1. Field of the Invention
The present invention relates to data storage devices, and in particular, relates to FLASH memory control methods.
2. Description of the Related Art
Flash memory is a general non-volatile storage device that is electrically erased and programmed. A NAND Flash, for example, is primarily used in memory cards, USB flash devices, solid-state drives, eMMCs (embedded MultiMediaCards), and so on. Generally, a storage array of a Flash memory (e.g. a NAND Flash) comprises a plurality of blocks. Each block comprises a plurality of pages. To release a block as a spare block, all pages of the entire block have to be erased together in an erase operation.
For data security, some blocks of a FLASH memory are allocated to be replay-protected memory blocks (abbreviated to RPMBs). In comparison with the other blocks, the management of the RPMBs requires a higher security level. Data management of the RPMBs is especially important.
A data storage device and a FLASH memory control method are disclosed.
A data storage device in accordance with an exemplary embodiment of the invention comprises a FLASH memory and a controller. The storage space of the FLASH memory is divided into blocks and each block is further divided into pages. The controller is coupled to the FLASH memory to manage at least one replay-protected memory block of the FLASH memory. The controller programs two pages into the at least one replay-protected memory block and each page is programmed with a write count of the at least one replay-protected memory block.
In accordance with another exemplary embodiment of the invention, a FLASH memory control method is disclosed, which comprises the following steps: managing at least one replay-protected memory block of a FLASH memory; and programming two pages into the at least one replay-protected memory block, wherein each page is programmed with a write count of the at least one replay-protected memory block.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The present invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
The following description shows several exemplary embodiments carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
The storage space of the FLASH memory 102 is divided into blocks and each block is further divided into pages. For simplicity, only the blocks relating to the replay-protected memory technique are shown in the figure. As shown, the FLASH memory 102 contains a partition RPMB_Partition containing the replay-protected memory blocks RPMB_1 to RPMB N. An authentication key is required to access the replay-protected memory blocks RPMB_1 to RPMB N. The replay-protected memory blocks may be abbreviated as RPMBs. A host, e.g. 106, may issue an RPMB data update command in a single frame or multiple frames, depending on the update data length. A MAC value evaluated from the authentication key is attached in the final frame to be verified by the controller 104. The RPMB data update is allowed only when the MAC value is correct. When the MAC value is incorrect, the RPMB update command is ignored.
Note that a FAT block RPMB_FAT is allocated for data buffering. Update data issued from the host 106 is first buffered in the FAT block RPMB_FAT. When the FAT block RPMB_FAT is filled up, the FAT block RPMB_FAT is regarded as a replay-protected memory block and is classified into the partition RPMB_Partition. Meanwhile, another spare block of the FLASH memory 102 may be allocated to play the role of the FAT block RPMB_FAT.
According to the disclosure, the controller 104 allocates N pages of the FAT block RPMB_FAT of the FLASH memory 102 for each update of data of the replay-protected memory blocks no matter what update data length is issued. N depends on the amount of frames required for the host 106 to issue an update, of the longest data length, of the replay-protected memory blocks. In an exemplary embodiment, each frame transmits 256 bytes of RPMB data and 256 bytes of update information (e.g. a write count of 4 bytes, an update address of 2 bytes, an error detecting code of 2 bytes, a MAC value of 32 bytes and so on). When the update data length is 256 bytes, the host 106 issues the update of RPMB data in a single frame. When the update data length is 512 bytes, longer than the transmission capability (256 bytes) of a single frame, the host 106 issues the update of RPMB data in two frames. In a case wherein the longest update data length of RPMB data is up to 512 bytes, N is set to be 2. The controller 104 allocates 2 (N=2) pages of the FAT block RPMB_FAT of the FLASH memory 102 for each update of data of the replay-protected memory blocks no matter what update data length is issued. When the host 106 just issues a data update of 256 bytes for the replay-protected memory blocks, the controller 104 fills up the allocated 2 pages with dummy data in addition to the 256 bytes of data issued by the host 106. In this manner, each successful RPMB data update should result in N valid pages in the FAT block RPMB_FAT.
Note that each page of the allocated N pages, e.g. page 112 or 114, is written with a write count corresponding to the replay-protected memory block to be updated. Because the update of the write count of each replay-protected memory block is integrated with the data buffering of RPMB data (by each FAT page), the write count of each replay-protected memory block is reliable.
The FAT block RPMB_FAT is checked by the controller 104 during a power restoration process, to recognize whether a power failure event happened before and if, so, to get the time of the power failure event. During the power restoration process, when the controller 104 determines that the amount of valid pages in the FAT block RPMB_FAT is a multiple of N, the controller 104 confirms data synchronization within each update of RPMB data. On the contrary, when the controller 104 determines that the amount of valid pages in the FAT block RPMB_FAT is not a multiple of N, the controller 104 ignores the last update of RPMB data.
In some exemplary embodiments, the controller 104 may include a computing unit and a read-only memory (ROM) stored with a ROM code. The ROM code may be coded according to the disclosure to be executed by the computing unit. The disclosed RPMB management, therefore, may be implemented by firmware. Further, any control method for a FLASH memory involving the disclosed RPMB management is also in the scope of the invention.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Name | Date | Kind |
---|---|---|---|
6457126 | Nakamura et al. | Sep 2002 | B1 |
8307151 | Caraccio et al. | Nov 2012 | B1 |
20020099904 | Conley | Jul 2002 | A1 |
20100228907 | Shen | Sep 2010 | A1 |
20120063231 | Wood et al. | Mar 2012 | A1 |
20120210113 | Wood et al. | Aug 2012 | A1 |
20130081144 | Kambayashi | Mar 2013 | A1 |
20130311705 | Cheng et al. | Nov 2013 | A1 |
20130326118 | Liao et al. | Dec 2013 | A1 |
20130339585 | Conley et al. | Dec 2013 | A1 |
20140025906 | Das Purkayastha | Jan 2014 | A1 |
20140281151 | Yu et al. | Sep 2014 | A1 |
20140310535 | Sibert | Oct 2014 | A1 |
20150067239 | Chu et al. | Mar 2015 | A1 |
20150146486 | Wu et al. | May 2015 | A1 |
Number | Date | Country |
---|---|---|
1534509 | Oct 2004 | CN |
1902599 | Jan 2007 | CN |
527604 | Apr 2003 | TW |
2012126729 | Mar 2012 | WO |
Entry |
---|
Office Action of corresponding TW application, published on Nov. 26, 2015. |
Number | Date | Country | |
---|---|---|---|
20150154110 A1 | Jun 2015 | US |