1. Field
The invention relates to surge protection. More particularly, the invention relates to a surge protection device for passing DC and RF signals.
2. Related Art
Surge protection devices protect electronic equipment from being damaged by large variations in the current and voltage across power and transmission lines resulting from lightning strikes, switching surges, transients, noise, incorrect connections, and other abnormal conditions or malfunctions. Large variations in the power and transmission line currents and voltages can change the operating frequency range of the electronic equipment and can severely damage and/or destroy the electronic equipment. For example, lightning is a complex electromagnetic energy source having potentials estimated from 5 million to 20 million volts and currents reaching thousands of amperes that can severely damage and/or destroy the electronic equipment.
Surge protection devices typically found in the art and used in protecting electronic equipment include capacitors, diodes, gas tubes, inductors, and metal oxide varistors. A capacitor blocks the flow of direct current (DC) and permits the flow of alternating current (AC) depending on the capacitor's capacitance and the current frequency. At certain frequencies, the capacitor might attenuate the AC signal. For example, the larger the capacitance value, the greater the attenuation. Typically, the capacitor is placed in-line with the power or transmission line to block the dc signal and undesirable surge transients.
Gas tubes contain hermetically sealed electrodes, which ionize gas during use. When the gas is ionized, the gas tube becomes conductive and the breakdown voltage is lowered. The breakdown voltage varies and is dependent upon the rise time of the surge. Therefore, depending on the surge, several microseconds may elapse before the gas tube becomes ionized, thus resulting in the leading portion of the surge passing to the capacitor. Gas tubes are attached at one end to the power or transmission line and at another end to the ground plane, diverting the surge current to ground.
Inductors can be attached to the power or transmission line after the gas tube and before the capacitor to divert the leading portion of the surge to ground. An inductor is a device having one or more windings of a conductive material, around a core of air or a ferromagnetic material, for introducing inductance into an electric circuit. An inductor opposes changes in current, whereas a capacitor opposes changes in voltage.
One drawback of conventional surge protection devices is the difficulty in impedance matching the surge protection device with the system. Another drawback of conventional surge protection devices is the elevated voltage at which they become conductive and the higher throughput energy levels. Still yet another drawback of conventional surge protection devices is poor bandwidth capabilities and poor RF performance at high power levels.
A surge protection circuit to reduce capacitance inherent of standard diode packaging and to improve voltage clamping reaction speeds under high surge conditions. The surge protection circuit has a coil having a first end and a second end and a diode cell having a top layer, a center diode junction, and a bottom layer. The top layer is directly connected to the second end of the coil and the bottom layer is directly connected to a ground. The diode cell has no wire leads.
A surge protection device comprising a housing, a cavity defined by the housing, first and second connector pins positioned within the cavity, and a loop foil positioned within the cavity, the loop foil having a first end connected to the first connector pin and a second end connected to the second connector pin. The surge protection device may also include a coil positioned within the cavity, the coil having a first end connected to the first connector pin and a second end, and a diode cell connected to the housing, the diode cell having a top layer, a center diode junction, and a bottom layer, the top layer directly connected to the second end of the coil and the bottom layer directly connected to the housing.
A surge protection device having a housing, a cavity defined by the housing, a diode positioned within the cavity, and first and second connector pins positioned within the cavity. The surge protection device may also include a loop foil positioned within the cavity, the loop foil having a first plate connected to the first connector pin, a second plate connected to the second connector pin, and a third curved plate connecting the first plate to the second plate, and an inductor positioned within the cavity, the inductor having a first end connected to the first connector pin and a second end connected to the diode.
The features, objects, and advantages of the invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:
Apparatus, systems and methods that implement the embodiments of the various features of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate some embodiments of the invention and not to limit the scope of the invention. Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements. In addition, the first digit of each reference number indicates the figure in which the element first appears.
The first connector or port 105 and the second connector or port 110 may include center connector pins 106 and 111 of a coaxial cable or line. The first port 105 and the second port 110 maintain the system RF impedance between the device and the connected termination (e.g., 50 ohm, 75 ohm, etc.). The first connector 105 and the second connector 110 may be selected from one of the following connectors: 7/16 connector, N-Type connector, BNC connector, TNC connector, SMA connector, and SMB connector. The first connector 105 and the second connector 110 may be press-fit connectors, flange-mount connectors, or any other type of connectors.
Referring back to
The inductance, the mutual impedance, and the positioning of the loop foil 115 within the cavity 310 is used for impedance matching to compensate for internal RF mis-match impedances of the coil 120, the diode 125, and the cavity 310. The capacitance of the device can be increased by positioning the loop foil 115 closer to the walls of the cavity 310. The inductance of the device can be increased by using a thinner material for the loop foil 115. The mutual impedance of the device can be increased by moving the first plate 115a and the second plate 115b closer together. By increasing the inductance and the mutual impedance of the loop foil 115, the size and number of turns required in the coil 120 can be reduced resulting in further simplification of design and cost.
The coil 120 may be an inductor having one or more loops. The coil 120 has a first end 120a directly attached to the center connector pin 106 and a second end 120b directly attached to the diode 125. The coil 120 may have a 14AWG, 16AWG, 18AWG, or larger AWG. In one embodiment, the coil 120 has an inductance of about 0.5 uH. The coil 120 isolates the diode 125 from the RF transmission path. Also, the coil 120 adds isolation between the center connector pins and the diode 125 to achieve better passive intermodulation (PIM) performance compared to that of the diode 125 without isolation. When a surge event occurs (or a high DC surge voltage), the coil 120 effectively becomes a short circuit and the diode 125 operates to pass the surge event.
The diode 125 is connected to the coil 120 and the ground 130. That is, a first end of the diode 125 is connected to the coil 120 and a second end of the diode 125 is connected to the ground 130. The diode 125 can be oriented for a positive polarity or negative polarity DC clamping. In addition, the diodes 125 can be stacked to obtain higher voltage clamping while maintaining the equivalent current carrying capabilities.
The capacitor 135 is positioned in parallel with the diode 125. In one embodiment, the capacitor 135 has a capacitance of about 1,000 pF or higher. The capacitor 135 allows the energy to be shunted to ground 130 and prevents the diode 125 from prematurely being turned on. The size of the capacitor 135 is dependent on the frequency of operation and generally allows for broadband applications. The capacitor 135 provides better RF grounding for the surge protection circuit 100 at higher power levels. The surge path generally includes the coil 120, the diode 125, and the capacitor 135.
In one embodiment, the diode 125 can be a low voltage, bi-directional diode that is capable of handling 10 kA 8×20 micro-second surge currents with excellent voltage let-thru characteristics. In one embodiment, the diode 125 can be a bi-directional, high current transient voltage suppressor (TVS) diode having a breakdown voltage of between about 5.0-150.0 volts (e.g., 6, 12, 18 or 24 volts) and a high peak pulse power rating (e.g., 5,000, 20,000 or 30,000 watts). By isolating the diode 125 from the RF transmission path using the coil 120, the negative RF affects (e.g., capacitance) of the diode 125 are mitigated. The high frequency (RF) isolation characteristics of the coil 120 increases the impedance looking into the coil 120 and the diode 125 but the low frequency (DC and surge) components have a low impedance path to the diode 125.
The surge protection device 300 has various frequency characteristic bands within the range of approximately 300 Hz to 5 GHz. Return losses of greater than or equal to 20 dB and insertion losses of less than or equal to 0.1 dB, for example, are from approximately 700 MHz to 2,400 MHz. A return loss of greater than 50 dB may be realized within a narrow band, for example, between approximately 1,400 MHz and 1,600 MHz.
In one embodiment, the diode cell 500 may have a length L1 of about 9.40 mm, a width W1 of about 9.40 mm, and a thickness T1 of about 1.29 mm. The diode 125 may be two or more diodes in parallel circuit configuration. The diode cell 500 may include a hole 520 for mounting to the housing 305. If the hole 520 is not present, the diode cell 500 may be mounted or soldered to the base plate 315 to facilitate grounding of the diode 125 to the housing 305.
The previous description of the disclosed examples is provided to enable any person of ordinary skill in the art to make or use the disclosed methods and apparatus. Various modifications to these examples will be readily apparent to those skilled in the art, and the principles defined herein may be applied to other examples without departing from the spirit or scope of the disclosed method and apparatus. The described embodiments are to be considered in all respects only as illustrative and not restrictive and the scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
The present application for patent claims priority from and the benefit of provisional application Ser. No. 61/054,410 entitled “DC PASS BROADBAND RF PROTECTOR,” filed on May 19, 2008, which is expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2030179 | Potter | Feb 1936 | A |
3167729 | Hall | Jan 1965 | A |
3323083 | Ziegler | May 1967 | A |
3619721 | Westendorp | Nov 1971 | A |
3663901 | Forney, Jr. | May 1972 | A |
3731234 | Collins | May 1973 | A |
3750053 | LeDonne | Jul 1973 | A |
3783178 | Philibert | Jan 1974 | A |
3831110 | Eastman | Aug 1974 | A |
3845358 | Anderson et al. | Oct 1974 | A |
3944937 | Fujisawa et al. | Mar 1976 | A |
3980976 | Tadama et al. | Sep 1976 | A |
4046451 | Juds et al. | Sep 1977 | A |
4047120 | Lord et al. | Sep 1977 | A |
4112395 | Seward | Sep 1978 | A |
4262317 | Baumbach | Apr 1981 | A |
4356360 | Volz | Oct 1982 | A |
4359764 | Block | Nov 1982 | A |
4384331 | Fukuhara et al. | May 1983 | A |
4409637 | Block | Oct 1983 | A |
4481641 | Gable et al. | Nov 1984 | A |
4554608 | Block | Nov 1985 | A |
4563720 | Clark | Jan 1986 | A |
4586104 | Standler | Apr 1986 | A |
4689713 | Hourtane et al. | Aug 1987 | A |
4698721 | Warren | Oct 1987 | A |
4727350 | Ohkubo | Feb 1988 | A |
4952173 | Peronnet et al. | Aug 1990 | A |
4984146 | Black et al. | Jan 1991 | A |
4985800 | Feldman et al. | Jan 1991 | A |
5053910 | Goldstein | Oct 1991 | A |
5057964 | Bender et al. | Oct 1991 | A |
5102818 | Paschke et al. | Apr 1992 | A |
5122921 | Koss | Jun 1992 | A |
5124873 | Wheeler et al. | Jun 1992 | A |
5142429 | Jaki | Aug 1992 | A |
5166855 | Turner | Nov 1992 | A |
5170151 | Hochstein | Dec 1992 | A |
5278720 | Bird | Jan 1994 | A |
5321573 | Person et al. | Jun 1994 | A |
5353189 | Tomlinson | Oct 1994 | A |
5412526 | Kapp et al. | May 1995 | A |
5442330 | Fuller et al. | Aug 1995 | A |
5537044 | Stahl | Jul 1996 | A |
5611224 | Weinerman et al. | Mar 1997 | A |
5617284 | Paradise | Apr 1997 | A |
5625521 | Luu | Apr 1997 | A |
5667298 | Musil et al. | Sep 1997 | A |
5721662 | Glaser et al. | Feb 1998 | A |
5781844 | Spriester et al. | Jul 1998 | A |
5790361 | Minich | Aug 1998 | A |
5798790 | Knox et al. | Aug 1998 | A |
5844766 | Miglioli et al. | Dec 1998 | A |
5854730 | Mitchell et al. | Dec 1998 | A |
5953195 | Pagliuca | Sep 1999 | A |
5966283 | Glaser et al. | Oct 1999 | A |
5982602 | Tellas et al. | Nov 1999 | A |
5986869 | Akdag | Nov 1999 | A |
6054905 | Gresko | Apr 2000 | A |
6060182 | Tanaka et al. | May 2000 | A |
6061223 | Jones et al. | May 2000 | A |
6086544 | Hibner et al. | Jul 2000 | A |
6115227 | Jones et al. | Sep 2000 | A |
6137352 | Germann | Oct 2000 | A |
6141194 | Maier | Oct 2000 | A |
6177849 | Barsellotti et al. | Jan 2001 | B1 |
6226166 | Gumley et al. | May 2001 | B1 |
6236551 | Jones et al. | May 2001 | B1 |
6243247 | Akdag et al. | Jun 2001 | B1 |
6252755 | Willer | Jun 2001 | B1 |
6281690 | Frey | Aug 2001 | B1 |
6292344 | Glaser et al. | Sep 2001 | B1 |
6342998 | Bencivenga et al. | Jan 2002 | B1 |
6381283 | Bhardwaj et al. | Apr 2002 | B1 |
6385030 | Beene | May 2002 | B1 |
6394122 | Sibley et al. | May 2002 | B1 |
6421220 | Kobsa | Jul 2002 | B2 |
6502599 | Sibley et al. | Jan 2003 | B1 |
6527004 | Sibley et al. | Mar 2003 | B1 |
6535369 | Redding et al. | Mar 2003 | B1 |
6650203 | Gerstenberg et al. | Nov 2003 | B2 |
6721155 | Ryman | Apr 2004 | B2 |
6754060 | Kauffman | Jun 2004 | B2 |
6757152 | Galvagni et al. | Jun 2004 | B2 |
6782329 | Scott | Aug 2004 | B2 |
6785110 | Bartel et al. | Aug 2004 | B2 |
6789560 | Sibley et al. | Sep 2004 | B1 |
6814100 | Sibley et al. | Nov 2004 | B1 |
6816348 | Chen et al. | Nov 2004 | B2 |
6968852 | Sibley | Nov 2005 | B1 |
6975496 | Jones et al. | Dec 2005 | B2 |
7082022 | Bishop | Jul 2006 | B2 |
7092230 | Inauen | Aug 2006 | B2 |
7104282 | Hooker et al. | Sep 2006 | B2 |
7106572 | Girard | Sep 2006 | B1 |
7130103 | Murata | Oct 2006 | B2 |
7159236 | Abe et al. | Jan 2007 | B2 |
7221550 | Chang et al. | May 2007 | B2 |
7250829 | Namura | Jul 2007 | B2 |
7338547 | Johnson et al. | Mar 2008 | B2 |
7371970 | Flammer et al. | May 2008 | B2 |
7453268 | Lin | Nov 2008 | B2 |
7471172 | Holst et al. | Dec 2008 | B2 |
7507105 | Peters et al. | Mar 2009 | B1 |
7623332 | Frank et al. | Nov 2009 | B2 |
7808752 | Richiuso et al. | Oct 2010 | B2 |
7817398 | Maples | Oct 2010 | B1 |
20020167302 | Gallavan | Nov 2002 | A1 |
20020191360 | Colombo et al. | Dec 2002 | A1 |
20030072121 | Bartel et al. | Apr 2003 | A1 |
20030211782 | Esparaz et al. | Nov 2003 | A1 |
20040042149 | Devine et al. | Mar 2004 | A1 |
20040121648 | Voros | Jun 2004 | A1 |
20040145849 | Chang et al. | Jul 2004 | A1 |
20040264087 | Bishop | Dec 2004 | A1 |
20050036262 | Siebenthall et al. | Feb 2005 | A1 |
20050044858 | Hooker et al. | Mar 2005 | A1 |
20050176275 | Hoopes et al. | Aug 2005 | A1 |
20050185354 | Hoopes | Aug 2005 | A1 |
20060120005 | Van Sickle | Jun 2006 | A1 |
20060139832 | Yates et al. | Jun 2006 | A1 |
20060146458 | Mueller | Jul 2006 | A1 |
20070053130 | Harwath | Mar 2007 | A1 |
20070095400 | Bergquist et al. | May 2007 | A1 |
20070097583 | Harwath | May 2007 | A1 |
20070139850 | Kamel et al. | Jun 2007 | A1 |
20090103226 | Penwell et al. | Apr 2009 | A1 |
20090109584 | Jones et al. | Apr 2009 | A1 |
20090296430 | Rieux-Lopez et al. | Dec 2009 | A1 |
20110141646 | Jones et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
675933 | Nov 1990 | CH |
08-066037 | Mar 1996 | JP |
11-037400 | Feb 1999 | JP |
2003-070156 | Mar 2003 | JP |
2003-111270 | Apr 2003 | JP |
10-2003-0081041 | Oct 2003 | KR |
1020090018497 | Feb 2009 | KR |
WO 9510116 | Apr 1995 | WO |
WO 2011-119723 | Dec 2011 | WO |
Entry |
---|
PCT/US03/17050 ISR, May 30, 2003. |
Number | Date | Country | |
---|---|---|---|
20090284888 A1 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
61054410 | May 2008 | US |