The present invention generally relates to communication systems and integrated circuit (IC) devices. In particular, the present invention relates to improved methods and devices for energy-efficient decoders and their implementations in communication systems.
State of the art optical transport networks make use of soft-decision decoding codes as a result of the required performance in the current systems. Soft-decision codes provide coding gains of 1 dB or more relative to their hard-decision counterparts. However, this improved performance comes at the expense of a significantly increased decoding complexity. Current soft-decision decoders consume an order of magnitude more power than hard-decision decoders operating at the same overhead (OH) and throughput.
On the other hand, the miniaturization of optical communications guided by optical integration and modules development requires that the components have limited power consumption. In some cases, compliance with the power restriction for each module or application is very tight. The heart of an optical communications device is the digital signal processor (DSP) application-specific integrated circuit (ASIC) and one of the main parts inside of DSP in terms of power consumption is the forward error correction (FEC) implementation. Therefore, having soft-decision decoders with low power consumption is crucial for the next generation communication equipment.
Although there are several types of devices and methods related to decoders, they have been inadequate for the advancement of various applications. Conventional embodiments consume large areas or large amounts of power and suffer from performance limitations. Therefore, improved devices and methods for energy-efficient decoders and related communication systems are highly desired.
The present invention generally relates to communication systems and integrated circuit (IC) devices. More particularly, the present invention relates to improved methods and devices for energy-efficient decoders and their implementations in communication systems.
According to an example, the present invention provides a method and device for energy-efficient decoder configurations. The decoder device can include a plurality of decoder modules coupled in series that are configured to process an input data signal having a plurality of forward error correction (FEC) codewords. This plurality of decoder modules can include at least a first decoder module followed by a second decoder module. In an example, the first decoder module is configured as a low-power decoder and the second decoder module is configured as a high-performance decoder. In this case, the low-power decoder first eliminates the errors of most of the codewords and the high-performance decoder corrects the remaining errors, which requires less power than eliminating all of the errors within a target performance range with the high-performance decoder alone.
In another example, the first decoder module is configured as the high-performance decoder and the second decoder module is configured as the low-power decoder. In this case, the high-performance decoder corrects errors of the codewords to the point at which the low-power decoder can correct the remaining errors. Also, the plurality of decoders can be configured with a classifier module, which can determine portions of the plurality of codewords to be directed to different decoder modules of the plurality of decoder modules. These examples can be extended to include additional decoders using different decoding algorithms at different levels of performance and power consumption. Further, inactive decoder modules can be kept in a sleep-state while an active decoder module is processing the FEC codewords to reduce power consumption.
According to an example of the present invention, the decoder device can include a plurality of decoder modules configured as a fully-connected finite state machine (FSM). Each of the plurality of decoder modules can be associated with a state of the FSM and be associated with a decoding algorithm from a predetermined set of decoding algorithms. Each state of the FSM can have a plurality of transition conditions. The plurality of decoder modules can be configured to receive the input data signal having a plurality of FEC codewords, and to process the plurality of FEC codewords at an initial state of the FSM configured to perform a first decoding iteration according to the associated decoding algorithm of the initial state. The plurality of decoder module can also be configured to iteratively provide the plurality of FEC codewords to subsequent transition states of the FSM according to the plurality of transition conditions of the initial state and the plurality of transition conditions of each of the subsequent transition states, and to iteratively process the plurality of FEC codewords at each of the subsequent transition states according to the associated decoding algorithm of each of the subsequent transition states.
In a specific example, the plurality of transition conditions of the states of the FSM can be configured to maximize the chances of success under restrictions of a maximum number of iterations (i.e., steps between states) and a maximum power dissipation. The predetermined set of decoding algorithms can be an ordered set of algorithms that is ordered by level of complexity and performance. Also, the plurality of decoder modules can be configured to process the plurality of FEC codewords using a transition probability stochastic matrix to minimize a cost function based on a predetermined maximum number of iterations and a predetermined target performance.
Examples of present invention achieve many benefits, such as greater energy efficiency while without sacrificing decoding performance. A further understanding of the nature and advantages of the invention may be realized by reference to the latter portions of the specification and attached drawings.
In order to more fully understand the present invention, reference is made to the accompanying drawings. Understanding that these drawings are not to be considered limitations in the scope of the invention the presently described embodiments and the presently understood best mode of the invention are described with additional detail through the use of the accompanying drawings in which:
The present invention generally relates to communication systems and integrated circuit (IC) devices. More particularly, the present invention relates to improved methods and devices for energy-efficient decoders and their implementations in communication systems.
The following description is presented to enable one of ordinary skill in the art to make and use the invention and to incorporate it in the context of particular applications. Various modifications, as well as a variety of uses in different applications will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to a wide range of embodiments. Thus, the present invention is not intended to be limited to the embodiments presented, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
In the following detailed description, numerous specific details are set forth in order to provide a more thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without necessarily being limited to these specific details. In other instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the present invention.
The reader's attention is directed to all papers and documents which are filed concurrently with this specification and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference. All the features disclosed in this specification, (including any accompanying claims, abstract, and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Furthermore, any element in a claim that does not explicitly state “means for” performing a specified function, or “step for” performing a specific function, is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. Section 112, Paragraph 6. In particular, the use of “step of” or “act of” in the Claims herein is not intended to invoke the provisions of 35 U.S.C. 112, Paragraph 6.
Please note, if used, the labels left, right, front, back, top, bottom, forward, reverse, clockwise and counter clockwise have been used for convenience purposes only and are not intended to imply any particular fixed direction. Instead, they are used to reflect relative locations and/or directions between various portions of an object.
According to various examples, the present invention provides methods and structures for energy-efficient decoders and related forward error correction (FEC) implementations. In an example, an apparatus is proposed to lower power consumption in iterative decoder schemes. This apparatus uses a technique that is applied to soft-decision decoders based on low-density parity-check (LDPC) codes but can also be used with any other error correction code (ECC), such as Turbo Codes, Polar Codes, BCH/RS Codes, Braided Codes, and the like. The apparatus comprises a plurality of decoders that work in a specific order and conditioned to the result of the previous decoders.
In its simplest approach, the apparatus involves a low power consumption decoder with a low word error rate (WER) configured at the operation point which generally cannot achieve the target performance followed by a more complex (i.e., high-performance) decoder that is able to achieve the expected performance. In this example, the received data is first processed by a low power decoder, if this decoder cannot correct the errors in the received data, this data is then processed by a high-performance decoder at the expense of more power, otherwise this second decoder remains in sleep state. Because the low-power decoder corrects most of the codewords only a very small set is decoded by the high-performance decoder.
Note that the use or concatenation of several decoders as here proposed does not imply the use of “concatenated codes”; rather the idea is that several decoders algorithms operate over the same code. On the contrary, the classical concatenated codes scheme makes use of decoders that operate over different codewords and that interchange information between them in a scheme that is usually known as Turbo Codes.
For the present invention, the idea to produce decoders with very low power consumption is accomplished by taking advantage of the fact that a high percentage (>90%) the received data does not require a high-performance decoder to eliminate the errors of the data. In addition, examples of the present invention take advantage that a low-power decoder can be implemented using suboptimal algorithms with low switching activity, which is the main contributor to the power dissipation.
Alternatively,
The topologies shown in
In the context of the decoder implementations, the parameter that determines the rate of decoding for each decoder is the word error rate (WER).
In order to provide a way to specify when a codeword is successfully decoded a satisfied party check equation is used. If the parity check equation is not sufficiently robust, a cyclic redundancy check (CRC) can be added to provide more robustness.
An example implementation of the high-performance decoder can include details in U.S. Pat. No. 10,103,751, titled “Non-concatenated FEC Codes for Ultra-high Speed Optical Transport Networks”, which is incorporated by reference. In an example, the high-performance decoder can be a soft decision decoder, such as a soft-input soft-output (SISO) decoder, or a soft-input hard-output (SIHO) decoder, or the like. Certain details of an example implementation of the high-performance decoder are also discussed below in reference to
In an example, the low power decoder (in the case of LDPC) can be based on soft bit-flipping algorithm. This algorithm provides low power consumption since the message on going in the graph are hard bits and soft information is only stored in the variable nodes. In an example, the low-power decoder can be a hard decision decoder, such as a hard-input hard-output (HIHO) decoder, or a SIHO decoder, or the like. In a specific example, the low-power decoder can be implemented a modified version of the high-performance decoder where the resolution of the messages has been reduced to one bit. The error floor frequently present in this kind of decoder is not an issue in this invention because in the concatenated scheme the other decoder (i.e., the high-performance decoder) eliminates any undesirable error floor problem.
As discussed for device 102 of
The present invention expands on such techniques by providing methods and devices using a plurality of combinations between different decoder algorithms each one corresponding to a particular performance and power profile to get an energy efficient overall system. Depending on the types of combined decoders, the scheme might have a different topology.
The most powerful codes to date are based on iterative soft decision decoding. These codes are commonly known as modern codes. The concept of modern codes refers to codes based on iterative decision decoding, particularly turbo product codes (TPC) and low-density parity-check (LDPC) codes. But these types of codes can be considered as a part of the same family of codes on graph called generalized LDPC (GLDPC).
An LDPC code is a linear block code defined by a sparse (m×n) parity check matrix H, n represents the number of bits in the block and m denotes the number of parity checks ={c∈2n:Hc=0}. The matrix is considered “sparse” because the number of 1s is small compared to the number of 0s. Matrix H can be graphically represented using a Tanner graph (TG).
Typically, LDPC codes are iteratively decoded using simplified version of the sum product algorithm (SPA) such as the Min-Sum Algorithm (MSA), the Scaled MSA (SMSA), and the Offset MSA (OMSA). Those of ordinary skill in the art will recognize the application of the present invention using other variations, modifications, and alternatives to these decoding algorithms.
In an example, the present invention uses the SMSA, which provides a good tradeoff between performance and complexity. Let bi and xi be the i-th coded bit and the corresponding channel output, respectively. The input to the SPA decoder is the prior log-likelihood ratio (LLR) defined by
The SPA runs over the factor graph interchanging soft information between bit and check nodes. Each iteration consists of two steps. In the first step all the bit nodes send information to the check nodes. In the second step all the check nodes send information to the bit nodes. After a maximum number of iterations Imax is reached or when all the parity check equations are satisfied, the a posteriori LLR (Lk0) is computed.
where C(v
where V(c
In this example, the check-to-bit message calculation corresponds to the SMSA, but the same concept also applies to TPCs only that the calculation of the message in this case may involve algorithms such as the Chase-Pyndiah decoding algorithm. Of course, there can be other variations, modifications, and alternatives.
In an example, the iterative decoding process can be decomposed in the successive application of a set of algorithms ={A1, A2, . . . , AS} in which each algorithm can be used independently in each iteration. This system can be considered as a finite state machine (FSM) in which each state corresponds to an algorithm. In an example, each state can also correspond to a decoder module configured to implement a specific decoding algorithm in the set . The state machine is fully connected, i.e., any state is reachable for any other state in one step. In a specific example, the set can include algorithms sorted by level of complexity and performance. As discussed previously, such algorithms can include variations of MSA, OMSA, SMSA, soft bit-flipping, and the like. The variations of these algorithms can be generated by varying the resolution of them messages or by using other like processes.
There can be several conditions to transition from one state to another. For example, a transition condition can occur when a certain algorithm provides no further improvement with further iterations. Because time is limited, only a fixed total number of steps is allowed. With this consideration, the maximum number of steps for each algorithm must be determined to obtain a global optimal in terms of power and performance. Of course, the best performance can be reached by always using the best performing algorithm, but this approach would also be costly in terms of power. Instead, examples of the present invention constrain the best performance to a given power (or, equivalently, minimize power subject to a given performance). In other words, the present invention provides for a method of optimization and device implementation to maximize the decoder performance subject to a given maximum power constraint.
In an example, the flow of information between steps allows Li0=Liα+αLie where 0≤α≤1. When α=0, this is an indication of a restart of the system with the a priori information, i.e., Li0=Liα.
The number of algorithms and the type of interchanging information can be variable depending on the code involved. The number of steps or iterations in general also depends on the decoder and the type of code.
In the following example, the present invention provides a criterion for power optimization based on transition probability (stochastic) matrix. If the probability of moving from i to j in one-time step or iteration at the nth iteration is Pr(j|i)=Pi,j[n], then the stochastic matrix P[n] is given by using Pi,j[n] as the ith row and jth column element, as follows:
where S is the number of available algorithms in the set used for the iterative decoding process.
From this matrix we propose calculate the average power for the entire system as:
where s is a vector that represents the initial state of the stochastic state machines, i.e., s=[1 0 . . . 0]T, and pit[] represents the power consumed in each state as a function of the iteration . This vector also includes the power of the idle state, the state in which the decoder does nothing because it has already reached the desired target, but the maximum number of allowed iterations (Imax) has not been reached. Each state consumes a specific amount of power per iteration, so from the inner product between the state vector s with the probability of each state for each iteration P[n] and the vector with the power per each state, the average power pav for the whole system can be obtained. Note the term (P[n])·s in the equation of pav represents the probabilities of the state vector in the intermediate steps or iterations.
Thus, pav is the cost function to optimize given the desired performance and the maximum number of iterations Imax. In an example, the values from P[n] and pit[] can be obtained by simulation. Of course, there can be other variations, modifications, and alternatives.
According to an example, the present invention provides a method and device for an energy-efficient decoder configuration. The decoder device can include a plurality of decoder modules configured as a fully-connected FSM. Each of the plurality of decoder modules can be associated with a state of the FSM and be associated with a decoding algorithm from a predetermined set of decoding algorithms. Each state of the FSM can have a plurality of transition conditions. The plurality of decoder modules can be configured to receive an input data signal having a plurality of FEC codewords, and to process the plurality of FEC codewords at an initial state of the FSM configured to perform a first decoding iteration according to the associated decoding algorithm of the initial state. The plurality of decoder modules can also be configured to iteratively provide the plurality of FEC codewords to subsequent transition states of the FSM according to the plurality of transition conditions of the initial state and the plurality of transition conditions of each of the subsequent transition states, and to iteratively process the plurality of FEC codewords at each of the subsequent transition states according to the associated decoding algorithm of each of the subsequent transition states.
In a specific example, the plurality of transition conditions of each state of the FSM is based on different internal metrics of the decoder module associated with that state of the FSM. These metrics can be based on the number of unsatisfied parity check equations, the number of flipped bits of a decoder module associated with a previous state of the FSM, or the like and combinations thereof. The conditions based on such metrics can be determined by certain threshold values, certain ranges, or combinations thereof. In a specific example, the plurality of transition conditions of the states of the FSM can be configured to maximize the chances of successfully decoding the plurality of FEC codewords under restrictions of a maximum number of iterations (i.e., steps between states) and a maximum power dissipation. Such optimization can use factors such as the time available to decode and the speed of transmission. The maximization can be done with discrete optimization algorithms, such as a branch and bound algorithm, or the like.
In a specific example, the predetermined set of decoding algorithms can be an ordered set of algorithms that is ordered by level of complexity and performance. This set can include variations of algorithms previously discussed, such as OMSA, SMSA, soft bit-flipping algorithms, and the like. The variations of these algorithms can be generated by varying the message resolution or by other similar methods. In a specific example, the plurality of decoder modules can be configured to process the plurality of FEC codewords using a transition probability stochastic matrix to minimize a cost function based on a predetermined maximum number of iterations and a predetermined target performance. Further, the plurality of decoders can be configured to iteratively process the plurality of FEC codewords such that while a decoder module associated with a state of the FSM is processing the plurality of FEC codewords, the rest of the plurality of decoder modules associated with the rest of the states of the FSM remain in a sleep-state.
According to an example, the present invention provides a decoder device having a plurality of decoder modules coupled in series. The decoder device is configured to receive an input data signal having a plurality of FEC codewords. The plurality of decoder modules can include i decoder modules, where i is an integer greater than one. These decoder modules can be configured with different WERs by using different decoder architectures and different decoding algorithms.
For example, a first decoder module can be configured to process all incoming codewords in the input data signal. A second decoder module can then be configured to process all of the codewords that the first decoder is not capable of processing. Then, a third decoder module can be configured to process all of the codewords that the first and second decoder are not capable of processing. The input data signal can be processed in succession by further decoder modules up to an i-th decoder module, which can be configured to process all of the codewords that the previous decoder modules were not capable of correcting. In this case, the WER of each subsequent decoder module can be less than the previous decoder module (i.e., first WER>second WER>third WER> . . . >i-th WER). This example can be considered an extension of the implementation shown in
Alternatively, the WER of each subsequent decoder module can be greater than the previous decoder module (i.e., first WER<second WER<third WER< . . . <i-th WER). This example can be considered an extension of the implementation shown in
In an example, the decoder device can also include a codeword classifier module, as shown previously in
In a specific example, each of the minimum computation unit 1010, the sign product computation unit 1020, and the sign FIFO unit 1060 takes the variable-to-check message
from the VNPU as an input. The minimum computation unit 1010 computes the minimum value
and the sign product computation unit 1020 computes the sign value
The first and second message memories 1030, 1040, which are pipelined, store the results of these equations to be used by the output computation unit 1050. The sign FIFO unit 1060 stores the signs of the input variable-to-check messages, which the output computation unit 1050 combines with the values stored in the message memories 1030, 1040 to compute Lc
In an example, the control unit 1190 generates control signals used by the other blocks of decoder 1100. In particular, the control unit 1190 controls the select lines of the multiplexers 1110, 1170 and the permutation blocks 1120, 1140. The first multiplexer 1110 and the first permutation block 1120 are configured to select the appropriate inputs to the CNPUs 1130, while the second (inverse) permutation block 1140 is configured to receive the outputs of the CNPUs 1130 and select the appropriate inputs to the VNPUs 1150. Further, the control unit 1190 also turns on and off post-processing algorithms implemented by the CNPUs 1130 or the VNPUs 1150 and the computations and memories in the CNPUs 1130 (as described for
While the above is a full description of the specific embodiments, various modifications, alternative constructions and equivalents may be used. Therefore, the above description and illustrations should not be taken as limiting the scope of the present invention which is defined by the appended claims.
The present disclosure is a continuation of U.S. patent application Ser. No. 16/778,918, filed on Jan. 31, 2020. The entire disclosure of the application referenced above is incorporated herein by reference. The present application incorporates by reference, for all purposes, the following commonly owned U.S. patents: U.S. patent application Ser. No. 15/188,957, titled “NON-CONCATENATED FEC CODES FOR ULTRA-HIGH SPEED OPTICAL TRANSPORT NETWORKS,” filed on Jun. 21, 2016, now U.S. Pat. No. 10,103,751; U.S. patent application Ser. No. 15/000,978, titled “NON-CONCATENATED FEC CODES FOR ULTRA-HIGH SPEED OPTICAL TRANSPORT NETWORKS,” filed on Jan. 19, 2016, now U.S. Pat. No. 10,063,262; U.S. patent application Ser. No. 14/561,183, titled “NON-CONCATENATED FEC CODES FOR ULTRA-HIGH SPEED OPTICAL TRANSPORT NETWORKS,” filed on Dec. 4, 2014, now U.S. Pat. No. 9,608,666; and U.S. patent application Ser. No. 13/406,452, titled “NON-CONCATENATED FEC CODES FOR ULTRA-HIGH SPEED OPTICAL TRANSPORT NETWORKS,” filed on Feb. 2, 2012, now U.S. Pat. No. 8,918,694.
Number | Name | Date | Kind |
---|---|---|---|
6606724 | Krieger | Aug 2003 | B1 |
6947109 | Lee | Sep 2005 | B2 |
6948109 | Coe | Sep 2005 | B2 |
8171368 | Wu | May 2012 | B1 |
8347172 | Kwon et al. | Jan 2013 | B2 |
8918694 | Morero et al. | Dec 2014 | B2 |
9170876 | Bates et al. | Oct 2015 | B1 |
9608666 | Morero et al. | Mar 2017 | B1 |
10063262 | Morero et al. | Aug 2018 | B2 |
10103751 | Morero et al. | Oct 2018 | B2 |
10727874 | Morero et al. | Jul 2020 | B2 |
20030140302 | Litwin et al. | Jul 2003 | A1 |
20050183092 | Christensen et al. | Aug 2005 | A1 |
20060045214 | Shiina | Mar 2006 | A1 |
20060052513 | Butz et al. | Mar 2006 | A1 |
20060123318 | Kim et al. | Jun 2006 | A1 |
20060156179 | Shen et al. | Jul 2006 | A1 |
20060195754 | Shen et al. | Aug 2006 | A1 |
20070257826 | Coene | Nov 2007 | A1 |
20080148133 | Duggan | Jun 2008 | A1 |
20080209305 | Sato | Aug 2008 | A1 |
20080276156 | Gunnam et al. | Nov 2008 | A1 |
20090019333 | McEvoy et al. | Jan 2009 | A1 |
20090052513 | Heikkila | Feb 2009 | A1 |
20090106621 | Yokokawa | Apr 2009 | A1 |
20090158127 | Miyauchi et al. | Jun 2009 | A1 |
20100042891 | Gunnam et al. | Feb 2010 | A1 |
20100042898 | Gunnam | Feb 2010 | A1 |
20100042903 | Gunnam | Feb 2010 | A1 |
20100042906 | Gunnam et al. | Feb 2010 | A1 |
20100169734 | Gamage et al. | Jul 2010 | A1 |
20100211846 | Matsumoto et al. | Aug 2010 | A1 |
20100241921 | Gunnam | Sep 2010 | A1 |
20100275096 | Zhong | Oct 2010 | A1 |
20100281330 | Blanksby et al. | Nov 2010 | A1 |
20110029756 | Biscondi et al. | Feb 2011 | A1 |
20110087933 | Varnica et al. | Apr 2011 | A1 |
20110090734 | Burger, Jr. et al. | Apr 2011 | A1 |
20110126078 | Ueng et al. | May 2011 | A1 |
20110138248 | Wu et al. | Jun 2011 | A1 |
20110264979 | Gunnam et al. | Oct 2011 | A1 |
20120005551 | Gunnam | Jan 2012 | A1 |
20120221914 | Morero et al. | Aug 2012 | A1 |
20120240007 | Barndt | Sep 2012 | A1 |
20130007554 | Chen et al. | Jan 2013 | A1 |
20140040531 | Wu | Feb 2014 | A1 |
20160034354 | Hashimoto et al. | Feb 2016 | A1 |
20180253353 | Takase | Sep 2018 | A1 |
20190068222 | Lee | Feb 2019 | A1 |
20190081641 | Symons et al. | Mar 2019 | A1 |
Entry |
---|
Chen, J_ et al., “Reduced-Complexity Decoding of LDPC Codes,” IEEE Transactions on Communication, Aug. 2005, DP-1288-1299, vol. 53, No. 8. |
Johnson, L. “Low Density Parity-Check Codes from Combinatorial Designs,” PhD Dissertation, The University of Newcastle, Australia, Apr. 2004, two hundred twenty-three pages. |
Morero, D.A. et al., “Parallel Architecture for Decoding LDPC Codes on High Speed Communication Systems,” EAMTA 2008, Proceedings of the Argentine School of Micro-Nanoelectronics, Technology and Applications, Sep. eooa, pp. 101-110. |
Muller et al., “A Novel LDPC Decoder for DVB-S2 IP,” EDM, 2009, six pages. |
Song, S. et al., “A Unified Approach to the Construction of Binary and Nonbinary Quasi-Cyclic LDPC Codes Based on Finite Fields,” IEEE Transactions on Communications, Jan. 2009, pp. 84-93, vol. 57, No. 1. |
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2012/026819, dated Jul. 25, 2012, eleven pages. |
Liu, L. et al., “Sliced Message Passing: High Throughput Overlapped Decoding of High-Rate Low-Density Parity-Check Codes,” IEEE Transactions on Circuits and Systems—I:Regular Papers, Dec. 2008, pp. 3697-3710, vol. 55, No. 11. |
United States Office Action, U.S. Appl. No. 13/406,452, dated Feb. 14, 2014, 18 pages. |
United States Office Action, U.S. Appl. No. 14/561,183, dated Apr. 21, 2016, 41 pages. |
United States Office Action, U.S. Appl. No. 15/000,978, dated Apr. 5, 2017, 54 pages. |
U.S. Appl. No. 16/778,918, filed Jan. 31, 2020, Castrillon et al. |
U.S. Appl. No. 17/666,066, filed Feb. 7, 2022, Morero et al. |
Number | Date | Country | |
---|---|---|---|
20220385310 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16778918 | Jan 2020 | US |
Child | 17882136 | US |