Data storage devices such as disk drives comprise a disk and a head connected to a distal end of an actuator arm which is rotated about a pivot by a voice coil motor (VCM) to position the head radially over the disk. The disk comprises a plurality of radially spaced, concentric tracks for recording user data sectors and servo sectors. The servo sectors comprise head positioning information (e.g., a track address) which is read by the head and processed by a servo control system to control the actuator arm as it track seeks from track to track.
The disk 2 is typically rotated by a spindle motor at a high speed so that an air bearing forms between the head and the disk surface. A commutation controller applies a driving signal to the windings of the spindle motor using a particular commutation sequence in order to generate a rotating magnetic field that causes the spindle motor to rotate. Prior art disk drives have typically controlled the commutation of the windings by measuring a zero-crossing frequency of a back electromotive force (BEMF) voltage generated by the windings of the spindle motor. Prior art disk drives may also utilize the BEMF voltage generated by the spindle motor as a power source during power failure to assist with power down operations, such as unloading the head onto a ramp.
In the embodiment of
In one embodiment, it may be desirable to limit the power consumption of the disk drive, such as by minimizing at least one of an average power consumption, peak power consumption, and root-mean-square power consumption in order, for example, to satisfy the host specified power constraints of the supply voltage 66. As described in greater detail below, the disk drive may exhibit a high power demand during seek operations due to the power consumed by the VCM 40 when rotating the actuator arm 41, including during load/unload operations. Accordingly, in one embodiment the periodic driving voltage applied to the spindle motor 20 may be adjusted according to a driving profile that compensates for a power disturbance during the seek operation, such as the power consumed by the VCM 40. In this manner, the seek operations may be executed with the desired performance without violating the power constraints of the supply voltage 66.
In one embodiment, the total average power loss may be represented as the sum of the power consumed by the voltage regulator 62 (
In one embodiment, the average power consumed by the voltage regulator may be based on the lumped resistance R (e.g., switching FET, inductor, line resistance, and battery):
In one embodiment, the average power consumed by the components of the disk drive
since Vpwr 64 is held substantially constant by the voltage regulator. Therefore, the total average power loss is dependent on the average and RMS drive current:
In one embodiment, the drive current may be represented as:
where Pspindle(DAC) represents the power consumed by the spindle motor at a given amplitude of the driving voltage, and Pdisturbance(t) represents a power disturbance during a seek operation, such as the power consumed by the VCM 40 during a seek operation. Accordingly, in one embodiment the amplitude of the driving voltage is adjusted (by adjusting a digital-to-analog converter setting DAC) according to a driving profile that compensates for the power disturbance during the seek operation.
In one embodiment, the driving profile for the spindle motor is generated so as to minimize the average power consumption during a seek operation. In one embodiment, the driving profile for the spindle motor adjusts the speed of the spindle motor during the seek, but ensures the ending rotation speed of the spindle motor substantially matches the starting rotation speed. In this manner, at the end of the seek operation the disk is rotating at an access rotation speed so that the disk may be accessed (during write/read operations). Accordingly, in one embodiment a power consumption constraint is satisfied while also satisfying the following constraints:
where RPM represents the spindle rotation speed, iphase represents an amplitude of current flowing through a winding of the spindle motor and vphase represents an amplitude of the driving voltage across the winding. In one embodiment, the limit values in the above constraints are determined by the disk drive specifications.
In one embodiment, the optimization is done over the disturbance period during the seek operation. All values are represented as a vector of samples for each servo sector (wedge) in the disturbance period. For example, drive current can be represented as:
idrive=[idrive(wedge 1),idrive(wedge 2) . . . idrive(end wedge)]T.
Rewriting the above equations using these vectors:
idrive=Pspindle+Pdisturbance/vdrive
Gradients:
Spindle Power Model:
Pspindle=iphase·*vphase
vphase=[vphaseATvphaseBTvphaseCT]T
iphase=[iphaseATiphaseBTiphaseCT]T
Gradient:
Spindle Phase Model
hphase,x(n) is the discrete time impulse response of Hphase,x(s) found using the bilinear transform.
Gradient:
Spindle DAC Model:
Gradient:
Spindle Torque Model:
Spindle Speed Model:
hRPM(n) is the discrete time impulse response of HRPM(s) found using the bilinear transform.
w
RPM
=H
RPM(τ−τ0)+wRPMO
In one embodiment, the above equations may be solved using any suitable numerical computing program (e.g., using MATLAB) so as to satisfy any suitable power consumption constraint, such as minimizing one of the average power consumption, peak power consumption, or root-mean-square (RMS) power consumption of the disk drive during a seek operation as well as satisfy the above constraint that the rotation speed of the spindle motor at the end of the seek substantially match the rotation speed at the start of the seek. In one embodiment, the above equations may be solved to achieve a target weighting of at least two of an average power consumption, a peak power consumption, and a root-mean-square (RMS) power consumption of the data storage device during the seek.
Although as shown in
The driving profile shown in the example of
In one embodiment, the above equations are solved to generate a stepped driving profile, wherein each step (sample value) in the driving profile corresponds to a servo sector on the disk 18. That is, during a seek operation the control circuitry adjusts the amplitude of the driving voltage applied to the spindle motor 20 at each servo sector based on the corresponding step value stored in the driving profile. However, the above equations may be modified to generate the driving profile at a finer/coarser resolution than the servo sector frequency. In other embodiments, the control circuitry may include circuitry for smoothing the amplitude of the driving voltage between the step values specified by the driving profile.
In one embodiment such as shown in
In the example unload operation shown in
The driving profile for the spindle motor 20 may be generated by solving the above equations in order to compensate for any known power disturbance in the disk drive.
Any suitable control circuitry may be employed to implement the flow diagrams in the above embodiments, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, or certain operations described above may be performed by a read channel and others by a disk controller. In one embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into a SOC.
In one embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the flow diagrams described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk and read into a volatile semiconductor memory when the disk drive is powered on. In yet another embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry.
In various embodiments, a disk drive may include a magnetic disk drive, an optical disk drive, etc. In addition, while the above examples concern a disk drive, the various embodiments are not limited to a disk drive and can be applied to other data storage devices and systems, such as magnetic tape drives, solid state drives, hybrid drives, etc. In addition, some embodiments may include electronic devices such as computing devices, data server devices, media content storage devices, etc. that comprise the storage media and/or control circuitry as described above.
The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method, event or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than that specifically disclosed, or multiple may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.
While certain example embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions disclosed herein. Thus, nothing in the foregoing description is intended to imply that any particular feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the embodiments disclosed herein.
This application claims priority to provisional U.S. Patent Application Ser. No. 62/160,564, filed on May 12, 2015, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5157560 | Kanda et al. | Oct 1992 | A |
5381279 | Dunn | Jan 1995 | A |
5521896 | Bajorek | May 1996 | A |
5589996 | Patrick | Dec 1996 | A |
6014283 | Codilian et al. | Jan 2000 | A |
6052076 | Patton, III et al. | Apr 2000 | A |
6052250 | Golowka et al. | Apr 2000 | A |
6067206 | Hull et al. | May 2000 | A |
6078453 | Dziallo et al. | Jun 2000 | A |
6091564 | Codilian et al. | Jul 2000 | A |
6094020 | Goretzki et al. | Jul 2000 | A |
6101065 | Alfred et al. | Aug 2000 | A |
6104153 | Codilian et al. | Aug 2000 | A |
6122133 | Nazarian et al. | Sep 2000 | A |
6122135 | Stich | Sep 2000 | A |
6141175 | Nazarian et al. | Oct 2000 | A |
6160368 | Plutowski | Dec 2000 | A |
6181502 | Hussein et al. | Jan 2001 | B1 |
6195222 | Heminger et al. | Feb 2001 | B1 |
6198584 | Codilian et al. | Mar 2001 | B1 |
6198590 | Codilian et al. | Mar 2001 | B1 |
6204988 | Codilian et al. | Mar 2001 | B1 |
6243223 | Elliott et al. | Jun 2001 | B1 |
6281652 | Ryan et al. | Aug 2001 | B1 |
6282046 | Houston et al. | Aug 2001 | B1 |
6285521 | Hussein | Sep 2001 | B1 |
6292320 | Mason et al. | Sep 2001 | B1 |
6310742 | Nazarian et al. | Oct 2001 | B1 |
6320718 | Bouwkamp et al. | Nov 2001 | B1 |
6342984 | Hussein et al. | Jan 2002 | B1 |
6347018 | Kadlec et al. | Feb 2002 | B1 |
6369972 | Codilian et al. | Apr 2002 | B1 |
6369974 | Asgari et al. | Apr 2002 | B1 |
6462896 | Codilian et al. | Oct 2002 | B1 |
6476996 | Ryan | Nov 2002 | B1 |
6484577 | Bennett | Nov 2002 | B1 |
6493169 | Ferris et al. | Dec 2002 | B1 |
6496324 | Golowka et al. | Dec 2002 | B1 |
6498698 | Golowka et al. | Dec 2002 | B1 |
6507450 | Elliott | Jan 2003 | B1 |
6534936 | Messenger et al. | Mar 2003 | B2 |
6538839 | Ryan | Mar 2003 | B1 |
6545835 | Codilian et al. | Apr 2003 | B1 |
6549359 | Bennett et al. | Apr 2003 | B1 |
6549361 | Bennett et al. | Apr 2003 | B1 |
6560056 | Ryan | May 2003 | B1 |
6568268 | Bennett | May 2003 | B1 |
6574062 | Bennett et al. | Jun 2003 | B1 |
6577465 | Bennett et al. | Jun 2003 | B1 |
6614615 | Ju et al. | Sep 2003 | B1 |
6614618 | Sheh et al. | Sep 2003 | B1 |
6636377 | Yu et al. | Oct 2003 | B1 |
6690536 | Ryan | Feb 2004 | B1 |
6693764 | Sheh et al. | Feb 2004 | B1 |
6707635 | Codilian et al. | Mar 2004 | B1 |
6710567 | Heydt | Mar 2004 | B2 |
6710953 | Vallis et al. | Mar 2004 | B1 |
6710966 | Codilian et al. | Mar 2004 | B1 |
6714371 | Codilian | Mar 2004 | B1 |
6714372 | Codilian et al. | Mar 2004 | B1 |
6724564 | Codilian et al. | Apr 2004 | B1 |
6731450 | Codilian et al. | May 2004 | B1 |
6735041 | Codilian et al. | May 2004 | B1 |
6738220 | Codilian | May 2004 | B1 |
6741414 | Boyd et al. | May 2004 | B1 |
6747837 | Bennett | Jun 2004 | B1 |
6753667 | Sakamoto | Jun 2004 | B2 |
6760186 | Codilian et al. | Jul 2004 | B1 |
6781787 | Codilian et al. | Aug 2004 | B1 |
6788483 | Ferris et al. | Sep 2004 | B1 |
6791785 | Messenger et al. | Sep 2004 | B1 |
6795268 | Ryan | Sep 2004 | B1 |
6819518 | Melkote et al. | Nov 2004 | B1 |
6826006 | Melkote et al. | Nov 2004 | B1 |
6826007 | Patton, III | Nov 2004 | B1 |
6847502 | Codilian | Jan 2005 | B1 |
6850383 | Bennett | Feb 2005 | B1 |
6850384 | Bennett | Feb 2005 | B1 |
6867944 | Ryan | Mar 2005 | B1 |
6876508 | Patton, III et al. | Apr 2005 | B1 |
6882496 | Codilian et al. | Apr 2005 | B1 |
6885514 | Codilian et al. | Apr 2005 | B1 |
6900958 | Yi et al. | May 2005 | B1 |
6900959 | Gardner et al. | May 2005 | B1 |
6903897 | Wang et al. | Jun 2005 | B1 |
6914740 | Tu et al. | Jul 2005 | B1 |
6914743 | Narayana et al. | Jul 2005 | B1 |
6920004 | Codilian et al. | Jul 2005 | B1 |
6924959 | Melkote et al. | Aug 2005 | B1 |
6924960 | Melkote et al. | Aug 2005 | B1 |
6924961 | Melkote et al. | Aug 2005 | B1 |
6934114 | Codilian et al. | Aug 2005 | B1 |
6934135 | Ryan | Aug 2005 | B1 |
6937420 | McNab et al. | Aug 2005 | B1 |
6937423 | Ngo et al. | Aug 2005 | B1 |
6937431 | Galloway | Aug 2005 | B2 |
6952322 | Codilian et al. | Oct 2005 | B1 |
6954324 | Tu et al. | Oct 2005 | B1 |
6958881 | Codilian et al. | Oct 2005 | B1 |
6963465 | Melkote et al. | Nov 2005 | B1 |
6965488 | Bennett | Nov 2005 | B1 |
6967458 | Bennett et al. | Nov 2005 | B1 |
6967811 | Codilian et al. | Nov 2005 | B1 |
6970319 | Bennett et al. | Nov 2005 | B1 |
6972539 | Codilian et al. | Dec 2005 | B1 |
6972540 | Wang et al. | Dec 2005 | B1 |
6972922 | Subrahmanyam et al. | Dec 2005 | B1 |
6975480 | Codilian et al. | Dec 2005 | B1 |
6977789 | Cloke | Dec 2005 | B1 |
6980389 | Kupferman | Dec 2005 | B1 |
6987636 | Chue et al. | Jan 2006 | B1 |
6987639 | Yu | Jan 2006 | B1 |
6989954 | Lee et al. | Jan 2006 | B1 |
6992848 | Agarwal et al. | Jan 2006 | B1 |
6992851 | Cloke | Jan 2006 | B1 |
6992852 | Ying et al. | Jan 2006 | B1 |
6995941 | Miyamura et al. | Feb 2006 | B1 |
6999263 | Melkote et al. | Feb 2006 | B1 |
6999267 | Melkote et al. | Feb 2006 | B1 |
7006320 | Bennett et al. | Feb 2006 | B1 |
7016134 | Agarwal et al. | Mar 2006 | B1 |
7023637 | Kupferman | Apr 2006 | B1 |
7023640 | Codilian et al. | Apr 2006 | B1 |
7027256 | Subrahmanyam et al. | Apr 2006 | B1 |
7027257 | Kupferman | Apr 2006 | B1 |
7035026 | Codilian et al. | Apr 2006 | B2 |
7046472 | Melkote et al. | May 2006 | B1 |
7050249 | Chue et al. | May 2006 | B1 |
7050254 | Yu et al. | May 2006 | B1 |
7050258 | Codilian | May 2006 | B1 |
7054098 | Yu et al. | May 2006 | B1 |
7061714 | Yu | Jun 2006 | B1 |
7064918 | Codilian et al. | Jun 2006 | B1 |
7068451 | Wang et al. | Jun 2006 | B1 |
7068459 | Cloke et al. | Jun 2006 | B1 |
7068461 | Chue et al. | Jun 2006 | B1 |
7068463 | Ji et al. | Jun 2006 | B1 |
7088547 | Wang et al. | Aug 2006 | B1 |
7095579 | Ryan et al. | Aug 2006 | B1 |
7110208 | Miyamura et al. | Sep 2006 | B1 |
7110214 | Tu et al. | Sep 2006 | B1 |
7113362 | Lee et al. | Sep 2006 | B1 |
7113365 | Ryan et al. | Sep 2006 | B1 |
7116505 | Kupferman | Oct 2006 | B1 |
7126781 | Bennett | Oct 2006 | B1 |
7158329 | Ryan | Jan 2007 | B1 |
7180703 | Subrahmanyam et al. | Feb 2007 | B1 |
7184230 | Chue et al. | Feb 2007 | B1 |
7196864 | Yi et al. | Mar 2007 | B1 |
7199966 | Tu et al. | Apr 2007 | B1 |
7203021 | Ryan et al. | Apr 2007 | B1 |
7209321 | Bennett | Apr 2007 | B1 |
7212364 | Lee | May 2007 | B1 |
7212374 | Wang et al | May 2007 | B1 |
7215504 | Bennett | May 2007 | B1 |
7224546 | Orakcilar et al. | May 2007 | B1 |
7248426 | Weerasooriya et al. | Jul 2007 | B1 |
7251098 | Wang et al. | Jul 2007 | B1 |
7253582 | Ding et al. | Aug 2007 | B1 |
7253989 | Lau et al. | Aug 2007 | B1 |
7265933 | Phan et al. | Sep 2007 | B1 |
7289288 | Tu | Oct 2007 | B1 |
7298574 | Melkote et al. | Nov 2007 | B1 |
7301717 | Lee et al. | Nov 2007 | B1 |
7304819 | Melkote et al. | Dec 2007 | B1 |
7309967 | Moser et al. | Dec 2007 | B2 |
7330019 | Bennett | Feb 2008 | B1 |
7330327 | Chue et al. | Feb 2008 | B1 |
7333280 | Lifchits et al. | Feb 2008 | B1 |
7333290 | Kupferman | Feb 2008 | B1 |
7339761 | Tu et al. | Mar 2008 | B1 |
7359140 | Chung | Apr 2008 | B2 |
7365932 | Bennett | Apr 2008 | B1 |
7388728 | Chen et al. | Jun 2008 | B1 |
7391583 | Sheh et al. | Jun 2008 | B1 |
7391584 | Sheh et al. | Jun 2008 | B1 |
7433143 | Ying et al. | Oct 2008 | B1 |
7440210 | Lee | Oct 2008 | B1 |
7440225 | Chen et al. | Oct 2008 | B1 |
7450334 | Wang et al. | Nov 2008 | B1 |
7450336 | Wang et al. | Nov 2008 | B1 |
7453661 | Jang et al. | Nov 2008 | B1 |
7457071 | Sheh | Nov 2008 | B1 |
7466509 | Chen et al. | Dec 2008 | B1 |
7468855 | Weerasooriya et al. | Dec 2008 | B1 |
7477471 | Nemshick et al. | Jan 2009 | B1 |
7480116 | Bennett | Jan 2009 | B1 |
7489464 | McNab et al. | Feb 2009 | B1 |
7492546 | Miyamura | Feb 2009 | B1 |
7495857 | Bennett | Feb 2009 | B1 |
7499236 | Lee et al. | Mar 2009 | B1 |
7502192 | Wang et al. | Mar 2009 | B1 |
7502195 | Wu et al. | Mar 2009 | B1 |
7502197 | Chue | Mar 2009 | B1 |
7505223 | McCornack | Mar 2009 | B1 |
7542225 | Ding et al. | Jun 2009 | B1 |
7548392 | Desai et al. | Jun 2009 | B1 |
7551390 | Wang et al. | Jun 2009 | B1 |
7558016 | Le et al. | Jul 2009 | B1 |
7573670 | Ryan et al. | Aug 2009 | B1 |
7576941 | Chen et al. | Aug 2009 | B1 |
7580212 | Li et al. | Aug 2009 | B1 |
7583470 | Chen et al. | Sep 2009 | B1 |
7595954 | Chen et al. | Sep 2009 | B1 |
7602575 | Lifchits et al. | Oct 2009 | B1 |
7616399 | Chen et al. | Nov 2009 | B1 |
7619844 | Bennett | Nov 2009 | B1 |
7626782 | Yu et al. | Dec 2009 | B1 |
7630162 | Zhao et al. | Dec 2009 | B2 |
7639447 | Yu et al. | Dec 2009 | B1 |
7656604 | Liang et al. | Feb 2010 | B1 |
7656607 | Bennett | Feb 2010 | B1 |
7660067 | Ji et al. | Feb 2010 | B1 |
7663835 | Yu et al. | Feb 2010 | B1 |
7675707 | Liu et al. | Mar 2010 | B1 |
7679854 | Narayana et al. | Mar 2010 | B1 |
7688534 | McCornack | Mar 2010 | B1 |
7688538 | Chen et al. | Mar 2010 | B1 |
7688539 | Bryant et al. | Mar 2010 | B1 |
7697233 | Bennett et al. | Apr 2010 | B1 |
7701661 | Bennett | Apr 2010 | B1 |
7710676 | Chue | May 2010 | B1 |
7715138 | Kupferman | May 2010 | B1 |
7729079 | Huber | Jun 2010 | B1 |
7733189 | Bennett | Jun 2010 | B1 |
7746592 | Liang et al. | Jun 2010 | B1 |
7746594 | Guo et al. | Jun 2010 | B1 |
7746595 | Guo et al. | Jun 2010 | B1 |
7760461 | Bennett | Jul 2010 | B1 |
7800853 | Guo et al. | Sep 2010 | B1 |
7800856 | Bennett et al. | Sep 2010 | B1 |
7800857 | Calaway et al. | Sep 2010 | B1 |
7839591 | Weerasooriya et al. | Nov 2010 | B1 |
7839595 | Chue et al. | Nov 2010 | B1 |
7839600 | Babinski et al. | Nov 2010 | B1 |
7843662 | Weerasooriya et al. | Nov 2010 | B1 |
7852588 | Ferris et al. | Dec 2010 | B1 |
7852592 | Liang et al. | Dec 2010 | B1 |
7864481 | Kon et al. | Jan 2011 | B1 |
7864482 | Babinski et al. | Jan 2011 | B1 |
7869155 | Wong | Jan 2011 | B1 |
7876522 | Calaway et al. | Jan 2011 | B1 |
7876523 | Panyavoravaj et al. | Jan 2011 | B1 |
7916415 | Chue | Mar 2011 | B1 |
7916416 | Guo et al. | Mar 2011 | B1 |
7916420 | McFadyen et al. | Mar 2011 | B1 |
7916422 | Guo et al. | Mar 2011 | B1 |
7929238 | Vasquez | Apr 2011 | B1 |
7961422 | Chen et al. | Jun 2011 | B1 |
8000053 | Anderson | Aug 2011 | B1 |
8031423 | Tsai et al. | Oct 2011 | B1 |
8049985 | Zhu et al. | Nov 2011 | B2 |
8054022 | Ryan et al. | Nov 2011 | B1 |
8059357 | Knigge et al. | Nov 2011 | B1 |
8059360 | Melkote et al. | Nov 2011 | B1 |
8072703 | Calaway et al. | Dec 2011 | B1 |
8077428 | Chen et al. | Dec 2011 | B1 |
8078901 | Meyer et al. | Dec 2011 | B1 |
8081395 | Ferris | Dec 2011 | B1 |
8085020 | Bennett | Dec 2011 | B1 |
8116023 | Kupferman | Feb 2012 | B1 |
8145934 | Ferris et al. | Mar 2012 | B1 |
8179626 | Ryan et al. | May 2012 | B1 |
8189286 | Chen et al. | May 2012 | B1 |
8213106 | Guo et al. | Jul 2012 | B1 |
8254222 | Tang | Aug 2012 | B1 |
8300348 | Liu et al. | Oct 2012 | B1 |
8315005 | Zou et al. | Nov 2012 | B1 |
8320069 | Knigge et al. | Nov 2012 | B1 |
8351174 | Gardner et al. | Jan 2013 | B1 |
8358114 | Ferris et al. | Jan 2013 | B1 |
8358145 | Ferris et al. | Jan 2013 | B1 |
8390367 | Bennett | Mar 2013 | B1 |
8432031 | Agness et al. | Apr 2013 | B1 |
8432629 | Rigney et al. | Apr 2013 | B1 |
8451697 | Rigney et al. | May 2013 | B1 |
8482873 | Chue et al. | Jul 2013 | B1 |
8498076 | Sheh et al. | Jul 2013 | B1 |
8498172 | Patton, III et al. | Jul 2013 | B1 |
8508881 | Babinski et al. | Aug 2013 | B1 |
8531798 | Xi et al. | Sep 2013 | B1 |
8537486 | Liang et al. | Sep 2013 | B2 |
8542455 | Huang et al. | Sep 2013 | B2 |
8553351 | Narayana et al. | Oct 2013 | B1 |
8564899 | Lou et al. | Oct 2013 | B2 |
8576506 | Wang et al. | Nov 2013 | B1 |
8605382 | Mallary et al. | Dec 2013 | B1 |
8605384 | Liu et al. | Dec 2013 | B1 |
8610391 | Yang et al. | Dec 2013 | B1 |
8611040 | Xi et al. | Dec 2013 | B1 |
8619385 | Guo et al. | Dec 2013 | B1 |
8630054 | Bennett et al. | Jan 2014 | B2 |
8630059 | Chen et al. | Jan 2014 | B1 |
8634154 | Rigney et al. | Jan 2014 | B1 |
8634283 | Rigney et al. | Jan 2014 | B1 |
8643976 | Wang et al. | Feb 2014 | B1 |
8649121 | Smith et al. | Feb 2014 | B1 |
8654466 | McFadyen | Feb 2014 | B1 |
8654467 | Wong et al. | Feb 2014 | B1 |
8654477 | Sosseh | Feb 2014 | B2 |
8665546 | Zhao et al. | Mar 2014 | B1 |
8665551 | Rigney et al. | Mar 2014 | B1 |
8670206 | Liang et al. | Mar 2014 | B1 |
8687312 | Liang | Apr 2014 | B1 |
8693123 | Guo et al. | Apr 2014 | B1 |
8693134 | Xi et al. | Apr 2014 | B1 |
8699173 | Kang et al. | Apr 2014 | B1 |
8711027 | Bennett | Apr 2014 | B1 |
8717696 | Ryan et al. | May 2014 | B1 |
8717699 | Ferris | May 2014 | B1 |
8717704 | Yu et al. | May 2014 | B1 |
8724245 | Smith et al. | May 2014 | B1 |
8724253 | Liang et al. | May 2014 | B1 |
8724524 | Urabe et al. | May 2014 | B2 |
8737008 | Watanabe et al. | May 2014 | B1 |
8737013 | Zhou et al. | May 2014 | B2 |
8743495 | Chen et al. | Jun 2014 | B1 |
8743503 | Tang et al. | Jun 2014 | B1 |
8743504 | Bryant et al. | Jun 2014 | B1 |
8749904 | Liang et al. | Jun 2014 | B1 |
8760796 | Lou et al. | Jun 2014 | B1 |
8767332 | Chahwan et al. | Jul 2014 | B1 |
8767343 | Helmick et al. | Jul 2014 | B1 |
8767354 | Ferris et al. | Jul 2014 | B1 |
8773787 | Beker | Jul 2014 | B1 |
8779574 | Agness et al. | Jul 2014 | B1 |
8780473 | Zhao et al. | Jul 2014 | B1 |
8780477 | Guo et al. | Jul 2014 | B1 |
8780479 | Helmick et al. | Jul 2014 | B1 |
8780489 | Gayaka et al. | Jul 2014 | B1 |
8792202 | Wan et al. | Jul 2014 | B1 |
8797664 | Guo et al. | Aug 2014 | B1 |
8804267 | Huang et al. | Aug 2014 | B2 |
8824081 | Guo et al. | Sep 2014 | B1 |
8824262 | Liu et al. | Sep 2014 | B1 |
9025270 | Nowell et al. | May 2015 | B1 |
20100035085 | Jung et al. | Feb 2010 | A1 |
20120284493 | Lou et al. | Nov 2012 | A1 |
20130120870 | Zhou et al. | May 2013 | A1 |
20130148240 | Ferris et al. | Jun 2013 | A1 |
20130290611 | Biederman et al. | Oct 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
62160564 | May 2015 | US |