The present invention relates generally to nuclear reactors and, more particularly, relates to debris filtering arrangements for bottom nozzles for use in a nuclear fuel assembly such as employed in a pressurized water reactor (PWR).
During manufacture and subsequent installation and repair of components comprising a nuclear reactor coolant circulation system, diligent effort is made to assure removal of all debris from the reactor vessel and its associated systems which circulate coolant through it under various operating conditions. Although elaborate procedures are carried out to help assure debris removal, experience shows that in spite of the safeguards used to effect such removal, some small amount of debris, such as metal chips and metal particles still remain hidden in the systems. Most of the debris consists of metal wires, chips and turnings which were probably left in the primary system after steam generator repair or replacement or similar types of plant modifications during the refueling process. It is desirable to ensure that this type of debris does not make its way into the fuel region during plant operation.
In particular, fuel assembly damage due to debris trapped at the lowermost grids has been noted in several reactors in the past. Debris enters through the fuel assembly bottom nozzle flow holes from the coolant flow openings in the lower core support plate when the plant is started up. The debris tends to become lodged in the lowermost support grids of the fuel assembly within the spaces between the “egg-crate” shaped cell walls of the grid and the lower end portions of the fuel rod tubes. The damage consists of fuel rod tube perforations caused by fretting of debris in contact with the exterior of the fuel tube. Debris can also become entangled in the nozzle plate holes and the flowing coolant causes the debris to gyrate which tends to cut through the cladding of the fuel rods.
Several different approaches have been proposed and tried for carrying out removal of debris from nuclear reactors. Many of these approaches are discussed in U.S. Pat. No. 4,096,032 to Mayers et al. U.S. Pat. No. 4,900,507 to Shallenberger et al. illustrates another approach. Yet other approaches use mesh spires which protrude out of the body of the nozzle. However, such designs run the risk of interfering with the fuel rods and have debris capturing features that may potentially be damaged during transportation and assembly.
While some of the aforementioned approaches operate reasonably well and generally achieve their objectives under the range of operating conditions for which they were designed, a need still exists for improved solutions to the problem of debris filtering in nuclear reactors. New approaches must be compatible with the existing structure and operation of the components of the reactor, be effective throughout the operating cycle of the reactor, and at least provide overall benefits which outweigh any costs added.
Embodiments of the concept as described herein provide an improved debris capturing feature for a fuel assembly, such as used in a pressurized water reactor (PWR), while at the same time minimizing pressure drop when compared to existing bottom nozzle designs. Embodiments of the invention utilize unique debris capturing features which are also designed to streamline the flow passages thereby resulting in a reduced pressure loss coefficient. The design is especially effective at the higher flow rates associated with the conditions standard commercial PWR nuclear reactors see during normal operating conditions.
As one aspect, a filtering arrangement for use in a bottom nozzle of a fuel assembly in a nuclear reactor is provided. The filtering arrangement comprises: a top surface; a bottom surface; a plurality of vertical wall portions arranged in a generally squared grid-like pattern which extend between the bottom surface and the top surface and define a plurality of non-circular passages extending between the bottom surface and the top surface through the arrangement; and a plurality of first debris filters, each debris filter being positioned between the top surface and the bottom surface to generally span across a respective one of the plurality of passages.
Each first debris filter may comprise a hollow pyramid or hollow cone-like structure formed from a lattice structure which is sized and configured to minimize resistance in regard to coolant flow through the lattice structure.
When viewed from directly above the filtering arrangement or directly below the filtering arrangement the lattice structure of each first debris filter may be arranged so as to form a first squared grid-like pattern.
At least one first debris filter may narrow from bottom to top.
At least one first debris filter may narrow from top to bottom.
The filtering arrangement may further comprise a plurality of second debris filters which are each positioned between the top surface and the first debris filter to generally span across a respective one of the plurality of passages.
Each first debris filter may comprise a hollow pyramid or hollow cone-like structure formed from a lattice structure which is sized and configured to minimize resistance in regard to coolant flow through the lattice structure and each second debris filter may comprise a hollow pyramid or hollow cone-like structure formed from a lattice structure which is sized and configured to minimize resistance in regard to coolant flow through the lattice structure.
When viewed from directly above the filtering arrangement or directly below the filtering arrangement the lattice structure of each second debris filter may be arranged so as to form a second squared grid-like pattern.
When viewed from above, the second squared grid-like pattern may be offset a distance from the first squared grid-like pattern.
At least one first debris filter may narrow from bottom to top and at least one second debris filter may narrow from bottom to top.
At least one first debris filter may narrow from top to bottom and at least one second debris filter may narrow from top to bottom.
As another aspect, a bottom nozzle assembly for use in a fuel assembly in a nuclear reactor is provided. The bottom nozzle assembly comprises: a generally rectangular skirt portion and a filtering arrangement as previously described coupled to the generally rectangular base portion.
These and other objects, features, and characteristics of the present invention, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention.
A further understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:
In the following description, like reference characters designate like or corresponding parts throughout the several views of the drawings. Also in the following description, it is to be understood that such terms as “forward”, “rearward”, “left”, “right”, “upwardly”, “downwardly”, and the like are words of convenience and are not to be construed as limiting terms.
Referring now to the drawings,
The fuel assembly 10 further includes a plurality of transverse grids 20 axially spaced along and mounted to the guide thimbles 18 and an organized array of elongated fuel rods 22 transversely spaced and supported by the grids 20. Also, the assembly 10 has an instrumentation tube 24 located in the center thereof and extending between and mounted to the bottom and top nozzles 12,16. With such an arrangement of parts, the fuel assembly 10 forms an integral unit capable of being conveniently handled without damaging the assembly parts.
As mentioned above, the fuel rods 22 in the array thereof in the assembly 10 are held in spaced relationship with one another by the grids 20 spaced along the fuel assembly length. Each fuel rod 22 includes nuclear fuel pellets 26 and is closed at its opposite ends by upper and lower end plugs 28,30. The pellets 26 are maintained in a stack thereof by a plenum spring 32 disposed between the upper end plug 28 and the top of the pellet stack. The fuel pellets 26 composed of fissile material are responsible for creating the reactive power of the reactor. A liquid moderator/coolant such as water, or water containing boron, is pumped upwardly through a plurality of flow openings (not numbered) in the lower core plate 14 to the fuel assembly. The bottom nozzle 12 of the fuel assembly 10 passes the coolant flow along the fuel rods 22 of the assembly in order to extract heat generated therein for the production of useful work.
In order to control the fission process, a number of control rods 34 are reciprocally movable in the guide thimbles 18 located at predetermined positions in the fuel assembly 10. Specifically, a rod cluster control mechanism 36 positioned above the top nozzle 16 supports the control rods 34. The control mechanism has an internally threaded cylindrical member 37 with a plurality of radially extending flukes or arms 38. Each arm 38 is interconnected to a control rod 34 such that the control mechanism 36 is operable to move the control rods vertically in the guide thimbles 18 to thereby control the fission process in the fuel assembly 10, all in a well-known manner.
As mentioned above, fuel assembly damage due to debris trapped at or below the lowermost grids 20 has been found to be a problem. Therefore, to prevent occurrence of such damage, it is highly desirable to prevent such debris from passing through the bottom nozzle flow holes and reaching the fuel bundle region.
Referring now to
The diameter of the flow holes 48, as shown in the partial section view of plate 46 in
Embodiments of the present invention generally replace the plate 46 of the conventional debris filter bottom nozzle 12 of
Having thus described the conventional arrangement in which embodiments of the present invention improve upon, an example embodiment of an improved filtering arrangement 100 in accordance with one example embodiment of the present invention will now be described in conjunction with
Referring first to
Continuing to refer to
Each debris filter 120 extends a height h2 upward from a base 126 thereof, which may generally coincide with bottom surface 102 or which may be located upward therefrom, to an apex portion 128, which may be disposed at, or below, top surface 104. In other words, each debris filter 120 is positioned between bottom and top surfaces 102 and 104 so as to not protrude beyond either of surfaces 102 or 104 and thus have a height h2 less than, or at most equal to, height h1 of filtering arrangement 100. Although illustrated in the example embodiments herein as being of a “tip up” orientation (i.e., narrowing from bottom to top), it is to be appreciated that each debris filter may alternatively be oriented in a “tip down” orientation (i.e., narrowing from the top down) without varying from the scope of the disclosed concept.
In example embodiments of the present concept, debris filters 120 having a height h2 in the range of about 0.250″ to about 0.600″ have been employed, although other heights may be employed without varying from the scope of the present concept. Accordingly, when viewed in the top view of arrangement 100 shown in
Enlarged views of a single passage 108, defining wall portions 106 thereof, and debris filter 120 are shown in
Another example embodiment of a filtering arrangement 200 in accordance with another exemplary embodiment is shown in
In contrast to filtering arrangement 100 which utilized a single debris filter 120, filtering arrangement 200 includes a second debris filter 220 positioned above or below, and generally spaced vertically (typically in a nesting type arrangement) in the range of from about 0.050″ to about 0.250″ from debris filter 120, thus providing for enhanced debris filtering. In the example embodiment illustrated in
Each second debris filter 220 extends a height h3 upward from a base 226 (
As shown in
Example embodiments of the invention have been produced via additive manufacturing processes. Accordingly, some or all of arrangements 100 or 200 may be formed as a single unitary element. In an example embodiment, direct metal laser melting has been employed to form embodiments of the invention from Inconel® material. It is to be appreciated, however, that other suitable methods and/or materials (e.g., without limitation, stainless steel, titanium) may be employed without varying from the scope of the invention.
Accordingly, it is to be appreciated that the invention presented herein is a completely new and novel design which incorporates a streamlined flow design which maximizes the flow area in the main body/support structure of the bottom nozzle while incorporating debris capturing fine mesh spire features which may be housed safely within the main body/support structure of the bottom nozzle and thus generally shielded thereby. Such arrangements allow for an effective debris capturing feature without adversely impacting the pressure drop which is primarily driven by the small flow holes in current bottom nozzle designs. With the advanced fine mesh spire debris filtering bottom nozzle design, the additive manufacturing process allows for each of the desired bottom nozzle design features: debris capture, low pressure drop, and robust design, to all be integrated into one advanced bottom nozzle design which could not be easily achieved using existing conventional manufacturing processes. Thus, the advanced fine mesh spire debris filtering bottom nozzle design is a completely new and novel design for use in the nuclear fuel design.
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular embodiments disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any and all equivalents thereof