pdf.
“Low Cost Virtual Reality Welding Training System,” NSRP Joint Panel Meeting, Apr. 21, 2010, http://www.nsrp.org/6-Presentations/Joint/042110—Low—Cost—Virtual—Reality—Welder—Training—System—Fast.pdf.
“Virtual Reality Program to Train Welders for Shipbuilding”, American Welding Society, Navy Joining Center, https://app.aws.org/wj/2004/04/052/.
Stone, R. T., K. Watts, and P. Zhong, “Virtual Reality Integrated Welder Training, Welding Research,” Welding Journal, vol. 90, Jul. 2011, pp. 136-s-141-s, https://app.aws.org/wj/supplement/wj201107—s136.pdf.
“Virtual Reality Welder Training Initiatives: Virtual Welding Lab Pilot,” Paul D. Camp Community College, Advanced Science & Automation Corporation, Northrop Grumman Newport News, Nov. 22, 2006, http://www.nsrp.org/6-Presentations/WD/103106—Virtual—Reality—Welder.pdf.
Bender Shipbuilding and Repair, Co., “Virtual Welding—A Low Cost Virtual Reality Welder Training System”, Technical Proposal, Jan. 23, 2008.
“Virtual Welding—A Low Cost Virtual Reality Welder Training System”, Interim Status Report # 4, Technology Investment Agreement 2008-600, Feb. 18, 2009, http://www.nsrp.org/3-Key—Deliverables/FY08—Low-Cost—Virtual—Reality—Welder—Trainer/FY08—Low-Cost—Virtual—Reality—Welder—Trainer-Interim2.pdf.
U.S. Appl. No. 61/639,414, filed Apr. 27, 2012.
U.S. Appl. No. 61/724,321, filed Nov. 9, 2012.
U.S. Appl. No. 61/724,322, filed Nov. 9, 2012.
http://www.123arc.com Simulation and Certification; 2000.
123arc.com—“Weld into the future”; 2000.
Image from Sim Welder.com—R-V's Welder Training Goes Virtual, www.rvii.com/PDF/sinawelder.pdf ; Jan. 2010.
Lincoln Electric VRTEX® Virtual Reality Arc Welding Trainer; http://www.lincolnelectric.com/en-us/equipment/training-equipment/pages/vrtex360.aspx; ; 1999.
Fronius International GmbH—Focus on welding—Fronius Virtual Welding; http://www.fronius.com/cps/rde/xchg/SID-99869147-0110E322/fronius—international/hs.xsl/79—15490—ENG—HTMl.htm; 2006.
Porter, Nancy C., Edison Welding Institute; J. Allan Cote, General Dynamics Electric Boat; Timothy D. Gifford, VRSim; and Wim Lam, FCS Controls—Virtual Reality Welder Training—Session 5: Joining Technologies for Naval Applications. 2007.
Fast et al., Virtual Training for Welding, Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2004); 0/7695-2191-6/04; 2004.
Porter et al., EWI—CRP Summary Report SR0512, Jul. 2005—Virtual Reality Welder Training.
Porter, Nancy C., Edison Welding Institute; J. Allan Cote, General Dynamics Electric Boat; Timothy D. Gifford, VRSim; and Wim Lam, FCS Controls—Virtual Reality Welder Training—Project No. S1051 Navy Man Tech Program; Project Review for Ship Tech 2005,—Mar. 1, 2005, Biloxi, MS.
Fridenfalk et al., Design and Validation of a Universal 6D Seam Tracking System in Robotic Welding Based on Laser Scanning, Industrial Robotics: Programming, Simulation and Applicationl, ISBN 3-86611-286-6, pp. 702, ARS/pIV, Germany, Dec. 2006, edited by Kin Huat.
Virtual Reality Training Manual Module 1—Training Overview—A Guide for Gas Metal Arc Welding—EWI 2006.
thefabricator.com—Arc Welding Article; Heston, Tim, Virtual welding—Training in a virtual environment gives welding students a leg up—Mar. 11, 2008.
Jo et al., Visualization of Virtual Weld Beads, VRST 2009, Kyoto, Japan, Nov. 18-20, 2009; Electronics and Telecommunications Research Institute (ETRI) ACM 978-1 60558-869-8/09/0011.
Choquet, Claude, ARC+® & ARC PC Welding Simulators: Teach Welders with Virtual Interactive 3D Technologies; Jul. 2010.
Choquet, Claude, ARC+®: Today's Virtual Reality Solution for Welders, Jun. 1, 2008.
National Science Foundation—Where Discoveries Begin—Science and Engineering's Most Powerful Statements Are Not Made From Words Alone—Entry Details for NSF International Science & Engineering Visualization Challenge, Public Voting ended on Mar. 9, 2012; Velu the welder by Muralitharan Vengadasalam—Sep. 30, 2011; https://nsf-scivis.skild.com/skild2/NationalScienceFoundation/viewEntryDetail.action?pid . . . .
Gawda—Welding & Gases Today Online | GAWDA Media Blog; Will Games Turn Welding into a Virtual Market? Friday, Dec. 2, 2011; http://www.weldingandgasestoday.org/blogs/Devin-OToole/index.php/ta . . . .
American Welding Society's Virtual Welding Trailer to Debut at FABTECH Careers in Welding Trailer Appeals to New Generation of Welders, Miami, Fla., Nov. 3, 2011.
NZ Manufacturer Game promotes welding trade careers; http://nzmanufacturer.co.nz/2011/11/game-promotes-welding-trade-careers/ . . . Competenz Industry Training; www.competenz.org.nz; Game promotes welding trade careers, Nov. 7, 2011.
Fronius Perfect Welding; 06,3082, EN v01 2010 aw05 ; Virtual Welding—The training method of the future; Feb. 20, 2012.
IMPACT Spring 2012 vol. 12, No. 2, Undergraduate Research in Information Technology Engineering, University of Virginia School of Engineering & Applied Science.; 2012.
TCS News&Events: Press Release: TCS wins the “People Choice” award from National Science Foundaton, USA, pp. 1-6; Press Release May 21, 2012; http://www.tsc.com/news—events/press—releases/Pages/TCS—People—Choice—award—Natio . . . .
Quebec International, May 28, 2008 “Video Game” Technology to Fill Growing Need; http://www.mri.gouv.qc.ca/portail/—scripts/actualities/viewnew.asp?NewID=5516&strIdSit.
Fronius “The Ghost”: http://www.fronius.com/cps/rde/xchg/SID-3202EAB7-AE082518/fronius—international/hs.xs1/79—15490—ENG—HTML.htm; 2006.
teachWELD: Welding Simulator/Hands-On Learning for Welding: http://realityworks.com/products/teachweld-welding-simulator; 2012.
OptiTrack: Motion Capture Systems: http://www.naturalpoint.com/optitrack/, Mar. 2005.
Vicon: Motion Capture Systems: http://vicon.com/, Dec. 1998.
PhaseSpace: Optical Motion Capture: http://phasespace.com/, 2009.
Polhemus: Innovation in Motion: http://polhemus.com/?page=reseachandtechnology, 1992.
Ascension Technology Corporation: Tracking 3D Worlds: http://ascension-tech.com/, Dec. 1996.
MacCormick, John; How does the Kinect work?; http://users.dickinson.edu/˜mac/selected-talks/kinect.pdf , Dec. 1, 2011.
Leap Motion; https://www.leapmotion.com/, May 2012.
Playstation; Move Motion Controller: http://us.playstation.com/ps3/playstation-move/, Mar. 2010.
Kiwinakiful; Holographic TVcoming 2012 (as seen on BBC); http://www.youtube.com/watch?v—Ux6aD6vE9sUfeature=related, Jul. 2, 2011.
Kooima, Robert; Kinect +3D TV=Virtual Reality; http://www.youtube.com/watch?v=2MX1RinEXUM&feature=related, Feb. 26, 2011.
ShotOfFuel; Wii Head Tracking for 3D, http://www.youtube.com/watch?v=1x5ffF-0Wr4, Mar. 19, 2008.
Natural Point, Trackir; http://www.naturalpoint.com/trackir/, Dec. 2003.
International Search Report from PCT application No. PCT/US2014/018107, dated Jun. 2, 2014, 3 pgs.
International Search Report from PCT application No. PCT/US2014/018113, dated Jun. 2, 2014, 3pgs.
International Search Report from PCT application No. PCT/US2014/018109, dated Jun. 2, 2014, 4 pgs.
International Search Report from PCT application No. PCT/US2014/018114, dated Jun. 2, 2014, 4 pgs.
Central Welding Supply http://www.welders-direct.com/ Feb. 29, 2000.
Cybernetics: Enhancing Human Performance found in the DTIC Review dated Mar. 2001, p. 186/19. See http://www.dtic.mil/dtic/tr/fulltext/u2/a385219.pdf.
Evaluating Two Novel Tactile Feedback Devices, by Thomas Hulin, Phillipp Kremer, Robert Scheibe, Simon Schaetzle and Carsten Preusche presented at the 4th International Conference on Enactive Interfaces, Grenoble, France, Nov. 19-22, 2007.
ftp://www.hitl.washington.edu/pub/scivw/publications/IDS-pdf/HAPTIC1.PDF, (University of Washington): Table 11, Tactile Feedback Actuator Technologies, p. 119, below the table is a. Based on Hasser (1995, 1996).
Haptic Feedback for Virtual Reality by Grigore C. Burdea dated 1996.
Hemez, Francois M., Scott W. Doebling, “Uncertainty, Validation of Computer Models an the Myth of Numerical Predictability,” Engineering Analysis Group (ESA-EA), Los Alamos National Laboratory, dated 2004.
Integrated Microelectromechanical Gyrosopes; Journal of Aerospace Engineering, Apr. 2003 pp. 65-75 (p. 65) by Huikai Xie and Garry K. Fedder.
Numerical Simulation F Arc Welding Process and its Application Disseration for Ohio State University by Min Hyun Cho, M.S. 2006: See Internet as this document is security protected) ohttps://etd.ohiolink.edu/ap:0:0:APPLICATION—PROCESS=DOWNLOAD—ETD—L SUB—DOC—ACCNUM:::F1501—ID:osu1155741113.attachment.
International Search Report for PCT application No. PCT/US2009/045436, dated Nov. 9, 2009, 3 pgs.
Ryu, Jonghyun, Jaehoon Jung, Seojoon Kim, and Seungmoon Choi, “Perceptually Transparent Vibration Rendering Using a Vibration Motor for Haptic Interaction,” 16 IEEE International Conference on Robot & Human Interactive Communication, Jeju, Korea, Aug. 26-29, 2007.
The Rutgers Master II—New Design Force-Feedback Glove by Mourad Bouzit, Member, IEEE,Grigore Burdea, Senior Member, IEEE, George Popescu, Member, IEEE, and Rares Bolan, Student Member, found in IEEE/ASME Transactions on Mechatronics, vol. 7, No. 2, Jun. 2002.
International Search Report for PCT application No. PCT/US2013/066037 dated Mar. 11, 2014, 10 pgs.
International Search Report for PCT application No. PCT/US2013/066040 dated Mar. 11, 2014, 12 pgs.
International Search Report for PCT application No. PCT/US2012/050059 dated Nov. 27, 2012, 16 pgs.
International Search Report for PCT application No. PCT/US2013/038371 dated Jul. 31, 2013, 8 pgs.
Aiteanu, Dorin, and Axel Graser, “Computer-Aided Manual Welding Using an Augmented Reality Supervisor,” Sheet Metal Welding Conference XII, Livoinia, MI, May 9-12, 2006, pp. 1-14.
Echtler, Florian, Fabian Stuurm, Kay Kindermann, Gudrun Klinker, Joachim Stilla, Jorn Trilk, Hesam Najafi, “The Intelligent Welding Gun: Augmented Reality for Experimental Vehicle Construction,” Virtual and Augmented Reality Applications in Manufacturing, Ong S.K and Nee A.Y.C., eds., Springer Verlag, 2003, pp. 1-27.
Himperich, Frederick, “Applications in Augmented Reality in the Automotive Industry,” Fachgebiet Augmented Reality, Department of Informatics, Jul. 4, 2007, p. 1-21.
Sandor, Christian, Gudrun Klinker, “PAARTI: Development of an Intelligent Welding Gun for BMW,” PIA 2003, Tokyo, Japan, Technical University of Munich Department of Informatics, Oct. 7, 2003.
White, S., et al., “Low-Cost Simulated MIG Welding for Advancement in Technical Training,” Virtual Reality, 15, 1, 69-81, Mar. 2011. ISSN:13594338 [Retrieved from EBSCOhost, Jun. 15, 2015].
Hillers, Bernd, Dorin Aiteanu, Axel Graser, “Augmented Reality—Helmet for the Manual Welding Process,” Virtual and Augmented Reality Applications in Manufacturing, Institute of Automation, Universtity of Bremen, 2004.
International Search Report from PCT application No. PCT/US2014/065512, dated Jun. 8, 2015, 17 pgs.
“Sheet Metal Conference XXII,” Conference Program, American Welding Society, May 2006, Detroit.
“Welding in Defense Industy,” American Welding Society conference schedule, 2004. https://app.aws.org/conferences/defense/live—index.html.
“Welding Technology Roadmap,” prepared by Energetics, Inc., Columbia, MD, in cooperation with the American Welding Society and the Edison Welding Institute, Sep. 2000.
Advance Program of American Welding Society Programs and Events, Nov. 11-14, 2007, Chicago.
Aiteanu, Dorian, and Axel Graeser; “Generation and Rendering of a Virtual Welding Seam in an Augmented Reality Training Environment,” Proceedings of the Sixth IASTED International Conference on Visualization, Imaging, and Image Processing, Aug. 28-30, 2006, Palma de Mallorca, Spain, ED. J.J. Villaneuva, ACTA Press, 2006.
Aiteanu, Dorin, et al., “A Step Forward in Manual Welding: Demonstration of Augmented Reality Helmet,” Institute of Automation, University of Bremen, Germany, 2003.
Arvika Forum Vorstellung Projeckt PAARA, BMW Group Virtual Reality Center, Nuernberg, 2003.
Barckhoff, J.R.; “Total Welding Managemet,” American Welding Society, 2005.
Fast, Kenneth, Jerry Jones, and Valerie Rhoades; “Virtual Welding—A Cost Virtual Reality Welder Training System Phase II,” National Shipbuilding Research Program (NSRP), NSRP ASE Technology Investment Agreement No. 2010-357, Feb. 29, 2012, http://www.nsrp.org/3-RA-Panel—Final—Reports/FY08—Virtual—Welder—Final—Report.pdf.
Fite-Georgel, Pierre; “Is there a Reality in Industrial Augmented Reality?” 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2011.
Hillers, B, and Axel Graeser, “Direct welding arc observation withouth harsh flicker,” FABTECH International and AWS Welding Show, 2007.
Hillers, B, and Axel Graeser, “Real time Arc-Welding Video Observation System,” 62nd International Conference of IIW, Jul. 12-17, 2009, Singapore, 2009.
Hillers, B., et al.; “TEREBES: Welding Helmet with Ar Capabilites,” Institute of Automation, University of Bremen, and Institute of Industrial Engineering and Ergonomics, RWTH Aachen Universty, 2004.
International Search Report from PCT application No. PCT/US2014/065525, dated Jul. 23, 2015, 16 pgs.
International Search Report from PCT application No. PCT/US2015/039680, dated Sep. 23, 2015, 12 pgs.
Penrod, Matt; “New Welder Training Tools,” EWI PowerPoint presentation, 2008.
Sandor, Christian, Gudrun Klinker; “Lessons Learned in Designing Ubiquitous Augmented Reality User Interfaces,” Emerging Technologies of Augmented Reality Interfaces, Eds. Haller, M, Billinghurst, M., and Thomas, B., Idea Group Inc., 2006.
Tschurner, Petra, Hillers, Bernd, and Graeser, Axel; “A Concept for the Application of Augmented Realty in Manual Gas Metal Arc Welding,” Proceedings of the International Symposium on Mixed and Augmented Reality, 2002.
Welding Journal, American Welding Society, Nov. 2007, https://app.aws.org/wj/2007/11/WJ—2007—11.pdf.
International Search Report from PCT application No. PCT/US2015/037439, dated Nov. 3, 2015, 12 pgs.
International Search Report from PCT application No. PCT/US2015/037440, dated Nov. 3, 2015, 12 pgs.
International Search Report from PCT application No. PCT/US2015/037410, dated Nov. 6, 2015, 10 pgs.
International Search Report from PCT application No. PCT/US2015/043370, dated Dec. 4, 2015, 12 pgs.
International Search Report for PCT application No. PCT/US2015/058563, dated Jan. 29, 2016, 13 pgs.
International Search Report from PCT application No. PCT/US2015/058569, dated Feb. 10, 2016, 12 pgs.
International Search Report from PCT application No. PCT/US2015/058660, dated Feb. 2, 2016, 14 pgs.
International Search Report from PCT application No. PCT/US2015/058666, dated Feb. 1, 2016, 11 pgs.
International Search Report from PCT application No. PCT/US2015/058667, dated Feb. 5, 2016, 14 pgs.
International Search Report from PCT application No. PCT/US2015/058567, dated May 6, 2016, 15 pgs.
Hodgson, et al. “Virtual Reality in the Wild: A Self-Contained and Wearable Simulation System.” IEEE Virtual Reality, Mar. 4-8, 2012 Orange County, CA USA.
International Search Report from PCT application No. PCT/US2016/023612, dated Jul. 18, 2016, 11 pgs.
“Soldamatic: Augmented Training Technology for Welding,” Seabery Augmented Training Technology, Seabery Soluciones, 2011.
Hashimoto, Nobuyoshi et al., “Training System for Arc Welding by Using Mixed Reality: Reduction of Position-Perception Error of Electrode Tip,” Journal of the Japan Society for Precision Engineering, vol. 72, pp. 249-253, 2006.
International Search Report from PCT application No. PCT/US2015/058664, dated Apr. 25, 2016, 17 pgs.
Kobayashi, Kazuhiko et al., “Modified Training System for Manual Arc Welding by Using Mixed Reality and Investigation of Its Effectiveness,” Journal of the Japan Society for Precision Engineering, vol. 70, pp. 941-945, 2004.
Kobayashi, Kazuhiko et al., “Simulator of Manual Metal Arc Welding with Haptic Display,” Chiba University, ICAT 2001, Dec. 2001.
Kobayashi, Kazuhiko et al., “Skill Training System of Manual Arc Welding by Means of Face-Shield HMD and Virtual Electrode,” Chiba University, Japan, R. Nakatsu et al. (eds), Entertainment Computing, Springer Science +Business Media, New York, 2003.
VRTEX 360, Lincoln Electric, Dec. 2009.
VRTEX 360 Operator's Manual, Lincoln Electric, Oct. 2012.
Related Publications (1)
Number Date Country
20140272838 A1 Sep 2014 US