Embodiments of the present disclosure generally relate to a data storage device.
Data storage devices such as disk drives comprise a disk and a head connected to a distal end of an actuator arm which is rotated about a pivot by a voice coil motor (VCM) to position the head radially over the disk. The disk comprises a plurality of radially spaced, concentric tracks for recording user data sectors and servo sectors. The servo sectors comprise head positioning information (e.g., a track address) which is read by the head and processed by a servo control system to control the actuator arm as it seeks from track to track.
Data is typically written to the disk by modulating a write current in an inductive coil (write coil) to record magnetic transitions onto the disk surface in a process referred to as saturation recording. During read-back, the magnetic transitions are sensed by a read element (e.g., a magneto-resistive element) and the resulting read signal demodulated by a suitable read channel. Heat assisted magnetic recording (HAMR) is a recent development that improves the quality of written data by heating the disk surface during write operations in order to decrease the coercivity of the magnetic medium, thereby enabling the magnetic field generated by the write coil to more readily magnetize the disk surface. Microwave assisted magnetic recording (MAMR) is also a recent development that improves the quality of written data by using a spin torque oscillator (STO) to apply a high frequency auxiliary magnetic field to the media close to the resonant frequency of the magnetic grains, thereby enabling the magnetic field generated by the write coil to more readily magnetize the disk surface. Since the quality of the write/read signal depends on the fly height of the head, conventional heads may also comprise an actuator for controlling the fly height. Any suitable fly height actuator (FHA) may be employed, such as a heater which controls fly height through thermal expansion, or a piezoelectric (PZT) actuator. A data storage device may also employ dual FHAs to achieve a first fly height during write operations and a second, different fly height during read operations.
A data storage device is disclosed comprising a first head actuated over a first disk surface, the first head comprising a plurality of elements including a first element. During a first write operation of the first head, a first bias signal having a first polarity is applied to the first element, and a write interval of the first write operation is measured. During a non-write mode of the first head, a second bias signal having a second polarity opposite the first polarity is applied to the first element during a reverse bias interval that is based on the write interval of the first write operation.
In one embodiment, a data storage device comprises: a first disk surface; a first head actuated over the first disk surface, the first head comprising a plurality of elements including a first element; and control circuitry configured to: during a first write operation of the first head, apply a first bias signal having a first polarity to the first element; measure a write interval of the first write operation; and during a non-write mode of the first head, apply a second bias signal having a second polarity opposite the first polarity to the first element during a reverse bias interval that is based on the write interval of the first write operation.
In another embodiment, a method of operating a data storage device comprises: during a first write operation of a first head to a first disk surface, applying a first bias signal having a first polarity to a first element of the first head; measuring a write interval of the first write operation; and during a non-write mode of the first head, applying a second bias signal having a second polarity opposite the first polarity to the first element during a reverse bias interval that is based on the write interval of the first write operation.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized on other embodiments without specific recitation.
In the following, reference is made to embodiments of the disclosure. However, it should be understood that the disclosure is not limited to specific described embodiments. Instead, any combination of the following features and elements, whether related to different embodiments or not, is contemplated to implement and practice the disclosure. Furthermore, although embodiments of the disclosure may achieve advantages over other possible solutions and/or over the prior art, whether or not a particular advantage is achieved by a given embodiment is not limiting of the disclosure. Thus, the following aspects, features, embodiments and advantages are merely illustrative and are not considered elements or limitations of the appended claims except where explicitly recited in a claim(s). Likewise, reference to “the disclosure” shall not be construed as a generalization of any inventive subject matter disclosed herein and shall not be considered to be an element or limitation of the appended claims except where explicitly recited in a claim(s).
The first head shown in
The reverse bias signal may be applied to a head element during any suitable non-write mode of the corresponding head. For example, in one embodiment the reverse bias signal may be applied to the head element during an idle mode of the corresponding head. In yet another embodiment, the reverse bias signal may be applied during a read operation of the corresponding head if reverse biasing the head element will not adversely affect the read operation. For example, in one embodiment an STO may be reverse biased with an opposite polarity bias signal during a read operation since the STO will not oscillate when no write current is applied to the write coil.
In one embodiment, the control circuitry 8 of
In one embodiment, the head elements may be reversed biased over reverse bias intervals so as to maintain a substantial equilibrium in the electro-migration effect. In one embodiment, if the accumulated write intervals for one of the heads increases above a predetermined threshold, write operations to the corresponding disk surface may be redirected to a different disk surface, or in another embodiment deferred by temporarily caching the write data in a non-volatile semiconductor memory (e.g., Flash memory). While the write operations are redirected or deferred for a particular head, the head element(s) may be reverse biased to counter the electro-migration effect and thereby decrease the accumulated write intervals for the head. In one embodiment, the threshold used to trigger a redirect or deferment of write operations may include any suitable hysteresis before re-enabling write operations to the corresponding disk surface. That is, write operations to a particular disk surface may be redirected or deferred until the accumulated write intervals for the head falls below a hysteretic threshold.
In the embodiment of
In other embodiments, a similar square wave reverse bias signal may be applied to three or more head elements by de-multiplexing a DC bias signal over the multiple head elements during the reverse bias interval. In this embodiment, the duty cycle of the square wave reverse bias signal applied to each head element will be reduced proportional to the number of head elements being reverse biased. In one embodiment, reducing the duty cycle enables increasing the amplitude of the square wave without stressing the head elements. In one embodiment, the amplitude and effective duty cycle of the reverse bias square wave may be configured based on the accumulated write intervals for each head element. For example, in one embodiment the larger the accumulated write intervals, the larger the amplitude and/or duty cycle applied to the corresponding head element.
Any suitable control circuitry may be employed to implement the flow diagrams in the above embodiments, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, or certain operations described above may be performed by a read channel and others by a disk controller. In one embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into a SOC.
In one embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the flow diagrams described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk and read into a volatile semiconductor memory when the disk drive is powered on. In yet another embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry.
In various embodiments, a disk drive may include a magnetic disk drive, an optical disk drive, etc. In addition, while the above examples concern a disk drive, the various embodiments are not limited to a disk drive and can be applied to other data storage devices and systems, such as magnetic tape drives, hybrid drives (disk plus solid state), etc. In addition, some embodiments may include electronic devices such as computing devices, data server devices, media content storage devices, etc. that comprise the storage media and/or control circuitry as described above.
The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method, event or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than that specifically disclosed, or multiple may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.
While certain example embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions disclosed herein. Thus, nothing in the foregoing description is intended to imply that any particular feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the embodiments disclosed herein.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 16/360,902, filed on Mar. 21, 2019, which application claims benefit of U.S. Provisional Patent Application Ser. No. 62/646,849, filed Mar. 22, 2018, both of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4891717 | Minuhin | Jan 1990 | A |
6163425 | Isokawa et al. | Dec 2000 | A |
7130141 | Chey et al. | Oct 2006 | B2 |
7330336 | Luo | Feb 2008 | B2 |
7957093 | Brand | Jun 2011 | B2 |
8582240 | Chen et al. | Nov 2013 | B1 |
8760779 | Johns et al. | Jun 2014 | B2 |
9105279 | Shiroishi | Aug 2015 | B2 |
9230571 | Chen et al. | Jan 2016 | B1 |
9275672 | Shiroishi et al. | Mar 2016 | B2 |
9311934 | Shiimoto et al. | Apr 2016 | B1 |
9368135 | Gao | Jun 2016 | B2 |
9881637 | Wilson et al. | Jan 2018 | B1 |
10121497 | Takahashi et al. | Nov 2018 | B1 |
10186284 | Narita et al. | Jan 2019 | B2 |
10236021 | Narita et al. | Mar 2019 | B2 |
10276193 | Narita et al. | Apr 2019 | B2 |
10325618 | Wu et al. | Jun 2019 | B1 |
10366714 | Olson et al. | Jul 2019 | B1 |
20080304176 | Takagishi et al. | Dec 2008 | A1 |
20090059423 | Yamada et al. | Mar 2009 | A1 |
20090310244 | Shimazawa et al. | Dec 2009 | A1 |
20130250456 | Yamada et al. | Sep 2013 | A1 |
20140139952 | Takeo et al. | May 2014 | A1 |
20140177100 | Sugiyama et al. | Jun 2014 | A1 |
20160027455 | Kudo et al. | Jan 2016 | A1 |
20170236537 | Murakami et al. | Aug 2017 | A1 |
20180268848 | Narita et al. | Sep 2018 | A1 |
20190088274 | Narita et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
104835510 | Nov 2017 | CN |
2013251042 | Dec 2013 | JP |
5468124 | Apr 2014 | JP |
2015126326 | Aug 2015 | WO |
Entry |
---|
Mallary, Mike et al; “Head and Media Challenges for 3 Tb/in2 Microwave-Assisted Magnetic Recording”; IEEE Transactions on Magnetics, vol. 50, No. 7, Jul. 2014 (8 pages). |
Number | Date | Country | |
---|---|---|---|
20200168247 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
62646849 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16360902 | Mar 2019 | US |
Child | 16777658 | US |