The present disclosure is related generally to the field of orthodontics. More particularly, the present disclosure is related to a dental positioning appliance having one or more metallic portions.
Many orthodontic treatments involve repositioning misaligned teeth and changing bite configurations for improved dental function and cosmetic appearance. Repositioning can be accomplished, for example, by applying controlled forces to one or more teeth over a period of time.
Some orthodontic processes use removable positioning appliances for realigning teeth. Such appliances may utilize a thin shell of material having resilient properties, (an individual appliance is referred to as an “aligner”) whereby each appliance generally conforms to a patient's teeth but is slightly out of alignment with the initial tooth configuration.
Placement of such an appliance over the teeth can provide controlled forces in specific locations to gradually move the teeth into a new configuration. Repetition of this process with successive appliances that provide progressive configurations eventually move the teeth through a series of intermediate arrangements to a final desired arrangement. An example of such a system is described in U.S. Pat. No. 5,975,893.
Such systems typically utilize materials that provide light weight and/or transparent appliances in a set that can be used serially such that as the teeth move, a new appliance can be implemented to further move the teeth. Such features may be beneficial in many instances, however, in some instances, it may be desirable to provide movement with less appliances, thereby reducing modeling and manufacturing costs as well as reducing the number of appliances the user has to utilize and keep track of, among other benefits. Additionally, if the appliance is designed to treat a smaller number of teeth within a patient's mouth, then it may be difficult to create a sufficient anchoring force or motive force with a plastic material used to form many such appliances that would be used to make the movements to the teeth that are desired.
According to the present disclosure, appliances and methods are provided for utilizing metallic portions in dental positioning appliances. In some embodiments, a removable dental positioning appliance has a shell with one or more cavities shaped to receive and reposition one or more teeth from a first orientation to a successive orientation and where at least a portion of the shell is formed from a metallic material (e.g., metallic mesh material). In various embodiments, the shell can be shaped to accommodate one tooth or multiple adjacent or nonadjacent teeth based upon the number and position of the one or more cavities that form the one or more portions of the shell.
In various embodiments, the metallic material can be a planar sheet of material, strips of material, or one or more wires, among other material configurations and can be in a mesh, solid, perforated, layered, adjacently oriented, or other type of configuration. In the embodiment of
In some embodiments, a single wire can be woven to form the mesh. In the embodiment illustrated in
As will be discussed in greater detail herein, the wires can be unfastened or can be fastened together in various manners. For example, the wires can be frictionally held together such as by weaving or tying, or held together by another material, such as solder, plastic, and/or an adhesive material among other suitable materials. In some embodiments, these materials can be coated onto or encapsulating around a portion of (e.g., such as the junctions 116 or other portions of wires 112 and 114 of the embodiment of
The methods of the present disclosure can employ any positioners, retainers, and/or other removable appliances for finishing and maintaining teeth positions in connection with orthodontic treatment. The systems for use with embodiments of the present disclosure provide a plurality of such appliances can be intended to be worn by a patient successively in order to achieve the gradual tooth repositioning as described herein.
In such embodiments, such as that shown in
In the embodiment of
In some situations, certain individual or small sets of the teeth can be repositioned while others of the teeth can be used to provide a base or anchor region for holding the repositioning appliance in place as it applies the resilient repositioning force against the tooth or teeth to be repositioned. In some embodiments, the metallic portion of the shell can be oriented to provide additional support with respect to holding the appliance in place. Such embodiments can aid in stabilizing one or more teeth.
Such orientation can be beneficial, for example, where the tooth or teeth used as an anchor may have been recently moved and may not provide as much support as teeth that have not been moved. Such orientation can also be beneficial, for example, where a larger anchoring force may be needed than can typically be provided by the number of teeth being used as the anchor. In such instances, the metallic portion can be placed at or near the tooth or teeth used for anchor to provide support and/or force to provide the anchoring functionality.
In various embodiments, the metallic portion of the appliance can be oriented to provide the repositioning force whereby a plastic shell portion of the appliance provides a stabilizing anchoring support for the device. This orientation enables the conformation of the shell portion to adapt to the anchoring teeth and depending on the metal properties selected, a greater effective range for force generation on the repositioning portion of the appliance.
In the embodiment of
In various embodiments, the wires may be in different orientations, such as, but not limited to, non-horizontal and/or non-vertical, and/or irregular. Further, in some embodiments, the wires may be non-linear. For example, a wire may be bent in one direction (e.g., one axis with respect to an axis of the elongation direction of the wire), as shown with respect to wires 112 in
The wires may include alternating active and passive wires, in some embodiments. In other words, varying wire materials may be present within the mesh.
Non-metallic wires may be incorporated into the mesh for additional support or improved esthetics, among other benefits. For example, metal fibers may be alternated with composite fibers to create a hybrid mesh.
In the embodiment illustrated in
In embodiments, such as that shown in
In the embodiment of
The embodiment of
The mesh material can be used to apply extra force to a particular tooth and/or to extend the ability of the appliance to move the tooth. Depending upon the type of material used to form the mesh, the distance of the movement of the tooth can be elongated, because the force imparted by the metallic material may be over a greater distance than other materials, such as some polymers and other materials.
In various embodiments, the length of time that the movement can take place can be elongated because the metallic material may not lose its ability to impart force as readily as some other materials, such as some polymers and other materials. In some embodiments, the length of time that movement of a tooth takes may be reduced because the metallic material can impart either a greater force or more consistent force over a greater range of movement than some other materials, such as some polymers.
In the embodiment of
In some embodiments, as will be discussed in more detail herein, portions of or the entire appliance can be coated with a second material. This second material can be used to form the other portions (i.e., the portions other than 220, 222, and 224) of the dental appliance described above, in some embodiments.
In various embodiments, the second material could be a coating over, under, or encapsulating the portions 220, 222, and 224. Materials that can be used can include solders, epoxies, glues, polymers, oxides, and other suitable coating materials. In various embodiments, the materials may be bio-compatible materials.
Coatings can provide, for example, a more palatable texture, interaction with tooth surfaces, and/or taste than the metallic material, among other benefits. Another benefit may be that the coating can be used to hold one or more of the wires (e.g., wires 212 and 214 in the embodiment of
In various embodiments, a second material can (i.e., in addition to the metallic material), for example, be placed at one or more junctions of the wires (e.g., junctions 116 of
In such embodiments, the second material may be oriented on the appliance such that it can be positioned proximate to an area needing such an agent. Accordingly, the second material can be selectively applied to particular portions of the appliance in such embodiments.
In various embodiments, the appliance may include one or more metallic portions and one or more non-metallic portions where at least one of the non-metallic portions forms part of the appliance body (e.g., where the appliance is part metallic and part polymeric) and at least one of the non-metallic portions is a coating formed over at least a portion of the body of the appliance (e.g., where an agent is applied over a portion of the metallic and/or polymeric portions of the appliance). In some embodiments, an agent can be impregnated into a material (e.g., a polymeric material) and can be released out of the material by interaction with the oral environment.
As illustrated in the embodiment of
Such embodiments can have one or more of the above recited benefits. It should be noted that such an illustration may be representative of an entire appliance that is fabricated from a metallic material and encapsulated within a second material or where a portion of an appliance is fabricated with a metallic material and where that portion is encapsulated.
For example, in some embodiments, the appliance may be formed mostly from a polymeric material and where a metallic material is encapsulated in a portion. Such embodiments may aid in reinforcing or providing additional force to a particular area.
The metallic material, such as a metallic mesh material can be formed by metal injection molding, by casting (which may include heat-treatment post-casting), by stamping the appliance using a stamp, by pressing and/or heat treating with a mold, or by bending individual metallic portions (e.g., wires) and/or soldering the individual wire components together, among other techniques. In some embodiments, the metallic material may be arch-preformed.
In some embodiments, the metallic material may be friction shaped through a pressing or other type of process wherein the material is shaped through a friction involving process. In various embodiments, the metallic material may be ultrasonically heated to maintain or obtain a desired shape.
In some embodiments, once the shape is formed, the metallic material can be coated with a second material. For example, in some embodiments, the coating can be sprayed or dip coated onto the metallic material. In various embodiments, the appliance can be cut (e.g., by a mechanical cutting tool or laser cutting tool) to trim the edges.
In some embodiments, the computing device executable instructions for the cutting tool may be programmed to cut at mesh junctions to avoid sharp points in the final product. In some embodiments, the appliance may be dipped in a coating to cover any sharp edges, among other sharp edge solutions.
There are several processes that can be used to form the appliance or portion thereof having metallic material.
In a process such as that illustrated in
In the embodiment of
In some embodiments, changes in temperature of the environment around the mechanism 303, of the portions 332, 334, 336, and/or 338 and/or the material 330 can be used to create the desired shape and/or force properties of the appliance or portion being formed. In various embodiments, some portion of the forming mechanism 303 or the entire mechanism can be formed from a metallic or ceramic material.
Where a shape memory type material is used as material 330, then, a change in temperature or stress can be applied to the material 330 to produce the desired shape and/or force characteristics of the appliance or portion being formed. For instance, in some embodiments, the metallic material can be a shape memory alloy formed at least in part from nickel, titanium, copper, aluminum, and/or zinc, among other materials.
In such embodiments and as stated above, the metallic material may be coated for esthetics and/or hygiene among other considerations. In such embodiments, the amount of movement built in can, for example, be based on the amount of distortion that can be tolerated to still ensure appliance fit.
One suitable manner, for example, may be that the carrier material 440 is a dissolvable material, which can be removed by dissolving with a solvent such as water, organic solvent, or other solvent types. In some embodiments, the carrier 440 may be a wax which can be melted or burned off.
Another process for creating appliance embodiments or portions thereof may be to bend the individual ribs in a mesh material and then to assemble the individual ribs with connecting wire and solder or otherwise attach the framework together.
Various embodiments of the present disclosure can enable a longer range of movement to be built into an appliance without increasing the amount of force placed on the teeth. In other words, through use of shape memory alloy materials, for example, it may be possible for an appliance to provide the movement of 5 to 10 polymeric appliances without increasing patient discomfort and/or negative biological effects of high force on the one or more teeth.
As a result of such embodiments, fewer appliances may have to be built, thereby reducing materials costs and/or visits to the treatment professional, among other benefits. Another possible benefit is because the material is metallic it may be easier to disinfect an appliance, in some instances.
The metallic material can be shaped via interaction with each of the dies to form a dental positioning appliance, at block 554. In this manner, the metallic appliance can be shaped to fit the intended user.
In various embodiments, one or more methods can include applying a metallic material that is a metallic mesh material. Applying the metallic material can include applying at least one wire.
Shaping the metallic material can include pressing the metallic material between at least two of the dies. In some embodiments, shaping the metallic material can include bending the metallic material into contact with at least one of the dies.
In some embodiments, a method can include applying a coating to at least a portion of the appliance. Method embodiments can also include heating the metallic material to change the material into a shape memory material.
In various embodiments, a method can include trimming one or more edges of the appliance. Methods can also include polishing one or more portions of the appliance. In some such embodiments, a method can include forming the shell into a dental positioning appliance or incorporating the shell into a dental positioning appliance.
In some embodiments, the appliance can be a mouth guard that protects teeth, but may or may not do any positioning of teeth. In such embodiments, the mouth guard can be coated with a thicker coating or the coating material can provide more shock absorption. Any suitable mouth guard features, design, or materials can be utilized with embodiments of the present disclosure.
In the embodiment of
In some embodiments, and as illustrated at block 662, the method of
Block 664 includes creating a computerized negative or inverse receiving die geometry of shapes. In the embodiment of
At block 666, the master die and individual section pieces (e.g., forming mechanism portions) are printed and heat resistant forms are created. Forming one or more dies can include forming at least one die from a metallic or ceramic material.
In the embodiment illustrated in
At block 674, the sections are removed and the formed metallic material is separated from the die. In such embodiments, the material can then be trimmed and/or polished, if desired, as indicated at block 676. In some embodiments, as illustrated at block 678, a coating can be added.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments of the disclosure.
It is to be understood that the use of the terms “a”, “an”, “one or more”, “a number of”, or “at least one” are all to be interpreted as meaning one or more of an item is present. Additionally, it is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description.
The scope of the various embodiments of the disclosure includes any other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
In the foregoing Detailed Description, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim.
Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.
This application is a continuation of U.S. patent application Ser. No. 14/578,244, filed on Dec. 19, 2014, which is a continuation of U.S. patent application Ser. No. 13/431,783, filed on Mar. 27, 2012, now issued as U.S. Pat. No. 8,944,812, which is a continuation of U.S. patent application Ser. No. 12/247,559, filed Oct. 8, 2008, now issued as U.S. Pat. No. 8,152,518, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2171695 | Harper | Sep 1939 | A |
2194790 | Gluck | Mar 1940 | A |
2467432 | Kesling | Apr 1949 | A |
2531222 | Kesling | Nov 1950 | A |
3089487 | Enicks | May 1963 | A |
3178820 | Kesling | Apr 1965 | A |
3211143 | Grossberg | Oct 1965 | A |
3379193 | Monsghan | Apr 1968 | A |
3385291 | Martin | May 1968 | A |
3407500 | Kesling | Oct 1968 | A |
3478742 | Bohlmann | Nov 1969 | A |
3496936 | Gores | Feb 1970 | A |
3533163 | Kirschenbaum | Oct 1970 | A |
3556093 | Quick | Jan 1971 | A |
3600808 | Reeve | Aug 1971 | A |
3660900 | Andrews | May 1972 | A |
3683502 | Wallshein | Aug 1972 | A |
3724075 | Kesling | Apr 1973 | A |
3738005 | Cohen et al. | Jun 1973 | A |
3860803 | Levine | Jan 1975 | A |
3885310 | Northcutt | May 1975 | A |
3916526 | Schudy | Nov 1975 | A |
3922786 | Lavin | Dec 1975 | A |
3949477 | Cohen et al. | Apr 1976 | A |
3950851 | Bergersen | Apr 1976 | A |
3955282 | McNall | May 1976 | A |
3983628 | Acevedo | Oct 1976 | A |
4014096 | Dellinger | Mar 1977 | A |
4055895 | Huge | Nov 1977 | A |
4117596 | Wallshein | Oct 1978 | A |
4139944 | Bergersen | Feb 1979 | A |
4179811 | Hinz | Dec 1979 | A |
4183141 | Dellinger | Jan 1980 | A |
4195046 | Kesling | Mar 1980 | A |
4253828 | Coles et al. | Mar 1981 | A |
4255138 | Frohn | Mar 1981 | A |
4299568 | Crowley | Nov 1981 | A |
4324546 | Heitlinger et al. | Apr 1982 | A |
4324547 | Arcan et al. | Apr 1982 | A |
4348178 | Kurz | Sep 1982 | A |
4419992 | Chorbajian | Dec 1983 | A |
4433956 | Witzig | Feb 1984 | A |
4433960 | Garito et al. | Feb 1984 | A |
4439154 | Mayclin | Mar 1984 | A |
4449928 | von Weissenfluh | May 1984 | A |
4478580 | Barrut | Oct 1984 | A |
4500294 | Lewis | Feb 1985 | A |
4505673 | Yoshii | Mar 1985 | A |
4519386 | Sullivan | May 1985 | A |
4526540 | Dellinger | Jul 1985 | A |
4553936 | Wang | Nov 1985 | A |
4575330 | Hull | Mar 1986 | A |
4575805 | Moermann et al. | Mar 1986 | A |
4591341 | Andrews | May 1986 | A |
4608021 | Barrett | Aug 1986 | A |
4609349 | Cain | Sep 1986 | A |
4611288 | Duret et al. | Sep 1986 | A |
4629424 | Lauks et al. | Dec 1986 | A |
4638145 | Sakuma et al. | Jan 1987 | A |
4656860 | Orthuber et al. | Apr 1987 | A |
4663720 | Duret et al. | May 1987 | A |
4664626 | Kesling | May 1987 | A |
4665621 | Ackerman et al. | May 1987 | A |
4676747 | Kesling | Jun 1987 | A |
4755139 | Abbatte et al. | Jul 1988 | A |
4757824 | Chaumet | Jul 1988 | A |
4763791 | Halverson et al. | Aug 1988 | A |
4764111 | Knierim | Aug 1988 | A |
4790752 | Cheslak | Dec 1988 | A |
4793803 | Martz | Dec 1988 | A |
4798534 | Breads | Jan 1989 | A |
4830612 | Bergersen | May 1989 | A |
4836778 | Baumrind et al. | Jun 1989 | A |
4837732 | Brandestini et al. | Jun 1989 | A |
4850864 | Diamond | Jul 1989 | A |
4850865 | Napolitano | Jul 1989 | A |
4856991 | Breads et al. | Aug 1989 | A |
4877398 | Kesling | Oct 1989 | A |
4880380 | Martz | Nov 1989 | A |
4886451 | Cetlin | Dec 1989 | A |
4889238 | Batchelor | Dec 1989 | A |
4890608 | Steer | Jan 1990 | A |
4932866 | Guis | Jun 1990 | A |
4935635 | O'Harra | Jun 1990 | A |
4936862 | Walker et al. | Jun 1990 | A |
4937928 | van der Zel | Jul 1990 | A |
4941826 | Loran et al. | Jul 1990 | A |
4952928 | Carroll et al. | Aug 1990 | A |
4964770 | Steinbichler et al. | Oct 1990 | A |
4975052 | Spencer et al. | Dec 1990 | A |
4983334 | Adell | Jan 1991 | A |
4997369 | Shafir | Mar 1991 | A |
5002485 | Aagesen | Mar 1991 | A |
5011405 | Lemchen | Apr 1991 | A |
5015183 | Fenick | May 1991 | A |
5017133 | Miura | May 1991 | A |
5018969 | Andreiko et al. | May 1991 | A |
5027281 | Rekow et al. | Jun 1991 | A |
5035613 | Breads et al. | Jul 1991 | A |
5037295 | Bergersen | Aug 1991 | A |
5055039 | Abbatte et al. | Oct 1991 | A |
5061839 | Matsuno et al. | Oct 1991 | A |
5083919 | Quachi | Jan 1992 | A |
5094614 | Wildman | Mar 1992 | A |
5100316 | Wildman | Mar 1992 | A |
5103838 | Yousif | Apr 1992 | A |
5114339 | Guis | May 1992 | A |
5121333 | Riley et al. | Jun 1992 | A |
5123425 | Shannon et al. | Jun 1992 | A |
5128870 | Erdman et al. | Jul 1992 | A |
5130064 | Smalley et al. | Jul 1992 | A |
5131843 | Hilgers et al. | Jul 1992 | A |
5131844 | Marinaccio et al. | Jul 1992 | A |
5139419 | Andreiko et al. | Aug 1992 | A |
5145364 | Martz et al. | Sep 1992 | A |
5176517 | Truax | Jan 1993 | A |
5194003 | Garay et al. | Mar 1993 | A |
5204670 | Stinton | Apr 1993 | A |
5222499 | Allen et al. | Jun 1993 | A |
5224049 | Mushabac | Jun 1993 | A |
5238404 | Andreiko | Aug 1993 | A |
5242304 | Truax et al. | Sep 1993 | A |
5245592 | Kuemmel et al. | Sep 1993 | A |
5273429 | Rekow et al. | Dec 1993 | A |
5278756 | Lemchen et al. | Jan 1994 | A |
5306144 | Hibst et al. | Apr 1994 | A |
5314335 | Fung | May 1994 | A |
5324186 | Bakanowski | Jun 1994 | A |
5328362 | Watson et al. | Jul 1994 | A |
5335657 | Terry et al. | Aug 1994 | A |
5338198 | Wu et al. | Aug 1994 | A |
5340309 | Robertson | Aug 1994 | A |
5342202 | Deshayes | Aug 1994 | A |
5344315 | Hanson | Sep 1994 | A |
5368478 | Andreiko et al. | Nov 1994 | A |
5372502 | Massen et al. | Dec 1994 | A |
D354355 | Hilgers | Jan 1995 | S |
5382164 | Stern | Jan 1995 | A |
5395238 | Andreiko et al. | Mar 1995 | A |
5415542 | Kesling | May 1995 | A |
5431562 | Andreiko et al. | Jul 1995 | A |
5440326 | Quinn | Aug 1995 | A |
5440496 | Andersson et al. | Aug 1995 | A |
5447432 | Andreiko et al. | Sep 1995 | A |
5449703 | Mitra et al. | Sep 1995 | A |
5452219 | Dehoff et al. | Sep 1995 | A |
5454717 | Andreiko et al. | Oct 1995 | A |
5456600 | Andreiko et al. | Oct 1995 | A |
5474448 | Andreiko et al. | Dec 1995 | A |
5487662 | Kipke et al. | Jan 1996 | A |
RE35169 | Lemchen et al. | Mar 1996 | E |
5499633 | Fenton | Mar 1996 | A |
5522725 | Jordan et al. | Jun 1996 | A |
5528735 | Strasnick et al. | Jun 1996 | A |
5533895 | Andreiko et al. | Jul 1996 | A |
5540732 | Testerman | Jul 1996 | A |
5542842 | Andreiko et al. | Aug 1996 | A |
5543780 | McAuley et al. | Aug 1996 | A |
5549476 | Stern | Aug 1996 | A |
5562448 | Mushabac | Oct 1996 | A |
5570182 | Nathel et al. | Oct 1996 | A |
5575655 | Darnell | Nov 1996 | A |
5583977 | Seidl | Dec 1996 | A |
5587912 | Andersson et al. | Dec 1996 | A |
5588098 | Chen et al. | Dec 1996 | A |
5605459 | Kuroda et al. | Feb 1997 | A |
5607305 | Andersson et al. | Mar 1997 | A |
5614075 | Andre | Mar 1997 | A |
5621648 | Crump | Apr 1997 | A |
5626537 | Danyo et al. | May 1997 | A |
5645420 | Bergersen | Jul 1997 | A |
5645421 | Slootsky | Jul 1997 | A |
5651671 | Seay et al. | Jul 1997 | A |
5655653 | Chester | Aug 1997 | A |
5659420 | Wakai et al. | Aug 1997 | A |
5683243 | Andreiko et al. | Nov 1997 | A |
5683244 | Truax | Nov 1997 | A |
5691539 | Pfeiffer | Nov 1997 | A |
5692894 | Schwartz et al. | Dec 1997 | A |
5711665 | Adam et al. | Jan 1998 | A |
5711666 | Hanson | Jan 1998 | A |
5725376 | Poirier | Mar 1998 | A |
5725378 | Wang | Mar 1998 | A |
5730151 | Summer et al. | Mar 1998 | A |
5737084 | Ishihara | Apr 1998 | A |
5740267 | Echerer et al. | Apr 1998 | A |
5742700 | Yoon et al. | Apr 1998 | A |
5769631 | Williams | Jun 1998 | A |
5774425 | Ivanov et al. | Jun 1998 | A |
5790242 | Stern et al. | Aug 1998 | A |
5799100 | Clarke et al. | Aug 1998 | A |
5800162 | Shimodaira et al. | Sep 1998 | A |
5800174 | Andersson | Sep 1998 | A |
5813854 | Nikodem | Sep 1998 | A |
5816800 | Brehm et al. | Oct 1998 | A |
5818587 | Devaraj et al. | Oct 1998 | A |
5823778 | Schmitt et al. | Oct 1998 | A |
5848115 | Little et al. | Dec 1998 | A |
5857853 | van Nifterick et al. | Jan 1999 | A |
5866058 | Batchelder et al. | Feb 1999 | A |
5876199 | Bergersen | Mar 1999 | A |
5879158 | Doyle et al. | Mar 1999 | A |
5880961 | Crump | Mar 1999 | A |
5880962 | Andersson et al. | Mar 1999 | A |
5882192 | Bergersen | Mar 1999 | A |
5886702 | Migdal et al. | Mar 1999 | A |
5890896 | Padial | Apr 1999 | A |
5904479 | Staples | May 1999 | A |
5934288 | Avila et al. | Aug 1999 | A |
5957686 | Anthony | Sep 1999 | A |
5964587 | Sato | Oct 1999 | A |
5971754 | Sondhi et al. | Oct 1999 | A |
5975893 | Chishti et al. | Nov 1999 | A |
5975906 | Knutson | Nov 1999 | A |
5980246 | Ramsay et al. | Nov 1999 | A |
5989023 | Summer et al. | Nov 1999 | A |
6002706 | Staver et al. | Dec 1999 | A |
6018713 | Coli et al. | Jan 2000 | A |
6044309 | Honda | Mar 2000 | A |
6049743 | Baba | Apr 2000 | A |
6053731 | Heckenberger | Apr 2000 | A |
6068482 | Snow | May 2000 | A |
6070140 | Tran | May 2000 | A |
6099303 | Gibbs et al. | Aug 2000 | A |
6099314 | Kopelman et al. | Aug 2000 | A |
6123544 | Cleary | Sep 2000 | A |
6152731 | Jordan et al. | Nov 2000 | A |
6154676 | Levine | Nov 2000 | A |
6183248 | Chishti | Feb 2001 | B1 |
6183249 | Brennan et al. | Feb 2001 | B1 |
6186780 | Hibst et al. | Feb 2001 | B1 |
6190165 | Andreiko et al. | Feb 2001 | B1 |
6200133 | Kittelsen | Mar 2001 | B1 |
6201880 | Elbaum et al. | Mar 2001 | B1 |
6212435 | Lattner et al. | Apr 2001 | B1 |
6217334 | Hultgren | Apr 2001 | B1 |
6227850 | Chishti et al. | May 2001 | B1 |
6231338 | de Josselin de Jong et al. | May 2001 | B1 |
6239705 | Glen | May 2001 | B1 |
6243601 | Wist | Jun 2001 | B1 |
6263234 | Engelhardt et al. | Jul 2001 | B1 |
6283761 | Joao | Sep 2001 | B1 |
6288138 | Yamamoto | Sep 2001 | B1 |
6299438 | Sahagian et al. | Oct 2001 | B1 |
6309215 | Phan et al. | Oct 2001 | B1 |
6313432 | Nagata et al. | Nov 2001 | B1 |
6315553 | Sachdeva et al. | Nov 2001 | B1 |
6328745 | Ascherman | Dec 2001 | B1 |
6332774 | Chikami | Dec 2001 | B1 |
6334073 | Levine | Dec 2001 | B1 |
6350120 | Sachdeva et al. | Feb 2002 | B1 |
6364660 | Durbin et al. | Apr 2002 | B1 |
6382975 | Poirier | May 2002 | B1 |
6386878 | Pavlovskaia et al. | May 2002 | B1 |
6394802 | Hahn | May 2002 | B1 |
6402510 | Williams | Jun 2002 | B1 |
6402707 | Ernst | Jun 2002 | B1 |
6405729 | Thornton | Jun 2002 | B1 |
6406292 | Chishti et al. | Jun 2002 | B1 |
6409504 | Jones et al. | Jun 2002 | B1 |
6413086 | Womack | Jul 2002 | B1 |
6414264 | von Falkenhausen | Jul 2002 | B1 |
6414708 | Carmeli et al. | Jul 2002 | B1 |
6435871 | Inman | Aug 2002 | B1 |
6436058 | Krahner et al. | Aug 2002 | B1 |
6441354 | Seghatol et al. | Aug 2002 | B1 |
6450167 | David et al. | Sep 2002 | B1 |
6450807 | Chishti et al. | Sep 2002 | B1 |
6462301 | Scott et al. | Oct 2002 | B1 |
6470338 | Rizzo et al. | Oct 2002 | B1 |
6471511 | Chishti et al. | Oct 2002 | B1 |
6471512 | Sachdeva et al. | Oct 2002 | B1 |
6471970 | Fanara et al. | Oct 2002 | B1 |
6482002 | Jordan et al. | Nov 2002 | B2 |
6482298 | Bhatnagar | Nov 2002 | B1 |
6496814 | Busche | Dec 2002 | B1 |
6496816 | Thiesson et al. | Dec 2002 | B1 |
6499026 | Rivette et al. | Dec 2002 | B1 |
6499995 | Schwartz | Dec 2002 | B1 |
6507832 | Evans et al. | Jan 2003 | B1 |
6514074 | Chishti et al. | Feb 2003 | B1 |
6515593 | Stark et al. | Feb 2003 | B1 |
6516288 | Bagne | Feb 2003 | B2 |
6516805 | Thornton | Feb 2003 | B1 |
6520772 | Williams | Feb 2003 | B2 |
6523009 | Wilkins | Feb 2003 | B1 |
6523019 | Borthwick | Feb 2003 | B1 |
6524101 | Phan et al. | Feb 2003 | B1 |
6526168 | Ornes et al. | Feb 2003 | B1 |
6526982 | Strong | Mar 2003 | B1 |
6529891 | Heckerman | Mar 2003 | B1 |
6529902 | Kanevsky et al. | Mar 2003 | B1 |
6532455 | Martin et al. | Mar 2003 | B1 |
6535865 | Skaaning et al. | Mar 2003 | B1 |
6540512 | Sachdeva et al. | Apr 2003 | B1 |
6540707 | Stark et al. | Apr 2003 | B1 |
6542593 | Bowman Amuah | Apr 2003 | B1 |
6542881 | Meidan et al. | Apr 2003 | B1 |
6542894 | Lee et al. | Apr 2003 | B1 |
6542903 | Hull et al. | Apr 2003 | B2 |
6551243 | Bocionek et al. | Apr 2003 | B2 |
6554837 | Hauri et al. | Apr 2003 | B1 |
6556659 | Bowman Amuah | Apr 2003 | B1 |
6556977 | Lapointe et al. | Apr 2003 | B1 |
6560592 | Reid et al. | May 2003 | B1 |
6564209 | Dempski et al. | May 2003 | B1 |
6567814 | Bankier et al. | May 2003 | B1 |
6571227 | Agrafiotis et al. | May 2003 | B1 |
6572372 | Phan et al. | Jun 2003 | B1 |
6573998 | Cohen Sabban | Jun 2003 | B2 |
6574561 | Alexander et al. | Jun 2003 | B2 |
6578003 | Camarda et al. | Jun 2003 | B1 |
6580948 | Haupert et al. | Jun 2003 | B2 |
6587529 | Staszewski et al. | Jul 2003 | B1 |
6587828 | Sachdeva | Jul 2003 | B1 |
6592368 | Weathers | Jul 2003 | B1 |
6594539 | Geng | Jul 2003 | B1 |
6595342 | Maritzen et al. | Jul 2003 | B1 |
6597934 | de Jong et al. | Jul 2003 | B1 |
6598043 | Baclawski | Jul 2003 | B1 |
6599250 | Webb et al. | Jul 2003 | B2 |
6602070 | Miller et al. | Aug 2003 | B2 |
6604527 | Palmisano | Aug 2003 | B1 |
6606744 | Mikurak | Aug 2003 | B1 |
6607382 | Kuo et al. | Aug 2003 | B1 |
6611783 | Kelly et al. | Aug 2003 | B2 |
6611867 | Bowman Amuah | Aug 2003 | B1 |
6613001 | Dworkin | Sep 2003 | B1 |
6615158 | Wenzel et al. | Sep 2003 | B2 |
6616447 | Rizoiu et al. | Sep 2003 | B1 |
6616579 | Reinbold et al. | Sep 2003 | B1 |
6621491 | Baumrind et al. | Sep 2003 | B1 |
6623698 | Kuo | Sep 2003 | B2 |
6624752 | Klitsgaard et al. | Sep 2003 | B2 |
6626180 | Kittelsen et al. | Sep 2003 | B1 |
6626569 | Reinstein et al. | Sep 2003 | B2 |
6626669 | Zegarelli | Sep 2003 | B2 |
6633772 | Ford et al. | Oct 2003 | B2 |
6640128 | Vilsmeier et al. | Oct 2003 | B2 |
6643646 | Su et al. | Nov 2003 | B2 |
6647383 | August et al. | Nov 2003 | B1 |
6650944 | Goedeke et al. | Nov 2003 | B2 |
6671818 | Mikurak | Dec 2003 | B1 |
6675104 | Paulse et al. | Jan 2004 | B2 |
6678669 | Lapointe et al. | Jan 2004 | B2 |
6682346 | Chishti et al. | Jan 2004 | B2 |
6685469 | Chishti et al. | Feb 2004 | B2 |
6689055 | Mullen et al. | Feb 2004 | B1 |
6690761 | Lang et al. | Feb 2004 | B2 |
6691110 | Wang et al. | Feb 2004 | B2 |
6694234 | Lockwood et al. | Feb 2004 | B2 |
6697164 | Babayoff et al. | Feb 2004 | B1 |
6697793 | McGreevy | Feb 2004 | B2 |
6702765 | Robbins et al. | Mar 2004 | B2 |
6702804 | Ritter et al. | Mar 2004 | B1 |
6705863 | Phan et al. | Mar 2004 | B2 |
6729876 | Chishti et al. | May 2004 | B2 |
6733289 | Manemann et al. | May 2004 | B2 |
6739869 | Taub et al. | May 2004 | B1 |
6744932 | Rubbert et al. | Jun 2004 | B1 |
6749414 | Hanson et al. | Jun 2004 | B1 |
6772026 | Bradbury et al. | Aug 2004 | B2 |
6790036 | Graham | Sep 2004 | B2 |
6802713 | Chishti et al. | Oct 2004 | B1 |
6814574 | Abolfathi et al. | Nov 2004 | B2 |
6830450 | Knopp et al. | Dec 2004 | B2 |
6832912 | Mao | Dec 2004 | B2 |
6832914 | Bonnet et al. | Dec 2004 | B1 |
6845175 | Kopelman et al. | Jan 2005 | B2 |
6885464 | Pfeiffer et al. | Apr 2005 | B1 |
6890285 | Rahman et al. | May 2005 | B2 |
6951254 | Morrison | Oct 2005 | B2 |
6976841 | Osterwalder | Dec 2005 | B1 |
6978268 | Thomas et al. | Dec 2005 | B2 |
6984128 | Breining et al. | Jan 2006 | B2 |
7016952 | Mullen et al. | Mar 2006 | B2 |
7020963 | Cleary et al. | Apr 2006 | B2 |
7036514 | Heck | May 2006 | B2 |
7040896 | Pavlovskaia et al. | May 2006 | B2 |
7106233 | Schroeder et al. | Sep 2006 | B2 |
7112065 | Kopelman et al. | Sep 2006 | B2 |
7121825 | Chishti et al. | Oct 2006 | B2 |
7134874 | Chishti et al. | Nov 2006 | B2 |
7137812 | Cleary et al. | Nov 2006 | B2 |
7138640 | Delgado et al. | Nov 2006 | B1 |
7140877 | Kaza | Nov 2006 | B2 |
7142312 | Quadling et al. | Nov 2006 | B2 |
7155373 | Jordan et al. | Dec 2006 | B2 |
7156655 | Sachdeva et al. | Jan 2007 | B2 |
7156661 | Choi et al. | Jan 2007 | B2 |
7166063 | Rahman et al. | Jan 2007 | B2 |
7184150 | Quadling et al. | Feb 2007 | B2 |
7191451 | Nakagawa | Mar 2007 | B2 |
7192273 | McSurdy | Mar 2007 | B2 |
7217131 | Vuillemot | May 2007 | B2 |
7220122 | Chishti | May 2007 | B2 |
7220124 | Taub et al. | May 2007 | B2 |
7234937 | Sachdeva et al. | Jun 2007 | B2 |
7241142 | Abolfathi et al. | Jul 2007 | B2 |
7244230 | Duggirala et al. | Jul 2007 | B2 |
7245753 | Squilla et al. | Jul 2007 | B2 |
7257136 | Mori et al. | Aug 2007 | B2 |
7286954 | Kopelman et al. | Oct 2007 | B2 |
7292759 | Boutoussov et al. | Nov 2007 | B2 |
7302842 | Biester et al. | Dec 2007 | B2 |
7320592 | Chishti et al. | Jan 2008 | B2 |
7328706 | Barach et al. | Feb 2008 | B2 |
7329122 | Scott | Feb 2008 | B1 |
7338327 | Sticker et al. | Mar 2008 | B2 |
D565509 | Fechner et al. | Apr 2008 | S |
7351116 | Dold | Apr 2008 | B2 |
7354270 | Abolfathi et al. | Apr 2008 | B2 |
7357637 | Liechtung | Apr 2008 | B2 |
7435083 | Chishti et al. | Oct 2008 | B2 |
7450231 | Johs et al. | Nov 2008 | B2 |
7458810 | Bergersen | Dec 2008 | B2 |
7460230 | Johs et al. | Dec 2008 | B2 |
7462076 | Walter et al. | Dec 2008 | B2 |
7463929 | Simmons | Dec 2008 | B2 |
7476100 | Kuo | Jan 2009 | B2 |
7500851 | Williams | Mar 2009 | B2 |
D594413 | Palka et al. | Jun 2009 | S |
7544103 | Walter et al. | Jun 2009 | B2 |
7553157 | Abolfathi et al. | Jun 2009 | B2 |
7561273 | Stautmeister et al. | Jul 2009 | B2 |
7577284 | Wong et al. | Aug 2009 | B2 |
7596253 | Wong et al. | Sep 2009 | B2 |
7597594 | Stadler et al. | Oct 2009 | B2 |
7609875 | Liu et al. | Oct 2009 | B2 |
D603796 | Sticker et al. | Nov 2009 | S |
7616319 | Woollam et al. | Nov 2009 | B1 |
7626705 | Altendorf | Dec 2009 | B2 |
7632216 | Rahman et al. | Dec 2009 | B2 |
7633625 | Woollam et al. | Dec 2009 | B1 |
7637262 | Bailey | Dec 2009 | B2 |
7668355 | Wong et al. | Feb 2010 | B2 |
7670179 | Müller | Mar 2010 | B2 |
7695327 | Bäuerle et al. | Apr 2010 | B2 |
7698068 | Babayoff | Apr 2010 | B2 |
7711447 | Lu et al. | May 2010 | B2 |
7724378 | Babayoff | May 2010 | B2 |
D618619 | Walter | Jun 2010 | S |
7728848 | Petrov et al. | Jun 2010 | B2 |
7731508 | Borst | Jun 2010 | B2 |
7735217 | Borst | Jun 2010 | B2 |
7740476 | Rubbert et al. | Jun 2010 | B2 |
7744369 | Imgrund et al. | Jun 2010 | B2 |
7746339 | Matov et al. | Jun 2010 | B2 |
7780460 | Walter | Aug 2010 | B2 |
7787132 | Körner et al. | Aug 2010 | B2 |
7791810 | Powell | Sep 2010 | B2 |
7796243 | Choo-Smith et al. | Sep 2010 | B2 |
7806687 | Minagi et al. | Oct 2010 | B2 |
7806727 | Dold et al. | Oct 2010 | B2 |
7813787 | de Josselin de Jong et al. | Oct 2010 | B2 |
7824180 | Abolfathi et al. | Nov 2010 | B2 |
7828601 | Pyczak | Nov 2010 | B2 |
7845969 | Stadler et al. | Dec 2010 | B2 |
7854609 | Chen et al. | Dec 2010 | B2 |
7862336 | Kopelman et al. | Jan 2011 | B2 |
7872760 | Ertl | Jan 2011 | B2 |
7874836 | McSurdy | Jan 2011 | B2 |
7874837 | Chishti et al. | Jan 2011 | B2 |
7874849 | Sticker et al. | Jan 2011 | B2 |
7878801 | Abolfathi et al. | Feb 2011 | B2 |
7878805 | Moss et al. | Feb 2011 | B2 |
7880751 | Kuo et al. | Feb 2011 | B2 |
7892474 | Shkolnik et al. | Feb 2011 | B2 |
7904308 | Arnone et al. | Mar 2011 | B2 |
7907280 | Johs et al. | Mar 2011 | B2 |
7929151 | Liang et al. | Apr 2011 | B2 |
7930189 | Kuo | Apr 2011 | B2 |
7947508 | Tricca et al. | May 2011 | B2 |
7959308 | Freeman et al. | Jun 2011 | B2 |
7963766 | Cronauer | Jun 2011 | B2 |
7970627 | Kuo et al. | Jun 2011 | B2 |
7985414 | Knaack et al. | Jul 2011 | B2 |
7986415 | Thiel et al. | Jul 2011 | B2 |
7987099 | Kuo et al. | Jul 2011 | B2 |
7991485 | Zakim | Aug 2011 | B2 |
8017891 | Nevin | Sep 2011 | B2 |
8026916 | Wen | Sep 2011 | B2 |
8027709 | Arnone et al. | Sep 2011 | B2 |
8038444 | Kitching et al. | Oct 2011 | B2 |
8045772 | Kosuge et al. | Oct 2011 | B2 |
8077949 | Liang et al. | Dec 2011 | B2 |
8083556 | Stadler et al. | Dec 2011 | B2 |
8092215 | Stone-Collonge et al. | Jan 2012 | B2 |
8095383 | Arnone et al. | Jan 2012 | B2 |
8099268 | Kitching et al. | Jan 2012 | B2 |
8099305 | Kuo et al. | Jan 2012 | B2 |
8108189 | Chelnokov et al. | Jan 2012 | B2 |
8118592 | Tortorici | Feb 2012 | B2 |
8126025 | Takeda | Feb 2012 | B2 |
8144954 | Quadling et al. | Mar 2012 | B2 |
8160334 | Thiel et al. | Apr 2012 | B2 |
8172569 | Matty et al. | May 2012 | B2 |
8201560 | Dembro | Jun 2012 | B2 |
8240018 | Walter et al. | Aug 2012 | B2 |
8275180 | Kuo | Sep 2012 | B2 |
8292617 | Brandt et al. | Oct 2012 | B2 |
8294657 | Kim et al. | Oct 2012 | B2 |
8296952 | Greenberg | Oct 2012 | B2 |
8306608 | Mandelis et al. | Nov 2012 | B2 |
8314764 | Kim et al. | Nov 2012 | B2 |
8332015 | Ertl | Dec 2012 | B2 |
8433083 | Abolfathi et al. | Apr 2013 | B2 |
8439672 | Matov et al. | May 2013 | B2 |
8465280 | Sachdeva et al. | Jun 2013 | B2 |
8488113 | Thiel et al. | Jul 2013 | B2 |
8523565 | Matty et al. | Sep 2013 | B2 |
8545221 | Stone-Collonge et al. | Oct 2013 | B2 |
8556625 | Lovely | Oct 2013 | B2 |
8639477 | Chelnokov et al. | Jan 2014 | B2 |
8650586 | Lee et al. | Feb 2014 | B2 |
8738394 | Kuo | May 2014 | B2 |
8771149 | Rahman et al. | Jul 2014 | B2 |
8843381 | Kuo et al. | Sep 2014 | B2 |
8870566 | Bergersen | Oct 2014 | B2 |
8874452 | Kuo | Oct 2014 | B2 |
8899976 | Chen et al. | Dec 2014 | B2 |
8944812 | Kuo | Feb 2015 | B2 |
8992216 | Karazivan | Mar 2015 | B2 |
9004915 | Moss et al. | Apr 2015 | B2 |
9039418 | Rubbert | May 2015 | B1 |
9084535 | Girkin et al. | Jul 2015 | B2 |
9084657 | Matty et al. | Jul 2015 | B2 |
9211166 | Kuo et al. | Dec 2015 | B2 |
9214014 | Levin | Dec 2015 | B2 |
9220580 | Borovinskih et al. | Dec 2015 | B2 |
9241774 | Li et al. | Jan 2016 | B2 |
9277972 | Brandt et al. | Mar 2016 | B2 |
9403238 | Culp | Aug 2016 | B2 |
9414897 | Wu et al. | Aug 2016 | B2 |
9463287 | Lorberbaum et al. | Oct 2016 | B1 |
9492243 | Kuo | Nov 2016 | B2 |
9566132 | Stone-Collonge et al. | Feb 2017 | B2 |
9589329 | Levin | Mar 2017 | B2 |
9820829 | Kuo | Nov 2017 | B2 |
9830688 | Levin | Nov 2017 | B2 |
9844421 | Moss et al. | Dec 2017 | B2 |
9848985 | Yang et al. | Dec 2017 | B2 |
10123706 | Elbaz et al. | Nov 2018 | B2 |
10123853 | Moss et al. | Nov 2018 | B2 |
10172693 | Brandt et al. | Jan 2019 | B2 |
10195690 | Culp | Feb 2019 | B2 |
10231801 | Korytov et al. | Mar 2019 | B2 |
10238472 | Levin | Mar 2019 | B2 |
10248883 | Borovinskih et al. | Apr 2019 | B2 |
10258432 | Webber | Apr 2019 | B2 |
10275862 | Levin | Apr 2019 | B2 |
20010002310 | Chishti et al. | May 2001 | A1 |
20010032100 | Mahmud et al. | Oct 2001 | A1 |
20010038705 | Rubbert et al. | Nov 2001 | A1 |
20010041320 | Phan | Nov 2001 | A1 |
20020004727 | Knaus et al. | Jan 2002 | A1 |
20020007284 | Schurenberg et al. | Jan 2002 | A1 |
20020010568 | Rubbert et al. | Jan 2002 | A1 |
20020015934 | Rubbert et al. | Feb 2002 | A1 |
20020025503 | Chapoulaud et al. | Feb 2002 | A1 |
20020026105 | Drazen | Feb 2002 | A1 |
20020028417 | Chapoulaud et al. | Mar 2002 | A1 |
20020035572 | Takatori et al. | Mar 2002 | A1 |
20020064752 | Durbin et al. | May 2002 | A1 |
20020064759 | Durbin et al. | May 2002 | A1 |
20020087551 | Hickey et al. | Jul 2002 | A1 |
20020107853 | Hofmann et al. | Aug 2002 | A1 |
20020123750 | Eisermann | Sep 2002 | A1 |
20020188478 | Breeland et al. | Dec 2002 | A1 |
20020192617 | Phan et al. | Dec 2002 | A1 |
20030000927 | Kanaya et al. | Jan 2003 | A1 |
20030009252 | Pavlovskaia et al. | Jan 2003 | A1 |
20030019848 | Nicholas et al. | Jan 2003 | A1 |
20030021453 | Weise et al. | Jan 2003 | A1 |
20030035061 | Iwaki et al. | Feb 2003 | A1 |
20030049581 | Deluke | Mar 2003 | A1 |
20030057192 | Patel | Mar 2003 | A1 |
20030064343 | Devanathan | Apr 2003 | A1 |
20030068598 | Vallittu et al. | Apr 2003 | A1 |
20030095697 | Wood et al. | May 2003 | A1 |
20030103060 | Anderson et al. | Jun 2003 | A1 |
20030120517 | Eida et al. | Jun 2003 | A1 |
20030139834 | Nikolskiy et al. | Jul 2003 | A1 |
20030144886 | Taira | Jul 2003 | A1 |
20030172043 | Guyon et al. | Sep 2003 | A1 |
20030190575 | Hilliard | Oct 2003 | A1 |
20030192867 | Yamazaki et al. | Oct 2003 | A1 |
20030207224 | Lotte | Nov 2003 | A1 |
20030215764 | Kopelman et al. | Nov 2003 | A1 |
20030224311 | Cronauer | Dec 2003 | A1 |
20030224313 | Bergersen | Dec 2003 | A1 |
20030224314 | Bergersen | Dec 2003 | A1 |
20040002873 | Sachdeva | Jan 2004 | A1 |
20040009449 | Mah et al. | Jan 2004 | A1 |
20040013994 | Goldberg et al. | Jan 2004 | A1 |
20040019262 | Perelgut | Jan 2004 | A1 |
20040029078 | Marshall | Feb 2004 | A1 |
20040038168 | Choi et al. | Feb 2004 | A1 |
20040054304 | Raby | Mar 2004 | A1 |
20040054358 | Cox et al. | Mar 2004 | A1 |
20040058295 | Bergersen | Mar 2004 | A1 |
20040068199 | Echauz et al. | Apr 2004 | A1 |
20040078222 | Khan et al. | Apr 2004 | A1 |
20040080621 | Fisher et al. | Apr 2004 | A1 |
20040094165 | Cook | May 2004 | A1 |
20040107118 | Harnsberger et al. | Jun 2004 | A1 |
20040133083 | Comaniciu et al. | Jul 2004 | A1 |
20040152036 | Abolfathi | Aug 2004 | A1 |
20040158194 | Wolff et al. | Aug 2004 | A1 |
20040166463 | Wen et al. | Aug 2004 | A1 |
20040167646 | Jelonek et al. | Aug 2004 | A1 |
20040170941 | Phan et al. | Sep 2004 | A1 |
20040193036 | Zhou et al. | Sep 2004 | A1 |
20040197728 | Abolfathi et al. | Oct 2004 | A1 |
20040214128 | Sachdeva et al. | Oct 2004 | A1 |
20040219479 | Malin et al. | Nov 2004 | A1 |
20040220691 | Hofmeister et al. | Nov 2004 | A1 |
20040259049 | Kopelman et al. | Dec 2004 | A1 |
20050003318 | Choi et al. | Jan 2005 | A1 |
20050023356 | Wiklof et al. | Feb 2005 | A1 |
20050031196 | Moghaddam et al. | Feb 2005 | A1 |
20050037312 | Uchida | Feb 2005 | A1 |
20050038669 | Sachdeva et al. | Feb 2005 | A1 |
20050042569 | Plan et al. | Feb 2005 | A1 |
20050048433 | Hilliard | Mar 2005 | A1 |
20050074717 | Cleary et al. | Apr 2005 | A1 |
20050089822 | Geng | Apr 2005 | A1 |
20050100333 | Kerschbaumer et al. | May 2005 | A1 |
20050108052 | Omaboe | May 2005 | A1 |
20050131738 | Morris | Jun 2005 | A1 |
20050144150 | Ramamurthy et al. | Jun 2005 | A1 |
20050171594 | Machan et al. | Aug 2005 | A1 |
20050171630 | Dinauer et al. | Aug 2005 | A1 |
20050181333 | Karazivan et al. | Aug 2005 | A1 |
20050186524 | Abolfathi et al. | Aug 2005 | A1 |
20050186526 | Stewart et al. | Aug 2005 | A1 |
20050216314 | Secor | Sep 2005 | A1 |
20050233276 | Kopelman et al. | Oct 2005 | A1 |
20050239013 | Sachdeva | Oct 2005 | A1 |
20050244781 | Abels et al. | Nov 2005 | A1 |
20050271996 | Sporbert et al. | Dec 2005 | A1 |
20060056670 | Hamadeh | Mar 2006 | A1 |
20060057533 | McGann | Mar 2006 | A1 |
20060063135 | Mehl | Mar 2006 | A1 |
20060078842 | Sachdeva et al. | Apr 2006 | A1 |
20060084024 | Farrell | Apr 2006 | A1 |
20060093982 | Wen | May 2006 | A1 |
20060098007 | Rouet et al. | May 2006 | A1 |
20060099545 | Lia et al. | May 2006 | A1 |
20060099546 | Bergersen | May 2006 | A1 |
20060110698 | Robson | May 2006 | A1 |
20060111631 | Kelliher et al. | May 2006 | A1 |
20060115785 | Li et al. | Jun 2006 | A1 |
20060137813 | Robrecht et al. | Jun 2006 | A1 |
20060147872 | Andreiko | Jul 2006 | A1 |
20060154198 | Durbin et al. | Jul 2006 | A1 |
20060154207 | Kuo | Jul 2006 | A1 |
20060173715 | Wang | Aug 2006 | A1 |
20060183082 | Quadling et al. | Aug 2006 | A1 |
20060188834 | Hilliard | Aug 2006 | A1 |
20060188848 | Tricca et al. | Aug 2006 | A1 |
20060194163 | Tricca et al. | Aug 2006 | A1 |
20060199153 | Liu et al. | Sep 2006 | A1 |
20060204078 | Orth et al. | Sep 2006 | A1 |
20060223022 | Solomon | Oct 2006 | A1 |
20060223032 | Fried et al. | Oct 2006 | A1 |
20060223342 | Borst et al. | Oct 2006 | A1 |
20060234179 | Wen et al. | Oct 2006 | A1 |
20060257815 | De Dominicis | Nov 2006 | A1 |
20060275729 | Fornoff | Dec 2006 | A1 |
20060275731 | Wen et al. | Dec 2006 | A1 |
20060275736 | Wen et al. | Dec 2006 | A1 |
20060277075 | Salwan | Dec 2006 | A1 |
20060290693 | Zhou et al. | Dec 2006 | A1 |
20060292520 | Dillon et al. | Dec 2006 | A1 |
20070031775 | Andreiko | Feb 2007 | A1 |
20070046865 | Umeda et al. | Mar 2007 | A1 |
20070053048 | Kumar et al. | Mar 2007 | A1 |
20070054237 | Neuschafer | Mar 2007 | A1 |
20070087300 | Willison et al. | Apr 2007 | A1 |
20070087302 | Reising et al. | Apr 2007 | A1 |
20070106138 | Beiski et al. | May 2007 | A1 |
20070122592 | Anderson et al. | May 2007 | A1 |
20070128574 | Kuo et al. | Jun 2007 | A1 |
20070141525 | Cinader, Jr. | Jun 2007 | A1 |
20070141526 | Eisenberg et al. | Jun 2007 | A1 |
20070143135 | Lindquist et al. | Jun 2007 | A1 |
20070168152 | Matov et al. | Jul 2007 | A1 |
20070172112 | Paley et al. | Jul 2007 | A1 |
20070172291 | Yokoyama | Jul 2007 | A1 |
20070178420 | Keski-Nisula et al. | Aug 2007 | A1 |
20070183633 | Hoffmann | Aug 2007 | A1 |
20070184402 | Boutoussov et al. | Aug 2007 | A1 |
20070185732 | Hicks et al. | Aug 2007 | A1 |
20070192137 | Ombrellaro | Aug 2007 | A1 |
20070199929 | Rippl et al. | Aug 2007 | A1 |
20070215582 | Roeper et al. | Sep 2007 | A1 |
20070231765 | Phan et al. | Oct 2007 | A1 |
20070238065 | Sherwood et al. | Oct 2007 | A1 |
20070239488 | DeRosso | Oct 2007 | A1 |
20080013727 | Uemura | Jan 2008 | A1 |
20080020350 | Matov et al. | Jan 2008 | A1 |
20080045053 | Stadler et al. | Feb 2008 | A1 |
20080057461 | Cheng et al. | Mar 2008 | A1 |
20080057467 | Gittelson | Mar 2008 | A1 |
20080057479 | Grenness | Mar 2008 | A1 |
20080059238 | Park et al. | Mar 2008 | A1 |
20080090208 | Rubbert | Apr 2008 | A1 |
20080094389 | Rouet et al. | Apr 2008 | A1 |
20080113317 | Kemp et al. | May 2008 | A1 |
20080115791 | Heine | May 2008 | A1 |
20080118886 | Liang et al. | May 2008 | A1 |
20080141534 | Hilliard | Jun 2008 | A1 |
20080171934 | Greenan et al. | Jul 2008 | A1 |
20080176448 | Muller et al. | Jul 2008 | A1 |
20080233530 | Cinader | Sep 2008 | A1 |
20080242144 | Dietz | Oct 2008 | A1 |
20080248443 | Chishti et al. | Oct 2008 | A1 |
20080254403 | Hilliard | Oct 2008 | A1 |
20080268400 | Moss et al. | Oct 2008 | A1 |
20090029310 | Pumphrey et al. | Jan 2009 | A1 |
20090030290 | Kozuch et al. | Jan 2009 | A1 |
20090030347 | Cao | Jan 2009 | A1 |
20090040740 | Muller et al. | Feb 2009 | A1 |
20090061379 | Yamamoto et al. | Mar 2009 | A1 |
20090061381 | Durbin et al. | Mar 2009 | A1 |
20090075228 | Kumada et al. | Mar 2009 | A1 |
20090087050 | Gandyra | Apr 2009 | A1 |
20090098502 | Andreiko | Apr 2009 | A1 |
20090099445 | Burger | Apr 2009 | A1 |
20090103579 | Ushimaru et al. | Apr 2009 | A1 |
20090105523 | Kassayan et al. | Apr 2009 | A1 |
20090130620 | Yazdi et al. | May 2009 | A1 |
20090136890 | Kang et al. | May 2009 | A1 |
20090136893 | Zegarelli | May 2009 | A1 |
20090148809 | Kuo et al. | Jun 2009 | A1 |
20090181346 | Orth | Jul 2009 | A1 |
20090210032 | Beiski et al. | Aug 2009 | A1 |
20090218514 | Klunder et al. | Sep 2009 | A1 |
20090281433 | Saadat et al. | Nov 2009 | A1 |
20090286195 | Sears et al. | Nov 2009 | A1 |
20090298017 | Boerjes et al. | Dec 2009 | A1 |
20090305540 | Stadler et al. | Dec 2009 | A1 |
20090316966 | Marshall et al. | Dec 2009 | A1 |
20090317757 | Lemchen | Dec 2009 | A1 |
20100019170 | Hart et al. | Jan 2010 | A1 |
20100045902 | Ikeda et al. | Feb 2010 | A1 |
20100068676 | Mason et al. | Mar 2010 | A1 |
20100086890 | Kuo | Apr 2010 | A1 |
20100145664 | Hultgren et al. | Jun 2010 | A1 |
20100145898 | Malfliet et al. | Jun 2010 | A1 |
20100152599 | DuHamel et al. | Jun 2010 | A1 |
20100165275 | Tsukamoto et al. | Jul 2010 | A1 |
20100179789 | Sachdeva et al. | Jul 2010 | A1 |
20100196837 | Farrell | Aug 2010 | A1 |
20100231577 | Kim et al. | Sep 2010 | A1 |
20100268363 | Karim et al. | Oct 2010 | A1 |
20100279243 | Cinader et al. | Nov 2010 | A1 |
20100280798 | Pattijn | Nov 2010 | A1 |
20100281370 | Rohaly et al. | Nov 2010 | A1 |
20110091832 | Kim et al. | Apr 2011 | A1 |
20110102549 | Takahashi | May 2011 | A1 |
20110102566 | Zakian et al. | May 2011 | A1 |
20110104630 | Matov et al. | May 2011 | A1 |
20110143673 | Landesman et al. | Jun 2011 | A1 |
20110164810 | Zang et al. | Jul 2011 | A1 |
20110220623 | Beutler | Sep 2011 | A1 |
20120166213 | Arnone et al. | Jun 2012 | A1 |
20130103176 | Kopelman et al. | Apr 2013 | A1 |
20140081091 | Abolfathi et al. | Mar 2014 | A1 |
20140136222 | Arnone et al. | May 2014 | A1 |
20140142902 | Chelnokov et al. | May 2014 | A1 |
20140280376 | Kuo | Sep 2014 | A1 |
20150004553 | Li et al. | Jan 2015 | A1 |
20150132708 | Kuo | May 2015 | A1 |
20150173856 | Iowe et al. | Jun 2015 | A1 |
20150238283 | Tanugula et al. | Aug 2015 | A1 |
20150320320 | Kopelman et al. | Nov 2015 | A1 |
20150320532 | Matty et al. | Nov 2015 | A1 |
20160003610 | Lampert et al. | Jan 2016 | A1 |
20160051345 | Levin | Feb 2016 | A1 |
20160064898 | Atiya et al. | Mar 2016 | A1 |
20160081768 | Kopelman et al. | Mar 2016 | A1 |
20160081769 | Kimura et al. | Mar 2016 | A1 |
20160095668 | Kuo et al. | Apr 2016 | A1 |
20160106520 | Borovinskih et al. | Apr 2016 | A1 |
20160120621 | Li et al. | May 2016 | A1 |
20160135924 | Choi et al. | May 2016 | A1 |
20160135925 | Mason et al. | May 2016 | A1 |
20160163115 | Furst | Jun 2016 | A1 |
20160217708 | Levin et al. | Jul 2016 | A1 |
20160338799 | Wu et al. | Nov 2016 | A1 |
20160367339 | Khardekar et al. | Dec 2016 | A1 |
20170007366 | Kopelman et al. | Jan 2017 | A1 |
20170007367 | Li et al. | Jan 2017 | A1 |
20170007368 | Boronkay | Jan 2017 | A1 |
20170020633 | Stone-Collonge et al. | Jan 2017 | A1 |
20170071705 | Kuo | Mar 2017 | A1 |
20170100212 | Sherwood et al. | Apr 2017 | A1 |
20170100213 | Kuo | Apr 2017 | A1 |
20170105815 | Matov et al. | Apr 2017 | A1 |
20170135792 | Webber | May 2017 | A1 |
20170135793 | Webber et al. | May 2017 | A1 |
20170156821 | Kopelman et al. | Jun 2017 | A1 |
20170165032 | Webber et al. | Jun 2017 | A1 |
20170319296 | Webber et al. | Nov 2017 | A1 |
20180000563 | Shanjani et al. | Jan 2018 | A1 |
20180000565 | Shanjani et al. | Jan 2018 | A1 |
20180028064 | Elbaz et al. | Feb 2018 | A1 |
20180028065 | Elbaz et al. | Feb 2018 | A1 |
20180055602 | Kopelman et al. | Mar 2018 | A1 |
20180125610 | Carrier et al. | May 2018 | A1 |
20180153648 | Shanjani et al. | Jun 2018 | A1 |
20180153649 | Wu et al. | Jun 2018 | A1 |
20180153733 | Kuo | Jun 2018 | A1 |
20180168788 | Fernie | Jun 2018 | A1 |
20180192877 | Atiya et al. | Jul 2018 | A1 |
20180280118 | Cramer | Oct 2018 | A1 |
20180284727 | Cramer et al. | Oct 2018 | A1 |
20180318043 | Li et al. | Nov 2018 | A1 |
20180353264 | Riley et al. | Dec 2018 | A1 |
20180360567 | Xue et al. | Dec 2018 | A1 |
20180368944 | Sato et al. | Dec 2018 | A1 |
20180368961 | Shanjani et al. | Dec 2018 | A1 |
20190019187 | Miller et al. | Jan 2019 | A1 |
20190021817 | Sato et al. | Jan 2019 | A1 |
20190029522 | Sato et al. | Jan 2019 | A1 |
20190029784 | Moalem et al. | Jan 2019 | A1 |
20190046296 | Kopelman et al. | Feb 2019 | A1 |
20190046297 | Kopelman et al. | Feb 2019 | A1 |
20190069975 | Cam et al. | Mar 2019 | A1 |
20190076026 | Elbaz et al. | Mar 2019 | A1 |
20190076214 | Nyukhtikov et al. | Mar 2019 | A1 |
20190076216 | Moss et al. | Mar 2019 | A1 |
20190090983 | Webber et al. | Mar 2019 | A1 |
20190095539 | Elbaz et al. | Mar 2019 | A1 |
20190099129 | Kopelman et al. | Apr 2019 | A1 |
20190105130 | Grove et al. | Apr 2019 | A1 |
20190125494 | Li et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
517102 | Nov 1977 | AU |
3031677 | Nov 1977 | AU |
1121955 | Apr 1982 | CA |
1655732 | Aug 2005 | CN |
1655733 | Aug 2005 | CN |
102017658 | Apr 2011 | CN |
2749802 | May 1978 | DE |
3526198 | Feb 1986 | DE |
4207169 | Sep 1993 | DE |
69327661 | Jul 2000 | DE |
102005043627 | Mar 2007 | DE |
0428152 | May 1991 | EP |
490848 | Jun 1992 | EP |
541500 | May 1993 | EP |
714632 | May 1997 | EP |
774933 | Dec 2000 | EP |
731673 | May 2001 | EP |
1941843 | Jul 2008 | EP |
1989764 | Jul 2012 | EP |
2332221 | Nov 2012 | EP |
463897 | Jan 1980 | ES |
2369828 | Jun 1978 | FR |
2867377 | Sep 2005 | FR |
2930334 | Oct 2009 | FR |
1550777 | Aug 1979 | GB |
53-058191 | May 1978 | JP |
04-028359 | Jan 1992 | JP |
08-508174 | Sep 1996 | JP |
09-19443 | Jan 1997 | JP |
2003245289 | Sep 2003 | JP |
2000339468 | Sep 2004 | JP |
2005527320 | Sep 2005 | JP |
2005527321 | Sep 2005 | JP |
2006043121 | Feb 2006 | JP |
2007151614 | Jun 2007 | JP |
2007260158 | Oct 2007 | JP |
2008067732 | Mar 2008 | JP |
2008523370 | Jul 2008 | JP |
04184427 | Nov 2008 | JP |
2009000412 | Jan 2009 | JP |
2009018173 | Jan 2009 | JP |
2009078133 | Apr 2009 | JP |
2009101386 | May 2009 | JP |
2009205330 | Sep 2009 | JP |
2010017726 | Jan 2010 | JP |
10-20020062793 | Jul 2002 | KR |
10-20090065778 | Jun 2009 | KR |
WO91004713 | Apr 1991 | WO |
WO9203102 | Mar 1992 | WO |
WO94010935 | May 1994 | WO |
WO9623452 | Aug 1996 | WO |
WO98032394 | Jul 1998 | WO |
WO98044865 | Oct 1998 | WO |
WO0108592 | Feb 2001 | WO |
WO02017776 | Mar 2002 | WO |
WO02062252 | Aug 2002 | WO |
WO02095475 | Nov 2002 | WO |
WO03003932 | Jan 2003 | WO |
WO2006096558 | Sep 2006 | WO |
WO2006100700 | Sep 2006 | WO |
WO2006133548 | Dec 2006 | WO |
WO2007019709 | Feb 2007 | WO |
WO2007071341 | Jun 2007 | WO |
WO2007103377 | Sep 2007 | WO |
WO2008115654 | Sep 2008 | WO |
WO2009016645 | Feb 2009 | WO |
WO2009085752 | Jul 2009 | WO |
WO2009089129 | Jul 2009 | WO |
WO2009146788 | Dec 2009 | WO |
WO2009146789 | Dec 2009 | WO |
Entry |
---|
AADR. American Association for Dental Research; Summary of Activities; Los Angeles, CA; p. 195; Mar. 20-23,(year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980. |
Alcaniz et aL; An Advanced System for the Simulation and Planning of Orthodontic Treatments; Karl Heinz Hohne and Ron Kikinis (eds.); Visualization in Biomedical Computing, 4th Intl. Conf, VBC '96, Hamburg, Germany; Springer-Verlag; pp. 511-520; Sep. 22-25, 1996. |
Alexander et al.; The DigiGraph Work Station Part 2 Clinical Management; J. Clin. Orthod.; pp. 402-407; (Author Manuscript); Jul. 1990. |
Align Technology; Align technology announces new teen solution with introduction of invisalign teen with mandibular advancement; 2 pages; retrieved from the internet (http://investor.aligntech.com/static-files/eb4fa6bb-3e62-404f-b74d-32059366a01b); Mar. 6, 2017. |
Allesee Orthodontic Appliance: Important Tip About Wearing the Red White & Blue Active Clear Retainer System; Allesee Orthodontic Appliances-Pro Lab; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1998. |
Allesee Orthodontic Appliances: DuraClearTM; Product information; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1997. |
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; ( product information for doctors); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/doctorhtml); 5 pages on May 19, 2003. |
Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; (product information), 6 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2003. |
Allesee Orthodontic Appliances; The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment;(Patient Information); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/patients.html); 2 pages on May 19, 2003. |
Allesee Orthodontic Appliances; The Red, White & Blue Way to Improve Your Smile; (information for patients), 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992. |
Allesee Orthodontic Appliances; You may be a candidate for this invisible no-braces treatment; product information for patients; 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002. |
Altschuler et al.; Analysis of 3-D Data for Comparative 3-D Serial Growth Pattern Studies of Oral-Facial Structures; AADR Abstracts, Program and Abstracts of Papers, 57th General Session, IADR Annual Session, Mar. 29, 1979-Apr. 1, 1979, New Orleans Marriot; Journal of Dental Research; vol. 58, Special Issue A, p. 221; Jan. 1979. |
Altschuler et al.; Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces; Optical Engineering; 20(6); pp. 953-961; Dec. 1981. |
Altschuler et al.; Measuring Surfaces Space-Coded by a Laser-Projected Dot Matrix; SPIE Imaging q Applications for Automated Industrial Inspection and Assembly; vol. 182; pp. 187-191; Oct. 10, 1979. |
Altschuler; 3D Mapping of Maxillo-Facial Prosthesis; AADR Abstract #607; 2 pages total, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980. |
Andersson et al.; Clinical Results with Titanium Crowns Fabricated with Machine Duplication and Spark Erosion; Acta Odontologica Scandinavica; 47(5); pp. 279-286; Oct. 1989. |
Andrews, The Six Keys to Optimal Occlusion Straight Wire, Chapter 3, L.A. Wells; pp. 13-24; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1989. |
Bartels et al.; An Introduction to Splines for Use in Computer Graphics and Geometric Modeling; Morgan Kaufmann Publishers; pp. 422-425 Jan. 1, 1987. |
Baumrind et al, “Mapping the Skull in 3-D,” reprinted from J. Calif. Dent. Assoc, 48(2), 11 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Fall Issue 1972. |
Baumrind et al.; A Stereophotogrammetric System for the Detection of Prosthesis Loosening in Total Hip Arthroplasty; NATO Symposium on Applications of Human Biostereometrics; SPIE; vol. 166; pp. 112-123; Jul. 9-13, 1978. |
Baumrind; A System for Cranio facial Mapping Through the Integration of Data from Stereo X-Ray Films and Stereo Photographs; an invited paper submitted to the 1975 American Society of Photogram Symposium on Close-Range Photogram Systems; University of Illinois; pp. 142-166; Aug. 26-30, 1975. |
Baumrind; Integrated Three-Dimensional Craniofacial Mapping: Background, Principles, and Perspectives; Seminars in Orthodontics; 7(4); pp. 223-232; Dec. 2001. |
beautyworlds.com; Virtual plastic surgery—beautysurge.com announces launch of cosmetic surgery digital imaging services; 5 pages; retrieved from the internet (http://www.beautyworlds.com/cosmossurgdigitalimagning.htm); Mar. 2004. |
Begole et al.; A Computer System for the Analysis of Dental Casts; The Angle Orthodontist; 51(3); pp. 252-258; Jul. 1981. |
Berland; The use of smile libraries for cosmetic dentistry; Dental Tribunne: Asia pacfic Edition; pp. 16-18; Mar. 29, 2006. |
Bernard et al; Computerized Diagnosis in Orthodontics for Epidemiological Studies: A ProgressReport; (Abstract Only), J. Dental Res. Special Issue, vol. 67, p. 169, paper presented at International Association for Dental Research 66th General Session, Montreal Canada; Mar. 9-13, 1988. |
Bhatia et al.; A Computer-Aided Design for Orthognathic Surgery; British Journal of Oral and Maxillofacial Surgery; 22(4); pp. 237-253; Aug. 1, 1984. |
Biggerstaff et al.; Computerized Analysis of Occlusion in the Postcanine Dentition; American Journal of Orthodontics; 61(3); pp. 245-254; Mar. 1972. |
Biggerstaff; Computerized Diagnostic Setups and Simulations; Angle Orthodontist; 40(I); pp. 28-36; Jan. 1970. |
Biostar Operation & Training Manual. Great Lakes Orthodontics, Ltd. 199 Fire Tower Drive,Tonawanda, New York. 14150-5890, 20 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990. |
Blu et al.; Linear interpolation revitalized; IEEE Transactions on Image Processing; 13(5); pp. 710-719; May 2004. |
Bookstein; Principal warps: Thin-plate splines and decomposition of deformations; IEEE Transactions on pattern analysis and machine intelligence; 11(6); pp. 567-585; Jun. 1989. |
Bourke, Coordinate System Transformation; 1 page; retrived from the internet (http://astronomy.swin.edu.au/' pbourke/prolection/coords) on Nov. 5, 2004; Jun. 1996. |
Boyd et al.; Three Dimensional Diagnosis and Orthodontic Treatment of Complex Malocclusions With the Invisalipn Appliance; Seminars in Orthodontics; 7(4); pp. 274-293; Dec. 2001. |
Brandestini et al.; Computer Machined Ceramic Inlays: In Vitro Marginal Adaptation; J. Dent. Res. Special Issue; (Abstract 305); vol. 64; p. 208; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1985. |
Brook et al.; An Image Analysis System for the Determination of Tooth Dimensions from Study Casts: Comparison with Manual Measurements of Mesio-distal Diameter; Journal of Dental Research; 65(3); pp. 428-431; Mar. 1986. |
Burstone et al.; Precision Adjustment of the Transpalatal Lingual Arch: Computer Arch Form Predetermination; American Journal of Orthodontics; 79(2);pp. 115-133; Feb. 1981. |
Burstone; Dr. Charles J. Burstone on The Uses of the Computer in Orthodontic Practice (Part 1); Journal of Clinical Orthodontics; 13(7); pp. 442-453; (interview); Jul. 1979. |
Burstone; Dr. Charles J. Burstone on The Uses of the Computer in Orthodontic Practice (Part 2); journal of Clinical Orthodontics; 13(8); pp. 539-551 (interview); Aug. 1979. |
Cadent Inc.; OrthoCAD ABO user guide; 38 pages; Dec. 21, 2005. |
Cadent Inc.; Reviewing and modifying an orthoCAD case; 4 pages; Feb. 14, 2005. |
Cardinal Industrial Finishes; Powder Coatings; 6 pages; retrieved from the internet (http://www.cardinalpaint.com) on Aug. 25, 2000. |
Carnaghan, An Alternative to Holograms for the Portrayal of Human Teeth; 4th Int'l. Conf. on Holographic Systems, Components and Applications; pp. 228-231; Sep. 15, 1993. |
Chaconas et al,; The DigiGraph Work Station, Part 1, Basic Concepts; Journal of Clinical Orthodontics; 24(6); pp. 360-367; (Author Manuscript); Jun. 1990. |
Chafetz et al.; Subsidence of the Femoral Prosthesis, A Stereophotogrammetric Evaluation; Clinical Orthopaedics and Related Research; No. 201; pp. 60-67; Dec. 1985. |
Chiappone; Constructing the Gnathologic Setup and Positioner; Journal of Clinical Orthodontics; 14(2); pp. 121-133; Feb. 1980. |
Chishti et al.; U.S. Appl. No. 60/050,342 entitled “Procedure for moving teeth using a seires of retainers,” filed Jun. 20, 1997. |
Cottingham; Gnathologic Clear Plastic Positioner; American Journal of Orthodontics; 55(1); pp. 23-31; Jan. 1969. |
Crawford; CAD/CAM in the Dental Office: Does It Work?; Canadian Dental Journal; 57(2); pp. 121-123 Feb. 1991. |
Crawford; Computers in Dentistry: Part 1: CAD/CAM: The Computer Moves Chairside, Part 2: F. Duret A Man With A Vision, Part 3: The Computer Gives New Vision—Literally, Part 4: Bytes 'N Bites The Computer Moves From The Front Desk To The Operatory; Canadian Dental Journal; 54(9); pp. 661-666 Sep. 1988. |
Crooks; CAD/CAM Comes to USC; USC Dentistry; pp. 14-17; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Spring 1990. |
CSI Computerized Scanning and Imaging Facility; What is a maximum/minimum intensity projection (MIP/MinIP); 1 page; retrived from the internet (http://csi.whoi.edu/content/what-maximumminimum-intensity-projection-mipminip); Jan. 4, 2010. |
Cureton; Correcting Malaligned Mandibular Incisors with Removable Retainers; Journal of Clinical Orthodontics; 30(7); pp. 390-395; Jul. 1996. |
Curry et al.; Integrated Three-Dimensional Craniofacial Mapping at the Craniofacial Research InstrumentationLaboratory/University of the Pacific; Seminars in Orthodontics; 7(4); pp. 258-265; Dec. 2001. |
Cutting et al.; Three-Dimensional Computer-Assisted Design of Craniofacial Surgical Procedures: Optimization and Interaction with Cephalometric and CT-Based Models; Plastic and Reconstructive Surgery; 77(6); pp. 877-885; Jun. 1986. |
Daniels et al.; The development of the index of complexity outcome and need (ICON); British Journal of Orthodontics; 27(2); pp. 149-162; Jun. 2000. |
DCS Dental AG; The CAD/CAM 'DCS Titan System' for Production of Crowns/Bridges; DSC Production; pp. 1-7; Jan. 1992. |
Defranco et al.; Three-Dimensional Large Displacement Analysis of Orthodontic Appliances; Journal of Biomechanics; 9(12); pp. 793-801; Jan. 1976. |
Dental Institute University of Zurich Switzerland; Program for International Symposium on Computer Restorations: State of the Art of the CEREC-Method; 2 pages; May 1991. |
Dentrac Corporation; Dentrac document; pp. 4-13; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992. |
Dentrix; Dentrix G3, new features; 2 pages; retrieved from the internet (http://www.dentrix.com/g3/new_features/index.asp); on Jun. 6, 2008. |
Dent-x; Dentsim . . . Dent-x's virtual reality 3-D training simulator . . . A revolution in dental education; 6 pages; retrieved from the internet (http://www.dent-x.com/DentSim.htm); on Sep. 24, 1998. |
DICOM to surgical guides; (Screenshot)1 page; retrieved from the internet at YouTube (https://youtu.be/47KtOmCEFQk); Published Apr. 4, 2016. |
Di Giacomo et al.; Clinical application of sterolithographic surgical guides for implant placement: Preliminary results; Journal Periodontolgy; 76(4); pp. 503-507; Apr. 2005. |
Di Muzio et al.; Minimum intensity projection (MinIP); 6 pages; retrieved from the internet (https://radiopaedia.org/articles/minimum-intensity-projection-minip) on Sep. 6, 2018. |
Doruk et al.; The role of the headgear timer in extraoral co-operation; European Journal of Orthodontics; 26; pp. 289-291; Jun. 1, 2004. |
Doyle; Digital Dentistry; Computer Graphics World; pp. 50-52 andp. 54; Oct. 2000. |
Duret et al.; CAD/CAM Imaging in Dentistry; Current Opinion in Dentistry; 1(2); pp. 150-154; Apr. 1991. |
Duret et al; CAD-CAM in Dentistry; Journal of the American Dental Association; 117(6); pp. 715-720; Nov. 1988. |
Duret; The Dental CAD/CAM, General Description of the Project; Hennson International Product Brochure, 18 pages; Jan. 1986. |
Duret; Vers Une Prosthese Informatisee; Tonus; 75(15); pp. 55-57; (English translation attached); 23 pages; Nov. 15, 1985. |
Economides; The Microcomputer in the Orthodontic Office; Journal of Clinical Orthodontics; 13(11); pp. 767-772; Nov. 1979. |
Elsasser; Some Observations on the History and Uses of the Kesling Positioner; American Journal of Orthodontics; 36(5); pp. 368-374; May 1, 1950. |
English translation of Japanese Laid-Open Publication No. 63-11148 to inventor T. Ozukuri (Laid-Open on Jan. 18, 1998) pp. 1-7. |
Faber et al.; Computerized Interactive Orthodontic Treatment Planning; American Journal of Orthodontics; 73(1); pp. 36-46; Jan. 1978. |
Felton et al.; A Computerized Analysis of the Shape and Stability of Mandibular Arch Form; American Journal of Orthodontics and Dentofacial Orthopedics; 92(6); pp. 478-483; Dec. 1987. |
Friede et al.; Accuracy of Cephalometric Prediction in Orthognathic Surgery; Journal of Oral and Maxillofacial Surgery; 45(9); pp. 754-760; Sep. 1987. |
Friedrich et al; Measuring system for in vivo recording offeree systems in orthodontic treatment-concept and analysis of accuracy; J. Biomech.; 32(1); pp. 81-85; (Abstract Only) Jan. 1999. |
Futterling et al.; Automated Finite Element Modeling of a Human Mandible with Dental Implants; JS WSCG '98—Conference Program; 8 pages; retrieved from the Internet (https://dspace5.zcu.ez/bitstream/11025/15851/1/Strasser_98.pdf); on Aug. 21, 2018. |
Gansky; Dental data mining: potential pitfalls and practical issues; Advances in Dental Research; 17(1); pp. 109-114; Dec. 2003. |
Gao et al.; 3-D element Generation for Multi-Connected Complex Dental and Mandibular Structure; IEEE Proceedings International Workshop in Medical Imaging and Augmented Reality; pp. 267-271; Jun. 12, 2001. |
Geomagic; Dental reconstruction; 1 page; retrieved from the internet (http://geomagic.com/en/solutions/industry/detal_desc.php) on Jun. 6, 2008. |
Gim-Alldent Deutschland, “Das DUX System: Die Technik,” 3 pages; (English Translation Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2002. |
Gottleib et al.; JCO Interviews Dr. James A. McNamura, Jr., on the Frankel Appliance: Part 2: Clinical 1-1 Management; Journal of Clinical Orthodontics; 16(6); pp. 390-407; retrieved from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1982&Month=06&ArticleNum+); 21 pages; Jun. 1982. |
Gottschalk et al.; OBBTree: A hierarchical structure for rapid interference detection; 12 pages; (http://www.cs.unc.edu/?geom/OBB/OBBT.html); relieved from te internet (https://www.cse.iitk.ac.in/users/amit/courses/RMP/presentations/dslamba/presentation/sig96.pdf) on Apr. 25, 2019. |
gpsdentaire.com; Get a realistic smile simulation in 4 steps with GPS; a smile management software; 10 pages; retrieved from the internet (http://www.gpsdentaire.com/en/preview/) on Jun. 6, 2008. |
Grayson; New Methods for Three Dimensional Analysis of Craniofacial Deformity, Symposium: Computerized Facial Imaging in Oral and Maxillofacial Surgery; American Association of Oral and Maxillofacial Surgeons; 48(8) suppl 1; pp. 5-6; Sep. 13, 1990. |
Grest, Daniel; Marker-Free Human Motion Capture in Dynamic Cluttered Environments from a Single View-Point, PhD Thesis; 171 pages; Dec. 2007. |
Guess et al.; Computer Treatment Estimates In Orthodontics and Orthognathic Surgery; Journal of Clinical Orthodontics; 23(4); pp. 262-268; 11 pages; (Author Manuscript); Apr. 1989. |
Heaven et al.; Computer-Based Image Analysis of Artificial Root Surface Caries; Abstracts of Papers #2094; Journal of Dental Research; 70:528; (Abstract Only); Apr. 17-21, 1991. |
Highbeam Research; Simulating stress put on jaw. (ANSYS Inc.'s finite element analysis software); 2 pages; retrieved from the Internet (http://static.highbeam.eom/t/toolingampproduction/november011996/simulatingstressputonfa..); on Nov. 5, 2004. |
Hikage; Integrated Orthodontic Management System for Virtual Three-Dimensional Computer Graphic Simulation and Optical Video Image Database for Diagnosis and Treatment Planning; Journal of Japan KA Orthodontic Society; 46(2); pp. 248-269; 56 pages; (English Translation Included); Feb. 1987. |
Hoffmann et al.; Role of Cephalometry for Planning of Jaw Orthopedics and Jaw Surgery Procedures; Informatbnen, pp. 375-396; (English Abstract Included); Mar. 1991. |
Hojjatie et al.; Three-Dimensional Finite Element Analysis of Glass-Ceramic Dental Crowns; Journal of Biomechanics; 23(11); pp. 1157-1166; Jan. 1990. |
Huckins; CAD-CAM Generated Mandibular Model Prototype from MRI Data; AAOMS, p. 96; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1999. |
Invisalign; You were made to move. There's never been a better time to straighten your teeth with the most advanced clear aligner in the world; Product webpage; 2 pages; retrieved from the internet (www.invisalign.com/) on Dec. 28, 2017. |
JCO Interviews; Craig Andreiko , DDS, MS on the Elan and Orthos Systems; Interview by Dr. Larry W. White; Journal of Clinical Orthodontics; 28(8); pp. 459-468; 14 pages; (Author Manuscript); Aug. 1994. |
JCO Interviews; Dr. Homer W. Phillips on Computers in Orthodontic Practice, Part 2; Journal of Clinical Orthodontics; 17(12); pp. 819-831; 19 pages; (Author Manuscript); Dec. 1983. |
Jerrold; The Problem, Electronic Data Transmission and the Law; American Journal of Orthodontics and Dentofacial Orthopedics; 113(4); pp. 478-479; 5 pages; (Author Manuscript); Apr. 1998. |
Jones et al.; An Assessment of the Fit of a Parabolic Curve to Pre- and Post-Treatment Dental Arches; British Journal of Orthodontics; 16(2); pp. 85-93; May 1989. |
Kamada et.al.; Case Reports On Tooth Positioners Using LTV Vinyl Silicone Rubber; J. Nihon University School of Dentistry; 26(1); pp. 11-29; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1984. |
Kamada et.al.; Construction of Tooth Positioners with LTV Vinyl Silicone Rubber and Some Case KJ Reports; J. Nihon University School of Dentistry; 24(1); pp. 1-27; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1982. |
Kanazawa et al.; Three-Dimensional Measurements of the Occlusal Surfaces of Upper Molars in a Dutch Population; Journal of Dental Research; 63(11); pp. 1298-1301; Nov. 1984. |
Karaman et al.; A practical method of fabricating a lingual retainer; Am. Journal of Orthodontic and Dentofacial Orthopedics; 124(3); pp. 327-330; Sep. 2003. |
Kesling et al.; The Philosophy of the Tooth Positioning Appliance; American Journal of Orthodontics and Oral surgery; 31(6); pp. 297-304; Jun. 1945. |
Kesling; Coordinating the Predetermined Pattern and Tooth Positioner with Conventional Treatment; American Journal of Orthodontics and Oral Surgery; 32(5); pp. 285-293; May 1946. |
Kleeman et al.; The Speed Positioner; J. Clin. Orthod.; 30(12); pp. 673-680; Dec. 1996. |
Kochanek; Interpolating Splines with Local Tension, Continuity and Bias Control; Computer Graphics; 18(3); pp. 33-41; Jan. 1, 1984. |
Kunii et al.; Articulation Simulation for an Intelligent Dental Care System; Displays; 15(3); pp. 181-188; Jul. 1994. |
Kuroda et al.; Three-Dimensional Dental Cast Analyzing System Using Laser Scanning; American Journal of Orthodontics and Dentofacial Orthopedics; 110(4); pp. 365-369; Oct. 1996. |
Laurendeau et al.; A Computer-Vision Technique for the Acquisition and Processing of 3-D Profiles of 7 Dental Imprints: An Application in Orthodontics; IEEE Transactions on Medical Imaging; 10(3); pp. 453-461; Sep. 1991. |
Leinfelder et al.; A New Method for Generating Ceramic Restorations: a CAD-CAM System; Journal of the American Dental Association; 118(6); pp. 703-707; Jun. 1989. |
Manetti et al.; Computer-Aided Cefalometry and New Mechanics in Orthodontics; Fortschr Kieferorthop; 44; pp. 370-376; 8 pages; (English Article Summary Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1983. |
Mantzikos et al.; Case report: Forced eruption and implant site development; The Angle Orthodontist; 68(2); pp. 179-186; Apr. 1998. |
McCann; Inside the ADA; J. Amer. Dent. Assoc, 118:286-294; Mar. 1989. |
McNamara et al.; Invisible Retainers; J. Clin Orthod.; pp. 570-578; 11 pages; (Author Manuscript); Aug. 1985. |
McNamara et al.; Orthodontic and Orthopedic Treatment in the Mixed Dentition; Needham Press; pp. 347-353; Jan. 1993. |
Methot; Get the picture with a gps for smile design in 3 steps; Spectrum; 5(4); pp. 100-105; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2006. |
Moermann et al, Computer Machined Adhesive Porcelain Inlays: Margin Adaptation after Fatigue Stress; IADR Abstract 339; J. Dent. Res.; 66(a):763; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1987. |
Moles; Correcting Mild Malalignments—As Easy As One, Two, Three; AOA/Pro Corner; 11(2); 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002. |
Mormann et al.; Marginale Adaptation von adhasuven Porzellaninlays in vitro; Separatdruck aus:Schweiz. Mschr. Zahnmed.; 95; pp. 1118-1129; 8 pages; (Machine Translated English Abstract); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1985. |
Nahoum; The Vacuum Formed Dental Contour Appliance; N. Y. State Dent. J.; 30(9); pp. 385-390; Nov. 1964. |
Nash; CEREC CAD/CAM Inlays: Aesthetics and Durability in a Single Appointment; Dentistry Today; 9(8); pp. 20, 22-23 and 54; Oct. 1990. |
Newcombe; DTAM: Dense tracking and mapping in real-time; 8 pages; retrieved from the internet (http://www.doc.ic.ac.uk/?ajd/Publications/newcombe_etal_iccv2011.pdf; on Dec. 2011. |
Nishiyama et al.; A New Construction of Tooth Repositioner by LTV Vinyl Silicone Rubber; The Journal of Nihon University School of Dentistry; 19(2); pp. 93-102 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1977. |
Ogawa et al.; Mapping, profiling and clustering of pressure pain threshold (PPT) in edentulous oral muscosa; Journal of Dentistry; 32(3); pp. 219-228; Mar. 2004. |
Ogimoto et al.; Pressure-pain threshold determination in the oral mucosa; Journal of Oral Rehabilitation; 29(7); pp. 620-626; Jul. 2002. |
ormco.com; Increasing clinical performance with 3D interactive treatment planning and patient-specific appliances; 8 pages; retrieved from the internet (http://www.konsident.com/wp-content/files_mf/1295385693http_ormco.com_index_cmsfilesystemaction_fileOrmcoPDF_whitepapers.pdf) on Feb. 27, 2019. |
OrthoCAD downloads; retrieved Jun. 27, 2012 from the internet (www.orthocad.com/download/downloads.asp); 2 pages; Feb. 14, 2005. |
Page et al.; Validity and accuracy of a risk calculator in predicting periodontal disease; Journal of the American Dental Association; 133(5); pp. 569-576; May 2002. |
Patterson Dental; Cosmetic imaging; 2 pages retrieved from the internet (http://patterson.eaglesoft.net/cnt_di_cosimg.html) on Jun. 6, 2008. |
Paul et al.; Digital Documentation of Individual Human Jaw and Tooth Forms for Applications in Orthodontics; Oral Surgery and Forensic Medicine Proc. of the 24th Annual Conf. of the IEEE Industrial Electronics Society (IECON '98); vol. 4; pp. 2415-2418; Sep. 4, 1998. |
Pinkham; Foolish Concept Propels Technology; Dentist, 3 pages , Jan./Feb. 1989. |
Pinkham; Inventor's CAD/CAM May Transform Dentistry; Dentist; pp. 1 and 35, Sep. 1990. |
Ponitz; Invisible retainers; Am. J. Orthod.; 59(3); pp. 266-272; Mar. 1971. |
Procera Research Projects; Procera Research Projects 1993 ' Abstract Collection; 23 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1993. |
Proffit et al.; The first stage of comprehensive treatment alignment and leveling; Contemporary Orthodontics, 3rd Ed.; Chapter 16; Mosby Inc.; pp. 534-537; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2000. |
Proffit et al.; The first stage of comprehensive treatment: alignment and leveling; Contemporary Orthodontics; (Second Ed.); Chapter 15, MosbyYear Book; St. Louis, Missouri; pp. 470-533 Oct. 1993. |
Raintree Essix & ARS Materials, Inc., Raintree Essix, Technical Magazine Table of contents and Essix Appliances, 7 pages; retrieved from the internet (http://www.essix.com/magazine/defaulthtml) on Aug. 13, 1997. |
Redmond et al.; Clinical Implications of Digital Orthodontics; American Journal of Orthodontics and Dentofacial Orthopedics; 117(2); pp. 240-242; Feb. 2000. |
Rekow et al.; CAD/CAM for Dental Restorations—Some of the Curious Challenges; IEEE Transactions on Biomedical Engineering; 38(4); pp. 314-318; Apr. 1991. |
Rekow et al.; Comparison of Three Data Acquisition Techniques for 3-D Tooth Surface Mapping; Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 13(1); pp. 344-345 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1991. |
Rekow; A Review of the Developments in Dental CAD/CAM Systems; Current Opinion in Dentistry; 2; pp. 25-33; Jun. 1992. |
Rekow; CAD/CAM in Dentistry: A Historical Perspective and View of the Future; Journal Canadian Dental Association; 58(4); pp. 283, 287-288; Apr. 1992. |
Rekow; Computer-Aided Design and Manufacturing in Dentistry: A Review of the State of the Art; Journal of Prosthetic Dentistry; 58(4); pp. 512-516; Dec. 1987. |
Rekow; Dental CAD-CAM Systems: What is the State of the Art?; The Journal of the American Dental Association; 122(12); pp. 43-48; Dec. 1991. |
Rekow; Feasibility of an Automated System for Production of Dental Restorations, Ph.D. Thesis; Univ. of Minnesota, 250 pages, Nov. 1988. |
Richmond et al.; The Development of the PAR Index (Peer Assessment Rating): Reliability and Validity.; The European Journal of Orthodontics; 14(2); pp. 125-139; Apr. 1992. |
Richmond et al.; The Development of a 3D Cast Analysis System; British Journal of Orthodontics; 13(1); pp. 53-54; Jan. 1986. |
Richmond; Recording The Dental Cast In Three Dimensions; American Journal of Orthodontics and Dentofacial Orthopedics; 92(3); pp. 199-206; Sep. 1987. |
Rose et al.; The role of orthodontics in implant dentistry; British Dental Journal; 201(12); pp. 753-764; Dec. 23, 2006. |
Rubin et al.; Stress analysis of the human tooth using a three-dimensional finite element model; Journal of Dental Research; 62(2); pp. 82-86; Feb. 1983. |
Rudge; Dental Arch Analysis: Arch Form, A Review of the Literature; The European Journal of Orthodontics; 3(4); pp. 279-284; Jan. 1981. |
Sahm et al.; “Micro-Electronic Monitoring Of Functional Appliance Wear”; Eur J Orthod.; 12(3); pp. 297-301; Aug. 1990. |
Sahm; Presentation of a wear timer for the clarification of scientific questions in orthodontic orthopedics; Fortschritte der Kieferorthopadie; 51 (4); pp. 243-247; (Translation Included) Jul. 1990. |
Sakuda et al.; Integrated Information-Processing System In Clinical Orthodontics: An Approach with Use of a Computer Network System; American Journal of Orthodontics and Dentofacial Orthopedics; 101(3); pp. 210-220; 20 pages; (Author Manuscript) Mar. 1992. |
Sarment et al.; Accuracy of implant placement with a sterolithographic surgical guide; journal of Oral and Maxillofacial Implants; 118(4); pp. 571-577; Jul. 2003. |
Schellhas et al.; Three-Dimensional Computed Tomography in Maxillofacial Surgical Planning; Archives of Otolaryngology—Head and Neck Surgery; 114(4); pp. 438-442; Apr. 1988. |
Schroeder et al; Eds. The Visual Toolkit, Prentice Hall PTR, New Jersey; Chapters 6, 8 & 9, (pp. 153-210,309-354, and 355-428; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1998. |
Shilliday; Minimizing finishing problems with the mini-positioner; American Journal of Orthodontics; 59(6); pp. 596-599; Jun. 1971. |
Siemens; CEREC—Computer-Reconstruction, High Tech in der Zahnmedizin; 15 pagesl; (Includes Machine Translation); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2004. |
Sinclair; The Readers' Corner; Journal of Clinical Orthodontics; 26(6); pp. 369-372; 5 pages; retrived from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1992&Month=06&ArticleNum=); Jun. 1992. |
Sirona Dental Systems GmbH, CEREC 3D, Manuel utiiisateur, Version 2.0X (in French); 114 pages; (English translation of table of contents included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2003. |
Smalley; Implants for tooth movement: Determining implant location and orientation: Journal of Esthetic and Restorative Dentistry; 7(2); pp. 62-72; Mar. 1995. |
Smart Technology; Smile library II; 1 page; retrieved from the internet (http://smart-technology.net/) on Jun. 6, 2008. |
Smile-Vision_The smile-vision cosmetic imaging system; 2 pages; retrieved from the internet (http://www.smile-vision.net/cos_imaging.php) on Jun. 6, 2008. |
Stoll et al.; Computer-aided Technologies in Dentistry; Dtsch Zahna'rztl Z 45, pp. 314-322; (English Abstract Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990. |
Sturman; Interactive Keyframe Animation of 3-D Articulated Models; Proceedings Graphics Interface '84; vol. 86; pp. 35-40; May-Jun. 1984. |
Szeliski; Introduction to computer vision: Structure from motion; 64 pages; retrieved from the internet (http://robots.stanford.edu/cs223b05/notes/CS%20223-B%20L10%structurefrommotion1b.ppt, on Feb. 3, 2005. |
The American Heritage, Stedman's Medical Dictionary; Gingiva; 3 pages; retrieved from the interent (http://reference.com/search/search?q=gingiva) on Nov. 5, 2004. |
Thera Mon; “Microsensor”; 2 pages; retrieved from the internet (www.english.thera-mon.com/the-product/transponder/index.html); on Sep. 19, 2016. |
Thorlabs; Pellin broca prisms; 1 page; retrieved from the internet (www.thorlabs.com); Nov. 30, 2012. |
Tiziani et al.; Confocal principle for macro and microscopic surface and defect analysis; Optical Engineering; 39(1); pp. 32-39; Jan. 1, 2000. |
Truax; Truax Clasp-Less(TM) Appliance System; The Functional Orthodontist; 9(5); pp. 22-24, 26-28; Sep.-Oct. 1992. |
TRU-TATN Orthodontic & Dental Supplies, Product Brochure, Rochester, Minnesota 55902, 16 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1996. |
U.S. Department of Commerce, National Technical Information Service, Holodontography: An Introduction to Dental Laser Holography; School of Aerospace Medicine Brooks AFB Tex; Mar. 1973, 40 pages; Mar. 1973. |
U.S. Department of Commerce, National Technical Information Service; Automated Crown Replication Using Solid Photography SM; Solid Photography Inc., Melville NY,; 20 pages; Oct. 1977. |
Vadapalli; Minimum intensity projection (MinIP) is a data visualization; 7 pages; retrieved from the internet (https://prezi.com/tdmttnmv2knw/minimum-intensity-projection-minip-is-a-data-visualization/) on Sep. 6, 2018. |
Van Der Linden et al.; Three-Dimensional Analysis of Dental Casts by Means of the Optocom; Journal of Dental Research; 51(4); p. 1100; Jul.-Aug. 1972. |
Van Der Linden; A New Method to Determine Tooth Positions and Dental Arch Dimensions; Journal of Dental Research; 51(4); p. 1104; Jul.-Aug. 1972. |
Van Der Zel; Ceramic-Fused-to-Metal Restorations with a New CAD/CAM System; Quintessence International; 24(A); pp. 769-778; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1993. |
Varady et al.; Reverse Engineering Of Geometric Models'An Introduction; Computer-Aided Design; 29(4); pp. 255-268; 20 pages; (Author Manuscript); Apr. 1997. |
Verstreken et al.; An Image-Guided Planning System for Endosseous Oral Implants; IEEE Transactions on Medical Imaging; 17(5); pp. 842-852; Oct. 1998. |
Vevin et al.; Pose estimation of teeth through crown-shape matching; In Medical Imaging: Image Processing of International Society of Optics and Photonics; vol. 4684; pp. 955-965; May 9, 2002. |
Virtual Orthodontics; Our innovative software; 2 pages; (http://www.virtualorthodontics.com/innovativesoftware.html); retrieved from the internet (https://web.archive.org/web/20070518085145/http://www.virtualorthodontics.com/innovativesoftware.html); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2005. |
Warunek et al.; Physical and Mechanical Properties of Elastomers in Orthodonic Positioners; American Journal of Orthodontics and Dentofacial Orthopedics; 95(5); pp. 388-400; 21 pages; (Author Manuscript); May 1989. |
Warunek et.al.; Clinical Use of Silicone Elastomer Applicances; JCO; 23(10); pp. 694-700; Oct. 1989. |
Watson et al.; Pressures recorded at te denture base-mucosal surface interface in complete denture wearers; Journal of Oral Rehabilitation 14(6); pp. 575-589; Nov. 1987. |
Wells; Application of the Positioner Appliance in Orthodontic Treatment; American Journal of Orthodontics; 58(4); pp. 351-366; Oct. 1970. |
Wiedmann; According to the laws of harmony to find the right tooth shape with assistance of the computer; Digital Dental News; 2nd Vol.; pp. 0005-0008; (English Version Included); Apr. 2008. |
Wikipedia; Palatal expansion; 3 pages; retrieved from the internet (https://en.wikipedia.org/wiki/Palatal_expansion) on Mar. 5, 2018. |
Williams; Dentistry and CAD/CAM: Another French Revolution; J. Dent. Practice Admin.; 4(1); pp. 2-5 Jan./Mar. 1987. |
Williams; The Switzerland and Minnesota Developments in CAD/CAM; Journal of Dental Practice Administration; 4(2); pp. 50-55; Apr./Jun. 1987. |
Wishan; New Advances in Personal Computer Applications for Cephalometric Analysis, Growth Prediction, Surgical Treatment Planning and Imaging Processing; Symposium: Computerized Facial Imaging in Oral and Maxilofacial Surgery; p. 5; Presented on Sep. 13, 1990. |
Witt et al.; The wear-timing measuring device in orthodontics-cui bono? Reflections on the state-of-the-art in wear-timing measurement and compliance research in orthodontics; Fortschr Kieferorthop.; 52(3); pp. 117-125; (Translation Included) Jun. 1991. |
Wolf; Three-dimensional structure determination of semi-transparent objects from holographic data; Optics Communications; 1(4); pp. 153-156; Sep. 1969. |
Wong et al.; Computer-aided design/computer-aided manufacturing surgical guidance for placement of dental implants: Case report; Implant Dentistry; 16(2); pp. 123-130; Sep. 2007. |
Wong et al.; The uses of orthodontic study models in diagnosis and treatment planning; Hong Kong Dental Journal; 3(2); pp. 107-115; Dec. 2006. |
WSCG'98—Conference Program, The Sixth International Conference in Central Europe on Computer Graphics and Visualization '98; pp. 1-7; retrieved from the Internet on Nov. 5, 2004, (http://wscg.zcu.cz/wscg98/wscg98.htm); Feb. 9-13, 1998. |
Xia et al.; Three-Dimensional Virtual-Reality Surgical Planning and Soft-Tissue Prediction for Orthognathic Surgery; IEEE Transactions on Information Technology in Biomedicine; 5(2); pp. 97-107; Jun. 2001. |
Yaltara Software; Visual planner; 1 page; retrieved from the internet (http://yaltara.com/vp/) on Jun. 6, 2008. |
Yamada et al.; Simulation of fan-beam type optical computed-tomography imaging of strongly scattering and weakly absorbing media; Applied Optics; 32(25); pp. 4808-4814; Sep. 1, 1993. |
Yamamoto et al.; Optical Measurement of Dental Cast Profile and Application to Analysis of Three-Dimensional Tooth Movement in Orthodontics; Front. Med. Biol. Eng., 1(2); pp. 119-130; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1988. |
Yamamoto et al.; Three-Dimensional Measurement of Dental Cast Profiles and Its Applications to Orthodontics; Conf. Proc. IEEE Eng. Med. Biol. Soc.; 12(5); pp. 2052-2053; Nov. 1990. |
Yamany et al.; A System for Human Jaw Modeling Using Intra-Oral Images; Proc. of the 20th Annual Conf. of the IEEE Engineering in Medicine and Biology Society; vol. 2; pp. 563-566; Oct. 1998. |
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); 111. The General Concept of the D.P. Method and Its Therapeutic Effect, Part 1, Dental and Functional Reversed Occlusion Case Reports; Nippon Dental Review; 457; pp. 146-164; 43 pages; (Author Manuscript); Nov. 1980. |
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); I. The D.P. Concept and Implementation of Transparent Silicone Resin (Orthocon); Nippon Dental Review; 452; pp. 61-74; 32 pages; (Author Manuscript); Jun. 1980. |
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); II. The D.P. Manufacturing Procedure and Clinical Applications; Nippon Dental Review; 454; pp. 107-130; 48 pages; (Author Manuscript); Aug. 1980. |
Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); III—The General Concept of the D.P. Method and Its Therapeutic Effect, Part 2. Skeletal Reversed Occlusion Case Reports; Nippon Dental Review; 458; pp. 112-129; 40 pages; (Author Manuscript); Dec. 1980. |
Zhang et al.; Visual speech features extraction for improved speech recognition; 2002 IEEE International conference on Acoustics, Speech and Signal Processing; vol. 2; 4 pages; May 13-17, 2002. |
Morton et al.; U.S. Appl. No. 16/177,067 entitled “Dental appliance having selective occlusal loading and controlled intercuspation,” filed Oct. 31, 2018. |
Akopov et al.; U.S. Appl. No. 16/178,491 entitled “Automatic treatment planning,” filed Nov. 1, 2018. |
O'Leary et al.; U.S. Appl. No. 16/195,701 entitled “Orthodontic retainers,” filed Nov. 19, 2018. |
Shanjani et al., U.S. Appl. No. 16/206,894 entitled “Sensors for monitoring oral appliances,” filed Nov. 28, 2019. |
Shanjani et al., U.S. Appl. No. 16/231,906 entitled “Augmented reality enhancements for dental practitioners.” filed Dec. 24, 2018. |
Kopleman et al., U.S. Appl. No. 16/220,381 entitled “Closed loop adaptive orthodontic treatment methods and apparatuses,” filed Dec. 14, 2018. |
Sabina et al., U.S. Appl. No. 16/258,516 entitled “Diagnostic intraoral scanning” filed Jan. 25, 2019. |
Sabina et al., U.S. Appl. No. 16/258,523 entitled “Diagnostic intraoral tracking” filed Jan. 25, 2019. |
Sabina et al., U.S. Appl. No. 16/258,527 entitled “Diagnostic intraoral methods and apparatuses” filed Jan. 25, 2019. |
Culp; U.S. Appl. No. 16/236,220 entitled “Laser cutting,” filed Dec. 28, 2018. |
Culp; U.S. Appl. No. 16/265,287 entitled “Laser cutting,” filed Feb. 1, 2019. |
Arnone et al.; U.S. Appl. No. 16/235,449 entitled “Method and system for providing indexing and cataloguing of orthodontic related treatment profiles and options,” filed Dec. 28, 2018. |
Mason et al.; U.S. Appl. No. 16/374,648 entitled “Dental condition evaluation and treatment,” filed Apr. 3, 2019. |
Brandt et al.; U.S. Appl. No. 16/235,490 entitled “Dental wire attachment,” filed Dec. 28, 2018. |
Kuo; U.S. Appl. No. 16/270,891 entitled “Personal data file,” filed Feb. 8, 2019. |
Number | Date | Country | |
---|---|---|---|
20180071055 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14578244 | Dec 2014 | US |
Child | 15814192 | US | |
Parent | 13431783 | Mar 2012 | US |
Child | 14578244 | US | |
Parent | 12247559 | Oct 2008 | US |
Child | 13431783 | US |