This nonprovisional application claims priority under 35 U.S.C. 119(a) on Patent Application No. 91125218 filed in TAIWAN on Oct. 25, 2002, which is herein incorporated by reference.
1. Field of the Invention
The invention relates to an isolation structure of a semiconductor device and a method of forming thereof, and more particularly to a deep trench isolation structure of a high-voltage device and a method of forming thereof.
2. Description of the Related Art
Recently, as the manufacturing techniques of semiconductor integrated circuits develop, the request of highly integrating controllers, memories, low-voltage operating circuits and high-voltage power devices on a single chip increases to achieve a single-chip system, in which the power device including vertical double-diffused transistor (VDMOS), lateral double-diffused transistor (LDMOS) and insulated gate bipolar transistor (IGBT), is used to increase power transform efficiency and decrease energy wastage. Since the high-voltage transistor and the low-voltage CMOS circuit device are provided on the single chip, an isolation structure is required to isolate the high-voltage device and the low-voltage device. Also, in order to fit in with a high breakdown voltage that is requested by the high-voltage device, the isolation structure must reach predetermined-depth isolation. Therefore, a deep trench isolation structure formed in a thick epitaxial layer has been developed by extra providing an epitaxial layer on a semiconductor substrate.
A N+-type sinker 20 is formed in the N-type epitaxial layer 12 between the first FOX region 18I and the second FOX region 18II, and electrically connected to exterior wires formed overlying the N-type epitaxial layer 12.
In manufacturing the P+-type deep trench isolation structure 16, a deep trench formed in the N-type epitaxial layer 12 is filled with an oxide layer, and then ion implantation is employed to implant B+ ions into the oxide layer by, and finally thermal annealing is employed to diffuse the B+ ions in the oxide layer. For spreading the B+ ions around within the deep trench, however, the procedure time of the thermal annealing is very long, resulting in increased thermal budget. Also, since the thermal annealing makes the B+ ions diffuse both toward a vertical direction and a lateral direction, the width W of the P+-type deep trench isolation structure 16 increases as the depth H of the P+-type deep trench isolation structure 16 increases. When the deep trench 16 is requested to reach predetermined-depth isolation, the lateral size of the P+-type deep trench isolation structure is also increases, resulting in the required size of a chip being increased.
Accordingly, how to forming a deep trench isolation structure with decreasing thermal budget and reducing the lateral size of the deep trench isolation structure to solve the problems caused by the prior method is called for.
Accordingly, an object of the invention is to provide a deep trench isolation structure of a high-voltage device and a method of forming thereof, in which a P+-type diffusion region and an undoped polysilicon layer within a deep trench are formed as a P+-type deep trench isolation structure.
To achieve these and other advantages, the invention provides a deep trench isolation structure of a high-voltage device. An epitaxial layer with a second type conductivity is formed on a semiconductor silicon substrate with a first type conductivity. A deep trench passes through the epitaxial layer. An ion diffusion region with the first type conductivity is formed in the epitaxial layer and surrounds the sidewall and bottom of the deep trench. An undoped polysilicon layer fills the deep trench.
To achieve these and other advantages, the invention provides a method of forming a deep trench isolation structure of a high-voltage device. First, a semiconductor silicon substrate with a first type conductivity is provided with an epitaxial layer with a second type conductivity. Then, an oxide layer is formed on the epitaxial layer. Next, photolithography and etching are used to form a deep trench which passes through the oxide layer and the epitaxial layer. Next, an oxide liner is formed on the sidewall and bottom of the deep trench. Next, ion implantation is used to form an ion diffusion region with the first type conductivity which is formed in the epitaxial layer and surrounds the sidewall and bottom of the deep trench. Next, an undoped polysilicon layer is formed on the entire surface of the semiconductor silicon substrate to fill the deep trench. Finally, the oxide layer and the undoped polysilicon layer outside the deep trench are removed until the surface of the undoped polysilicon layer is leveled with the surface of the epitaxial layer.
Further scope of the applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
A preferred embodiment of the present invention is now described with reference to
Next, in
Thereafter, in
The present invention provides the P+-type diffusion region 44 and the undoped polysilicon layer 48 within the deep trench 40 as the P+-type deep trench isolation structure. Since the P+-type diffusion region 44 is formed on the sidewall and bottom of the deep trench 40 by the ion implantation 42, it is unnecessary to use the thermal annealing to drive the vertical diffusion mechanism of the P+-type dopants, resulting in decreased thermal budget. Also, compared with the conventional deep trench isolation structure having an H/W ratio equal to 1.2 by using thermal annealing, the present invention can control the H/W ratio of the P+-type deep trench isolation structure at 4˜3. This can reduce the surface size of the P+-type deep trench isolation structure.
The above-described P+-type deep trench isolation structure, including the P+-type diffusion region 44 and the undoped polysilicon layer 48 within the deep trench 40 can be integrated into a high-voltage device. Preferably, the high-voltage device has a drain terminal with a supply voltage exceeding 5V.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
91125218 A | Oct 2002 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4653177 | Lebowitz et al. | Mar 1987 | A |
4833094 | Kenney | May 1989 | A |
4939567 | Kenney | Jul 1990 | A |
5066607 | Banerjee | Nov 1991 | A |
5442214 | Yang | Aug 1995 | A |
5684319 | Hebert | Nov 1997 | A |
5843828 | Kinoshita | Dec 1998 | A |
5892264 | Davis et al. | Apr 1999 | A |
6252277 | Chan et al. | Jun 2001 | B1 |
6476443 | Kinzer | Nov 2002 | B1 |
6518618 | Fazio et al. | Feb 2003 | B1 |
6576516 | Blanchard | Jun 2003 | B1 |
6838735 | Kinzer et al. | Jan 2005 | B1 |
20010026989 | Thapar | Oct 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20040082140 A1 | Apr 2004 | US |