This invention relates to decoder systems and to methods of manufacture of such systems.
The decoder system may be used with an electrode arrangement for an array of electrically-controllable elements, comprising a series of generally parallel electrodes each for extending along a respective line of the electrically-controllable elements, and a series of driver lines for receiving driving signals and supplying them to the electrodes. An electrically-controllable array device may be provided, comprising: first and second such electrode arrangements having their electrodes crossing each other, and an array of electrically-controllable elements each disposed at a crossing of a respective one of the electrodes of the first arrangement and a respective one of the electrodes of the second arrangement. The electrically-controllable elements may, for example, be provided by respective portions of a layer of material sandwiched between the electrodes of the first and second electrode arrangements. The electrically-controllable elements may have a plurality of stable states, and they may be formed by, for example, a bistable ferroelectric liquid crystal material, with the device forming a liquid crystal display panel.
Such an electrode arrangement is well known, and a conventional ferroelectric liquid crystal display panel having a pair of such electrode arrangements is illustrated in
The row electrodes 16 are each connected to a respective output of a row driver 20, and the column electrodes 18 are each connected to a respective output of a column driver 22. The row and column drivers 20, 22 are controlled by a controller 24, such as a microprocessor. The row and column drivers 20, 22 are each operable to apply voltages to the respective electrodes 16, 18 to cause the pixels to switch to required states so as to form an image on the display panel 10 and to change the image as required. Various driving schemes are known in the art. For example, in one scheme, a voltage VC1, is applied by the column driver 22 to all of the column electrodes 18, and a voltage VR1 is sequentially applied by the row driver 20 to each of the row electrodes 16, where VC1−VR1<VT−, so as to clear the display 10 row-by-row to white. Then, a voltage VR2 is sequentially applied by the row driver 20 to the row electrodes 16, and whilst that voltage is being applied to a particular row electrode, a voltage VC2 is applied by the column driver 20 to one or more selected column electrodes 18, where VC2−VR2>VT+, so as to write black to the pixels at the intersections of that row electrode 16 and the or each selected column electrode 18. In another scheme, rather than clearing the whole display to white and then writing selected pixels to black, the rows are addressed sequentially and all of the pixels in the selected row are cleared to white and immediately afterwards selected pixels in that row are written to black. In a modification to this scheme, rather than addressing the rows sequentially, they are addressed as and when required. In another modification, rather than clearing a whole row of pixels to white and then writing selected pixels to black, pixels which are to be changed from black to white are written to white, and pixels which are to be changed from white to black are written to black.
There is a desire to manufacture such liquid crystal display panels with ever increasing sizes and ever increasing resolutions (decreasing row and column electrodes pitches). In the arrangement shown in
To tackle this problem, each electrode may be connected to a plurality of the driver lines each via a respective impedance, such as a resistor. Such an arrangement is known from patent document U.S. Pat. No. 5,034,736 which describes a driving scheme which is illustrated in
In
In the example given in U.S. Pat. No. 5,034,736, all of the resistors 26 are of the same value, the drivers 20L, 20R, 22T, 22B can set their output voltages at particular levels, and the liquid crystal material has particular particular positive and negative threshold voltages VT−, VT+. It will therefore be appreciated that if the voltages applied to the resistors 26 at the opposite ends of a particular electrode 16, 18 are equal, the voltage of that electrode will be the same as the applied voltage. However, if the voltages applied to the resistors 26 of a particular electrode 16, 18 differ, the voltage of that electrode will be the average of the applied voltages. It is therefore possible to drive the electrodes so that a voltage exceeding the threshold voltages VT−, VT+, can be applied across any selected intersection of the row and column electrodes in order to change the state of the liquid crystal material at that intersection, without applying a voltage in excess of the threshold voltages VT−, VT+ at any other intersection. The advantage which is provided is that the required total number of outputs from the drivers 22L, 20R, 22T, 22B, and therefore the total number of interconnections between the drivers 22L, 20R, 22T, 22B and the display panel 10, has been reduced from eighteen (in the case of
U.S. Pat. No. 5,034,736 teaches that the arrangement shown in
Although at first sight the teaching of the prior art might appear to be correct, it is in fact incorrect and places unnecessary restrictions on the interconnect reduction.
The decoder system of the present invention may, for example, be used with an improved electrode arrangement in which the driver lines are so connected to the electrodes such that the driver lines cannot be split into a pair of arbitrary groups of the driver lines for which (a) each group has generally the same number of driver lines and (b) each electrode is so connected to at least one of the driver lines in one of the groups and to at least one of the driver lines in the other of the groups.
Alternatively stated, in such an electrode arrangement the driver lines are so connected to the electrodes such that there is at least one closed circuit from one of the driver lines via at least some of the impedances and at least some of the other driver lines back to said one driver line, the closed circuit including the impedances for an odd number of the electrodes.
For example, in a simple example which provides the same degree of discrimination between setting and not setting the state of a pixel, or memory element, as the prior art of U.S. Pat. No. 5,034,736, this improved electrode arrangement enables the relationship between the maximum number N of electrodes and the number n of driver outputs for those electrodes to be N=n.(n−1)/2, rather than N=n2/4, and is therefore larger for all but the trivial cases of n=1 and n=2. Thus, the row electrodes 16 of the display panel of
U.S. Pat. No. 5,034,736 also teaches that it is essential that the electrodes each have two terminals, a “front terminal” and a “back terminal”, to which the respective two resistors are connected, and in all of the examples given in U.S. Pat. No. 5,034,736 these two terminals are at opposite ends of the respective electrode.
In the improved elecrode arrangement described herein, each electrode may be connected to at least three of the driver lines, for example three, four, five, six, seven, eight or more of the driver lines.
With this feature, which recognises that the connections to each electrode do not need to be (but can be) made separately and at its two ends, the ratio of the number N of electrodes to the number n of driver lines can be increased considerably. For example, if
A problem which is introduced by connecting each electrode to a number c of driver lines greater than two is that the discrimination between selecting and not selecting a particular crossing point of the electrodes becomes more marginal. For example, with an addressing scheme having a clear-to-white phase and a selectively-write-to-black phase, if the voltages provided during the write-to-black phase by each driver line for a column electrode are selectably 0V and +VD, and by each driver line for a row electrode are selectably − 1/4VD and + 3/4VD then with the
To assist in dealing with this problem, in a preferred form, for any given pair of the electrodes, the number v (if any) of the driver lines to which those electrodes are commonly so connected is at least two less than the number c of the driver lines to which each of those electrodes is so connected. For example, if c is chosen to be four and v is chosen to be two, the arrangement can provide the same degree of “crosstalk” (v/c) as the
For simplicity the electrodes are preferably each so connected to the same number c of the driver lines. Also, for compactness, at least at the positions where the connections for the electrodes are made to the driver lines, the driver lines are preferably oriented generally parallel to each other and generally at right angles to the electrodes and/or the electrodes and the driver lines are preferably disposed on a common substrate.
When the improved electrode arrangement described above is used as one electrode arrangement of a memory and/or display device, the other electrode arrangement may be driven in a conventional manner, or it may also include the improvements.
A first aspect of the invention is concerned with a decoder system which may be used with an electrode arrangement as described above, but which also has other applications. For example, such a decoder system could be used for addressing of arrays of memory elements, or of arrays of sensors such as light sensors, or for mobile communications. More particularly, the first aspect of the invention is concerned with a decoder system comprising: an address input for receiving an address signal representing any of a plurality of address values; a plurality of intermediate nodes (for example the driver lines described above); a decoder responsive to the address signal and arranged to stimulate, for each address value, a respective combination of the intermediate nodes; and a plurality of outputs (for example the connections to the electrodes described above), each responsive to a respective group of the intermediate nodes such that the stimulation applied to that output is dependent upon the stimulation applied by the decoder to each of the intermediate nodes in the respective group.
A decoding system of this type is known from U.S. Pat. No. 5,034,736. In that case, the decoder depends for its operation on a look-up table stored in ROM.
Furthermore, a second aspect of the invention is concerned with a method of manufacturing such a decoder system, comprising the steps of: providing such a decoder which is responsive to an address signal representing any of a plurality of address values and is arranged to stimulate, for each address value, a respective combination of intermediate nodes; providing a plurality of outputs; determining, for each output, a respective group of the intermediate nodes to which that output is to be responsive; and rendering each output responsive to the intermediate nodes in the respective determined group such that the stimulation applied to that output is dependent upon the stimulation applied by the decoder to each of the intermediate nodes in the respective group.
It is difficult in practice to find configurations of connecting the outputs to the intermediate nodes with the necessary properties of a large number N of outputs for a small number n of intermediate nodes, and a small ratio of v/c. Combinatorial searching may be used, but requires careful optimisation, and even then begins to become inefficient in terms of computation time as the number n of intermediate nodes increases, because of the extremely large search space. Fortunately, such lengthy searching is only needed when designing the decoding system, and the generated solution can be stored in a look-up table for subsequent implementation. However, the need for a look-up table has cost implications, and a method which obviates the need for a look-up table (or a large look-up table) would be preferable.
The first and second aspects of the invention have evolved from a realisation that certain mathematical constructive methods may be found for generating mappings between the address values and the intermediate node stimulation patterns and accordingly mappings between the intermediate nodes and the outputs, and that such constructive methods may be applied with specific choices of parameters to obtain specific configurations. Examples of such constructive methods which have been found include those based on affine geometries, projective geometries, concatenation and difference families. These constructive methods employ a plural-stage process, rather than a single-stage process which is used in obtaining a value or a set of values from a look-up table.
Accordingly, the method of the second aspect of the invention is characterised by the steps of: determining a plural-stage process to be performed by a decoder, said plural-stage process comprising at least a first stage in which results are determined and a second stage for which the results of the first stage are provided as inputs; arranging the decoder to perform the determined plural-stage process in determining which of the intermediate nodes to stimulate in response to each address value; and using the determined plural-stage process in said step of determining the group of the intermediate nodes to which the outputs are to be responsive.
Furthermore, the decoder system of the first aspect of the invention is characterised in that: the decoder is arranged to perform a plural-stage process in determining which of the intermediate nodes to stimulate in response to each address value, said plural-stage process comprising at least a first stage in which results are determined and a second stage for which the results of the first stage are provided as inputs.
As will be appreciated from the following description, it is therefore possible to employ relatively simple hard-wired circuitry or a computer performing a relatively simple programme, rather than using a single look-up table which, in the case of a display having several thousand electrodes, would be of considerable size.
In the context of this specification, the term “plural-stage process” is intended to include a process in which the result(s) of at least one first stage of the process is/are applied to at least one further stage of the process. For example, in one embodiment of the invention to be described in detail below: components of the process input are supplied to four pairs of first-stage elements (which may be look-up tables or logic arrays); the outputs of the first stage elements are supplied to four pairs of second-stage elements (which again may be look-up tables or logic arrays); the outputs of the second stage elements and components of the process input are applied to four pairs of third-stage elements (which again may be look-up tables or logic arrays); and the outputs of the third stage elements are applied to four 26-to-64 decoding devices in order to provide the decoder output. More generally, a plural-stage process includes a process performed by several layers of basic elements (such as look-up tables, gates and arithmetic elements) in which the output of at least one of the layers feeds into a subsequent layer. In another embodiment of the invention, corresponding stages of the process are performed by a programmed computer. In the context of this specification, the term “plural-stage process” does not include the processes performed by, for example, a simple logic gate (such as an AND or OR gate), a simple arithmetic unit (such as an adder or a multiplier), or a look-up table. Also, a plurality of processes which are performed independently of each other do not constitute a plural-stage process for the purposes of this specification.
Preferably, the system includes a resolution input for receiving a resolution signal representing any of a plurality of resolution values, and the decoder is responsive to the resolution signal such that: when the resolution signal has a first value, the combination of intermediate nodes stimulated in response to each address value causes a first number of the outputs to be stimulated, or to be stimulated beyond a predetermined threshold; and when the resolution signal has a second value, the combination of intermediate nodes stimulated in response to each address value causes a group of a second number of the outputs, greater than said first number, to be stimulated, or to be stimulated beyond the threshold.
Accordingly, in the case where the decoder system is used with a display, it is possible to stimulate a plurality of the display lines simultaneously, a property sometimes referred to later in this specification as “multi-line addressing”. Moreover, it can be achieved that the stimulation applied to each of the desired display lines is above a certain threshold, whilst the stimulation applied to each of the remaining display lines is below a lower threshold.
Preferably, the decoder is responsive to the resolution signal such that when the resolution signal has at least one further value, the combination of intermediate nodes stimulated in response to each address value causes a, or a respective, group of a further number of the outputs to be stimulated, or to be stimulated beyond the threshold, the or each further different number being greater than the first number or the second number. In one advantageous approach, the further different number can be an integral multiple of the second number, in which case it is advantageous that each group, when the resolution signal has said one further value, is a union of a predetermined number of the groups when the resolution signal has said second value. An alternative is that the further different number is an integral multiple of the first number. Preferably, the arrangement is such that the outputs which are so stimulated in response to each address value when the resolution signal has said second value are physically grouped adjacent each other. Accordingly, in the case of a display, it is possible to stimulate blocks of lines of the display simultaneously, and the block stimulation may be hierarchically arranged.
Specific embodiments of the present invention will now be described by way of example with reference to the accompanying drawings. In the drawings:
The embodiments of the invention which will be described below employ the techniques already described above with reference to
In the embodiment of
In the embodiment of
As described above, the electrodes 16, 18 may be formed of indium-tin-oxide (ITO). The resistors 26 may be provided by thinned portions of the electrode material. For example,
In yet another arrangement, as shown in
In one modification to the
In the embodiment of
The embodiments of the invention shown in
As mentioned above, the advantages provided by this feature become of great significance when the number N of electrodes is large, and the benefits are not particularly apparent from
Table 1 can be considered as a list of activation patterns for each electrode, an activation pattern for a given electrode being the combination of c driver line connections required to activate the electrode (by providing it with at least a threshold voltage).
As an illustrative comparison, the following Table 2 gives examples of the number N of electrodes which are possible for various numbers n of the driver lines in the cases of (a) an arrangement following the teaching of U.S. Pat. No. 5,034,736 for which c=2, v=1 and therefore v/c=½ (see
(Although the values of n given in Table 2 are powers of two, there is no restriction on n being a power of two.)
As can be seen, the embodiments of the invention enable a far larger number N of electrodes to be used (unless the number of driver lines n is small), even in the case where v/c is ½.
In the embodiments described above with reference to FIGS. 3 to 8, the invention has been applied to the row electrodes 16. It will be appreciated that the invention may alternatively or additionally (as shown in
It should be noted that in the embodiments of the invention described above with reference to
The above embodiments of the invention have been described merely by way of example, and it will be appreciated that many modifications and developments may be made to the described embodiments of the invention.
For example, the invention is applicable to displays which use a bistable or multi-stable liquid crystal material other than a ferroelectric liquid crystal material, and may find application in displays which use an astable liquid crystal material. The invention is also applicable to memory arrays which do not have a display function and to arrays of sensors such as light sensors.
In the embodiments of the invention described above, the state of the memory elements is affected by the application of a DC electric field. In the case of display or memory arrays which are AC driven, the resistors may be replaced by other passive voltage-drop elements or impedances, such as capacitors.
The embodiments described above employ a two-dimensional array, but the invention is also applicable to one-dimensional arrays (for example to print bars) and to arrays having three or more dimensions.
In the embodiments described above, the drivers 20, 20L, 20R, 22 act as decoders, and the drivers 20, 20L, 20R, 22 in combination with the network configuration of resistors 26 form a decoding system. The decoders provide a 1-to-1 mapping from the input or address value to the combination of driver lines which are stimulated in response to that address value. In order to do this, as shown in
It is difficult in practice to find activation patterns (like the one presented in Table 1) with the necessary properties of large N for small n and large c/v. The solution space for finding useful sets of large binary patterns is vast, and special techniques must be used to generate results in reasonable computation times. However, once a set of activation patterns has been found, it can be employed in a decoder using either a look-up table or only simple computations (as described below).
Decoding systems will be described below with reference to their application in display addressing, and consequently terminology directly applicable to display addressing will be used. However, the invention has more general application. More generally, “intermediate nodes” can be understood by references to “driver lines”, and “outputs” can be understood by references to “display electrodes”.
Two basic approaches have been investigated for finding sets of activation patterns with the required properties. The first is combinatorial search. The second is based on a connection which has been discovered between the properties of the activation patterns and constant weight codes.
Combinatorial searching has the useful property of not being limited to solutions of particular types; solutions with any values of c and v can be searched for, and results reasonably close to the best possible can be achieved. As a simple example for the case of an activation pattern having the parameters n=22, c=4 and v=1, brute-force searching has been used to obtain a set of N=31 activation patterns, in which N is larger than n. Theoretically, it can be shown that the maximum possible value of N is 37 in this case: see A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D, Smith, “A New Table of Constant Weight Codes”, IEEE Transactions on Information Theory, IT-36 (1990), 1334-1380.
So it has been shown that searching can produce results reasonably close to the best possible. In practice, the values of n and N would be larger than this (for example, N may be many thousands) and, because of the growth of N with respect to n, the achieved levels of interconnect reduction are then much better than in this example. However, searching becomes more difficult as the numbers of active bits and overlap bits grow, because the search space grows also and in fact soon becomes extremely large for fairly modest values of n. This problem is particularly acute for the relatively large number n of driver lines likely to be needed for example in a high-resolution display application where N may be many thousands even though n is required to be very much less than N. Special optimisations are usually needed to make the search produce results in reasonable times. However, searching has been used effectively with present-day computing apparatus to find solutions for n up to a few hundred and N up to tens of thousands.
Fortunately, a lengthy search is only needed when designing the activation patterns, and the resulting solution can be stored and used for subsequent implementation, both to construct the decoder connections and subsequently to generate activation patterns. These may be stored for example in a look-up table 40 which can be located within the driver chips, or alternatively can reside in system memory, depending on the particular design. The table can also be made smaller using appropriate data-compression techniques. However, the need for a look-up table has extra cost implications in the final system, and a method that obviates the need for a large look-up table 40 would be preferable.
An additional disadvantage with combinatorial searching techniques is the difficulty of efficiently finding solutions with special properties, such as multi-line addressing. These properties will be described in more detail below.
A second method for generating activation patterns has been investigated which allows them to be constructed directly, rather than searched for, and is based on a connection which has been discovered between sets of activation patterns possessing the required properties and what are known in the coding-theoretic literature as constant weight codes. A constant weight code with parameters (n, d, c) is a set of length n binary words (called codewords), each word containing exactly c 1's, and each pair of words having a Hamming distance of at least d. The Hamming distance of a pair of binary words is simply the number of positions in which they differ, ie in which one word has a 1 and the other a 0.
Constant weight codes are of fundamental importance in coding theory and have attracted much attention because of that, see Brouwer et al, supra, and F. J. MacWilliams and N. J. A. Sloane, “The Theory of Error-correcting Codes (6th Edition),” North-Holland, Amsterdam, 1993.
The precise correspondence between these codes and sets of activation patterns with the required properties is as follows: there exists a constant weight code with parameters (n, d, c) having N codewords if and only if there exists a set of N length n activation patterns with c connections per row electrode and maximum crosstalk v equal to c−d/2. These codewords are used to specify connections from driver lines to electrodes. Accordingly, each codeword gives rise to an activation pattern for a row electrode in the following manner. If there is a 1 in the i-th position in a codeword, then a connection is made between the electrode and the i-th driver line, otherwise no connection is made. In this way, each row electrode is connected to c driver lines, and any pair of electrodes have at most v=c−d/2 commonly connected driver lines.
This correspondence allows the existing theory of constant weight codes to be applied to the construction and evaluation of sets of activation patterns and useful new results of additional benefit to be derived.
The success of this approach depends on finding methods that are both flexible (in terms of the ranges of parameters for which sets of activation patterns can be constructed) and efficient (in terms of producing sets with an activation pattern length n that is small compared to the parameter N).
It has been realised that using constructive methods to produce sets of activation patterns can yield sets having several features making them advantageous over solutions obtained by searching techniques. To obtain such features requires a novel and mathematically sophisticated analysis of the particular construction methods, a key step in such an analysis being to obtain both (a) a fixed correspondence between the activation patterns and the electrode number and (b) a method which, when presented with such a number, generates the corresponding activation pattern. The method and correspondence will be specific to the particular code construction.
A first advantage is that such a correspondence and method can obviate the need to use a full look-up table because the activation patterns can be generated on the fly as needed, rather than being stored in ROM. The method can be very fast, memory efficient and suitable for implementation in hardware.
A second advantage, again revealed by close analysis of the mathematical structure of the code, is that well-chosen correspondences can enable multi-line addressing where more than one electrode is driven at a time from a single activation pattern. More specifically, multi-line addressing can be implemented efficiently in hardware or by a programmed computer, with activation patterns being obtained on the fly. Moreover, the choice of correspondence sometimes makes possible a hierarchy of multi-line addressing modes, where the display space is sub-divided into progressively finer partitions which can be individually addressed by activation patterns that are also obtained on the fly.
Three constructive methods for obtaining constant weight codes (and the corresponding sets of activation patterns) will now be discussed in detail. For reasons of brevity, this material is presented in mathematician's language, and the reader may wish to seek the advice of a mathematician skilled in the art of coding theory and the arithmetic of finite fields, or to consult the relevant literature in interpreting the following discussion. The three constructions are obtained from finite geometries, from difference families and from concatenation of codes.
Two types of addressing scheme have been developed based on finite geometries: one type based on “affine geometries”, and the other type based on “projective geometries”. The following Table 3 gives the parameters of a number of geometric addressing schemes having parameters of practical interest, “AG” standing for affine geometry and “PG” standing for projective geometry:
The specific parameters which can be achieved for the affine schemes (labelled AG(d, q) in the above table) are: n=qd, c=q, v=1 and N=q2d−2; and for the projective schemes (labelled PG(d, q) in the above table) are: n=qd+qd−1, c=q+1, v=1 and N=q2d−2, where d is any positive integer and q is a power of a prime. Both of these families are highly efficient, in terms of having a ratio of N to n that is roughly a fraction 1−(1/q) of that possible for an optimal addressing scheme with the same values of n, c and v. The ratio of N to n is roughly qd−2, and so increases rapidly as d increases.
Both of these families of schemes have very special properties which are directly related to the geometrical nature. An explanation of this and its consequences in relation to the the affine case will now be described, and very similar remarks also apply to the projective case. Considering the real 3-dimensional space around us, it can be imagined as composed of an infinite number of points and containing straight lines, with two lines having the property that they either meet in exactly one point of space, or they do not meet. Therefore any two lines meet in at most one point. This is the geometry of Euclid. A line can, of course, be thought of as being composed of the points it contains. The three-dimensional space also contains higher-dimensional variants of lines, called planes. A plane can be thought of as being made up of a set of parallel lines, or of the points it contains. According to Euclid, a line is either completely contained in a plane, or meets it in one point, or is parallel to it. The points of lines and planes can be described by simple equations.
In order to obtain configurations and codes, first a correspondence or mapping must be chosen between the points of this space and driver lines, and second a correspondence between the lines of this space and display lines. Using the second correspondence, a display line can be taken, the equation of the corresponding line in space can be found, that equation can be used to calculate the set of points on that line, and then, using the first correspondence, the set of driver lines corresponding to that set of points can be found. The activation pattern for the display line can then be defined to be the pattern that is active in the appropriate set of driver lines. The impedance network configuration for this display line connects the appropriate set of driver lines to the electrode. Because two lines in the space meet in at most one point, two activation patterns can overlap in at most one place. Therefore, it is possible to obtain sets of activation patterns with the required cross-talk properties.
The geometries which are actually used are not that of real space, but mathematical abstractions of it called affine and projective geometries. These differ in two basic ways from real space: the spaces are finite, that is containing a finite number of points and lines; and higher dimensional spaces are used. Indeed, the parameter d mentioned above is the actual dimension used. However, these geometries have the same basic properties that points, lines, planes and so on intersect in the expected way. For mathematical convenience, it is appropriate to work with spaces in which the number of points on a line is either q (in the affine case) or q+1 (in the projective case), where q is a power of a prime number. Accordingly, the final activation patterns (which correspond to lines of the space) will have either q or q+1 active positions. These finite spaces have (in general) far more lines than points, and so have a high ratio of N to n.
Of great importance is the choice of correspondences (or maps) between points of the space and driver lines, and lines of the space and electrodes lines: by making a careful choice of these correspondences, it is possible to develop efficient methods of computing the activation pattern needed for a particular display line. These methods essentially map this problem into a problem of calculating the points on a line in the appropriate finite geometry. They are highly efficient and suitable for either hardware implementation or programmed computer implementation. The detail of a method based on affine geometries is described later in this specification.
Recalling that a line meets a plane in at most one point or is completely contained in it, if all the driver lines corresponding to the points of a plane are activated, then the set of display lines which corresponds to the set of lines of the finite space which make up the chosen plane will be activated. Moreover, any display line which it is not intended to activate will have at most one of its driver lines activated, so that the residual cross-talk is no larger than before. This is a consequence of the fact that any line not contained in a plane meets that plane in at most one point. Therefore, many display lines may be simultaneously activated without interfering with the other display lines to a significant extent. Rather than working with merely planes, it is possible to take advantage of the dimensionality of the space and work with more general (d-c) dimensional objects for each 0≦c<d. This allows sets of display lines with a variety of different sizes to be addressed. The same bounds on cross-talk will still apply. By making an even more careful choice of the maps between the finite space and the driver and display lines, it can be arranged that certain planes (and higher dimensional structures) correspond to contiguous sections of the display of the appropriate size. Moreover, the sets of driver lines that require activation in order to address such a region have a relatively simple structure and can be calculated on the fly.
In summary, for each c with 0≦c<d, an efficient method has been developed for addressing sets of q2d−2c−2 consecutive display lines (that is, a fraction of 1/q2c of all display lines). Thus, the display can be divided into q2c segments, and each segment can be efficiently addressed with minimal cross-talk for the other segments. The qd−c−1 driver lines that need to be activated are easy to calculate. It is also possible to activate intermediate-sized areas using similar techniques, at the cost of increased cross-talk for the display lines that are not to be activated. Therefore, a very simple method of addressing segments of the screen in a hierarchical arrangement is provided, with d levels of resolution.
The detail of a method based on affine geometries will now be described. The reader is assumed to have familiarity with finite fields and their arithmetic and sufficient mathematical sophistication.
In the following, Fq denotes the finite field with q elements, and Zq denotes the set of integers {0, 1, . . . , q−1}. Let φ be any map of Zq onto Fq, and γ any map from Fq onto Zq. First, two maps are specified, φ and Γ. Let D be an integer with 0≦D<q2d−2 representing the number of a display line. Write:
D=D2d−3q2d−3+D2d−4q2d−4+ . . . +D1q+D0, where 0≦Di<q
so that (D0, D1, . . . , D2d−3) is the base-q representation of D. Now define:
Φ(D)=(x,y)
where
The second map Γ maps vectors of length d over Fq to integers A with 0≦A<qd, representing driver lines. Let x=(x0, x1, . . . , xd−1) where xiεFq. Define:
Γ(x)=γ(x0)qd−1+γ(x1)qd−2+ . . . +γ(xd−1).
The connection of driver lines and display lines is now specified: for each integer D with 0≦D<q2d−2:
As a specific example, let q=4=22 and d=3. The elements of F4 are represented by the binary vectors of length two: 00, 01, 10, 11. With this representation, addition of field elements is achieved by component-wise XOR of vectors, while multiplication is as specified in the following Table 4:
There are therefore qd=64 driver lines and q2d−2=256 display lines. Let φ be the map φ(0)=00, φ(1)=10, φ(2)=01, φ(3)=11 and let γ=φ−1. Hence, φ(a0+2a1)=a0a1 εF4 and γ((a0a1))=a0+2a1. In order to compute the driver lines which should be activated for display line 114, say, we have, in base-4:
114=1×43+3×42+0×41+2×40
and so Φ(114)=(x, y) where:
Accordingly, it is necessary to connect driver lines 4, 30, 43 and 49 to display line 114, and when presented with the task of activating display line 114, to perform the above calculations. These computations are clearly suited for implementation in hardware.
Efficient procedures are provided for activating portions of the display. Suppose 0≦c<d and it is desired to activate the set of q2d−(2c+2) consecutive display lines numbered:
D2d−3q2d−3+D2d−4q2d−4+ . . . +D2d−(2c+1)q2d−(2c+1)+D2d−(2c+2)q2d−(2c+2)+j
where D2d−3, . . . , D2d−(2c+2) are fixed and 0≦j<q2d−(2c+2) is arbitrary. This is a fraction 1/q2c of all the display lines. Then, it is necessary to activate the set of driver lines numbered:
qd−1γ(v)+qd−2γ(α1−v(α1−β1))+ . . . +qd−c−1γ(αc−v(αc−βc))+j
where vεFq and 0≦j<qd−c−1 are arbitrary and αi=φ(D2d−(2c+1)), βi=φ(D2d−(2c+2)) for 1≦i≦c.
The numbers of the driver lines corresponding to these points are again quite straightforward to calculate. They are exactly the numbers having a base-q representation which is arbitrary in the d−c−1 least significant digits and which are restricted to q out of qc+1 values in the c+1 most significant digits. The complexity (in terms of number of field operations) of computing these digits increases linearly with cq. When this set of driver lines is activated, at most one driver line for any other display line will be activated.
As mentioned above, understanding the above discussion requires a degree of mathematical sophistication. An example of the finite geometries method will now be described in simpler mathematical terms avoiding the use of finite fields.
In the example of this method, the parameters are N=256, n=64, c=4 and v=1, and the fundamental units of computation for the code parameters are the integers 0, 1, 2 and 3. Two 4×4 tables are used which define two commutative binary operations ⊕, ⊙ on the integers as shown in Tables 5 and 6, respectively:
Given that the address of an display line is D, where 0≦D<256, the address can be represented as a length-4 vector (D3, D2, D1, D0), where 0≦iD<4, such that D=(64D3)+(16D2)+(4D1)+D0. The following steps are then performed:
As an example, for the display line numbered D=114, the values calculated using the above method are:
D=114 or (D3,D2,D1,D0)=(1,3,0,2)
x=(0,1,0)
y=(1,3,2)
z=(1,1⊕3,0⊕2)=(1,2,2)
z0=(1⊕(0⊙1),3⊕(0⊙2),2⊕(0⊙2))=(1,3,2)
z1=(1⊕(1⊙1),3⊕(1⊙2),2⊕(1⊙2))=(0,1,0)
z2=(1⊕(2⊙1),3⊕(2⊙2),2⊕(2⊙2))=(3,0,1)
z3=(1⊕(3⊙1),3⊕(3⊙2),2⊕(3⊙2))=(2,2,3)
B0=(1×16)+(3×4)+2=30
B1=(0×16)+(1×4)+0=4
B2=(3×16)+(0×4)+1=49
B3=(2×16)+(2×4)+3=43
In other words, the display line numbered 114 should be connected by its resistors 26 to the driver lines numbered 4, 30, 43 and 49, and to address the display line numbered 114, the driver lines numbered 4, 30, 43 and 49 should be stimulated.
The detail of a method based on projective geometries will now be described. The connection between this method and the underlying geometry is similar in spirit to that described above in the case of affine geometries and will be understandable by a practitioner skilled in the appropriate mathematical disciplines.
In the following, let φ be any map of Zq onto Fq, and γ any map from Fq onto Zq. First, two further maps are specified, Φ and Γ. Let D be an integer with 0≦D<q2d−2 representing the number of a display line. Write:
D=D2d−3q2d−3+D2d−4q2d−4+ . . . +D1q+D0, where 0≦D1<q
and define:
Φ(D)=(x,y)
where:
The second map Γ is defined on a subset of the length d+1 vectors over Fq and produces integers A with 0≦A<(qd+qd−1). It is defined as follows:
Γ(1,x1, . . . ,xd)=γ(x1)qd−1+γ(x2)qd−2+ . . . +γ(xd) and
Γ(0,1,x2, . . . ,xd)=qd+0.qd−1+γ(x2)qd−2+ . . . +γ(xd)
The connection of driver lines and display lines is now specified:
An efficient procedure for obtaining multi-line addressing in this projective addressing scheme will now be described.
Suppose 0≦c<d and it is desired to activate the set of q2d−(2c+2) consecutive display lines numbered:
D2d−3q2d−3+D2d−4q2d−4q2d−4+ . . . +D2d−(2c+1)q2d−(2c+1)+D2d−(2c+2)q2d−(2c+2)+j
where D2d−3, . . . , D2d−(2c+2) are fixed and 0≦j<q2d−(2c+2) is arbitrary. This is a fraction 1/q2c of all the display lines in this projective scheme. Write αi=φ(D2d−(2i+1)) and βi=φ(D2d−(2c+2)) for 1≦i≦c. Then, it is necessary to activate the set of driver lines numbered:
qd−1γ(σ)+qd−2γ(α1−σ(α1−β1))+ . . . +qd−c−1γ(αc−σ(αc−βc))+j
where σεFq and 0≦<qd−c−1 are arbitrary, as well as the driver lines numbered:
qd+qd−2γ(β1−α1)+ . . . +qd−−c−1γ(βc−αc)+j
where 0≦j<qd−c−1 is arbitrary.
These qd−c−1(q+1) addresses are easily computed from the values of the αi and βi using arithmetic in Fq. The complexity (in terms of number of field operations) of computing the set of addresses increases linearly with cq. Thus the display can be divided into q2c segments, and each segment can be efficiently addressed. The cross-talk for the other segments of the display is at most one. It is also possible to activate intermediate-sized areas using similar techniques, at the cost of increased cross-talk for the display lines that are not to be activated. Therefore, a very simple method for addressing segments of the display in an hierarchical arrangement is provided, with d levels of resolution.
The second family of addressing schemes based on difference families will now be described. For background information, reference is directed to T. Beth, D. Jungnickel and H. Lenz, “Design Theory”, Cambridge University Press, 1993. These schemes all have v=1 and small values of c. Typically, c is 3, 4, 5 or 6, although larger values of c are possible. They allow a reasonably flexible choice of n. The number of display lines N is equal to n (n−1)/c(c−1) for these schemes. This is in fact the largest possible number of display lines for any scheme, given the parameters n, c and v=1.
Addressing methods have been developed for these schemes. They are quite efficient, typically requiring that N bits of information are stored and that some simple computations are performed (at worst, some computations in a finite field). Examples of specific parameters for which the difference family schemes can be constructed are as follows:
In T. Beth et al, supra, there are a number of constructions for difference families over groups. All of these constructions can be used to produce addressing schemes with optimal values of N for many different values of n, c and v=1.
The details of an addressing method for a particular set of difference families are now given. The modifications required to adapt this method to the other difference family schemes referred to above can be readily deduced from the following description.
Suppose q=1 mod 12 is a power of a prime and suppose (−3)(q−1)/4≠1 in Fq. Then the method produces a scheme with parameters N=q(q−1)/12, n=q, c=4 and v=1. Let α be a primitive element in Fq, that is an element of multiplicative order q−1, and ε=α(q−1)/3. Define Bi={0, α2i, εα2i, ε2α2i}, where 0≦i<(q−1)/12. In the following, let φ be any map from Zq onto Fq and γ any map from Fq onto Zq.
The connection of driver lines and display lines is now specified. For each D, 0≦D<q(q−1)/12:
These computations need to be carried out just once, when the addressing system is manufactured. When the system is in use, to calculate the driver lines to activate for a particular display line D, the following steps are carried out:
These computational steps can be efficiently carried out either using Fq-arithmetic, or using Fq-arithmetic in combination with look-up tables containing the elements of the sets Bi, 0≦i<(q−1)/12.
A third family of schemes is based on concatenation, which is a very powerful method of code construction. An introduction to concatenation is provided in F. J. MacWilliams and N.J. A. Sloane “The Theory of Error-Correcting Codes”, Elsevier Science, North-Holland, 1977, 307-315. For further background information, reference is directed to N. Q. A, K. Györfi and J. L. Massey “Constructions of Binary Constant Weight-Cyclic Codes and Cyclically Permutable Codes”, IEEE Transactions on Information Theory IT-38 (1992), 940-949; and O. Moreno, Z. Zhang, P. V. Kumar and V. A. Zinoviev, “New Constructions of Optimal Cyclically Permutable Constant Weight Codes”, IEEE Transactions on Information Theory, IT-41 (1995), 448-455.
Concatenation can be used to produce a very flexible class of addressing schemes, some of which have performance comparable (in terms of the number N of display lines addressed for a given n, c, v) to that of the geometric schemes described above. It is also possible to find efficient on-the-fly addressing schemes and, in certain cases, multi-line addressing methods.
The parameters of concatenated schemes are quite complicated to describe in full generality, and again a sophisticated mathematical knowledge is required. Nevertheless, let q0, q1, . . . , q−1, be prime powers (not necessarily distinct). Suppose
and q=min{qi}. Further, suppose c and k are integers satisfying 0≦k≦c≦q. Then, using concatenation methods, it is possible to construct an overall network configuration with parameters n=Qc, c, v=k−1 and N=Qk. The parameter N as a fraction of the upper bound on N is expressible as
and is largest when c is large and k is small. (The expression
here denotes x!/{y!(x−y)!}.) In any case, configurations are typically attained with a value of N that is a reasonable fraction of the upper bound. By imposing restrictions on the parameter Q, and in turn on the qi, it is possible to obtain families of configurations.
Further details of the concatenation construction are as follows. For 1≦i<l, let
and let αi,0, αi,1, . . . , αi,q
where 0≦di,j<qj, and this word can be associated with the degree k−1 polynomial with coefficients from
A length c Q-ary word y is constructed where y=(y0, . . . , yc−1) by defining yj=γ0(f0(α0,j))+γ1(f1(α1,j))N1+ . . . +γl−1(fl−1(αl−1,j))Nl−1, where 0≦j<c. The activation pattern for display line D then has 1's set in the c positions: yj+jQ, where 0≦j<c, and 0's in every other position.
The constant weight code underlying this construction is a concatenated code in which the inner code is the binary orthogonal code of length Q and in which the outer code is obtained from a direct product of Reed-Solomon codes over finite fields with qi elements where 0≦i≦l−1.
It can therefore be seen that the process of calculating the activation pattern for a particular display line D requires the conversion of D to a mixed base representation, then to a list of polynomials f0, . . . , fl−1 which are evaluated at certain points (using finite field arithmetic). The results of these evaluations are then combined to determine the active positions in the pattern for line D. The calculations (despite the complexity of the above description) are quite straightforward. They are particularly simple when each q, is a prime rather than a prime-power, because it is then possible to use arithmetic modulo p. They are even simpler when the pi are all equal.
It should be noted that, in the above scheme, the values of the polynomials f0 determine the least significant digits (in the mixed-base representation of numbers) of the positions of 1's in activation patterns. If f0 is allowed to range over all possible polynomials (of degree at most k−1), then these least significant digits take on all possible values. The set of display lines corresponding to this variation in the polynomials f0 is the set having some fixed digits D1, . . . , Dl−1 and having any value for D0. This is simply a set of q0k consecutive display lines. Hence, it is possible to activate any one of Qk/q0k blocks of consecutive display lines of size q0k simply by activating an easily calculated set of cq0 display lines. It is also true that any other display line has a network configuration with crosstalk still at most v when compared to this weight cq0 activation pattern.
These ideas can be extended to allow activation of blocks of (q0q1 . . . qr)k display lines using easily calculated activation patterns of weight cq0q1 . . . qr, for each choice of r with 0≦r<l. The cross talk for other display lines is still at most v. The calculations are no more complex than before.
Two examples of the concatenation construction are given below, and there are many other possibilities.
In the first example of a concatenated scheme, c=4 and v=2. Suppose that Q=1, 4, 5, 7, 8 or 11 mod 12. Then, Q≠2 mod 4 and Q≠0 mod 3. Hence, the smallest prime-power divisor of Q is 4 so we can write
where each qi is a prime power greater than or equal to 4. So q=min qi≧4. Hence, t=4 and k=3 can be taken to obtain a configuration with: n=4Q, c=4, v=2, and N=Q3, for Q=1, 4, 5, 7, 8 or 11 mod 12. Writing n=4Q, we have Q3=n3/64, and it can be seen that the configuration has N=n3/64 patterns. For these parameters, the upper bound of Johnson, supra, is roughly n3/24. Therefore, this family is fairly efficient, attaining about 37½ percent of the best possible value of N.
In the second example of a concatenated scheme, c=5 and v=1. Suppose that Q=1 or 5 mod 6. Then the smallest prime-power divisor of Q is 5. Hence, q≧5, and t=5 and k=2 can be taken to obtain a configuration with: n=5Q, c=5, v=1 and N=Q2, for Q=1 or 5 mod 6. Writing n=5Q, we have Q2=n2/25, and it can be seen that the configuration has N=n2/25 patterns. For these parameters, the upper bound of Johnson, supra, is roughly n2/20. Therefore, this family is very efficient, attaining about 80 percent of the best possible value of N.
Using the concatenation structure inherent in these configurations, it is possible to obtain an efficient method which calculates activation patterns for the network. This method is best suited for implementation by a programmed computer, although specific instances may be implemented in hardware.
Considering multi-line addressing in the context of concatenated schemes, it may be recalled that
If the assignment of activation patterns and network configurations to display lines is made with care, then it is possible to have l hierarchical levels of multi-line addressing. At the finest level, it is possible to address blocks of q0k consecutive display lines by activating cq0 driver lines. The overall activation pattern required is quite straightforward to calculate. The cross-talk with any other display line (outside the set of display lines in the block of q0k) is still at most v. In the next level, it is possible to address blocks of (q0q1)k consecutive display lines by activating c(q0q1) driver lines, and so on.
Another family of addressing schemes which enjoy another kind of multi-line addressing capability is now described. These schemes all have c=2 and v=1. They have the property that, for some fixed integer t≧2, any one or two or three or indeed any number not more than t of consecutive display electrodes (outputs) may be activated by an easily computed activation pattern, whilst any other display line still has a network configuration with crosstalk at most 1 when compared to this activation pattern.
As previously, methods are described for connecting the intermediate nodes (driver lines) with the output nodes (display lines) along with algorithmic and plural stage processes for calculating which intermediate nodes should be stimulated in order to fully activate any particular output node.
A first addressing scheme is described in the case where t=2 and n, the number of driver lines, is at least 7. Another parameter w is now associated with n, and defined such that: w=[n− 3/4]. The number N of output nodes in our addressing scheme is equal to 2nw and for each n, is at least as large as the integer n2/2−3n. This is within 5n/2 of the maximum possible number
of display electrodes in a scheme with n driver lines with c=2 and v=1. There is the additional advantage that any consecutive pair of display electrodes may be simultaneously addressed.
The connections between driver lines and display electrodes are now described. Let D be the number of a display electrode, where 0≦D<2nw.
For n=10, we have w=2 and the above procedure results in 40 activation patterns, each containing two 1's. The list of activation patterns for this example is shown in Table 7 below.
This set of 40 activation patterns has the properties that any single activation pattern or any pair of consecutive activation patterns have crosstalk at most one with any further activation pattern.
Next we describe the calculation process to be carried out by the address decoder is described. The input is the number of a display electrode to be activated, and the output is an activation pattern (equivalently, a pair of numbers in the range 0, 1, . . . n−1 corresponding to driver lines). Let D be the number of a display electrode, where 0≦D<2nw. Integer D is input to the address decoder. Then:
Finally for this scheme, it is described how an address decoder can calculate the activation pattern required to activate two consecutive display electrodes and D+1 where 0≦D<2nw−1.
An addressing scheme is now described in the cases where t=3 or t=4 and n, the number of driver lines, is at least 9. The parameter w is again used, but is now defined as w=[n− 3/6]. The number N of output nodes in our addressing scheme is equal to 2nw and is roughly as large as the integer n2/3.
The connections between driver lines and display electrodes are now described. Let D be the number of a display electrode, where 0≦D<2nw.
For n=12, we have w=1 and the above procedure results in 24 activation patterns, each containing two 1's. The list of activation patterns for this example set of parameters is shown in Table 8 below.
This set of 24 activation patterns has the properties that any single activation pattern, or any pair of consecutive activation patterns, or any triple of consecutive activation patterns, or any quadruple of consecutive activation patterns, have crosstalk at most one with any further activation pattern.
Next the calculation process to be carried out by the address decoder is described. The input is the number of a display electrode to be activated, and the output is an activation pattern (equivalently, a pair of numbers in the range 0, 1, . . . n−1 corresponding to driver lines). Let D be the number of a display electrode, where 0≦D<2nw. Integer D is input to the address decoder. Then:
Finally for this scheme, it is described how an address decoder can calculate the activation pattern required to activate any s consecutive display electrodes D, D+1, . . . D+s−1 where 2≦s≦4 and 0≦D<N−s+1. A simple way to achieve this is to execute the above plural stage process s times, once for each integer that is the number of a display electrode to be activated.
Next are described families of addressing schemes for general values of t, where t≧5. For each value of t is described a family of addressing schemes, one scheme for each even value of n with n≧6(t−1) containing N=n2/4−n(t−1)/2 activation patterns.
The connections between driver lines and display electrodes are now described. Let D be the number of a display electrode, where 0≦D<n2/4−n(t−1)/2. In the following, m denotes the integer n/2.
As an example, for n=24 and t=5, m=n/2=12 and there is thus an addressing scheme with N=96 display electrodes. In this case, the three lists mentioned above are equal to
A sample of the activation patterns in this case is shown in Table 9 below.
This set of 96 activation patterns has the properties that any single activation pattern, or any set of two, three, four or five consecutive activation patterns, have crosstalk at most one with any further activation pattern.
Next is described the calculation process to be carried out by the address decoder when a single display electrode is to be activated. The input is the number of a display electrode to be activated, and the output is an activation pattern (equivalently, a pair of numbers in the range 0, 1, . . . n−1 corresponding to driver lines).
Let D be the number of a display electrode, where 0≦D<n2/4−n(t−1)/2. Integer D is input to the address decoder. Then:
If i=2 mod 3, then output the activation pattern with 1's in position m+i and in the position indicated by the j-th integer in the list:
Finally for these schemes, it is described how an address decoder can calculate the activation pattern required to activate any s consecutive display electrodes D, D+1, . . . , D+s−1 where 2≦s≦t and 0≦D<n2/4−n(t−1)/2−s+1. A simple way to achieve this is to execute the above plural stage process s times, once for each integer that is the number of a display electrode to be activated.
Having described the theory underlying the pattern generation, network configuration and addressing techniques, specific embodiments of these techniques will now be described in detail.
In the design and manufacture of a display or the like, the network configuration of the impedances 26 or the like may be calculated by computer or by dedicated hardware. In the case of a computer, a general-computer may be used. An example of a program for producing the network configuration using the affine geometry AG (3, 4) technique with the parameters c=4, v=1, c/v=4, n=64 and N=256 is set out below. This program was written, for the purpose of illustration in this specification, in WordPerfect 6.1 macro language. In practice, of course, a more appropriate language would be used.
The product of this program is set out in Table 10 below, and, as will be seen, display line numbered 0 should be connected to the driver lines numbered 0, 16, 32 and 48; the display line numbered 1 should be connected to the driver lines numbered 0, 17, 34, 51; and so on. Careful analysis of the results will confirm that no two display lines are to be connected in common to more than one driver line.
Having decided on a particular network configuration for the resistors 26, it is necessary to construct the decoder 20 to produce corresponding activation patterns. As described above with reference a
In an alternative embodiment as shown in
(It should be noted that the above program is designed to take various inputs from a keyboard and display the outputs on a monitor. In practice, the instructions “GetNumber” in lines 6 to 9 and “Type” in line 11 would be replaced with instructions to get the various bits from the address bus 42 and activate the respective driver lines 44.)
Careful analysis of the 256 network configurations given above, and therefore of the identical activation patterns, will demonstrate that if the driver lines 44 are ORed together in ordered groups of four, then not only will the particular addressed display line be activated, but also the other fifteen driver display lines in the same group of sixteen display lines as the addressed display line, whereas the other display lines will receive no more than one quarter of full activation. In other words, if these OR operations are performed and the number of the addressed display line is D, then the display lines which are actually activated are those numbered (16×INT(D/16)) to 15+(16×INT(D/16)), where INT( ) denotes the integer part of ( ). Accordingly, multi-line addressing can be performed in blocks of sixteen lines. Furthermore, it may be noted that if all of the driver lines 44 are ORed together, then not only will the particular addressed display line be activated, but also all of the other 255 display lines. Accordingly, multi-line addressing of the whole display can be performed. In order to provide this feature of selectable resolution of the display as between one line, sixteen lines and 256 lines, the program set out above may be modified as follows.
(In addition to the above note about the instructions “GetNumber” and “Type”, in line 2 of the above program the instruction “GetNumber” would be replaced with an instruction to get the resolution value from a 2-bit bus 52 as shown in
A hard-wired hardware embodiment will now be described with reference to FIGS. 14 to 19. Referring firstly to
Referring to
The two ⊕ look-up tables 580, 581 provide a first stage of calculation; the ⊙ look-up tables 600, 601 provide a second stage of calculation; the three ⊕ look-up tables 582, 583, 584 provide a third stage of calculation; and the decoder 62 provides a fourth stage of calculation. More specifically, the E look-up table 580 receives the values D0 and D1 to generate the value Z0. The ⊙ look-up table 600 receives the value Z0 and the value A and its output is provided to the ⊕ look-up table 582, together with the value D0, so that the ⊕ look-up table 582 produces the value z0,A. The ⊕ look-up table 581 receives the values D2 and D3 to generate the value Z. The ⊙ look-up table 601 receives the value Z1 and the value A, and its output is provided to the ⊕ look-up table 583, together with the value D2, so that the a look-up table 583 produces the value z1,A. The ⊕ look-up table 584 receives the value A and the value 1, and its output is therefore the value z2,A. The values z0,A, z1,A and z2,A are provided to the decoder 62 which generates the value B4 described above.
These look-up tables can readily be replaced by appropriately constructed logic circuits. For example, a ⊕ look-up table can be replaced by a “bitwise or” circuit, and the skilled man will be aware of how to construct the appropriate logic circuit for any other mentioned look-up table.
As so far described, the four calculation circuits 54 are identical. In one modification, a single circuit 54 may be provided, in combination with a 64-bit output latch or register, with the circuit being run four times with a changing input A. In another modification, the four calculation circuits 54 differ slightly from each other, taking into account the different values of A. This reduces the overall amount of hardware required to implement the circuit.
The logic circuit 56 is shown in greater detail in
From the above description of FIGS. 14 to 19, it will be appreciated that the circuit functions in an identical way to the multi-line addressing embodiment described with reference to
In summary, the embodiments of the invention described above demonstrate:
Many modifications and developments to the embodiments and examples described above will be apparent without departing from the invention.
Number | Date | Country | Kind |
---|---|---|---|
9706457.0 | Mar 1997 | GB | national |
9713690.7 | Jun 1997 | GB | national |
Number | Date | Country | |
---|---|---|---|
Parent | 09381010 | Sep 1999 | US |
Child | 10669477 | Sep 2003 | US |