The present disclosure relates generally to medical treatment systems and, more particularly, but not by way of limitation, to delivery-and-fluid-storage bridges and pumps for use with or as an aspect of reduced-pressure treatment systems.
Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, which may include faster healing and increased formulation of granulation tissue. Typically, reduced pressure is applied to tissue through a porous pad or other manifold device. The porous pad distributes reduced pressure to the tissue and channels fluids that are drawn from the tissue.
According to an illustrative embodiment, a reduced-pressure treatment system for applying reduced pressure to a tissue site on a patient includes a reduced-pressure source for supplying reduced pressure, a treatment manifold for placing proximate the tissue site and adapted to distribute reduced pressure to the tissue site, a sealing member for placing over the tissue site and adapted to form a fluid seal over the tissue site and treatment manifold. The sealing member has a treatment aperture. The system further includes a delivery-and-fluid-storage bridge having a first longitudinal end and a second longitudinal end and a first side and a second, patient-facing side. The delivery-and-fluid-storage bridge includes a delivery manifold extending along a length of the delivery-and-fluid-storage bridge for delivering reduced pressure to the treatment manifold, an absorbent layer proximate the delivery manifold is adapted to receive and absorb fluids. The delivery manifold is formed from a first material and the absorbent layer is formed from a second material. The first material and second material differ in properties. The delivery-and-fluid-storage bridge further includes a first encapsulating layer and a second encapsulating layer at least partially enclosing the delivery manifold and absorbent layer. A first aperture is formed on the first side of the delivery-and-fluid-storage bridge proximate the first longitudinal end. The first aperture is fluidly coupled to the reduced-pressure source. A second aperture is formed on the second side of the delivery-and-fluid-storage bridge proximate the second longitudinal end. The second aperture is fluidly coupled to the treatment manifold over the treatment aperture in the sealing member. Reduced pressure is transferred from the first aperture along the distribution manifold to the second aperture and to the tissue site.
According to another illustrative, a delivery-and-fluid-storage bridge for use with a reduced-pressure treatment system includes a delivery manifold extending along a length of the delivery-and-fluid-storage bridge for delivering reduced pressure to a tissue site, an absorbent layer proximate the delivery manifold adapted to receive and absorb fluids, and wherein the delivery-and-fluid-storage bridge has a first side and a second, patient-facing side. The delivery-and-fluid-storage bridge further includes a first encapsulating layer and a second encapsulating layer at least partially enclosing the delivery manifold and absorbent layer. A first aperture is formed proximate the first longitudinal end of the delivery-and-fluid-storage bridge on the first side for fluidly communicating reduced pressure to the delivery manifold from a reduced-pressure source. A second aperture is formed on the second, patient-facing side of the second encapsulating layer for transmitting reduced pressure to a tissue site.
According to another illustrative embodiment, a delivery-and-fluid-storage bridge for use with a reduced-pressure treatment system includes a plurality of delivery manifolds extending along a length of the delivery-and-fluid-storage bridge for delivering reduced pressure to a tissue site, an absorbent layer proximate the plurality of delivery manifolds adapted to receive and absorb fluids, and an encapsulating pouch encapsulating the plurality of delivery manifolds and the absorbent layer. The encapsulating pouch includes a first encapsulating layer and a second encapsulating layer at least partially enclosing the delivery manifold and absorbent layer. The second encapsulating layer defines the second, patient-facing side of the delivery-and-fluid-storage bridge. A first aperture is formed proximate the first longitudinal end of the delivery-and-fluid-storage bridge for fluidly communicating reduced pressure to the delivery manifold from a reduced-pressure source. A second aperture is formed on the patient-facing side of the first encapsulating layer for transmitting reduced pressure to a tissue site.
According to another illustrative embodiment, a method for treating a tissue site utilizing a delivery-and-fluid-storage bridge includes placing a treatment manifold proximate the tissue site and providing a delivery-and-fluid-storage bridge. The delivery-and-fluid-storage bridge includes a delivery manifold extending along a length of the delivery-and-fluid-storage bridge for delivering reduced pressure to a tissue site, an absorbent layer proximate the delivery manifold adapted to receive and absorb fluids, and an encapsulating pouch encapsulating the delivery manifold and the absorbent layer. The encapsulating pouch includes a first encapsulating layer and a second encapsulating layer at least partially enclosing the delivery manifold and absorbent layer. The second encapsulating layer defines the second, patient-facing side of the delivery-and-fluid-storage bridge. A first aperture is formed on the delivery-and-fluid-storage bridge proximate the first longitudinal end for fluidly communicating reduced pressure to the delivery manifold from a reduced-pressure source, and a second aperture is formed on the patient-facing side of the second encapsulating layer for transmitting reduced pressure to a tissue site. The method further includes placing the second longitudinal end of the delivery-and-fluid-storage bridge proximate the treatment manifold, applying a reduced pressure to the first longitudinal end of the delivery-and-fluid-storage bridge through the first aperture, and communicating the reduced pressure along the reduced-pressure bridge through the delivery manifold to a second longitudinal end of the reduced-pressure bridge. The method also includes applying the reduced pressure through the second aperture to the treatment manifold proximate the tissue site, receiving fluids through the second aperture from the tissue site, and wicking fluids extracted from the tissue site through the second longitudinal end into the absorption layer positioned proximate the delivery manifold.
According to another illustrative embodiment, a method of manufacturing a delivery-and-fluid-storage bridge includes providing a delivery manifold, placing an absorbent layer proximate the delivery manifold, and encapsulating the delivery manifold and absorbent layer in an encapsulated pouch. The encapsulating pouch includes a first encapsulating layer and a second encapsulating layer at least partially enclosing the delivery manifold and absorbent layer. The second encapsulating layer defines the second, patient-facing side of the delivery-and-fluid-storage bridge. The method also includes forming a first aperture is formed proximate the first longitudinal end of the delivery-and-fluid-storage bridge for fluidly communicating reduced pressure to the delivery manifold from a reduced-pressure source. The method further includes forming a second aperture on the patient-facing side of the second encapsulating layer for transmitting reduced pressure to a tissue site.
Other features and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.
In the following detailed description of the illustrative embodiments, reference is made to the accompanying drawings that form a part hereof. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.
Referring primarily to
The reduced-pressure treatment system 100 may be used with a tissue site at a non-limited-access site or a limited-access site. Other illustrative examples of limited-access tissue sites include on a patient's back, under a compression garment, in a total contact casting (TCC), in a removable walker, in a healing sandal, in a half shoe, or in an ankle foot orthoses. The reduced-pressure treatment system 100 may be used with the bodily tissue of any human, animal, or other organism, including bone tissue, adipose tissue, muscle tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, ligaments, or any other tissue.
The delivery-and-fluid-storage bridge 102 provides a low profile source of reduced pressure to be supplied to the tissue site 104 and thereby may increase patient comfort and enhance reliability of the reduced-pressure supply to the tissue site 104. Because of the low profile of the delivery-and-fluid-storage bridge 102, the delivery-and-fluid-storage bridge 102 may readily be used with an offloading device. The low profile of the delivery-and-fluid-storage bridge 102 allows the delivery-and-fluid-storage bridge 102 to be used in numerous situations without raising pressure at a particular location, which can lead to the formation of pressure ulcers. The delivery-and-fluid-storage bridge 102 may allow the patient the benefit of both reduced-pressure treatment as well as the offloading of physical pressure.
With reference to
The first longitudinal end 110 is typically placed at a location on or near the patient that provides convenient access by the healthcare provider, such as a convenient location for applying reduced-pressure to the reduced-pressure-interface site 114. If a reduced-pressure interface 116 is attached at the first longitudinal end 110 at the first aperture 152, any type of reduced-pressure source may be attached to the reduced-pressure interface 116. For example, a pump could be attached to the reduced-pressure interface 116 or a reduced-pressure delivery conduit 118 could be attached with a remote reduced-pressure source. When an offloading device, e.g., offloading boot 108, is utilized, the delivery-and-fluid-storage bridge 102 would extend from the tissue site 104 to a place outside of the offloading device. The actual longitudinal length (L) 132 (see
A reduced-pressure delivery conduit 118 may fluidly couple the reduced-pressure interface 116 to a reduced-pressure source 120 or the reduced-pressure source 120 may be formed integrally with the delivery-and-fluid-storage bridge 102 as discussed further below. The reduced-pressure source 120 may be any device for supplying a reduced pressure, such as a vacuum pump, wall suction, or integrated micro-pump. While the amount and nature of reduced pressure applied to a tissue site will typically vary according to the application, the reduced pressure will typically be between −5 mm Hg (−667 Pa) and −500 mm Hg (−66.7 kPa) and more typically between −25 mm Hg (−3.33 kPa) and −200 mm Hg (−26.6 kPa). For example, and not by way of limitation, the pressure may be −12, −12.5, −13, −14, −14.5, −15, −15.5, −16, −16.5, −17, −17.5, −18, −18.5, −19, −19.5, −20, −20.5, −21, −21.5, −22, −22.5, −23, −23.5, −24, −24.5, −25, −25.5, −26, −26.5 kPa or another pressure. For vertical applications of the delivery-and-fluid-storage bridge 102, such as is shown in
As used herein, “reduced pressure” generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure at the tissue site. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be more than the pressure normally associated with a complete vacuum. Consistent with the use herein, an increase in reduced pressure or vacuum pressure typically refers to a relative reduction in absolute pressure. In one illustrative embodiment, a V.A.C.® Therapy Unit by Kinetic Concepts, Inc. of San Antonio may be used as the reduced-pressure source 120.
If the reduced-pressure interface 116 is attached at the first longitudinal end 110 at the first aperture 152, any type of reduced-pressure source 120 may be attached to the reduced-pressure interface 116. For example, a pump, such as micro-pump 128, could be attached to the reduced-pressure interface 116 or a reduced-pressure delivery conduit 118 could be attached with a remote reduced-pressure source.
Depending on the application, a plurality of devices may be fluidly coupled to the reduced-pressure delivery conduit 118. For example, a fluid canister 122 or a representative device 124 may be included. The representative device 124 may be another fluid reservoir or canister to hold exudates and other fluids removed. Other examples of the representative device 124 that may be included on the reduced-pressure delivery conduit 118 include the following non-limiting examples: a pressure-feedback device, a volume detection system, a blood detection system, an infection detection system, a flow monitoring system, a temperature monitoring system, a filter, etc. Some of these devices may be formed integrally with the reduced-pressure source 120. For example, a reduced-pressure port 126 on the reduced-pressure source 120 may include a filter member that includes one or more filters, e.g., an odor filter.
Referring now primarily to
The delivery-and-fluid-storage bridge 102 has an encapsulating pouch 136 that encapsulates fully or partially at least a first delivery manifold 138 and at least one absorbent layer 140 as shown in
The delivery manifolds 138, 142, 144 and the treatment manifold 109 may be formed from any manifold material for distributing reduced pressure. The term “manifold” as used herein generally refers to a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from a location, such as a tissue site. The manifold material typically includes a plurality of flow channels or pathways that distribute fluids provided to and removed from locations around the manifold material. In one illustrative embodiment, the flow channels or pathways are interconnected to improve distribution of fluids. Examples of manifold materials may include, without limitation, devices that have structural elements arranged to form flow channels, such as, for example, cellular foam, open-cell foam, porous tissue collections, liquids, gels, non-wovens, and foams that include, or cure to include, flow channels. The manifold material may be porous and may be made from foam, gauze, felted mat, or any other material suited to transport fluids. In one embodiment, the manifold material is a porous foam and includes a plurality of interconnected cells or pores that act as flow channels. The porous foam may be a polyurethane, open-cell, reticulated foam such as GranuFoam® material manufactured by Kinetic Concepts, Incorporated of San Antonio, Tex. Other embodiments may include “closed cells” at least on portions.
The delivery manifolds 138, 142, 144 may be formed from a manifold material that may be a high-wicking manifold material, such as a capillary material or non-woven material. The high-wicking material used for the delivery manifold material may allow the delivery-and-fluid-storage bridge 102 to operate removing the fluid through the delivery-and-fluid-storage bridge 102 even without reduced pressure being applied.
The absorbent layer 140 may be formed from any material that is adapted to receive and store fluids. For example, without limitation, the absorbent layer 140 may be formed from one or more of the following: capillary-containing material, super absorbent fiber/particulates, hydrofiber, sodium carboxymethyl cellulose, alginates, sodium polyacrylate, or other suitable material. The absorbent layer 140 and the manifold material used for the delivery manifolds 138, 142, 144 may in some illustrative embodiments be treated with a plasma coating to increase the hydrophilic properties and to thereby aid in fluid transfer through the system. The hydrophilic properties of the manifolds 138, 142, 144 may also be enhanced by coating the manifolds 138, 142, 144 with a dip or spray of a suitable material such as a HYDAK coating. Use of the absorbent layer 140 as an aspect of the reduced-pressure treatment system 100 allows the fluids removed to be stored locally, i.e., fairly close to the tissue site 104, such that the removed fluids are not transported a great distance.
The encapsulating pouch 136 typically is formed with a first encapsulating layer 148 and a second encapsulating layer 150 that at least partially enclose the delivery manifold(s) 138, 142, 144 and absorbent layer 140. The second encapsulating layer 150 is the second, patient-facing side 105 of the delivery-and-fluid-storage bridge 102. The first aperture 152 is formed proximate the first longitudinal end 110 of the delivery-and-fluid-storage bridge 102 on the first encapsulating layer 148. The first aperture 152 is for fluidly communicating reduced pressure to the delivery manifold(s) 138, 142, 144 from the reduced-pressure source 120. A second aperture 154 is formed on the second, patient-facing side 105 of the second encapsulating layer 150 for transmitting reduced pressure from the interior portion 146 to the tissue site 104. An anti-microbial additive may be included in the interior portion 146 to help control bacteria growth.
The first encapsulating layer 148 and the second encapsulating layer 150 have peripheral edges 156 that may be coupled to form the encapsulating pouch 136. The peripheral edges 156 may be coupled using any technique. As used herein, the term “coupled” includes coupling via a separate object and includes direct coupling. The term “coupled” also encompasses two or more components that are continuous with one another by virtue of each of the components being formed from the same piece of material. The term “coupled” may include chemical, such as via a chemical bond, adhesive, mechanical, or thermal coupling. Coupling may include without limitation welding (e.g., ultrasonic or RF welding), bonding, adhesives, cements, etc. Fluid coupling means that fluid is in communication between the designated parts or locations. Thus, the first encapsulating layer 148 and the second encapsulating layer 150 may be coupled among other ways by weld 158.
The encapsulating layers 148, 150 may be formed from any material that provides a fluid seal about the interior portion 146 that allows a reduced-pressure to be maintained therein for a given reduced-pressure source. The encapsulating layers 148, 150 may, for example, be an impermeable or semi-permeable, elastomeric material. For semi-permeable materials, the permeability must be low enough that for a given reduced-pressure source, the desired reduced pressure may be maintained. “Elastomeric” means having the properties of an elastomer. Elastomeric material generally refers to a polymeric material that has rubber-like properties. More specifically, most elastomers have ultimate elongations greater than 100% and a significant amount of resilience. The resilience of a material refers to the material's ability to recover from an elastic deformation. Examples of elastomers may include, but are not limited to, natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfide rubber, polyurethane (PU), EVA film, co-polyester, and silicones. Additional, specific examples of sealing member materials include a silicone drape, a 3M Tegaderm® drape, or a polyurethane (PU) drape such as one available from Avery Dennison Corporation of Pasadena, Calif.
As shown in
An adhesive member or members 161, e.g., adhesive ring 163, may be applied to the second, patient-facing side 105 of the delivery-and-fluid-storage bridge 102 proximate the second aperture 154. The adhesive member(s) 161 helps form a fluid seal proximate the tissue site 104—either on a sealing member (see, e.g., 315 in
Additional items may disposed in the interior portion 146 at discrete locations or along the longitudinal length 132 of the delivery-and-fluid-storage bridge 102. For example, as shown in
A color change dye may be included at the first longitudinal end 110 of the delivery-and-fluid-storage bridge 102 in order to provide feedback on the status of the absorbent layer 140. The color change dye may change colors or tone when the color change dye becomes wet thereby providing a visual indication that the delivery-and-fluid-storage bridge 102 is full. Moreover, color change dye may be positioned at various locations or continually along the delivery-and-fluid-storage bridge 102 to provide a progressive indications of capacity used, e.g., 25%, 50%, 75%, 100% used. Electrodes in the delivery-and-fluid-storage bridge 102 may be included at the first longitudinal end to form a galvanic cell that provides a voltage when the electrodes are covered by exudate or other removed liquids. In addition, the lumen 164 could monitor pressure at the second longitudinal end 112 and this information could be compared with pressure at the reduced-pressure source 120 to determine the pressure drop across the system 100 and thereby the saturation determined.
In another embodiment, the lumen 164 may be formed using a portion of the first encapsulating layer 148 or second encapsulating layer 150 and an additional longitudinal sheet secured to an inward-facing surface of the first encapsulating layer 148 or second encapsulating layer 150 to form the lumen 164. In still another embodiment, the lumen 164 may have a manifolding material disposed within the lumen 164. In still another embodiment, a longitudinal manifold material may be placed between the first encapsulating layer 148 and second encapsulating layer 150 near a periphery where the first encapsulating layer 148 and second encapsulating layer 150 otherwise directly touch. A seal or bond may be formed on each side of the longitudinal manifold material to form the lumen 164 with the manifold material therein.
In operation, the treatment manifold 109 may be placed into or proximate the tissue site 104. A sealing member (see, e.g., sealing member 315 in
The longitudinal length 132 of the delivery-and-fluid-storage bridge 102 may be used to position the first longitudinal end 110 at a convenient location to either attach the reduced-pressure interface 116 and reduced-pressure delivery conduit 118 as shown in
As the reduced-pressure source 120 is activated, the reduced-pressure source 120 communicates the reduced pressure along the delivery-and-fluid-storage bridge 102 through the delivery manifold(s) 138, 142, 144 to the second longitudinal end 112 of the delivery-and-fluid-storage bridge 102. The reduced pressure is then applied through the second aperture 154 to the treatment manifold 109 proximate the tissue site 104. In addition, typically, fluids are extracted from the tissue site 104 and received through the second aperture 154. After entering the interior portion 146, the fluids are recruited into the absorbent layer 140 positioned proximate the delivery manifold(s) 138, 142, 144. The fluids are substantially recruited and maintained in the absorbent layer 140. As a result, typically reduced pressure may be transported relatively more efficiently through the delivery manifold(s) 138, 142, 144. In this way, the reduced pressure need not overcome gravity's influence on a column of liquid to the same degree as the reduced pressure otherwise would. Typically, the pressure drop realized over the delivery-and-fluid-storage bridge 102 is constant until the absorbent layer 140 becomes saturated. As previously noted, a high-wicking material may be used for the delivery manifold material in order to allow the delivery-and-fluid-storage bridge 102 to remove the fluid through the delivery-and-fluid-storage bridge 102 even without reduced pressure being applied.
Thus, the delivery-and-fluid-storage bridge 102 may be particularly useful in avoiding a situation in which excessive fluid from a tissue site is held against gravity by reduced pressure alone. The delivery-and-fluid-storage bridge 102 moves liquids into storage and provides a flow path for gases. The liquids are drawn into the absorbent layer 140 and the gases are allowed to remain in the delivery manifolds 138, 142, 144. By using this approach, the reduced-pressure source 120 does not have to be modulated as the amount of fluid in the delivery-and-fluid-storage bridge 102 increases. Typically, the pressure drop realized over the delivery-and-fluid-storage bridge 102 is constant until the absorbent layer 140 becomes saturated.
Referring now primarily to
The delivery-and-fluid-storage bridge 202 further includes a reservoir portion 207 and a placement portion 211. The reservoir portion 207 has a first aspect ratio (length/width) AR1 and the placement portion 211 has a second aspect ratio AR2. The placement portion has a higher aspect ration to facilitate placement of the second longitudinal end 212 and the reservoir portion 207 has a lower aspect ratio (AR2>AR1). Stated in other terms, the area (A1) in plan view of the reservoir portion 207 is greater than the area (A2) in plan view of the placement portion 211, i.e., A1>A2. The placement portion 211 facilitates easy placement and positioning of the second longitudinal end 212 in limited-access tissue sites and the reservoir portion 207 provides increased space for fluids to be stored.
While the reservoir portion 207 and the placement portion 211 are shown with a specific shape, it should be understood that numerous shapes may be given to the delivery-and-fluid-storage bridge 202. For example, in another illustrative embodiment, the delivery- and storage bridge 202 is shaped like a triangle with the apex being the second longitudinal end. In another illustrative embodiment, the deliver-and-storage bridge 202 may have a shape that resembles a “lollipop”—a thinner section coming away from the first longitudinal end with a larger portion at the first longitudinal end.
Referring now primarily to
The treatment manifold 309 is placed proximate the tissue site 304 and then a fluid seal is formed over the treatment manifold 309 by using a sealing member 315. An adhesive device 317 may be used to help form a fluid seal between the sealing member 315 and the patient's skin 319. The sealing member 315 may have a treatment aperture 321 for providing access to the treatment manifold 309. Thus, the reduced pressure is delivered through a second aperture 354 and through the treatment aperture 321 to the treatment manifold 309.
The delivery-and-fluid-storage bridge 302 has an encapsulation pouch 336 formed with a first encapsulation layer 348 and a second encapsulation layer 350. The encapsulation pouch 336 has disposed within an interior portion a plurality of delivery manifolds 342 and an absorbent layer 340.
A first aperture (not explicitly shown) is formed on the first longitudinal end 310. A reduced-pressure source 320 provides reduced pressure through the first aperture to the interior of the encapsulation pouch 336. From there, the reduced pressure is delivered to the second longitudinal end 312 as previously discussed. In this illustrative, non-limiting example, the reduced-pressure source 320 is a micro-pump 328, which has a piezoelectric pump 330 and a battery, such as battery 331, that are integrated with the delivery-and-fluid-storage bridge 302. In the illustrative embodiment of
As shown in
In the illustrative embodiment of
The low profile of the delivery-and-fluid-storage bridges 102, 202, 302 herein allows for each bridge 102, 202, 302 to be used in numerous situations without raising pressure at a particular point, i.e., without causing a stress riser, which can lead to the formation of pressure ulcers. The delivery-and-fluid-storage bridge 102, 202, 302 separates liquids from gases. The liquids are drawn into the absorbent layer, e.g., absorbent layer 140, until saturation occurs and the gases are allowed to remain in the delivery manifolds 142 or manifold 138 from where the gases may be removed by a reduced pressure source.
Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the appended claims. It will be appreciated that any feature that is described in connection to any one embodiment may also be applicable to any other embodiment.
It will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments. It will further be understood that reference to ‘an’ item refers to one or more of those items.
The steps of the methods described herein may be carried out in any suitable order, or simultaneously where appropriate.
Where appropriate, aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples having comparable or different properties and addressing the same or different problems.
It will be understood that the above description of preferred embodiments is given by way of example only and that various modifications may be made by those skilled in the art. The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments of the invention. Although various embodiments of the invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the scope of the claims.
This application is a continuation of U.S. patent application Ser. No. 14/334,510, filed Jul. 17, 2014, which is a continuation application of U.S. patent application Ser. No. 13/046,164, entitled “Delivery-and-Fluid-Storage Bridges For Use With Reduced-Pressure Systems,” filed Mar. 11, 2011, now U.S. Pat. No. 8,814,842, which claims the benefit, under 35 USC § 119(e), of the filing of U.S. Provisional Patent Application Ser. No. 61/314,299, entitled “Delivery-and-Fluid-Storage Bridges For Use With Reduced-Pressure Systems,” filed Mar. 16, 2010, each of which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
1944834 | Bennett | Jan 1934 | A |
2547758 | Keeling | Apr 1951 | A |
2552664 | Burdine | May 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans | Jul 1954 | A |
2860081 | Eiken | Nov 1958 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3172808 | Baumann et al. | Mar 1965 | A |
3183116 | Schaar | May 1965 | A |
3367332 | Groves | Feb 1968 | A |
3376868 | Mondiadis | Apr 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3742952 | Magers et al. | Jul 1973 | A |
3774611 | Tussey et al. | Nov 1973 | A |
3777016 | Gilbert | Dec 1973 | A |
3779243 | Tussey et al. | Dec 1973 | A |
3826254 | Mellor | Jul 1974 | A |
3852823 | Jones | Dec 1974 | A |
3903882 | Augurt | Sep 1975 | A |
3967624 | Milnamow | Jul 1976 | A |
3983297 | Ono et al. | Sep 1976 | A |
4060081 | Yannas et al. | Nov 1977 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4141361 | Snyder | Feb 1979 | A |
4163822 | Walter | Aug 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4174664 | Arnott et al. | Nov 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4323069 | Ahr et al. | Apr 1982 | A |
4333468 | Geist | Jun 1982 | A |
4343848 | Leonard, Jr. | Aug 1982 | A |
4360015 | Mayer | Nov 1982 | A |
4373519 | Errede | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4414970 | Berry | Nov 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4529402 | Weilbacher et al. | Jul 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4600146 | Ohno | Jul 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4617021 | Leuprecht | Oct 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664652 | Weilbacher | May 1987 | A |
4664662 | Webster | May 1987 | A |
4705543 | Kertzman | Nov 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4715857 | Juhasz et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4753230 | Carus | Jun 1988 | A |
4753232 | Ward | Jun 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4773408 | Cilento et al. | Sep 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4832008 | Gilman | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4842594 | Ness | Jun 1989 | A |
4848364 | Bosman | Jul 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4871611 | LeBel | Oct 1989 | A |
4872450 | Bustad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed | Mar 1990 | A |
4919654 | Kalt | Apr 1990 | A |
4930997 | Bennett | Jun 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4961493 | Kaihatsu | Oct 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4981474 | Bopp et al. | Jan 1991 | A |
4985019 | Michelson | Jan 1991 | A |
4995382 | Lang et al. | Feb 1991 | A |
4996128 | Aldecoa | Feb 1991 | A |
5010883 | Rawlings et al. | Apr 1991 | A |
5018515 | Gilman | May 1991 | A |
5025783 | Lamb | Jun 1991 | A |
5028597 | Kodama et al. | Jul 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5042500 | Norlien et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092323 | Riedel et al. | Mar 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5112323 | Winkler et al. | May 1992 | A |
5127601 | Schroeder | Jul 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5151314 | Brown | Sep 1992 | A |
5152757 | Eriksson | Oct 1992 | A |
5167613 | Karami | Dec 1992 | A |
5176663 | Svedman | Jan 1993 | A |
5180375 | Feibus | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5244457 | Karami et al. | Sep 1993 | A |
5246775 | Loscuito | Sep 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5266372 | Arakawa et al. | Nov 1993 | A |
5270358 | Asmus | Dec 1993 | A |
5271987 | Iskra | Dec 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342329 | Croquevielle | Aug 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5356386 | Goldberg | Oct 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5384174 | Ward et al. | Jan 1995 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5419769 | Devlin | May 1995 | A |
5423778 | Eriksson et al. | Jun 1995 | A |
5429590 | Saito et al. | Jul 1995 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5445604 | Lang | Aug 1995 | A |
5447492 | Cartmell et al. | Sep 1995 | A |
5458938 | Nygard et al. | Oct 1995 | A |
5501212 | Psaros | Mar 1996 | A |
5522808 | Skalla | Jun 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5549585 | Maher | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5585178 | Calhoun et al. | Dec 1996 | A |
5599292 | Yoon | Feb 1997 | A |
5607388 | Ewall | Mar 1997 | A |
5611373 | Ashcraft | Mar 1997 | A |
5634893 | Rishton | Jun 1997 | A |
5636643 | Argenta | Jun 1997 | A |
5641506 | Talke et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5653224 | Johnson | Aug 1997 | A |
5678564 | Lawrence et al. | Oct 1997 | A |
5710233 | Meckel et al. | Jan 1998 | A |
5714225 | Hansen et al. | Feb 1998 | A |
5736470 | Schneberger et al. | Apr 1998 | A |
5759570 | Arnold | Jun 1998 | A |
5776119 | Bilbo | Jul 1998 | A |
5807295 | Hutcheon et al. | Sep 1998 | A |
5830201 | George et al. | Nov 1998 | A |
5878971 | Minnema | Mar 1999 | A |
5902439 | Pike et al. | May 1999 | A |
5919476 | Fischer et al. | Jul 1999 | A |
5941863 | Guidotti et al. | Aug 1999 | A |
5964252 | Simmons et al. | Oct 1999 | A |
5981822 | Addison | Nov 1999 | A |
5998561 | Jada | Dec 1999 | A |
6071267 | Zamierowski | Jun 2000 | A |
6083616 | Dressier | Jul 2000 | A |
6086995 | Smith | Jul 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6159877 | Scholz | Dec 2000 | A |
6174306 | Fleischmann | Jan 2001 | B1 |
6191335 | Robinson | Feb 2001 | B1 |
6201164 | Wulff et al. | Mar 2001 | B1 |
6228485 | Leiter | May 2001 | B1 |
6238762 | Friedland et al. | May 2001 | B1 |
6241747 | Ruff | Jun 2001 | B1 |
6262329 | Brunsveld et al. | Jul 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6457200 | Tanaka et al. | Oct 2002 | B1 |
6458109 | Henley et al. | Oct 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6495229 | Carte et al. | Dec 2002 | B1 |
6503855 | Menzies et al. | Jan 2003 | B1 |
6548727 | Swenson | Apr 2003 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6566575 | Stickels | May 2003 | B1 |
6566577 | Addison et al. | May 2003 | B1 |
6626891 | Ohmstede | Sep 2003 | B2 |
6627215 | Dale et al. | Sep 2003 | B1 |
6648862 | Watson | Nov 2003 | B2 |
6680113 | Lucast et al. | Jan 2004 | B1 |
6685681 | Lockwood | Feb 2004 | B2 |
6693180 | Lee | Feb 2004 | B2 |
6695823 | Lina | Feb 2004 | B1 |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6787682 | Gilman | Sep 2004 | B2 |
6806214 | Li | Oct 2004 | B2 |
6814079 | Heaton | Nov 2004 | B2 |
6855135 | Lockwood | Feb 2005 | B2 |
6856821 | Johnson | Feb 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
7070584 | Johnson | Jul 2006 | B2 |
7154017 | Sigurjonsson et al. | Dec 2006 | B2 |
7402721 | Sigurjonsson et al. | Jul 2008 | B2 |
7569742 | Haggstrom et al. | Aug 2009 | B2 |
7645269 | Zamierowski | Jan 2010 | B2 |
7846141 | Weston | Dec 2010 | B2 |
8062273 | Weston | Nov 2011 | B2 |
8216198 | Heagle et al. | Jul 2012 | B2 |
8251979 | Malhi | Aug 2012 | B2 |
8257327 | Blott et al. | Sep 2012 | B2 |
8298197 | Eriksson et al. | Oct 2012 | B2 |
8398614 | Blott et al. | Mar 2013 | B2 |
8449509 | Weston | May 2013 | B2 |
8529532 | Pinto et al. | Sep 2013 | B2 |
8529548 | Blott et al. | Sep 2013 | B2 |
8535296 | Blott et al. | Sep 2013 | B2 |
8551060 | Schuessler et al. | Oct 2013 | B2 |
8568386 | Malhi | Oct 2013 | B2 |
8632523 | Eriksson et al. | Jan 2014 | B2 |
8679081 | Heagle et al. | Mar 2014 | B2 |
8764732 | Hartwell | Jul 2014 | B2 |
8814842 | Coulthard | Aug 2014 | B2 |
8834451 | Blott et al. | Sep 2014 | B2 |
8920830 | Mathies | Dec 2014 | B2 |
8926592 | Blott et al. | Jan 2015 | B2 |
9017302 | Vitaris et al. | Apr 2015 | B2 |
9192444 | Locke et al. | Nov 2015 | B2 |
9198801 | Weston | Dec 2015 | B2 |
9211365 | Weston | Dec 2015 | B2 |
9289542 | Blott et al. | Mar 2016 | B2 |
9877873 | Coulthard et al. | Jan 2018 | B2 |
9956120 | Locke | May 2018 | B2 |
10279088 | Coulthard | May 2019 | B2 |
20010030304 | Kohda et al. | Oct 2001 | A1 |
20010051178 | Blatchford et al. | Dec 2001 | A1 |
20020009568 | Bries et al. | Jan 2002 | A1 |
20020016346 | Brandt et al. | Feb 2002 | A1 |
20020065494 | Lockwood et al. | May 2002 | A1 |
20020077661 | Saadat | Jun 2002 | A1 |
20020090496 | Kim et al. | Jul 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020119292 | Venkatasanthanam et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020130064 | Adams et al. | Sep 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020150270 | Werner | Oct 2002 | A1 |
20020150720 | Howard et al. | Oct 2002 | A1 |
20020161346 | Lockwood et al. | Oct 2002 | A1 |
20020164346 | Nicolette | Nov 2002 | A1 |
20020183702 | Henley et al. | Dec 2002 | A1 |
20020198504 | Risk et al. | Dec 2002 | A1 |
20030014022 | Lockwood et al. | Jan 2003 | A1 |
20030070680 | Smith et al. | Apr 2003 | A1 |
20030109855 | Solem | Jun 2003 | A1 |
20030158577 | Ginn | Aug 2003 | A1 |
20030208175 | Gross et al. | Nov 2003 | A1 |
20030212357 | Pace | Nov 2003 | A1 |
20030225347 | Argenta | Dec 2003 | A1 |
20030225355 | Butler | Dec 2003 | A1 |
20040002676 | Siegwart et al. | Jan 2004 | A1 |
20040030304 | Hunt et al. | Feb 2004 | A1 |
20040064132 | Boehringer et al. | Apr 2004 | A1 |
20040077984 | Worthley | Apr 2004 | A1 |
20040082925 | Patel | Apr 2004 | A1 |
20040099268 | Smith et al. | May 2004 | A1 |
20040118401 | Smith et al. | Jun 2004 | A1 |
20040127836 | Sigurjonsson et al. | Jul 2004 | A1 |
20040127862 | Bubb et al. | Jul 2004 | A1 |
20040133143 | Burton et al. | Jul 2004 | A1 |
20040163278 | Caspers et al. | Aug 2004 | A1 |
20040186239 | Qin et al. | Sep 2004 | A1 |
20040219337 | Langley et al. | Nov 2004 | A1 |
20040230179 | Shehada | Nov 2004 | A1 |
20050034731 | Rousseau et al. | Feb 2005 | A1 |
20050054998 | Poccia et al. | Mar 2005 | A1 |
20050058810 | Dodge | Mar 2005 | A1 |
20050059918 | Sigurjonsson et al. | Mar 2005 | A1 |
20050065484 | Watson | Mar 2005 | A1 |
20050070858 | Lockwood et al. | Mar 2005 | A1 |
20050101940 | Radi | May 2005 | A1 |
20050113732 | Lawry | May 2005 | A1 |
20050124925 | Scherpenborg | Jun 2005 | A1 |
20050131327 | Lockwood et al. | Jun 2005 | A1 |
20050137539 | Biggie et al. | Jun 2005 | A1 |
20050143694 | Schmidt et al. | Jun 2005 | A1 |
20050158442 | Westermann et al. | Jul 2005 | A1 |
20050159695 | Cullen et al. | Jul 2005 | A1 |
20050161042 | Fudge et al. | Jul 2005 | A1 |
20050163978 | Strobech et al. | Jul 2005 | A1 |
20050214376 | Faure et al. | Sep 2005 | A1 |
20050233072 | Stephan et al. | Oct 2005 | A1 |
20050256437 | Silcock et al. | Nov 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20050261643 | Bybordi et al. | Nov 2005 | A1 |
20050277860 | Jensen | Dec 2005 | A1 |
20060014030 | Langen et al. | Jan 2006 | A1 |
20060020235 | Siniaguine | Jan 2006 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
20060083776 | Bott et al. | Apr 2006 | A1 |
20060154546 | Murphy et al. | Jul 2006 | A1 |
20060236979 | Stolarz et al. | Oct 2006 | A1 |
20060241542 | Gudnason et al. | Oct 2006 | A1 |
20060271020 | Huang et al. | Nov 2006 | A1 |
20070027414 | Hoffman et al. | Feb 2007 | A1 |
20070028526 | Woo et al. | Feb 2007 | A1 |
20070078366 | Haggstrom et al. | Apr 2007 | A1 |
20070135787 | Raidel | Jun 2007 | A1 |
20070161937 | Aali | Jul 2007 | A1 |
20070185426 | Ambrosio | Aug 2007 | A1 |
20070190281 | Hooft | Aug 2007 | A1 |
20070225663 | Watt et al. | Sep 2007 | A1 |
20070265585 | Joshi et al. | Nov 2007 | A1 |
20070265586 | Joshi et al. | Nov 2007 | A1 |
20070283962 | Doshi et al. | Dec 2007 | A1 |
20080009812 | Riesinger | Jan 2008 | A1 |
20080027366 | Da Silva Macedo | Jan 2008 | A1 |
20080082059 | Fink et al. | Apr 2008 | A1 |
20080090085 | Kawate et al. | Apr 2008 | A1 |
20080119802 | Riesinger | May 2008 | A1 |
20080138591 | Graham et al. | Jun 2008 | A1 |
20080149104 | Eifler | Jun 2008 | A1 |
20080173389 | Mehta et al. | Jul 2008 | A1 |
20080195017 | Robinson | Aug 2008 | A1 |
20080225663 | Smith et al. | Sep 2008 | A1 |
20080243044 | Hunt et al. | Oct 2008 | A1 |
20080269657 | Brenneman et al. | Oct 2008 | A1 |
20080271804 | Biggie | Nov 2008 | A1 |
20090025724 | Herron, Jr. | Jan 2009 | A1 |
20090088719 | Driskell | Apr 2009 | A1 |
20090093779 | Riesinger | Apr 2009 | A1 |
20090124988 | Coulthard | May 2009 | A1 |
20090177172 | Wilkes | Jul 2009 | A1 |
20090216168 | Eckstein | Aug 2009 | A1 |
20090216170 | Robinson et al. | Aug 2009 | A1 |
20090216204 | Bhavaraju et al. | Aug 2009 | A1 |
20090227969 | Jaeb et al. | Sep 2009 | A1 |
20090234306 | Vitaris | Sep 2009 | A1 |
20090234307 | Vitaris | Sep 2009 | A1 |
20090264807 | Haggstrom et al. | Oct 2009 | A1 |
20090292264 | Hudspeth et al. | Nov 2009 | A1 |
20090312662 | Colman et al. | Dec 2009 | A1 |
20090326487 | Vitaris | Dec 2009 | A1 |
20090326488 | Budig et al. | Dec 2009 | A1 |
20100028390 | Cleary et al. | Feb 2010 | A1 |
20100030170 | Keller et al. | Feb 2010 | A1 |
20100063467 | Addison et al. | Mar 2010 | A1 |
20100069863 | Dlson | Mar 2010 | A1 |
20100106106 | Heaton et al. | Apr 2010 | A1 |
20100106118 | Heaton et al. | Apr 2010 | A1 |
20100111919 | Abuzaina | May 2010 | A1 |
20100125259 | Olson | May 2010 | A1 |
20100159192 | Cotton | Jun 2010 | A1 |
20100168633 | Bougherara et al. | Jul 2010 | A1 |
20100168635 | Freiding et al. | Jul 2010 | A1 |
20100185163 | Heagle | Jul 2010 | A1 |
20100212768 | Resendes | Aug 2010 | A1 |
20100226824 | Ophir et al. | Sep 2010 | A1 |
20100262090 | Riesinger | Oct 2010 | A1 |
20100267302 | Kantner et al. | Oct 2010 | A1 |
20100268144 | Lu et al. | Oct 2010 | A1 |
20100286582 | Simpson et al. | Nov 2010 | A1 |
20100305490 | Coulthard et al. | Dec 2010 | A1 |
20100305524 | Vess et al. | Dec 2010 | A1 |
20100312159 | Aali et al. | Dec 2010 | A1 |
20100318072 | Johnston | Dec 2010 | A1 |
20100324510 | Andresen | Dec 2010 | A1 |
20100324516 | Braga et al. | Dec 2010 | A1 |
20110046585 | Weston | Feb 2011 | A1 |
20110054423 | Blott et al. | Mar 2011 | A1 |
20110118683 | Weston | May 2011 | A1 |
20110137271 | Andresen et al. | Jun 2011 | A1 |
20110160686 | Ueda et al. | Jun 2011 | A1 |
20110171480 | Mori et al. | Jul 2011 | A1 |
20110172617 | Riesinger | Jul 2011 | A1 |
20110201984 | Dubrow et al. | Aug 2011 | A1 |
20110224631 | Simmons et al. | Sep 2011 | A1 |
20110229688 | Cotton | Sep 2011 | A1 |
20110237969 | Eckerbom et al. | Sep 2011 | A1 |
20110244010 | Doshi | Oct 2011 | A1 |
20110257612 | Locke et al. | Oct 2011 | A1 |
20110257617 | Franklin | Oct 2011 | A1 |
20110281084 | Ashwell | Nov 2011 | A1 |
20110282309 | Adie et al. | Nov 2011 | A1 |
20120016322 | Coulthard et al. | Jan 2012 | A1 |
20120019031 | Bessert | Jan 2012 | A1 |
20120036733 | Dehn | Feb 2012 | A1 |
20120040131 | Speer | Feb 2012 | A1 |
20120059339 | Gundersen | Mar 2012 | A1 |
20120095380 | Gergely et al. | Apr 2012 | A1 |
20120109034 | Locke et al. | May 2012 | A1 |
20120123359 | Reed | May 2012 | A1 |
20120143157 | Riesinger | Jun 2012 | A1 |
20120237722 | Seyler et al. | Sep 2012 | A1 |
20120258271 | Maughan | Oct 2012 | A1 |
20120310186 | Moghe et al. | Dec 2012 | A1 |
20130030394 | Locke et al. | Jan 2013 | A1 |
20130053746 | Roland et al. | Feb 2013 | A1 |
20130066285 | Locke et al. | Mar 2013 | A1 |
20130096518 | Hall et al. | Apr 2013 | A1 |
20130098360 | Hurmez et al. | Apr 2013 | A1 |
20130116661 | Coward et al. | May 2013 | A1 |
20130150763 | Mirzaei et al. | Jun 2013 | A1 |
20130152945 | Locke et al. | Jun 2013 | A1 |
20130165887 | Eric Mitchell et al. | Jun 2013 | A1 |
20130172843 | Kurata | Jul 2013 | A1 |
20130189339 | Vachon | Jul 2013 | A1 |
20130261585 | Lee | Oct 2013 | A1 |
20130304007 | Toth | Nov 2013 | A1 |
20130330486 | Shields | Dec 2013 | A1 |
20140039423 | Riesinger | Feb 2014 | A1 |
20140039424 | Locke | Feb 2014 | A1 |
20140058309 | Addison et al. | Feb 2014 | A1 |
20140107561 | Dorian et al. | Apr 2014 | A1 |
20140107562 | Dorian et al. | Apr 2014 | A1 |
20140141197 | Hill et al. | May 2014 | A1 |
20140155849 | Heaton et al. | Jun 2014 | A1 |
20140163491 | Schuessler et al. | Jun 2014 | A1 |
20140171851 | Addison | Jun 2014 | A1 |
20140178564 | Patel | Jun 2014 | A1 |
20140309574 | Cotton | Oct 2014 | A1 |
20140336557 | Durdag et al. | Nov 2014 | A1 |
20140350494 | Hartwell et al. | Nov 2014 | A1 |
20140352073 | Goenka | Dec 2014 | A1 |
20150030848 | Goubard | Jan 2015 | A1 |
20150045752 | Grillitsch et al. | Feb 2015 | A1 |
20150057625 | Coulthard | Feb 2015 | A1 |
20150080788 | Blott et al. | Mar 2015 | A1 |
20150080815 | Chakravarthy et al. | Mar 2015 | A1 |
20150119830 | Luckemeyer et al. | Apr 2015 | A1 |
20150119833 | Coulthard et al. | Apr 2015 | A1 |
20150119834 | Locke et al. | Apr 2015 | A1 |
20150141941 | Allen et al. | May 2015 | A1 |
20150190286 | Allen et al. | Jul 2015 | A1 |
20150290041 | Richard | Oct 2015 | A1 |
20160000610 | Riesinger | Jan 2016 | A1 |
20160067107 | Cotton | Mar 2016 | A1 |
20160144084 | Collinson et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Mar 2002 | AU |
755496 | Dec 2002 | AU |
2009200608 | Oct 2009 | AU |
2005436 | Jun 1990 | CA |
87101823 | Aug 1988 | CN |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
29 504 378 | Sep 1995 | DE |
202004018245 | Jul 2005 | DE |
202014100383 | Feb 2015 | DE |
0097517 | Jan 1984 | EP |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0251810 | Jan 1988 | EP |
0275353 | Jul 1988 | EP |
0358302 | Mar 1990 | EP |
0538917 | Apr 1993 | EP |
0630629 | Dec 1994 | EP |
0659390 | Jun 1995 | EP |
0633758 | Oct 1996 | EP |
1002846 | May 2000 | EP |
1018967 | Jul 2000 | EP |
2578193 | Apr 2013 | EP |
692578 | Jun 1953 | GB |
1386800 | Mar 1975 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
2377939 | Jan 2003 | GB |
2392836 | Mar 2004 | GB |
2393655 | Apr 2004 | GB |
2425487 | Nov 2006 | GB |
2452720 | Mar 2009 | GB |
2496310 | May 2013 | GB |
1961003393 | Feb 1961 | JP |
S62139523 | Sep 1987 | JP |
S62-275456 | Nov 1987 | JP |
2005205120 | Aug 2005 | JP |
2007254515 | Oct 2007 | JP |
2008080137 | Apr 2008 | JP |
4129536 | Aug 2008 | JP |
2012050274 | Mar 2012 | JP |
71559 | Apr 2002 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
8707164 | Dec 1987 | WO |
90010424 | Sep 1990 | WO |
93009727 | May 1993 | WO |
94020041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9622753 | Aug 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
9965542 | Dec 1999 | WO |
0136188 | May 2001 | WO |
0160296 | Aug 2001 | WO |
0168021 | Sep 2001 | WO |
0185248 | Nov 2001 | WO |
0190465 | Nov 2001 | WO |
0243743 | Jun 2002 | WO |
02062403 | Aug 2002 | WO |
03-018098 | Mar 2003 | WO |
03045294 | Jun 2003 | WO |
03045492 | Jun 2003 | WO |
03053484 | Jul 2003 | WO |
2004024197 | Mar 2004 | WO |
2004037334 | May 2004 | WO |
2004112852 | Dec 2004 | WO |
2005002483 | Jan 2005 | WO |
2005062896 | Jul 2005 | WO |
2005105176 | Nov 2005 | WO |
2005123170 | Dec 2005 | WO |
2007022097 | Feb 2007 | WO |
2007030601 | Mar 2007 | WO |
2007070269 | Jun 2007 | WO |
2007085396 | Aug 2007 | WO |
2007087811 | Aug 2007 | WO |
2007113597 | Oct 2007 | WO |
2007133618 | Nov 2007 | WO |
2008026117 | Mar 2008 | WO |
2008041926 | Apr 2008 | WO |
2008048527 | Apr 2008 | WO |
2008054312 | May 2008 | WO |
2008082444 | Jul 2008 | WO |
2008100440 | Aug 2008 | WO |
2008104609 | Sep 2008 | WO |
2008131895 | Nov 2008 | WO |
2009002260 | Dec 2008 | WO |
2008149107 | Dec 2008 | WO |
WO-2009002260 | Dec 2008 | WO |
2009066105 | May 2009 | WO |
2009066106 | May 2009 | WO |
2009081134 | Jul 2009 | WO |
2009089016 | Jul 2009 | WO |
2009124100 | Oct 2009 | WO |
2009126103 | Oct 2009 | WO |
2010011148 | Jan 2010 | WO |
2010016791 | Feb 2010 | WO |
2010032728 | Mar 2010 | WO |
2010056977 | May 2010 | WO |
2010129299 | Nov 2010 | WO |
2011008497 | Jan 2011 | WO |
2011049562 | Apr 2011 | WO |
2011043786 | Apr 2011 | WO |
2011115908 | Sep 2011 | WO |
2011121127 | Oct 2011 | WO |
2011130570 | Oct 2011 | WO |
2011162862 | Dec 2011 | WO |
2012112204 | Aug 2012 | WO |
2012104584 | Aug 2012 | WO |
2012140378 | Oct 2012 | WO |
2012143665 | Oct 2012 | WO |
2013009239 | Jan 2013 | WO |
2013066426 | May 2013 | WO |
2013090810 | Jun 2013 | WO |
2014022400 | Feb 2014 | WO |
2014039557 | Mar 2014 | WO |
2014078518 | May 2014 | WO |
2014113253 | Jul 2014 | WO |
2014140608 | Sep 2014 | WO |
2014143488 | Sep 2014 | WO |
2015065615 | May 2015 | WO |
2015130471 | Sep 2015 | WO |
2017048866 | Mar 2017 | WO |
Entry |
---|
Australian Office Action for related application 2018278874, dated Feb. 12, 2020. |
Office Action for related U.S. Appl. No. 14/630,290, dated Apr. 30, 2020. |
Office Action for related U.S. Appl. No. 15/793,044, dated May 13, 2020. |
EP Informal Search Report for related application 19186600.3. |
Office Action for related U.S. Appl. No. 15/884,198, dated May 19, 2020. |
Office Action for related U.S. Appl. No. 15/314,426, dated Aug. 29, 2019. |
Office Action for related U.S. Appl. No. 14/965,675, dated Dec. 12, 2018. |
Office Action for related U.S. Appl. No. 14/619,714, dated Dec. 3, 2018. |
Office Action for related U.S. Appl. No. 14/630,290, dated Jan. 11, 2019. |
Office Action for related U.S. Appl. No. 15/265,718, dated Feb. 7, 2019. |
Extended European Search Report for related application 18193559.4, dated Dec. 17, 2018. |
Office Action for related U.S. Appl. No. 14/080,348, dated Apr. 12, 2019. |
Japanese Notice of Rejection for related application 2016-570333, dated Feb. 26, 2019. |
Office Action for related U.S. Appl. No. 15/410,991, dated May 2, 2019. |
European Search Report for EP 11714148.1, dated May 2, 2014. |
European Search Report for corresponding Application No. 15192606.0 dated Feb. 24, 2016. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2011/028344, dated Jun. 1, 2011. |
International Search Report and Written Opinion for PCT/US2014/056508 dated Dec. 9, 2014. |
International Search Report and Written Opinion for PCT/GB2008/003075 dated Mar. 11, 2010. |
International Search Report and Written Opinion for PCT/GB2008/004216 dated Jul. 2, 2009. |
International Search Report and Written Opinion for PCT/GB2012/000099 dated May 2, 2012. |
EP Examination Report for corresponding application 12705381.7, dated May 22, 2014. |
International Search Report and Written Opinion for PCT/US2012/069893 dated Apr. 8, 2013. |
International Search Report and Written Opinion for PCT/US2013/070070 dated Jan. 29, 2014. |
International Search Report and Written Opinion for PCT/US2014/016320 dated Apr. 15, 2014. |
International Search Report and Written Opinion for PCT/US2014/056566 dated Dec. 5, 2014. |
International Search Report and Written Opinion for PCT/US2014/056524 dated Dec. 11, 2014. |
International Search Report and Written Opinion for PCT/US2014/056594 dated Dec. 2, 2014. |
International Search Report and Written opinion for PCT Application PCT/US2009/036222, dated Dec. 15, 2009. |
International Search Report and Written Opinion dated Oct. 19, 2010; PCT International Application No. PCT/US2009/036217. |
NPD 1000 Negative Pressure Would Therapy System, Kalypto Medical, pp. 1-4, dated Sep. 2008. |
International Search Report and Written Opinion for PCT/US2014/061251 dated May 8, 2015. |
International Search Report and Written Opinion for PCT/IB2013/060862 dated Jun. 26, 2014. |
International Search Report and Written Opinion for PCT/US2015/015493 dated May 4, 2015. |
Extended European Search Report for corresponding Application No. 15194949.2, dated Mar. 11, 2016. |
European Search Report for corresponding EPSN 15157408.4 published on Sep. 30, 2015. |
International Search Report and Written Opinion for PCT/US2015/029037 dated Sep. 4, 2015. |
International Search Report and Written Opinion for PCT/US2015/034289 dated Aug. 21, 2015. |
International Search Report and Written Opinion for PCT/US2015/065135 dated Apr. 4, 2016. |
International Search Report and Written Opinion for PCT/GB2012/050822 dated Aug. 8, 2012. |
International Search Report and Written Opinion for corresponding PCT/US2014/048081 dated Nov. 14, 2014. |
International Search Report and Written Opinion for corresponding PCT/US2014/010704 dated Mar. 25, 2014. |
European Examination Report dated Jun. 29, 2016, corresponding to EP Application No. 16173614.5. |
International Search Report and Written Opinion for corresponding PCT application PCT/US2016/051768 dated Dec. 15, 2016. |
European Search Report for corresponding EP Application 171572787 dated Jun. 6, 2017. |
International Search Report and Written Opinion for corresponding application PCT/US2016/031397, dated Aug. 8, 2016. |
European Search Report for corresponding application 17167872.5, dated Aug. 14, 2017. |
M. Waring et al., “Cell attachment to adhesive dressing: qualitative and quantitative analysis”, Wounds, UK, (2008), vol. 4, No. 3, pp. 35-47. |
R. White, “Evidence for atraumatic soft silicone wound dressing use”. Wound, UK (2005), vol. 3, pp. 104-108, Mepilex Border docs, (2001). |
European Search Report for corresponding application 17183683.6, dated Sep. 18, 2017. |
European Search Report for corresponding application 17164033.7, dated Oct. 13, 2017. |
Extended European Search Report for corresponding application 17191970.7, dated Oct. 26, 2017. |
Japanese office action for related application 2015-547246, dated Sep. 5, 2017. |
Office Action for related U.S. Appl. No. 13/982,650, dated Dec. 14, 2017. |
Australian Office Action for related application 2013344686, dated Nov. 28, 2017. |
Office Action for related U.S. Appl. No. 14/517,521, dated Dec. 12, 2017. |
Office Action for related U.S. Appl. No. 14/490,898, dated Jan. 4, 2018. |
International Search Report and Written Opinion for related application PCT/US2017/058209, dated Jan. 10, 2018. |
Office Action for related U.S. Appl. No. 14/965,675, dated Jan. 31, 2018. |
International Search Report and Written Opinion for related application PCT/US2016/047351, dated Nov. 2, 2016. |
Extended European Search Report for related application 17177013.4, dated Mar. 19, 2018. |
Extended European Search Report for related application 16793298.7, dated Mar. 27, 2018. |
Office Action for related U.S. Appl. No. 14/965,675, dated Aug. 9, 2018. |
Office Action for related U.S. Appl. No. 15/307,472, dated Oct. 18, 2018. |
Louis C. Argenta, MD and Michael J. Morykwas, PHD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery; vol. 38, No. 6, Jun. 1997; pp. 563-576. |
Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, Nos. May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634 639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; dated Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; dated Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; dated Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; dated Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; dated Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al.; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (copy and certified translation). |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)}ivadinovi?, V. ?uki?, {hacek over (Z)}. Maksimovi?, ?. Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513. |
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I). |
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C. ® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007. |
Office Action for related U.S. Appl. No. 16/007,060, dated Aug. 18, 2020. |
Office Action for related U.S. Appl. No. 15/937,485, dated Aug. 4, 2020. |
Office Action for related U.S. Appl. No. 15/793,044, dated Sep. 24, 2020. |
Extended European Search Report for related application 20185730.7, dated Oct. 9, 2020. |
Advisory Action for related U.S. Appl. No. 15/793,044, dated Dec. 9, 2020. |
Japanese Office Action for related application 2019-235427, dated Jan. 5, 2021. |
Office Action for related U.S. Appl. No. 15/600,451, dated Nov. 27, 2019. |
Office Action for related U.S. Appl. No. 16/151,005, dated Apr. 13, 2021. |
Office Action for related U.S. Appl. No. 16/287,862, dated Nov. 2, 2021. |
Office Action for related U.S. Appl. No. 16/577,535, dated Mar. 15, 2022. |
Office Action for related U.S. Appl. No. 16/513,481, dated Mar. 30, 2022. |
Number | Date | Country | |
---|---|---|---|
20190076586 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
61314299 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14334510 | Jul 2014 | US |
Child | 16152188 | US | |
Parent | 13046164 | Mar 2011 | US |
Child | 14334510 | US |