1. Field of the Invention
The present invention is related to thin-film solid-state batteries and, in particular, the deposition of LiCoO2 films and layers for battery manufacture.
2. Discussion of Related Art
Solid-state thin-film batteries are typically formed by stacking thin films on a substrate in such a way that the films cooperate to generate a voltage. The thin films typically include current collectors, a cathode, an anode, and an electrolyte. The thin films can be deposited utilizing a number of deposition processes, including sputtering and electroplating. Substrates suitable for this application have conventionally been high temperature materials capable of withstanding at least one high temperature anneal process to at least 700° C. for up to about 2 hours in air so as to crystallize the LiCoO2 film. Such a substrate can be any suitable material with appropriate structural and material properties, for example a semiconductor wafer, metallic sheet (e.g., titanium or zirconium), ceramic such as alumina, or other material capable of withstanding subsequent high temperature processing in the presence of the LiCoO2, which can experience significant interfacial reactions with most materials utilized in a battery during these temperature cycles.
Other lithium containing mixed metal oxides besides LiCoO2, including Ni, Nb, Mn, V, and sometimes also Co, but including other transition metal oxides, have been evaluated as crystalline energy storage cathode materials. Typically, the cathode material is deposited in amorphous form and then the material is heated in an anneal process to form the crystalline material. In LiCoO2, for example, an anneal at or above 700° C. transforms the deposited amorphous film to a crystalline form. Such a high temperature anneal, however, severely limits the materials that can be utilized as the substrate, induces destructive reaction with the lithium containing cathode material and often requires the use of expensive noble metals such as gold. Such high thermal budget processes (i.e., high temperatures for extended periods of time) are incompatible with semiconductor or MEM device processing and limit the choice of substrate materials, increases the cost, and decrease the yield of such batteries. The inventors are unaware of a process disclosed in the art that allows production of cathodic lithium films for a battery structure where a post-deposition anneal process has a low enough thermal budget to allow production of functional structures on low temperature materials such as stainless steel, aluminum, or copper foil.
It is known that crystallization of amorphous LiCoO2 on precious metals can be achieved. An example of this crystallization is discussed in Kim et al., where an anneal at 700° C. for 20 minutes of an amorphous layer of LiCoO2 provides for crystallization of the LiCoO2 material, as shown by x-ray diffraction data. Kim, Han-Ki and Yoon, Young Soo, “Characteristics of rapid-thermal-annealed LiCoO2, cathode film for an all-solid-state thin film microbattery,” J. Vac. Sci. Techn. A 22(4), July/August 2004. In Kim et al., the LiCoO2 was deposited on a platinum film that was deposited on a high-temperature MgO/Si substrate. Id. In Kim et al, it was shown that such a crystalline film is capable of constituting the Li+ ion containing cathode layer of a functional all solid-state Li+ ion battery. However, it is of continuing interest for the manufacture of solid state Li+ ion batteries to further reduce the thermal budget of the post deposition anneal, both in time and in temperature, so as to enable the manufacture of such batteries without the need for expensive precious metal nucleation, barrier layers, or expensive high-temperature substrates.
There are many references that disclose an ion beam assisted process that can provide a LiCoO2 film that demonstrates some observable crystalline composition by low angle x-ray diffraction (XRD). Some examples of these include U.S. patent applications Ser. No. 09/815,983 (Publication No. US 2002/001747), Ser. No. 09/815,621 (Publication No. US 2001/0032666), and Ser. No. 09/815,919 (Publication No. US 2002/0001746). These references disclose the use of a second front side ion beam or other ion source side-by-side with a deposition source so as to obtain a region of overlap of the flux of ions with the flux of LiCoO2 vapor at the substrate surface. None of these references disclose film temperature data or other temperature data of the film during deposition to support an assertion of low temperature processing.
It is very difficult to form a uniform deposition either by sputtering a material layer or by bombardment with an ion flux. Utilization of two uniform simultaneous distributions from two sources that do not occupy the same position and extent with respect to the substrate enormously increases the difficulties involved in achieving a uniform material deposition. These references do not disclose a uniform materials deposition, which is required for reliable production of thin-film batteries. A well understood specification for material uniformity for useful battery products is that a 5% one-sigma material uniformity is standard in thin film manufacturing. With this uniformity, about 86% of the produced films will be found acceptable for battery production.
It is even more difficult to scale a substrate to manufacturing scale, such as 200 mm or 300 mm. Indeed, in the references discussed above that utilize both a sputtering deposition and an ion beam deposition, only small area targets and small area substrates are disclosed. These references disclose a single feasibility result. No method for achieving a uniform distribution from two separate front side sources has been disclosed in these references.
Further, conventional materials and production processes can limit the energy density capacity of the batteries produced, causing a need for more batteries occupying more volume. It is specifically desirable to produce batteries that have large amounts of stored energy per unit volume in order to provide batteries of low weight and low volume.
Therefore, there is a need for a low temperature process for depositing crystalline material, for example LiCoO2 material, onto a substrate.
In accordance with the present invention, deposition of LiCoO2 layers in a pulsed-dc physical vapor deposition process is presented. Such a deposition can provide a low-temperature, high deposition rate deposition of a crystalline layer of LiCoO2 with a desired (101) orientation. Some embodiments of the deposition address the need for high rate deposition of LiCoO2 films, which can be utilized as the cathode layer in a solid state rechargeable Li battery. Embodiments of the process according to the present invention can eliminate the high temperature (>700° C.) anneal step that is conventionally needed to crystallize the LiCoO2 layer.
A method of depositing a LiCoO2 layer according to some embodiments of the present invention includes placing a substrate in a reactor; flowing a gaseous mixture including argon and oxygen through the reactor; and applying pulsed-DC power to a target formed of LiCoO2 positioned opposite the substrate. A crystalline LiCoO2 layer is formed on the substrate. Further, in some embodiments the LiCoO2 layer is a crystalline layer of orientation (101).
In some embodiments, a stacked battery structure can be formed. The stacked battery structure includes one or more battery stacks deposited on a thin substrate, wherein each battery stack includes: a conducting layer, a crystalline LiCoO2 layer deposited over the conducting layer, a LiPON layer deposited over the LiCoO2 layer; and an anode deposited over the LiPON layer. A top conducting layer can be deposited over the one or more battery stacks.
In some embodiments, a battery structure can be formed in a cluster tool. A method of producing a battery in a cluster tool includes loading a substrate into a cluster tool; depositing a conducting layer over the substrate in a first chamber of the cluster tool; depositing a crystalline LiCoO2 layer over the conducting layer in a second chamber of the cluster tool; depositing a LiPON layer over the LiCoO2 layer in a third chamber of the cluster tool; depositing an anode layer over the LiCoO2 layer in a fourth chamber; and depositing a second conducting layer over the LiPON layer in a fifth chamber of the cluster tool.
A fixture for holding a thin substrate can include a top portion; and a bottom portion, wherein the thin substrate is held when the top portion is attached to the bottom portion.
These and other embodiments of the invention are further discussed below with reference to the following figures. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. Further, specific explanations or theories regarding the deposition or performance of barrier layers or soft-metal breath treatments according to the present invention are presented for explanation only and are not to be considered limiting with respect to the scope of the present disclosure or the claims.
In the figures, elements having the same designation have the same or similar functions.
In accordance with embodiments of the present invention, LiCoO2 films are deposited on a substrate by a pulsed-dc physical vapor deposition (PVD) process. In contrast to, for example, Kim et al., LiCoO2 films according to some embodiments of the present invention provide a crystalline LiCoO2 film as deposited on a substrate at a substrate temperature as low as about 220° C. during deposition, without the use of a metallic nucleation or barrier underlying film. The as-deposited crystalline LiCoO2 films can be easily ripened to very high crystalline condition by anneal at about 700° C. for as little as 5 minutes without the use of an underlying precious metal film. In addition, the as deposited crystalline films, when positioned on a noble metal film can be annealed at much further reduced temperatures, for example as low as 400 to 500° C., providing for deposition, annealing, and production of solid state batteries on lower temperature substrates.
In the present application, a single, extended source is described which has been scaled to 400 mm×500 mm for production achieving a LiCoO2 uniformity of 3% one-sigma measured at 25 points at a deposition rate of 1.2 microns thickness an hour over an area of 2000 cm, without the need for secondary front side ion source or ion assistance.
In one example process, a LiCoO2 film was deposited utilizing a conductive ceramic LiCoO2 target as described herein, with pulsed-dc power of 4 kW, no bias, with 60 sccm Ar and 20 sccm O2 gas flows. In 2 hours, a 7200 Angstrom layer of crystalline LiCoO2 was deposited on a substrate area of 400×500 mm. As demonstrated in
On other depositions utilizing this process, a temperature measurement of the substrate during deposition showed that the substrate remained at less than 224° C. Temperature measurements were performed utilizing a temperature sticker purchased from Omega Engineering, Stamford, Conn. (Model no. TL-F-390, active from 199-224° C.).
Moreover, in some embodiments, films deposited according to the present invention can have a deposition rate of from about 10 to about 30 times higher than processes in conventional films. Furthermore, films according to the present invention can be deposited on wide area substrates having a surface area from 10 to 50 times the surface area of prior sputtering processes, resulting in much higher productivity and much lower cost of manufacture, thereby providing high-volume, low-cost valuable batteries.
Further, conventional deposition processes are capable of depositing amorphous LiCoO2 layers, but do not deposit crystalline LiCoO2 layers. Surprisingly, depositions according to some embodiment of the present invention, deposit a LiCoO2 layer with substantial crystallinity readily measured by x-ray diffraction techniques. In some embodiments, the crystallinity of the as-deposited LiCoO2 layers is sufficient to be utilized in a battery structure with no further thermal processing. In some embodiments, crystallinity of the as-deposited LiCoO2 layers are improved by thermal processes with low thermal budgets, which can be compatible with films deposited on low-temperature substrates.
Further, as-deposited the stoichiometry of some LiCoO2 layers deposited according to some embodiments of the present invention shows that this layer is sufficient for utilization in a battery. With the demonstrated ability to deposit a LiCoO2 film with crystallinity and with sufficient stoichiometry, a battery utilizing as-deposited LiCoO2 films can be produced. Heat treating the LiCoO2 layers may improve the crystallinity and lower the impedance.
In some embodiments, a crystalline layer of LiCoO2 with a (101) or a (003) crystalline orientation is deposited directly on the substrate. Deposition of crystalline material can eliminate or lessen the need of a subsequent high temperature anneal or precious-metal layers to crystallize and orient the film. Removing the high temperature anneal allows for formation of battery structures on light-weight and low temperature substrates such as stainless steel foil, copper foil, aluminum foil, and plastic sheet, reducing both the weight and the cost of batteries while retaining the energy density storage capabilities of Li-based batteries. In some embodiments, a crystalline LiCoO2 layer can be deposited on a precious metal layer, such as platinum or iridium, resulting in a further significant lowering of the ripening thermal budget required to improve crystallinity.
Deposition of materials by pulsed-DC biased reactive ion deposition is described in U.S. patent application Ser. No. 10/101,863, entitled “Biased Pulse DC Reactive Sputtering of Oxide Films,” to Hongmei Zhang, et al., filed on Mar. 16, 2002. Preparation of targets is described in U.S. patent application Ser. No. 10/101,341, entitled “Rare-Earth Pre-Alloyed PVD Targets for Dielectric Planar Applications,” to Vassiliki Milonopoulou, et al., filed on Mar. 16, 2002. U.S. patent application Ser. No. 10/101,863 and U.S. patent application Ser. No. 10/101,341 are each incorporated herein in their entirety. Deposition of oxide materials has also been described in U.S. Pat. No. 6,506,289, which is also herein incorporated by reference in its entirety. Transparent oxide films can be deposited utilizing processes similar to those specifically described in U.S. Pat. No. 6,506,289 and U.S. application Ser. No. 10/101863.
Apparatus 10 includes target 12 which is electrically coupled through a filter 15 to a pulsed DC power supply 14. In some embodiments, target 12 is a wide area sputter source target, which provides material to be deposited on a substrate 16. Substrate 16 is positioned parallel to and opposite target 12. Target 12 functions as a cathode when power is applied to it from the pulsed DC power supply 14 and is equivalently termed a cathode. Application of power to target 12 creates a plasma 53. Substrate 16 is capacitively coupled to an electrode 17 through an insulator 54. Electrode 17 can be coupled to an RF power supply 18. A magnet 20 is scanned across the top of target 12.
For pulsed reactive dc magnetron sputtering, as performed by apparatus 10, the polarity of the power supplied to target 12 by power supply 14 oscillates between negative and positive potentials. During the positive period, the insulating layer on the surface of target 12 is discharged and arcing is prevented. To obtain arc free deposition, the pulsing frequency exceeds a critical frequency that can depend on target material, cathode current and reverse time. High quality oxide films can be made using reactive pulse DC magnetron sputtering as shown in apparatus 10.
Pulsed DC power supply 14 can be any pulsed DC power supply, for example an AE Pinnacle plus 10 K by Advanced Energy, Inc. With this DC power supply, up to 10 kW of pulsed DC power can be supplied at a frequency of between 0 and 350 kHz. The reverse voltage can be 10% of the negative target voltage. Utilization of other power supplies can lead to different power characteristics, frequency characteristics, and reverse voltage percentages. The reverse time on this embodiment of power supply 14 can be adjusted between 0 and 5 μs.
Filter 15 prevents the bias power from power supply 18 from coupling into pulsed DC power supply 14. In some embodiments, power supply 18 can be a 2 MHz RF power supply, for example a Nova-25 power supply made by ENI, Colorado Springs, Colo.
In some embodiments, filter 15 can be a 2 MHz sinusoidal band rejection filter. In some embodiments, the band width of the filter can be approximately 100 kHz. Filter 15, therefore, prevents the 2 MHz power from the bias to substrate 16 from damaging power supply 14 and allow passage of the pulsed-dc power and frequency.
Pulsed DC deposited films are not fully dense and may have columnar structures. Columnar structures can be detrimental to thin film applications such as barrier films and dielectric films, where high density is important, due to the boundaries between the columns. The columns act to lower the dielectric strength of the material, but may provide diffusion paths for transport or diffusion of electrical current, ionic current, gas, or other chemical agents such as water. In the case of a solid state battery, a columnar structure containing crystallinity as derived from processes according to the present invention is beneficial for battery performance because it allows better Li transport through the boundaries of the material.
In the Phoenix system, for example, target 12 can have an active size of about 800.00×920.00 mm by 4 to 8 mm in order to deposit films on substrate 16 that have dimension about 600×720 mm. The temperature of substrate 16 can be adjusted to between −50° C. and 500° C. The distance between target 12 and substrate 16 can be between about 3 and about 9 cm (in some embodiments, between 4.8 and 6 cm are used). Process gas can be inserted into the chamber of apparatus 10 at a rate up to about 200 sccm while the pressure in the chamber of apparatus 10 can be held at between about 0.7 and 6 milliTorr. Magnet 20 provides a magnetic field of strength between about 400 and about 600 Gauss directed in the plane of target 12 and is moved across target 12 at a rate of less than about 20-30 sec/scan. In some embodiments utilizing the Phoenix reactor, magnet 20 can be a race-track shaped magnet with dimensions about 150 mm by 800 mm.
In some embodiments, magnet 20 extends beyond area 52 in one direction, for example the Y direction in
The combination of a uniform target 12 with a target area 52 larger than the area of substrate 16 can provide films of highly uniform thickness. Further, the material properties of the film deposited can be highly uniform. The conditions of sputtering at the target surface, such as the uniformity of erosion, the average temperature of the plasma at the target surface, and the equilibration of the target surface with the gas phase ambient of the process are uniform over a region which is greater than or equal to the region to be coated with a uniform film thickness. In addition, the region of uniform film thickness is greater than or equal to the region of the film which is to have highly uniform electrical, mechanical, or optical properties such as index of refraction, stoichiometry, density, transmission, or absorptivity.
Target 12 can be formed of any materials that provide the correct stoichiometry for LiCoO2 deposition. Typical ceramic target materials include oxides of Li and Co as well as metallic Li and Co additions and dopants such as Ni, Si, Nb, or other suitable metal oxide additions. In the present disclosure, target 12 can be formed from LiCoO2 for deposition of LiCoO2 film.
In some embodiments of the invention, material tiles are formed. These tiles can be mounted on a backing plate to form a target for apparatus 10. A wide area sputter cathode target can be formed from a close packed array of smaller tiles. Target 12, therefore, may include any number of tiles, for example between 2 and 60 individual tiles. Tiles can be finished to a size so as to provide a margin of edge-wise non-contact, tile to tile, less than about 0.010″ to about 0.020″ or less than half a millimeter so as to eliminate plasma processes that may occur between adjacent ones of tiles 30. The distance between tiles of target 12 and the dark space anode or ground shield 19 in
As shown in
In some embodiments, an oxide layer can be deposited on substrate 301. For example, a silicon oxide layer can be deposited on a silicon wafer. Other layers can be formed between conducting layer 302 and substrate 301.
As further shown in
An anode 305 is deposited over LiPON layer 304. Anode 305 can be, for example an evaporated lithium metal. Other materials such as, for example, nickel can also be utilized. A current collector 306, which is a conducting material, is then deposited over at least a portion of anode 305.
A Li based thin film battery operates by transport of Li ions in the direction from current collector 306 to current collector 302 in order to hold the voltage between current collector 306 and current collector 302 at a constant voltage. The ability for battery structure 300 to supply steady current, then, depends on the ability of Li ions to diffuse through LiPON layer 304 and LiCoO2 layer 303. Li transport through bulk cathode LiCoO2 layer 303 in a thin film battery occurs by the way of grains or grain boundaries. Without being restricted in this disclosure to any particular theory of transport, it is believed that the grains with their planes parallel to substrate 302 will block the flow of Li ions while grains oriented with planes perpendicular to substrate 301 (i.e., oriented parallel to the direction of Li ion flow) facilitate the Li diffusion. Therefore, in order to provide a high-current battery structure, LiCoO2 layer 303 should include crystals oriented in the (101) direction or (003) direction.
In accordance with the present invention, LiCoO2 films can be deposited on substrate 302 with a pulsed-DC biased PVD system as was described above. In addition, an AKT 1600 PVD system can be modified to provide an RF bias, which is available in the Pheonix system, and an Advanced Energy Pinnacle plus 10K pulsed DC power supply can be utilized to provide power to a target. The pulsing frequency of the power supply can vary from about 0 to about 350 KHz. The power output of the power supply is between 0 and about 10 kW. A target of densified LiCoO2 tiles having a resistivity in the range of about 3 to about 10 kΩ can be utilized with dc-sputtering.
In some embodiments, LiCoO2 films are deposited on Si wafers. Gas flows containing Oxygen and Argon can be utilized. In some embodiments, the Oxygen to Argon ratio ranges from 0 to about 50% with a total gas flow of about 80 sccm. The pulsing frequency ranges from about 200 kHz to about 300 kHz during deposition. RF bias can also be applied to the substrate. In many trials, the deposition rates vary from about 2 Angstrom/(kW sec) to about 1 Angstrom/(kW sec) depending on the O2/Ar ratio as well as substrate bias.
Table I illustrates some example depositions of LiCoO2 according to the present invention. XRD (x-Ray Diffraction) results taken on the resulting thin films illustrate that films deposited according to the present invention are crystalline films, often with highly textured grain sizes as large as about 150 nm. The dominant crystal orientation appears to be sensitive to the O2/Ar ratio. For certain O2/Ar ratios (˜10%), as-deposited films exhibit a preferred orientation in the (101) direction or the (003) direction with poorly developed (003) planes.
The rate of deposition of the LiCoO2 layer shown in
The LiCoO2 layer shown in
The LiCoO2 film shown in
The LiCoO2 film shown in
In the example deposition illustrated in
In the example deposition illustrated in
The data show clearly that an as-deposited crystalline film of LiCoO2 can be obtained under several of the process conditions, as shown in Table II. In particular, very high rates of deposition with low power are obtained along with the oriented crystalline structure for the process conditions according to embodiments of the present invention.
Depositing materials on a thin substrate involves holding and positioning the substrate during deposition.
As shown in
As shown in
Utilizing fixture 700 as shown in
Processing chambers 804, 805, 806, 807, and 808 as well as load locks 802 and 803 are coupled by transfer chamber 801. Transfer chamber 801 includes substrate transfer robotics to shuttle individual wafers between processing chambers 804, 805, 806, 807, and 808 and load locks 802 and 803.
In production of a conventional thin-film battery, ceramic substrates are loaded into load lock 803. A thin metallic layer can be deposited in chamber 804, followed by a LiCoO2 deposition performed in chamber 805. The substrate is then removed through load lock 803 for an in-air heat treatment external to cluster tool 800. The treated wafer is then reloaded into cluster tool 800 through load lock 802. A LiPON layer can be deposited in chamber 806. The wafer is then again removed from cluster tool 800 for deposition of the lithium anode layer, or sometimes chamber 807 can be adapted to deposition of the lithium anode layer. A second metallic layer is deposited in chamber 808 to form a charge collector and anode collector. The finished battery structure is then off-loaded from cluster tool 800 in load lock 802. Wafers are shuttled from chamber to chamber by robotics in transfer chamber 801.
A battery structure produced according to the present invention could utilize thin film substrates loaded in a fixture such as fixture 700. Fixture 700 is then loaded into load lock 803. Chamber 804 may still include deposition of a conducting layer. Chamber 805 then includes deposition of a LiCoO2 layer according to embodiments of the present invention. A LiPON layer can then be deposited in chamber 806. Chamber 807 may still be adapted to deposition of a lithium rich material such as lithium metal and chamber 808 can be utilized for deposition of the conducting layer of the current collector. In this process, no heat treatment is utilized to crystallize the LiCoO2 layer.
Another advantage of a thin film battery process is the ability to stack battery structures. In other words, substrates loaded into cluster tool 800 may traverse process chambers 804, 805, 806, 807, and 808 multiple times in order to produce multiply stacked battery structures.
As discussed above, any number of individual battery stacks can be formed such that parallel battery formations are formed. Such a parallel arrangement of battery stacking structure can be indicated as Current collector/LiCoO2/LiPON/Anode/current collector/Anode/LiPON/LiCoO2/current collector/LiCoO2 . . . /current collector.
To form the structures shown in
In some embodiments, stoichiometric LiCoO2 can be deposited on iridium.
As shown in
As shown in
As an alternative to a lift-off process as described in
As shown in a comparison of
One skilled in the art will recognize variations and modifications of the examples specifically discussed in this disclosure. These variations and modifications are intended to be within the scope and spirit of this disclosure. As such, the scope is limited only by the following claims.
The present application is a continuation and claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 11/297,057, filed Dec. 7, 2005, which is related to and claims the benefit under 35 U.S.C. §119(e) of U.S. provisional patent application Ser. No. 60/651,363, filed Feb. 8, 2005, and U.S. provisional patent application Ser. No. 60/634,818, filed Dec. 8, 2004, which are expressly incorporated fully herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
712316 | Loppe et al. | Oct 1902 | A |
2970180 | Urry | Jan 1961 | A |
3309302 | Heil | Mar 1967 | A |
3616403 | Collins et al. | Oct 1971 | A |
3790432 | Fletcher et al. | Feb 1974 | A |
3797091 | Gavin | Mar 1974 | A |
3850604 | Klein | Nov 1974 | A |
3939008 | Longo et al. | Feb 1976 | A |
4006070 | King et al. | Feb 1977 | A |
4082569 | Evans, Jr. | Apr 1978 | A |
4099091 | Yamazoe et al. | Jul 1978 | A |
4111523 | Kaminow et al. | Sep 1978 | A |
4127424 | Ullery, Jr. | Nov 1978 | A |
4226924 | Kimura et al. | Oct 1980 | A |
4283216 | Brereton | Aug 1981 | A |
4318938 | Barnett et al. | Mar 1982 | A |
4437966 | Hope et al. | Mar 1984 | A |
4442144 | Pipkin | Apr 1984 | A |
4481265 | Ezawa et al. | Nov 1984 | A |
4518661 | Rippere | May 1985 | A |
4555456 | Kanehori et al. | Nov 1985 | A |
4572873 | Kanehori et al. | Feb 1986 | A |
4587225 | Tsukuma et al. | May 1986 | A |
4619680 | Nourshargh et al. | Oct 1986 | A |
4645726 | Hiratani et al. | Feb 1987 | A |
4664993 | Sturgis et al. | May 1987 | A |
4668593 | Sammells | May 1987 | A |
RE32449 | Claussen | Jun 1987 | E |
4672586 | Shimohigashi et al. | Jun 1987 | A |
4710940 | Sipes, Jr. | Dec 1987 | A |
4728588 | Noding et al. | Mar 1988 | A |
4740431 | Little | Apr 1988 | A |
4756717 | Sturgis et al. | Jul 1988 | A |
4785459 | Baer | Nov 1988 | A |
4826743 | Nazri | May 1989 | A |
4865428 | Corrigan | Sep 1989 | A |
4878094 | Balkanski | Oct 1989 | A |
4903326 | Zakman et al. | Feb 1990 | A |
4915810 | Kestigian et al. | Apr 1990 | A |
4964877 | Keister et al. | Oct 1990 | A |
4977007 | Kondo et al. | Dec 1990 | A |
4978437 | Wirz | Dec 1990 | A |
5006737 | Fay | Apr 1991 | A |
5019467 | Fujiwara | May 1991 | A |
5030331 | Sato | Jul 1991 | A |
5035965 | Sangyoji et al. | Jul 1991 | A |
5055704 | Link et al. | Oct 1991 | A |
5057385 | Hope et al. | Oct 1991 | A |
5085904 | Deak et al. | Feb 1992 | A |
5096852 | Hobson | Mar 1992 | A |
5100821 | Fay | Mar 1992 | A |
5107538 | Benton et al. | Apr 1992 | A |
5110694 | Nagasubramanian et al. | May 1992 | A |
5110696 | Shokoohi et al. | May 1992 | A |
5119269 | Nakayama | Jun 1992 | A |
5119460 | Bruce et al. | Jun 1992 | A |
5124782 | Hundt et al. | Jun 1992 | A |
5147985 | DuBrucq | Sep 1992 | A |
5153710 | McCain | Oct 1992 | A |
5169408 | Biggerstaff et al. | Dec 1992 | A |
5171413 | Arntz et al. | Dec 1992 | A |
5173271 | Chen et al. | Dec 1992 | A |
5174876 | Buchal et al. | Dec 1992 | A |
5180645 | Moré | Jan 1993 | A |
5187564 | McCain | Feb 1993 | A |
5196041 | Tumminelli et al. | Mar 1993 | A |
5196374 | Hundt et al. | Mar 1993 | A |
5200029 | Bruce et al. | Apr 1993 | A |
5202201 | Meunier et al. | Apr 1993 | A |
5206925 | Nakazawa et al. | Apr 1993 | A |
5208121 | Yahnke et al. | May 1993 | A |
5217828 | Sangyoji et al. | Jun 1993 | A |
5221891 | Janda et al. | Jun 1993 | A |
5225288 | Beeson et al. | Jul 1993 | A |
5227264 | Duval et al. | Jul 1993 | A |
5237439 | Misono et al. | Aug 1993 | A |
5252194 | Demaray et al. | Oct 1993 | A |
5273608 | Nath | Dec 1993 | A |
5287427 | Atkins et al. | Feb 1994 | A |
5296089 | Chen et al. | Mar 1994 | A |
5300461 | Ting | Apr 1994 | A |
5303319 | Ford et al. | Apr 1994 | A |
5306569 | Hiraki | Apr 1994 | A |
5307240 | McMahon | Apr 1994 | A |
5309302 | Vollmann | May 1994 | A |
5314765 | Bates | May 1994 | A |
5326652 | Lake | Jul 1994 | A |
5326653 | Chang | Jul 1994 | A |
5338624 | Gruenstern et al. | Aug 1994 | A |
5338625 | Bates et al. | Aug 1994 | A |
5342709 | Yahnke et al. | Aug 1994 | A |
5355089 | Treger | Oct 1994 | A |
5360686 | Peled et al. | Nov 1994 | A |
5362579 | Rossoll et al. | Nov 1994 | A |
5362672 | Ohmi et al. | Nov 1994 | A |
5381262 | Arima et al. | Jan 1995 | A |
5387482 | Anani | Feb 1995 | A |
5401595 | Kagawa et al. | Mar 1995 | A |
5403680 | Otagawa et al. | Apr 1995 | A |
5411537 | Munshi et al. | May 1995 | A |
5411592 | Ovshinsky et al. | May 1995 | A |
5419982 | Tura et al. | May 1995 | A |
5427669 | Drummond | Jun 1995 | A |
5435826 | Sakakibara et al. | Jul 1995 | A |
5437692 | Dasgupta et al. | Aug 1995 | A |
5445856 | Chaloner-Gill | Aug 1995 | A |
5445906 | Hobson et al. | Aug 1995 | A |
5448110 | Tuttle et al. | Sep 1995 | A |
5449576 | Anani | Sep 1995 | A |
5455126 | Bates et al. | Oct 1995 | A |
5457569 | Liou et al. | Oct 1995 | A |
5458995 | Behl et al. | Oct 1995 | A |
5464706 | Dasgupta et al. | Nov 1995 | A |
5470396 | Mongon et al. | Nov 1995 | A |
5472795 | Atita | Dec 1995 | A |
5475528 | LaBorde | Dec 1995 | A |
5478456 | Humpal et al. | Dec 1995 | A |
5483613 | Bruce et al. | Jan 1996 | A |
5493177 | Muller et al. | Feb 1996 | A |
5498489 | Dasgupta et al. | Mar 1996 | A |
5499207 | Miki et al. | Mar 1996 | A |
5501918 | Gruenstern et al. | Mar 1996 | A |
5504041 | Summerfelt | Apr 1996 | A |
5507930 | Yamashita et al. | Apr 1996 | A |
5512147 | Bates et al. | Apr 1996 | A |
5512387 | Ovshinsky | Apr 1996 | A |
5512389 | Dasgupta et al. | Apr 1996 | A |
5538796 | Schaffer et al. | Jul 1996 | A |
5540742 | Sangyoji et al. | Jul 1996 | A |
5547780 | Kagawa et al. | Aug 1996 | A |
5547782 | Dasgupta et al. | Aug 1996 | A |
5552242 | Ovshinsky et al. | Sep 1996 | A |
5555127 | Abdelkader et al. | Sep 1996 | A |
5561004 | Bates et al. | Oct 1996 | A |
5563979 | Bruce et al. | Oct 1996 | A |
5565071 | Demaray et al. | Oct 1996 | A |
5567210 | Bates et al. | Oct 1996 | A |
5569520 | Bates | Oct 1996 | A |
5582935 | Dasgupta et al. | Dec 1996 | A |
5591520 | Migliorini et al. | Jan 1997 | A |
5597660 | Bates et al. | Jan 1997 | A |
5597661 | Takeuchi et al. | Jan 1997 | A |
5599355 | Nagasubramanian et al. | Feb 1997 | A |
5601952 | Dasgupta et al. | Feb 1997 | A |
5603816 | Demaray et al. | Feb 1997 | A |
5607560 | Hirabayashi et al. | Mar 1997 | A |
5607789 | Treger et al. | Mar 1997 | A |
5612152 | Bates et al. | Mar 1997 | A |
5612153 | Moulton et al. | Mar 1997 | A |
5613995 | Bhandarkar et al. | Mar 1997 | A |
5616933 | Li | Apr 1997 | A |
5637418 | Brown et al. | Jun 1997 | A |
5643480 | Gustavsson et al. | Jul 1997 | A |
5644207 | Lew et al. | Jul 1997 | A |
5645626 | Edlund et al. | Jul 1997 | A |
5645960 | Scrosati et al. | Jul 1997 | A |
5654054 | Tropsha et al. | Aug 1997 | A |
5654984 | Hershbarger et al. | Aug 1997 | A |
5658652 | Sellergren | Aug 1997 | A |
5660700 | Shimizu et al. | Aug 1997 | A |
5665490 | Takeuchi et al. | Sep 1997 | A |
5667538 | Bailey | Sep 1997 | A |
5677784 | Harris | Oct 1997 | A |
5679980 | Summerfelt | Oct 1997 | A |
5681666 | Treger et al. | Oct 1997 | A |
5681671 | Orita et al. | Oct 1997 | A |
5686360 | Harvey, III et al. | Nov 1997 | A |
5689522 | Beach | Nov 1997 | A |
5693956 | Shi et al. | Dec 1997 | A |
5702829 | Paidassi et al. | Dec 1997 | A |
5705293 | Hobson | Jan 1998 | A |
5718813 | Drummond | Feb 1998 | A |
5719976 | Henry et al. | Feb 1998 | A |
5721067 | Jacobs et al. | Feb 1998 | A |
RE35746 | Lake | Mar 1998 | E |
5731661 | So et al. | Mar 1998 | A |
5738731 | Shindo et al. | Apr 1998 | A |
5742094 | Ting | Apr 1998 | A |
5755938 | Fukui et al. | May 1998 | A |
5755940 | Shindo | May 1998 | A |
5757126 | Harvey, III et al. | May 1998 | A |
5762768 | Goy et al. | Jun 1998 | A |
5763058 | Isen et al. | Jun 1998 | A |
5771562 | Harvey, III et al. | Jun 1998 | A |
5776278 | Tuttle et al. | Jul 1998 | A |
5779839 | Tuttle et al. | Jul 1998 | A |
5789071 | Sproul et al. | Aug 1998 | A |
5790489 | O'Connor | Aug 1998 | A |
5792550 | Phillips et al. | Aug 1998 | A |
5805223 | Shikakura et al. | Sep 1998 | A |
5811177 | Shi et al. | Sep 1998 | A |
5814195 | Lehan et al. | Sep 1998 | A |
5830330 | Lantsman | Nov 1998 | A |
5831262 | Greywall et al. | Nov 1998 | A |
5834137 | Zhang et al. | Nov 1998 | A |
5841931 | Foresi et al. | Nov 1998 | A |
5842118 | Wood, Jr. | Nov 1998 | A |
5845990 | Hymer | Dec 1998 | A |
5847865 | Gopinath et al. | Dec 1998 | A |
5849163 | Ichikawa et al. | Dec 1998 | A |
5851896 | Summerfelt | Dec 1998 | A |
5853830 | McCaulley et al. | Dec 1998 | A |
5855744 | Halsey et al. | Jan 1999 | A |
5856705 | Ting | Jan 1999 | A |
5864182 | Matsuzaki | Jan 1999 | A |
5865860 | Delnick | Feb 1999 | A |
5870273 | Sogabe et al. | Feb 1999 | A |
5874184 | Takeuchi et al. | Feb 1999 | A |
5882721 | Delnick | Mar 1999 | A |
5882946 | Otani | Mar 1999 | A |
5889383 | Teich | Mar 1999 | A |
5895731 | Clingempeel | Apr 1999 | A |
5897522 | Nitzan | Apr 1999 | A |
5900057 | Buchal et al. | May 1999 | A |
5909346 | Malhotra et al. | Jun 1999 | A |
5916704 | Lewin et al. | Jun 1999 | A |
5923964 | Li | Jul 1999 | A |
5930046 | Solberg et al. | Jul 1999 | A |
5930584 | Sun et al. | Jul 1999 | A |
5942089 | Sproul et al. | Aug 1999 | A |
5948215 | Lantsman | Sep 1999 | A |
5948464 | Delnick | Sep 1999 | A |
5948562 | Fulcher et al. | Sep 1999 | A |
5952778 | Haskal et al. | Sep 1999 | A |
5955217 | Lerberghe | Sep 1999 | A |
5961672 | Skotheim et al. | Oct 1999 | A |
5961682 | Lee et al. | Oct 1999 | A |
5966491 | DiGiovanni | Oct 1999 | A |
5970393 | Khorrami et al. | Oct 1999 | A |
5973913 | McEwen et al. | Oct 1999 | A |
5977582 | Fleming et al. | Nov 1999 | A |
5982144 | Johnson et al. | Nov 1999 | A |
5985485 | Ovshinsky et al. | Nov 1999 | A |
6000603 | Koskenmaki et al. | Dec 1999 | A |
6001224 | Drummond et al. | Dec 1999 | A |
6004660 | Topolski et al. | Dec 1999 | A |
6007945 | Jacobs et al. | Dec 1999 | A |
6013949 | Tuttle | Jan 2000 | A |
6019284 | Freeman et al. | Feb 2000 | A |
6023610 | Wood, Jr. | Feb 2000 | A |
6024844 | Drummond et al. | Feb 2000 | A |
6025094 | Visco et al. | Feb 2000 | A |
6028990 | Shahani et al. | Feb 2000 | A |
6030421 | Gauthier et al. | Feb 2000 | A |
6042965 | Nestler et al. | Mar 2000 | A |
6045626 | Yano et al. | Apr 2000 | A |
6045652 | Tuttle et al. | Apr 2000 | A |
6045942 | Miekka et al. | Apr 2000 | A |
6046081 | Kuo | Apr 2000 | A |
6048372 | Mangahara et al. | Apr 2000 | A |
6051114 | Yao et al. | Apr 2000 | A |
6051296 | McCaulley et al. | Apr 2000 | A |
6052397 | Jeon et al. | Apr 2000 | A |
6057557 | Ichikawa | May 2000 | A |
6058233 | Dragone | May 2000 | A |
6071323 | Kawaguchi | Jun 2000 | A |
6075973 | Greeff et al. | Jun 2000 | A |
6077106 | Mish | Jun 2000 | A |
6077642 | Ogata et al. | Jun 2000 | A |
6078791 | Tuttle et al. | Jun 2000 | A |
6080508 | Dasgupta et al. | Jun 2000 | A |
6080643 | Noguchi et al. | Jun 2000 | A |
6093944 | VanDover | Jul 2000 | A |
6094292 | Goldner et al. | Jul 2000 | A |
6096569 | Matsuno et al. | Aug 2000 | A |
6100108 | Mizuno et al. | Aug 2000 | A |
6106933 | Nagai et al. | Aug 2000 | A |
6110531 | Paz De Araujo | Aug 2000 | A |
6115616 | Halperin et al. | Sep 2000 | A |
6117279 | Smolanoff et al. | Sep 2000 | A |
6118426 | Albert et al. | Sep 2000 | A |
6120890 | Chen et al. | Sep 2000 | A |
6129277 | Grant et al. | Oct 2000 | A |
6133670 | Rodgers et al. | Oct 2000 | A |
6137671 | Staffiere | Oct 2000 | A |
6144916 | Wood, Jr. et al. | Nov 2000 | A |
6146225 | Sheats et al. | Nov 2000 | A |
6148503 | Delnick et al. | Nov 2000 | A |
6157765 | Bruce et al. | Dec 2000 | A |
6159635 | Dasgupta et al. | Dec 2000 | A |
6160373 | Dunn et al. | Dec 2000 | A |
6162709 | Raoux et al. | Dec 2000 | A |
6165566 | Tropsha | Dec 2000 | A |
6168884 | Neudecker et al. | Jan 2001 | B1 |
6169474 | Greeff et al. | Jan 2001 | B1 |
6175075 | Shiotsuka et al. | Jan 2001 | B1 |
6176986 | Watanabe et al. | Jan 2001 | B1 |
6181283 | Johnson et al. | Jan 2001 | B1 |
6192222 | Greeff et al. | Feb 2001 | B1 |
6197167 | Tanaka | Mar 2001 | B1 |
6198217 | Suzuki et al. | Mar 2001 | B1 |
6204111 | Uemoto et al. | Mar 2001 | B1 |
6210544 | Sasaki | Apr 2001 | B1 |
6210832 | Visco et al. | Apr 2001 | B1 |
6214061 | Visco et al. | Apr 2001 | B1 |
6214660 | Uemoto et al. | Apr 2001 | B1 |
6218049 | Bates et al. | Apr 2001 | B1 |
6220516 | Tuttle et al. | Apr 2001 | B1 |
6223317 | Pax et al. | Apr 2001 | B1 |
6228532 | Tsuji et al. | May 2001 | B1 |
6229987 | Greeff et al. | May 2001 | B1 |
6232242 | Hata et al. | May 2001 | B1 |
6235432 | Kono et al. | May 2001 | B1 |
6236793 | Lawrence et al. | May 2001 | B1 |
6242129 | Johnson | Jun 2001 | B1 |
6242132 | Neudecker et al. | Jun 2001 | B1 |
6248291 | Nakagama et al. | Jun 2001 | B1 |
6248481 | Visco et al. | Jun 2001 | B1 |
6248640 | Nam | Jun 2001 | B1 |
6249222 | Gehlot | Jun 2001 | B1 |
6252564 | Albert et al. | Jun 2001 | B1 |
6258252 | Miyasaka et al. | Jul 2001 | B1 |
6261917 | Quek et al. | Jul 2001 | B1 |
6264709 | Yoon et al. | Jul 2001 | B1 |
6265652 | Kurata et al. | Jul 2001 | B1 |
6268695 | Affinito | Jul 2001 | B1 |
6271053 | Kondo | Aug 2001 | B1 |
6271793 | Brady et al. | Aug 2001 | B1 |
6271801 | Tuttle et al. | Aug 2001 | B2 |
6280585 | Obinata et al. | Aug 2001 | B1 |
6280875 | Kwak et al. | Aug 2001 | B1 |
6281142 | Basceri et al. | Aug 2001 | B1 |
6284406 | Xing et al. | Sep 2001 | B1 |
6287986 | Mihara | Sep 2001 | B1 |
6289209 | Wood, Jr. | Sep 2001 | B1 |
6290821 | McLeod | Sep 2001 | B1 |
6290822 | Fleming et al. | Sep 2001 | B1 |
6291098 | Shibuya et al. | Sep 2001 | B1 |
6294722 | Kondo et al. | Sep 2001 | B1 |
6296949 | Bergstresser et al. | Oct 2001 | B1 |
6296967 | Jacobs et al. | Oct 2001 | B1 |
6296971 | Hara | Oct 2001 | B1 |
6300215 | Shin | Oct 2001 | B1 |
6302939 | Rabin et al. | Oct 2001 | B1 |
6306265 | Fu et al. | Oct 2001 | B1 |
6316563 | Naijo et al. | Nov 2001 | B2 |
6323416 | Komori et al. | Nov 2001 | B1 |
6324211 | Ovard et al. | Nov 2001 | B1 |
6325294 | Tuttle et al. | Dec 2001 | B2 |
6329213 | Tuttle et al. | Dec 2001 | B1 |
6339236 | Tomii et al. | Jan 2002 | B1 |
6344366 | Bates | Feb 2002 | B1 |
6344419 | Forster et al. | Feb 2002 | B1 |
6344795 | Gehlot | Feb 2002 | B1 |
6350353 | Gopalraja et al. | Feb 2002 | B2 |
6351630 | Wood, Jr. | Feb 2002 | B2 |
6356230 | Greef et al. | Mar 2002 | B1 |
6356694 | Weber | Mar 2002 | B1 |
6356764 | Ovard et al. | Mar 2002 | B1 |
6358810 | Dornfest et al. | Mar 2002 | B1 |
6360954 | Barnardo | Mar 2002 | B1 |
6361662 | Chiba et al. | Mar 2002 | B1 |
6365300 | Ota et al. | Apr 2002 | B1 |
6365319 | Heath et al. | Apr 2002 | B1 |
6368275 | Sliwa et al. | Apr 2002 | B1 |
6369316 | Plessing et al. | Apr 2002 | B1 |
6372098 | Newcomb et al. | Apr 2002 | B1 |
6372383 | Lee et al. | Apr 2002 | B1 |
6372386 | Cho et al. | Apr 2002 | B1 |
6373224 | Goto et al. | Apr 2002 | B1 |
6375780 | Tuttle et al. | Apr 2002 | B1 |
6376027 | Lee et al. | Apr 2002 | B1 |
6379835 | Kucherovsky et al. | Apr 2002 | B1 |
6379842 | Mayer | Apr 2002 | B1 |
6380477 | Curtin | Apr 2002 | B1 |
6384573 | Dunn | May 2002 | B1 |
6387563 | Bates | May 2002 | B1 |
6391166 | Wang | May 2002 | B1 |
6392565 | Brown | May 2002 | B1 |
6394598 | Kaiser | May 2002 | B1 |
6395430 | Cho et al. | May 2002 | B1 |
6396001 | Nakamura | May 2002 | B1 |
6398824 | Johnson | Jun 2002 | B1 |
6399241 | Hara et al. | Jun 2002 | B1 |
6402039 | Freeman et al. | Jun 2002 | B1 |
6402795 | Chu et al. | Jun 2002 | B1 |
6402796 | Johnson | Jun 2002 | B1 |
6409965 | Nagata et al. | Jun 2002 | B1 |
6413284 | Chu et al. | Jul 2002 | B1 |
6413285 | Chu et al. | Jul 2002 | B1 |
6413382 | Wang et al. | Jul 2002 | B1 |
6413645 | Graff et al. | Jul 2002 | B1 |
6413676 | Munshi | Jul 2002 | B1 |
6414626 | Greef et al. | Jul 2002 | B1 |
6416598 | Sircar | Jul 2002 | B1 |
6420961 | Bates et al. | Jul 2002 | B1 |
6422698 | Kaiser | Jul 2002 | B2 |
6423106 | Bates | Jul 2002 | B1 |
6423776 | Akkapeddi et al. | Jul 2002 | B1 |
6426163 | Pasquier et al. | Jul 2002 | B1 |
6432577 | Shul et al. | Aug 2002 | B1 |
6432584 | Visco et al. | Aug 2002 | B1 |
6433380 | Shin | Aug 2002 | B2 |
6433465 | McKnight et al. | Aug 2002 | B1 |
6436156 | Wandeloski et al. | Aug 2002 | B1 |
6437231 | Kurata et al. | Aug 2002 | B2 |
6444336 | Jia et al. | Sep 2002 | B1 |
6444355 | Murai et al. | Sep 2002 | B1 |
6444368 | Hikmet et al. | Sep 2002 | B1 |
6444750 | Touhsaent | Sep 2002 | B1 |
6459418 | Comiskey et al. | Oct 2002 | B1 |
6459726 | Ovard et al. | Oct 2002 | B1 |
6466771 | Wood, Jr. | Oct 2002 | B2 |
6475668 | Hosokawa et al. | Nov 2002 | B1 |
6481623 | Grant et al. | Nov 2002 | B1 |
6488822 | Moslehi | Dec 2002 | B1 |
6494999 | Herrera et al. | Dec 2002 | B1 |
6495283 | Yoon et al. | Dec 2002 | B1 |
6497598 | Affinito | Dec 2002 | B2 |
6500287 | Azens et al. | Dec 2002 | B1 |
6503661 | Park et al. | Jan 2003 | B1 |
6503831 | Speakman | Jan 2003 | B2 |
6506289 | Demaray et al. | Jan 2003 | B2 |
6511516 | Johnson et al. | Jan 2003 | B1 |
6511615 | Dawes et al. | Jan 2003 | B1 |
6517968 | Johnson et al. | Feb 2003 | B2 |
6522067 | Graff et al. | Feb 2003 | B1 |
6524466 | Bonaventura et al. | Feb 2003 | B1 |
6524750 | Mansuetto | Feb 2003 | B1 |
6525976 | Johnson | Feb 2003 | B1 |
6528212 | Kusumoto et al. | Mar 2003 | B1 |
6533907 | Demaray et al. | Mar 2003 | B2 |
6537428 | Xiong et al. | Mar 2003 | B1 |
6538211 | St. Lawrence et al. | Mar 2003 | B2 |
6541147 | McLean et al. | Apr 2003 | B1 |
6548912 | Graff et al. | Apr 2003 | B1 |
6551745 | Moutsios et al. | Apr 2003 | B2 |
6558836 | Whitacre et al. | May 2003 | B1 |
6562513 | Takeuchi et al. | May 2003 | B1 |
6563998 | Farah et al. | May 2003 | B1 |
6569564 | Lane | May 2003 | B1 |
6570325 | Graff et al. | May 2003 | B2 |
6572173 | Muller | Jun 2003 | B2 |
6573652 | Graff et al. | Jun 2003 | B1 |
6576546 | Gilbert et al. | Jun 2003 | B2 |
6579728 | Grant et al. | Jun 2003 | B2 |
6582480 | Pasquier et al. | Jun 2003 | B2 |
6582481 | Erbil | Jun 2003 | B1 |
6582852 | Gao et al. | Jun 2003 | B1 |
6589299 | Missling et al. | Jul 2003 | B2 |
6593150 | Ramberg et al. | Jul 2003 | B2 |
6599662 | Chiang et al. | Jul 2003 | B1 |
6600905 | Greeff et al. | Jul 2003 | B2 |
6602338 | Chen et al. | Aug 2003 | B2 |
6603139 | Tessler et al. | Aug 2003 | B1 |
6603391 | Greeff et al. | Aug 2003 | B1 |
6605228 | Kawaguchi et al. | Aug 2003 | B1 |
6608464 | Lew et al. | Aug 2003 | B1 |
6610440 | LaFollette et al. | Aug 2003 | B1 |
6615614 | Makikawa et al. | Sep 2003 | B1 |
6616035 | Ehrensvard et al. | Sep 2003 | B2 |
6618829 | Pax et al. | Sep 2003 | B2 |
6620545 | Goenka et al. | Sep 2003 | B2 |
6622049 | Penner et al. | Sep 2003 | B2 |
6632563 | Krasnov et al. | Oct 2003 | B1 |
6637906 | Knoerzer et al. | Oct 2003 | B2 |
6637916 | Mullner | Oct 2003 | B2 |
6639578 | Comiskey et al. | Oct 2003 | B1 |
6641704 | Someno | Nov 2003 | B2 |
6645675 | Munshi | Nov 2003 | B1 |
6650000 | Ballantine et al. | Nov 2003 | B2 |
6650942 | Howard et al. | Nov 2003 | B2 |
6662430 | Brady et al. | Dec 2003 | B2 |
6664006 | Munshi | Dec 2003 | B1 |
6673484 | Matsuura | Jan 2004 | B2 |
6673716 | D'Couto et al. | Jan 2004 | B1 |
6674159 | Peterson et al. | Jan 2004 | B1 |
6677070 | Kearl | Jan 2004 | B2 |
6683244 | Fujimori et al. | Jan 2004 | B2 |
6683749 | Daby et al. | Jan 2004 | B2 |
6686096 | Chung | Feb 2004 | B1 |
6693840 | Shimada et al. | Feb 2004 | B2 |
6700491 | Shafer | Mar 2004 | B2 |
6706449 | Mikhaylik et al. | Mar 2004 | B2 |
6709778 | Johnson | Mar 2004 | B2 |
6713216 | Kugai et al. | Mar 2004 | B2 |
6713389 | Speakman | Mar 2004 | B2 |
6713987 | Krasnov et al. | Mar 2004 | B2 |
6723140 | Chu et al. | Apr 2004 | B2 |
6730423 | Einhart et al. | May 2004 | B2 |
6733924 | Skotheim et al. | May 2004 | B1 |
6737197 | Chu et al. | May 2004 | B2 |
6737789 | Radziemski et al. | May 2004 | B2 |
6741178 | Tuttle | May 2004 | B1 |
6750156 | Le et al. | Jun 2004 | B2 |
6752842 | Luski et al. | Jun 2004 | B2 |
6753108 | Hampden-Smith et al. | Jun 2004 | B1 |
6753114 | Jacobs et al. | Jun 2004 | B2 |
6760520 | Medin et al. | Jul 2004 | B1 |
6764525 | Whitacre et al. | Jul 2004 | B1 |
6768246 | Pelrine et al. | Jul 2004 | B2 |
6768855 | Bakke et al. | Jul 2004 | B1 |
6770176 | Benson et al. | Aug 2004 | B2 |
6773848 | Nortoft et al. | Aug 2004 | B1 |
6780208 | Hopkins et al. | Aug 2004 | B2 |
6797428 | Skotheim et al. | Sep 2004 | B1 |
6797429 | Komatsu | Sep 2004 | B1 |
6805998 | Jensen et al. | Oct 2004 | B2 |
6805999 | Lee et al. | Oct 2004 | B2 |
6818356 | Bates | Nov 2004 | B1 |
6822157 | Fujioka | Nov 2004 | B2 |
6824922 | Park et al. | Nov 2004 | B2 |
6827826 | Demaray et al. | Dec 2004 | B2 |
6828063 | Park et al. | Dec 2004 | B2 |
6828065 | Munshi | Dec 2004 | B2 |
6830846 | Kramlich et al. | Dec 2004 | B2 |
6835493 | Zhang et al. | Dec 2004 | B2 |
6838209 | Langan et al. | Jan 2005 | B2 |
6846765 | Imamura et al. | Jan 2005 | B2 |
6849165 | Kloppel et al. | Feb 2005 | B2 |
6852139 | Zhang et al. | Feb 2005 | B2 |
6855441 | Levanon | Feb 2005 | B1 |
6861821 | Masumoto et al. | Mar 2005 | B2 |
6863699 | Krasnov et al. | Mar 2005 | B1 |
6866901 | Burrows et al. | Mar 2005 | B2 |
6866963 | Seung et al. | Mar 2005 | B2 |
6869722 | Kearl | Mar 2005 | B2 |
6884327 | Pan et al. | Apr 2005 | B2 |
6886240 | Zhang et al. | May 2005 | B2 |
6896992 | Kearl | May 2005 | B2 |
6899975 | Watanabe et al. | May 2005 | B2 |
6902660 | Lee et al. | Jun 2005 | B2 |
6905578 | Moslehi et al. | Jun 2005 | B1 |
6906436 | Jenson et al. | Jun 2005 | B2 |
6911667 | Pichler et al. | Jun 2005 | B2 |
6916679 | Snyder et al. | Jul 2005 | B2 |
6921464 | Krasnov et al. | Jul 2005 | B2 |
6923702 | Graff et al. | Aug 2005 | B2 |
6924164 | Jensen | Aug 2005 | B2 |
6929879 | Yamazaki | Aug 2005 | B2 |
6936377 | Wensley et al. | Aug 2005 | B2 |
6936381 | Skotheim et al. | Aug 2005 | B2 |
6936407 | Pichler | Aug 2005 | B2 |
6949389 | Pichler et al. | Sep 2005 | B2 |
6955986 | Li | Oct 2005 | B2 |
6962613 | Jenson | Nov 2005 | B2 |
6962671 | Martin et al. | Nov 2005 | B2 |
6964829 | Utsugi et al. | Nov 2005 | B2 |
6982132 | Goldner et al. | Jan 2006 | B1 |
6986965 | Jenson et al. | Jan 2006 | B2 |
6994933 | Bates | Feb 2006 | B1 |
7022431 | Shchori et al. | Apr 2006 | B2 |
7033406 | Weir et al. | Apr 2006 | B2 |
7045246 | Simburger et al. | May 2006 | B2 |
7045372 | Ballantine et al. | May 2006 | B2 |
7056620 | Krasnov et al. | Jun 2006 | B2 |
7073723 | Fürst et al. | Jul 2006 | B2 |
7095372 | Castany et al. | Aug 2006 | B2 |
7129166 | Speakman | Oct 2006 | B2 |
7131189 | Jenson | Nov 2006 | B2 |
7144654 | LaFollette et al. | Dec 2006 | B2 |
7144655 | Jenson et al. | Dec 2006 | B2 |
7157187 | Jenson | Jan 2007 | B2 |
7158031 | Tuttle | Jan 2007 | B2 |
7162392 | Vock et al. | Jan 2007 | B2 |
7183693 | Brantner et al. | Feb 2007 | B2 |
7186479 | Krasnov et al. | Mar 2007 | B2 |
7194801 | Jenson et al. | Mar 2007 | B2 |
7198832 | Burrows et al. | Apr 2007 | B2 |
7202825 | Leizerovich et al. | Apr 2007 | B2 |
7220517 | Park et al. | May 2007 | B2 |
7230321 | McCain | Jun 2007 | B2 |
7247408 | Skotheim et al. | Jul 2007 | B2 |
7253494 | Mino et al. | Aug 2007 | B2 |
7262131 | Narasimhan et al. | Aug 2007 | B2 |
7265674 | Tuttle | Sep 2007 | B2 |
7267904 | Komatsu et al. | Sep 2007 | B2 |
7267906 | Mizuta et al. | Sep 2007 | B2 |
7273682 | Park et al. | Sep 2007 | B2 |
7274118 | Jenson et al. | Sep 2007 | B2 |
7288340 | Iwamoto | Oct 2007 | B2 |
7316867 | Park et al. | Jan 2008 | B2 |
7323634 | Speakman | Jan 2008 | B2 |
7332363 | Edwards | Feb 2008 | B2 |
7335441 | Luski et al. | Feb 2008 | B2 |
RE40137 | Tuttle et al. | Mar 2008 | E |
7345647 | Rodenbeck | Mar 2008 | B1 |
7348099 | Mukai et al. | Mar 2008 | B2 |
7378356 | Zhang et al. | May 2008 | B2 |
7381657 | Zhang et al. | Jun 2008 | B2 |
7389580 | Jenson et al. | Jun 2008 | B2 |
7400253 | Cohen | Jul 2008 | B2 |
7404877 | Demaray et al. | Jul 2008 | B2 |
7410730 | Bates | Aug 2008 | B2 |
7413998 | Zhang et al. | Aug 2008 | B2 |
RE40531 | Graff et al. | Oct 2008 | E |
7468221 | LaFollette et al. | Dec 2008 | B2 |
7494742 | Tarnowski et al. | Feb 2009 | B2 |
7544276 | Zhang et al. | Jun 2009 | B2 |
7670724 | Chan et al. | Mar 2010 | B1 |
20010027159 | Kaneyoshi | Oct 2001 | A1 |
20010031122 | Lackritz et al. | Oct 2001 | A1 |
20010032666 | Jensen et al. | Oct 2001 | A1 |
20010033952 | Jensen et al. | Oct 2001 | A1 |
20010034106 | Moise et al. | Oct 2001 | A1 |
20010041294 | Chu et al. | Nov 2001 | A1 |
20010041460 | Wiggins | Nov 2001 | A1 |
20010050223 | Gopalraja et al. | Dec 2001 | A1 |
20010052752 | Ghosh et al. | Dec 2001 | A1 |
20010054437 | Komori et al. | Dec 2001 | A1 |
20010055719 | Akashi et al. | Dec 2001 | A1 |
20020000034 | Jenson | Jan 2002 | A1 |
20020001746 | Jensen | Jan 2002 | A1 |
20020001747 | Jensen et al. | Jan 2002 | A1 |
20020004167 | Jensen et al. | Jan 2002 | A1 |
20020009630 | Gao et al. | Jan 2002 | A1 |
20020019296 | Freeman et al. | Feb 2002 | A1 |
20020028377 | Gross | Mar 2002 | A1 |
20020033330 | Demaray et al. | Mar 2002 | A1 |
20020037756 | Jacobs et al. | Mar 2002 | A1 |
20020066539 | Muller | Jun 2002 | A1 |
20020067615 | Muller | Jun 2002 | A1 |
20020076133 | Li et al. | Jun 2002 | A1 |
20020091929 | Ehrensvard | Jul 2002 | A1 |
20020093029 | Ballantine et al. | Jul 2002 | A1 |
20020106297 | Ueno et al. | Aug 2002 | A1 |
20020115252 | Haukka et al. | Aug 2002 | A1 |
20020134671 | Demaray et al. | Sep 2002 | A1 |
20020139662 | Lee | Oct 2002 | A1 |
20020140103 | Kloster et al. | Oct 2002 | A1 |
20020159245 | Murasko et al. | Oct 2002 | A1 |
20020161404 | Schmidt | Oct 2002 | A1 |
20020164441 | Amine et al. | Nov 2002 | A1 |
20020170821 | Sandlin et al. | Nov 2002 | A1 |
20020170960 | Ehrensvard et al. | Nov 2002 | A1 |
20030019326 | Han et al. | Jan 2003 | A1 |
20030022487 | Yoon et al. | Jan 2003 | A1 |
20030024994 | Ladyansky | Feb 2003 | A1 |
20030029493 | Plessing | Feb 2003 | A1 |
20030035906 | Memarian et al. | Feb 2003 | A1 |
20030036003 | Shchori et al. | Feb 2003 | A1 |
20030042131 | Johnson | Mar 2003 | A1 |
20030044665 | Rastegar et al. | Mar 2003 | A1 |
20030048635 | Knoerzer et al. | Mar 2003 | A1 |
20030063883 | Demaray et al. | Apr 2003 | A1 |
20030064292 | Neudecker et al. | Apr 2003 | A1 |
20030068559 | Armstrong et al. | Apr 2003 | A1 |
20030077914 | Le et al. | Apr 2003 | A1 |
20030079838 | Brcka | May 2003 | A1 |
20030091904 | Munshi | May 2003 | A1 |
20030095463 | Shimada et al. | May 2003 | A1 |
20030097858 | Strohhofer et al. | May 2003 | A1 |
20030109903 | Berrang et al. | Jun 2003 | A1 |
20030127319 | Demaray et al. | Jul 2003 | A1 |
20030134054 | Demaray et al. | Jul 2003 | A1 |
20030141186 | Wang et al. | Jul 2003 | A1 |
20030143853 | Celii et al. | Jul 2003 | A1 |
20030152829 | Zhang et al. | Aug 2003 | A1 |
20030162094 | Lee et al. | Aug 2003 | A1 |
20030173207 | Zhang et al. | Sep 2003 | A1 |
20030173208 | Pan et al. | Sep 2003 | A1 |
20030174391 | Pan et al. | Sep 2003 | A1 |
20030175142 | Milonopoulou et al. | Sep 2003 | A1 |
20030178623 | Nishiki et al. | Sep 2003 | A1 |
20030178637 | Chen et al. | Sep 2003 | A1 |
20030180610 | Felde et al. | Sep 2003 | A1 |
20030185266 | Henrichs | Oct 2003 | A1 |
20030231106 | Shafer | Dec 2003 | A1 |
20030232248 | Iwamoto et al. | Dec 2003 | A1 |
20030234835 | Torii et al. | Dec 2003 | A1 |
20040008587 | Siebott et al. | Jan 2004 | A1 |
20040015735 | Norman | Jan 2004 | A1 |
20040023106 | Benson et al. | Feb 2004 | A1 |
20040028875 | Van Rijn et al. | Feb 2004 | A1 |
20040029311 | Snyder et al. | Feb 2004 | A1 |
20040038050 | Saijo et al. | Feb 2004 | A1 |
20040043557 | Haukka et al. | Mar 2004 | A1 |
20040048157 | Neudecker et al. | Mar 2004 | A1 |
20040058237 | Higuchi et al. | Mar 2004 | A1 |
20040077161 | Chen et al. | Apr 2004 | A1 |
20040078662 | Hamel et al. | Apr 2004 | A1 |
20040081415 | Demaray et al. | Apr 2004 | A1 |
20040081860 | Hundt et al. | Apr 2004 | A1 |
20040085002 | Pearce | May 2004 | A1 |
20040101761 | Park et al. | May 2004 | A1 |
20040105644 | Dawes | Jun 2004 | A1 |
20040106038 | Shimamura et al. | Jun 2004 | A1 |
20040106046 | Inda | Jun 2004 | A1 |
20040118700 | Schierle-Arndt et al. | Jun 2004 | A1 |
20040126305 | Chen et al. | Jul 2004 | A1 |
20040151986 | Park et al. | Aug 2004 | A1 |
20040161640 | Salot | Aug 2004 | A1 |
20040175624 | Luski et al. | Sep 2004 | A1 |
20040188239 | Robison et al. | Sep 2004 | A1 |
20040209159 | Lee et al. | Oct 2004 | A1 |
20040219434 | Benson et al. | Nov 2004 | A1 |
20040245561 | Sakashita et al. | Dec 2004 | A1 |
20040258984 | Ariel et al. | Dec 2004 | A1 |
20040259305 | Demaray et al. | Dec 2004 | A1 |
20050000794 | Demaray et al. | Jan 2005 | A1 |
20050006768 | Narasimhan et al. | Jan 2005 | A1 |
20050048802 | Zhang et al. | Mar 2005 | A1 |
20050070097 | Barmak et al. | Mar 2005 | A1 |
20050072458 | Goldstein | Apr 2005 | A1 |
20050079418 | Kelley et al. | Apr 2005 | A1 |
20050095506 | Klaassen | May 2005 | A1 |
20050105231 | Hamel et al. | May 2005 | A1 |
20050110457 | LaFollette et al. | May 2005 | A1 |
20050112461 | Amine et al. | May 2005 | A1 |
20050118464 | Levanon | Jun 2005 | A1 |
20050130032 | Krasnov et al. | Jun 2005 | A1 |
20050133361 | Ding et al. | Jun 2005 | A1 |
20050141170 | Honda et al. | Jun 2005 | A1 |
20050142447 | Nakai et al. | Jun 2005 | A1 |
20050147877 | Tarnowski et al. | Jul 2005 | A1 |
20050158622 | Mizuta et al. | Jul 2005 | A1 |
20050175891 | Kameyama et al. | Aug 2005 | A1 |
20050176181 | Burrows et al. | Aug 2005 | A1 |
20050181280 | Ceder et al. | Aug 2005 | A1 |
20050183946 | Pan et al. | Aug 2005 | A1 |
20050189139 | Stole | Sep 2005 | A1 |
20050208371 | Kim et al. | Sep 2005 | A1 |
20050239917 | Nelson et al. | Oct 2005 | A1 |
20050266161 | Medeiros et al. | Dec 2005 | A1 |
20060019504 | Taussig | Jan 2006 | A1 |
20060021214 | Jenson et al. | Feb 2006 | A1 |
20060040177 | Onodera et al. | Feb 2006 | A1 |
20060046907 | Rastegar et al. | Mar 2006 | A1 |
20060054496 | Zhang et al. | Mar 2006 | A1 |
20060057283 | Zhang et al. | Mar 2006 | A1 |
20060057304 | Zhang et al. | Mar 2006 | A1 |
20060063074 | Jenson et al. | Mar 2006 | A1 |
20060071592 | Narasimhan et al. | Apr 2006 | A1 |
20060155545 | Jayne | Jul 2006 | A1 |
20060201583 | Michaluk et al. | Sep 2006 | A1 |
20060210779 | Weir et al. | Sep 2006 | A1 |
20060222954 | Skotheim et al. | Oct 2006 | A1 |
20060234130 | Inda | Oct 2006 | A1 |
20060237543 | Goto et al. | Oct 2006 | A1 |
20060255435 | Fuergut et al. | Nov 2006 | A1 |
20060286448 | Snyder et al. | Dec 2006 | A1 |
20070009802 | Lee et al. | Jan 2007 | A1 |
20070023275 | Tanase et al. | Feb 2007 | A1 |
20070037058 | Visco et al. | Feb 2007 | A1 |
20070053139 | Zhang et al. | Mar 2007 | A1 |
20070087230 | Jenson et al. | Apr 2007 | A1 |
20070091543 | Gasse et al. | Apr 2007 | A1 |
20070141468 | Barker | Jun 2007 | A1 |
20070148065 | Weir et al. | Jun 2007 | A1 |
20070148553 | Weppner | Jun 2007 | A1 |
20070151661 | Mao et al. | Jul 2007 | A1 |
20070164376 | Burrows et al. | Jul 2007 | A1 |
20070166612 | Krasnov et al. | Jul 2007 | A1 |
20070172681 | Demaray et al. | Jul 2007 | A1 |
20070184345 | Neudecker et al. | Aug 2007 | A1 |
20070196682 | Visser et al. | Aug 2007 | A1 |
20070202395 | Snyder et al. | Aug 2007 | A1 |
20070205513 | Brunnbauer et al. | Sep 2007 | A1 |
20070210459 | Burrows et al. | Sep 2007 | A1 |
20070224951 | Gilb et al. | Sep 2007 | A1 |
20070264564 | Johnson et al. | Nov 2007 | A1 |
20070278653 | Brunnbauer et al. | Dec 2007 | A1 |
20070298326 | Angell et al. | Dec 2007 | A1 |
20080003496 | Neudecker et al. | Jan 2008 | A1 |
20080008936 | Mizuta et al. | Jan 2008 | A1 |
20080014501 | Skotheim et al. | Jan 2008 | A1 |
20080057397 | Skotheim et al. | Mar 2008 | A1 |
20080213672 | Skotheim et al. | Sep 2008 | A1 |
20080233708 | Hisamatsu | Sep 2008 | A1 |
20080254575 | Fuergut et al. | Oct 2008 | A1 |
20080261107 | Snyder et al. | Oct 2008 | A1 |
20080286651 | Neudecker et al. | Nov 2008 | A1 |
20090181303 | Neudecker et al. | Jul 2009 | A1 |
20100032001 | Brantner | Feb 2010 | A1 |
20100086853 | Venkatachalam et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
1415124 | Apr 2003 | CN |
1532984 | Sep 2004 | CN |
10 2005 014 427 | Sep 2006 | DE |
10 2006 054 309 | Nov 2006 | DE |
10 2008 016 665 | Oct 2008 | DE |
102007030604 | Jan 2009 | DE |
0 510 883 | Oct 1992 | EP |
0 639 655 | Feb 1995 | EP |
0 652 308 | May 1995 | EP |
0 820 088 | Jan 1998 | EP |
1 068 899 | Jan 2001 | EP |
0 0867 985 | Feb 2001 | EP |
1 092 689 | Apr 2001 | EP |
1 189 080 | Mar 2002 | EP |
1 713 024 | Oct 2006 | EP |
2 861 218 | Apr 2005 | FR |
55-009305 | Jan 1980 | JP |
56-156675 | Dec 1981 | JP |
60-068558 | Apr 1985 | JP |
61-60803 | Mar 1986 | JP |
62-267944 | Nov 1987 | JP |
62-287071 | Dec 1987 | JP |
2-054764 | Feb 1990 | JP |
2-230662 | Sep 1990 | JP |
4-058456 | Feb 1992 | JP |
4-072049 | Mar 1992 | JP |
6-010127 | Jan 1994 | JP |
6-100333 | Apr 1994 | JP |
7-233469 | May 1995 | JP |
7-224379 | Aug 1995 | JP |
9249962 | Sep 1997 | JP |
11-204088 | Jul 1999 | JP |
2000-144435 | May 2000 | JP |
2000-188099 | Jul 2000 | JP |
2000-268867 | Sep 2000 | JP |
2001-259494 | Sep 2001 | JP |
2001-297764 | Oct 2001 | JP |
2001-328198 | Nov 2001 | JP |
2002-344115 | Nov 2002 | JP |
2003-17040 | Jan 2003 | JP |
2003-347045 | Dec 2003 | JP |
2004-071305 | Mar 2004 | JP |
2004-149849 | May 2004 | JP |
2004-158268 | Jun 2004 | JP |
2004-273436 | Sep 2004 | JP |
2005-256101 | Sep 2005 | JP |
20020007881 | Jan 2002 | KR |
20020017790 | Mar 2002 | KR |
20020029813 | Apr 2002 | KR |
20020038917 | May 2002 | KR |
20030033913 | May 2003 | KR |
20030042288 | May 2003 | KR |
20030085252 | Nov 2003 | KR |
2241281 | Nov 2004 | RU |
WO 9513629 | May 1995 | WO |
WO 9623085 | Aug 1996 | WO |
WO 9623217 | Aug 1996 | WO |
WO 97027344 | Jul 1997 | WO |
WO 9735044 | Sep 1997 | WO |
WO 9847196 | Oct 1998 | WO |
WO 9943034 | Aug 1999 | WO |
WO 9957770 | Nov 1999 | WO |
WO 0021898 | Apr 2000 | WO |
WO 0022742 | Apr 2000 | WO |
WO 0028607 | May 2000 | WO |
WO 0036665 | Jun 2000 | WO |
WO 0060682 | Oct 2000 | WO |
WO 0060689 | Oct 2000 | WO |
WO 0062365 | Oct 2000 | WO |
WO 0101507 | Jan 2001 | WO |
WO 0117052 | Mar 2001 | WO |
WO 0124303 | Apr 2001 | WO |
WO 0133651 | May 2001 | WO |
WO 0139305 | May 2001 | WO |
WO 0173864 | Oct 2001 | WO |
WO 0173865 | Oct 2001 | WO |
WO 0173866 | Oct 2001 | WO |
WO 0173868 | Oct 2001 | WO |
WO 0173870 | Oct 2001 | WO |
WO 0173883 | Oct 2001 | WO |
WO 0173957 | Oct 2001 | WO |
WO 0186731 | Nov 2001 | WO |
WO 0182390 | Nov 2001 | WO |
WO 0212932 | Feb 2002 | WO |
WO 0242516 | May 2002 | WO |
WO 0247187 | Jun 2002 | WO |
WO 02071506 | Sep 2002 | WO |
WO 02101857 | Dec 2002 | WO |
WO 03003485 | Jan 2003 | WO |
WO 03005477 | Jan 2003 | WO |
WO 03026039 | Mar 2003 | WO |
WO 03036670 | May 2003 | WO |
WO 03069714 | Aug 2003 | WO |
WO 03080325 | Oct 2003 | WO |
WO 03083166 | Oct 2003 | WO |
WO 2004012283 | Feb 2004 | WO |
WO 2004021532 | Mar 2004 | WO |
WO 2004061887 | Jul 2004 | WO |
WO 2004077519 | Sep 2004 | WO |
WO 2004086550 | Oct 2004 | WO |
WO 2004106581 | Dec 2004 | WO |
WO 2004106582 | Dec 2004 | WO |
WO 2005008828 | Jan 2005 | WO |
WO 2005013394 | Feb 2005 | WO |
WO 2005038957 | Apr 2005 | WO |
WO 2005067645 | Jul 2005 | WO |
WO 2005085138 | Sep 2005 | WO |
WO 2005091405 | Sep 2005 | WO |
WO 2006063308 | Jun 2006 | WO |
WO 2006138362 | Dec 2006 | WO |
WO 2007016781 | Feb 2007 | WO |
WO 2007027535 | Mar 2007 | WO |
WO 2007095604 | Aug 2007 | WO |
WO 2008036731 | Mar 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20070125638 A1 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
60651363 | Feb 2005 | US | |
60634818 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11297057 | Dec 2005 | US |
Child | 11557383 | US |