Data storage device and flash memory control method

Information

  • Patent Grant
  • 9842030
  • Patent Number
    9,842,030
  • Date Filed
    Wednesday, May 17, 2017
    7 years ago
  • Date Issued
    Tuesday, December 12, 2017
    7 years ago
Abstract
The data storage device included a flash memory, divided into a plurality of blocks with each block comprising a plurality of physical pages, and a control unit, coupling the flash memory to a host and comprising a microcontroller and a random access memory. The microcontroller maintains a plurality of logical-to-physical address mapping tables and a link table on the flash memory to record mapping information between the host and the flash memory and records a link table indicator on the flash memory to indicate a position of the link table. The link table indicates positions of the plurality of logical-to-physical address mapping tables, and each entry in the link table corresponds to one logical-to-physical address mapping table. Further, the microcontroller erases user of logical addresses corresponding to N logical-to-physical address mapping tables.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The present invention relates to data storage devices with flash memory and flash memory control methods.


Description of the Related Art


Flash memory, a data storage medium, is common in today's data storage devices. For example, flash memory is typically used in memory cards, USB flash devices, solid-state drives, and so on. In another application with multi-chip package technology, a NAND flash chip and a controller chip are combined in one package as an embedded multi-media card (e.g. eMMC).


A flash memory device provides storage space which is divided into blocks, and each block includes a plurality of pages. An erase operation designed for flash memory is performed on a block-by-block basis, to release space one block at a time. When updating data, the new data is written into a spare space rather than being overwritten on old data. To manage the flash memory, the physical-to-logical address mapping information has to be recorded in the flash memory. It is more complex to manage a flash memory rather than other conventional storage mediums, especially for a large-sized flash memory. It can be very tricky to manage the mapping information of a large-sized flash memory.


BRIEF SUMMARY OF THE INVENTION

Data storage device with flash memory and flash memory control method with high erasing efficiency are disclosed.


In one embodiment, a data storage device, comprises: a flash memory, divided into a plurality of blocks with each block comprising a plurality of physical pages; and a control unit, coupling the flash memory to a host and comprising a microcontroller and a random access memory. The microcontroller maintains a plurality of logical-to-physical address mapping tables and a link table on the flash memory to record mapping information between the host and the flash memory and records a link table indicator on the flash memory to indicate a position of the link table. The link table indicates positions of the plurality of logical-to-physical address mapping tables, and each entry in the link table corresponds to one logical-to-physical address mapping table. In addition, the microcontroller erases user of logical addresses corresponding to N logical-to-physical address mapping tables by downloading the link table from the flash memory to the random access memory, invalidating N entries corresponding to the N logical-to-physical address mapping tables in the link table on the random access memory, uploading the link table with the N entries of invalid data back to the flash memory, and records an updated link table indicator on the flash memory to indicate a position of the uploaded link table on the flash memory, where N is an integer.


In an embodiment, a flash memory control method, comprises: maintaining a plurality of logical-to-physical address mapping tables and a link table on a flash memory to record mapping information between a host and the flash memory, wherein the flash memory provides a storage space divided into a plurality of blocks with each block comprising a plurality of pages, and the link table indicates positions of the plurality of logical-to-physical address mapping tables, and each entry in the link table corresponds to one logical-to-physical address mapping table; recording a link table indicator on the flash memory to indicate a position of the link table; erasing user of logical addresses corresponding to N logical-to-physical address mapping tables by downloading the link table from the flash memory to a random access memory, invalidating N entries corresponding to N logical-to-physical address mapping tables in the link table on the random access memory, uploading the link table with the N entries of invalid data back to the flash memory, and recording an updated link table indicator on the flash memory to indicate a position of the uploaded link table on the flash memory, where N is an integer.


A detailed description is given in the following embodiments with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:



FIG. 1 depicts a storage space provided by a flash memory 100;



FIG. 2 depicts a logical-to-physical address mapping table in accordance with an exemplary embodiment of the disclosure;



FIG. 3 is a block diagram depicting a data storage device 300 in accordance with an exemplary embodiment of the disclosure;



FIG. 4 depicts the link table H2FLink modification with respect to the architecture of FIG. 3; and



FIG. 5 is a flowchart depicting how to erase the large-sized user data (with logical addresses corresponding to the N entries 332 of the link table H2FLink, with logical-to-physical address mapping information stored in the N logical-to-physical address mapping tables H2Fi . . . H2Fi+N−1) in accordance with an exemplary embodiment of the disclosure.





DETAILED DESCRIPTION OF THE INVENTION

The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.



FIG. 1 depicts a storage space provided by a flash memory 100. The storage space provided by the flash memory 100 is divided into blocks (e.g., BLK1, BLK2 . . . BLKN . . . ). Each block includes a plurality of physical pages. Each physical page includes a plurality of sectors. For example, physical page 102 provided within block BLKN includes four sectors 104, 106, 108 and 110.


When each sector is allocated for the storage of the user data of one host page (corresponding to a series of logical addresses, e.g. LBAk to LBAk+7), each physical page stores four host pages. For example, the four sectors 104, 106, 108 and 110 correspond to four host pages Hm (i.e. from LBAk0 to LBAk0+7), Hm+1 (i.e. from LBAk1 to LBAk1+7), Hm+2 (i.e. from LBAk2 to LBAk2+7) and Hm+3 (i.e. from LBAk3 to LBAk3+7), respectively. When one block contains 128 physical pages, there are 128×4 host pages corresponding to the 128×4 sectors of the block. For each block, the mapping information between the 128×4 sectors and the 128×4 host pages has to be recorded for storage space management. For a large-sized flash memory, large amounts of mapping information have to be managed.


In an exemplary embodiment, the considerable quantity of mapping information is recorded in the flash memory 100 for non-volatile storage. The mapping information is presented in a multi-level architecture. A plurality of logical-to-physical address mapping tables (abbreviated to H2Fs) and a link table indicating the positions of the plurality of logical-to-physical address mapping tables H2Fs are provided within a flash memory to show the mapping information.



FIG. 2 depicts a logical-to-physical address mapping table H2F in accordance with an exemplary embodiment of the disclosure. The logical-to-physical address mapping table H2F is 16 KB, equal to 1 physical page. Each entry in the logical-to-physical address mapping table H2F is 4B. Thus, there is mapping information about 4K (=16 KB/4B) host pages per logical-to-physical address mapping table. Each entry corresponds to one host page and is recorded with a block number B_N and a page number P_N showing where the host page is stored in the flash memory. It is not intended to limit the table size to 16 KB, and it is not intended to limit the mapping information about each host page to 4B.



FIG. 3 is a block diagram depicting a data storage device 300 in accordance with an exemplary embodiment of the disclosure. The data storage device 300, operating in accord with commands from the host 302, includes a flash memory 304 and a control unit 306. In the flash memory 304, the blocks are allocated for several purposes. Blocks 308 are stored with in-system programs (ISPs). Blocks 310 store system information. User data are stored in the data pool 312. The flash memory 304 may further contain free blocks, spare blocks and run-time write blocks not shown in the figure.


The control unit 306 couples the flash memory 304 to the host 302 and comprises a microcontroller 320, a random access memory 322 and a read-only memory 324. A ROM code is stored in the read-only memory 324. The microcontroller 320 operates the flash memory 304 by executing the ROM code stored in the read-only memory 324 or/and by executing the ISPs stored in the blocks 308 of the flash memory 304. The microcontroller 320 is configured to perform the block allocation of the flash memory 304 (as shown in FIG. 3).


The microcontroller 320 is further configured to provide a link table indicator *H2FLink, logical-to-physical address mapping tables H2F1 . . . H2Fi . . . H2Fi+N−1 . . . H2FK and a link table H2FLink on the flash memory 304 to record logical-to-physical address mapping information between the host 302 and the flash memory 304. The link table indicator *H2FLink in a system block 330 indicates the position of the link table H2FLink. The link table indicator *H2FLink may indicate the position of the link table H2FLink by a block number and a page number. The link table H2FLink indicates the positions of the plurality of logical-to-physical address mapping tables H2F1 . . . H2FK. The different entries in the link table H2FLink correspond to the different logical-to-physical address mapping tables H2F1 . . . H2FK. In an exemplary embodiment, each entry in the link table H2FLink may be stored with a block number and a page number that indicate the position of the logical-to-physical address mapping table corresponding thereto. In the following discussion, a request to erase user data of logical addresses corresponding to N logical-to-physical address mapping tables H2Fi . . . H2Fi+N−1 is requested. As shown, N entries 332 in the link table H2FLink correspond to the N logical-to-physical address mapping tables H2Fi . . . H2Fi+N−1. The microcontroller 320 is configured to read the system block 330 to download the link table indicator *H2FLink from the flash memory 304 to a space 334 of the random access memory 322. Furthermore, based on the link table indicator *H2FLink, the microcontroller 320 downloads the link table H2FLink from the flash memory 304 to a space 336 of the random access memory 322 and invalidates the N entries 338 of the link table on the random access memory 322. The microcontroller 320 uploads the link table with the N entries 338 of invalid data back to the flash memory 304 (e.g. into a spare area 340 of the flash memory 304). When uploading the link table with the N entries 338 of invalid data back to the flash memory 304 (into the spare area 340), the microcontroller 320 further updates the system block 330 with an updated link table indicator 342 to indicate the new position 340 of the updated link table. In this manner, even though a large-sized erase operation for the logical addresses relating to the N logical-to-physical address mapping tables H2Fi . . . H2Fi+N−1 is requested (e.g. a request to erase sequential data along the logical address covered by the N logical-to-physical address mapping tables H2Fi . . . H2Fi+N−1), just a few system resources are required. Instead of downloading all of the N logical-to-physical address mapping tables H2Fi . . . H2Fi+N−1 from the flash memory 304 to the random access memory 322 for mapping information modification, the large-sized erase operation is achieved by easily modifying the link table indicator *H2FLink and the link table H2FLink. The system efficiency of the data storage device 300 is considerably improved.



FIG. 4 depicts the link table H2FLink modification with respect to the architecture of FIG. 3. As shown, the link table H2FLink is stored with pointers *H2F1 . . . *H2FK linked to the logical-to-physical address mapping tables H2F1 . . . H2FK, respectively. To erase user data of logical addresses corresponding to the N logical-to-physical address mapping tables H2Fi . . . H2Fi+N−1, the link table H2FLink is downloaded to space 336 of the random access memory 322 and the N entries 338 of the link table are invalidated on the random access memory 322. Then the link table with the N entries 338 of invalid data is uploaded back to the flash memory 304 into space 340. The former link table H2FLink is invalidated.



FIG. 5 is a flowchart depicting how to erase the large-sized user data (with logical addresses corresponding to the N entries 332 of the link table H2FLink, with logical-to-physical address mapping information stored in the N logical-to-physical address mapping tables H2Fi . . . H2Fi+N−1) in accordance with an exemplary embodiment of the disclosure. The flowchart of FIG. 5 is discussed with respect to the architecture of FIG. 3.


In step S502, the system block 330 is accessed and thereby the link table indicator *H2FLink is retrieved therefrom and temporarily stored into space 334 of the random access memory 322. In step S504, the link table H2FLink is downloaded from the flash memory 304 and temporarily stored into the random access memory 322 in space 336. In step S506, the N entries 338 of the link table stored in the random access memory 322 is invalidated and the link table with the N entries of invalid data is uploaded back to the flash memory 304 into space 340. In step S508, the link table indicator in space 334 is updated to indicate the position of the space 340 and the updated link table indicator is uploaded back to the flash memory 304 into space 342.


Any technique using the aforementioned concept to control a flash memory is within the scope of the invention. The invention further involves flash memory control methods, which are not limited to any specific controller architecture.


While the invention has been described by way of example and in terms of the embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims
  • 1. A data storage device, comprising: a flash memory, divided into a plurality of blocks with each block comprising a plurality of physical pages; anda control unit, coupling the flash memory to a host and comprising a microcontroller and a random access memory,wherein:the microcontroller maintains a plurality of logical-to-physical address mapping tables and a link table on the flash memory to record mapping information between the host and the flash memory and records a link table indicator on the flash memory to indicate a position of the link table;the link table indicates positions of the plurality of logical-to-physical address mapping tables, and each entry in the link table corresponds to one logical-to-physical address mapping table; andthe microcontroller erases user data of logical addresses corresponding to N logical-to-physical address mapping tables by downloading the link table from the flash memory to the random access memory, invalidating N entries corresponding to the N logical-to-physical address mapping tables in the link table on the random access memory, uploading the link table with the N entries of invalid data back to the flash memory, and records an updated link table indicator on the flash memory to indicate a position of the uploaded link table on the flash memory, where N is an integer.
  • 2. The data storage device as claimed in claim 1, wherein: the microcontroller downloads the link table indicator from a system block of the flash memory to a space of the random access memory and downloads the link table from the flash memory to the random access memory in accordance with the link table indicator; andthe microcontroller further updates the link table indicator in the space of the random access memory and uploads the updated link table indicator back to the system block of the flash memory.
  • 3. The data storage device as claimed in claim 1, wherein: the link table indicator indicates the position of the link table by a block number and a page number.
  • 4. The data storage device as claimed in claim 1, wherein: each entry in the link table stores a block number and a page number that indicate the position of the logical-to-physical address mapping table corresponding thereto.
  • 5. A flash memory control method, comprising: maintaining a plurality of logical-to-physical address mapping tables and a link table on a flash memory to record mapping information between a host and the flash memory, wherein the flash memory provides a storage space divided into a plurality of blocks with each block comprising a plurality of pages, and the link table indicates positions of the plurality of logical-to-physical address mapping tables, and each entry in the link table corresponds to one logical-to-physical address mapping table;recording a link table indicator on the flash memory to indicate a position of the link table;erasing user data of logical addresses corresponding to N logical-to-physical address mapping tables by downloading the link table from the flash memory to a random access memory, invalidating N entries corresponding to N logical-to-physical address mapping tables in the link table on the random access memory, uploading the link table with the N entries of invalid data back to the flash memory, and recording an updated link table indicator on the flash memory to indicate a position of the uploaded link table on the flash memory, where N is an integer.
  • 6. The flash memory control method as claimed in claim 5, further comprising: downloading the link table indicator from a system block of the flash memory to a space of the random access memory, wherein the link table is downloaded from the flash memory to the random access memory in accordance with the link table indicator;updating the link table indicator in the space of the random access memory; anduploading the updated link table indicator back to the system block of the flash memory.
  • 7. The flash memory control method as claimed in claim 5, wherein: the link table indicator indicates the position of the link table by a block number and a page number.
  • 8. The flash memory control method as claimed in claim 5, wherein: each entry in the link table stores a block number and a page number that indicate the position of the logical-to-physical address mapping table corresponding thereto.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of pending U.S. application Ser. No. 14/534,633, filed Nov. 6, 2014, which claims the benefit of U.S. Provisional Application No. 61/920,830, filed Dec. 26, 2013, the entirety of which is incorporated by reference herein.

US Referenced Citations (53)
Number Name Date Kind
6895490 Moore et al. May 2005 B1
6970890 Bruce et al. Nov 2005 B1
6988175 Lasser Jan 2006 B2
7603525 Lasser Oct 2009 B2
7886108 Lee et al. Feb 2011 B2
7904635 Deng et al. Mar 2011 B2
8078794 Lee et al. Dec 2011 B2
8352706 Yano et al. Jan 2013 B2
8688894 Kuehne Apr 2014 B2
9311006 Moshayedi Apr 2016 B2
9355028 Cheng May 2016 B2
20030163630 Aasheim et al. Aug 2003 A1
20040268063 Lasser Dec 2004 A1
20060282644 Wong Dec 2006 A1
20070021963 Deng et al. Jan 2007 A1
20070156998 Gorobets Jul 2007 A1
20070300037 Rogers et al. Dec 2007 A1
20080104309 Cheon et al. May 2008 A1
20080126680 Lee et al. May 2008 A1
20080215800 Lee et al. Sep 2008 A1
20080256287 Lee et al. Oct 2008 A1
20090144501 Yim et al. Jun 2009 A2
20090172262 Olbrich et al. Jul 2009 A1
20090240871 Yano et al. Sep 2009 A1
20090240873 Yu et al. Sep 2009 A1
20090300082 Chen et al. Dec 2009 A1
20090327589 Moshayedi Dec 2009 A1
20090327591 Moshayedi Dec 2009 A1
20090327840 Moshayedi Dec 2009 A1
20100030999 Hinz Feb 2010 A1
20100082883 Chen et al. Apr 2010 A1
20100169551 Yano et al. Jul 2010 A1
20100174851 Leibowitz et al. Jul 2010 A1
20100299494 Van Acht et al. Nov 2010 A1
20100306451 Johnson Dec 2010 A1
20110055458 Kuehne Mar 2011 A1
20110087829 Lin Apr 2011 A1
20110289255 Wang et al. Nov 2011 A1
20120005415 Jung et al. Jan 2012 A1
20120239862 Seo et al. Sep 2012 A1
20120297121 Gorobets et al. Nov 2012 A1
20120311245 Yano et al. Dec 2012 A1
20130024642 Flynn et al. Jan 2013 A1
20130304975 Wang et al. Nov 2013 A1
20130326120 Cheng Dec 2013 A1
20130326169 Shaharabany et al. Dec 2013 A1
20140006898 Sharon et al. Jan 2014 A1
20140101369 Tomlin et al. Apr 2014 A1
20140122776 El Maghraoui et al. May 2014 A1
20140136753 Tomlin et al. May 2014 A1
20140244903 Yano et al. Aug 2014 A1
20150127687 Graves May 2015 A1
20150261444 Yoshii et al. Sep 2015 A1
Foreign Referenced Citations (15)
Number Date Country
1518000 Aug 2004 CN
101123116 Feb 2008 CN
101346704 Jan 2009 CN
101667157 Mar 2010 CN
102332290 Jan 2012 CN
102591748 Jul 2012 CN
102682848 Sep 2012 CN
103150125 Jun 2013 CN
102063377 Sep 2013 CN
103455428 Dec 2013 CN
103455437 Dec 2013 CN
201142589 Dec 2011 TW
201305817 Feb 2013 TW
201348958 Dec 2013 TW
201348959 Dec 2013 TW
Non-Patent Literature Citations (4)
Entry
Notice of Allowance dated Mar. 30, 2016, issued in U.S. Appl. No. 15/437,543.
Office Action dated May 26, 2016, issued in U.S. Appl. No. 14/534,686.
Office Action dated Jun. 21, 2016, issued in U.S. Appl. No. 14/534,535.
Office Action dated Jul. 1, 2016, issued in U.S. Appl. No. 14/534,603.
Related Publications (1)
Number Date Country
20170249219 A1 Aug 2017 US
Provisional Applications (1)
Number Date Country
61920830 Dec 2013 US
Continuations (1)
Number Date Country
Parent 14534633 Nov 2014 US
Child 15597742 US