1. Field of the Invention
The present invention relates to debugging devices and methods, and more particularly to a debugging device and method using the PCI (Peripheral Component Interconnect) or LPC (Low Pin Count) bus.
2. Description of Related Art
During power-up self test (POST), most computer system BlOSes write status codes to I/O port 80h or 84h. In order to use the codes to diagnose problems, a PCI debugging device is usually adopted and plugged into a PCI expansion slot of a motherboard of the computer system to display codes as test results. If the computer hangs during the POST routine, the PCI debugging device shows the test number it failed on. Then it is easy to detect which hardware is defective according to the POST code.
Some types of motherboards, such as motherboards of a blade server may not have any PCI slots and are not compatible with conventional PCI debugging devices. Motherboards of the blade server may only support LPC bus, causing the PCI debugging device to be disabled. Thus, it is inconvenient to search for and eliminate malfunction errors of these motherboards without PCI interface.
What is needed, therefore, is a debugging device capable of utilizing the PCI or LPC bus and compatible with computers with different standard interfaces.
A debugging device for debugging a motherboard with PCI or LPC bus during POST includes a programmable logic device with debugging source codes burnt thereinto; a PCI connector connected with the programmable logic device; a LPC connector connected with the programmable logic device; a first display module connected with the programmable logic device for showing codes of a port 80h; a button connected with the programmable logic device for selecting a port of ports 80h to 87h; and a second display module connected with the programmable device for showing codes of the selected port.
An associated debugging method for debugging the motherboard during POST, includes steps of: selectively connecting the PCI connector or LPC connector of the debugging device to the motherboard; writing datum from the motherboard to the port 80h; transacting the datum of port 80h and displaying the datum via the first display module; operating the button of the debugging device to select one port from ports 80h to 87h; writing datum from the motherboard to the selected port; transacting the datum of the selected port and displaying the datum via the second display module.
Other advantages and novel features will be drawn from the following detailed description of preferred embodiments with attached drawings, in which:
Referring to
Referring also to
Referring also to
(Where ‘0’ represents the LED is on, and ‘1’ represents the LED is off)
Referring also to
It is to be understood, however, that even though numerous characteristics and advantages have been set forth in the foregoing description of preferred embodiments, together with details of the structures and functions of the preferred embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
200710200678.4 | May 2007 | CN | national |