Claims
- 1. An air conditioning and dehumidification system comprising an enclosed housing having a wall dividing the housing into first and second separate air plenums; a refrigeration circuit in the housing including an evaporator coil in the first plenum and a condenser coil, at least one refrigerant compressor, and condenser fan located in series in the second chamber such that the condenser fan draws supply air over the condenser coil from outside the housing through the second plenum and discharges it outside the housing; and a dehumidification system in the housing including a desiccant wheel rotatably mounted in the housing to rotate in a plane traversing perpendicular to said central wall whereby one segment of the wheel functioning as the process segment is located in the first plenum and a second segment of the wheel functioning as the process segment is located in the first plenum and a second segment of the wheel functioning as the regeneration segment is located in the second plenum; a supply/process air fan in the first plenum located adjacent one side of the wheel and a sub-divider wall in said first plenum extending from near said one side of the wheel to divide a sub-plenum in said first plenum whereby the process air fan draws a supply/process air stream into the first plenum, through the process section of the wheel into the sub plenum and then discharges the thus cooled and dried supply/process air to an enclosure; said desiccant wheel segment in the second plenum being located downstream of the air flowing over the condenser coils, a regeneration fan in said second plenum adjacent the downstream side of the desiccant wheel and baffle means in the second chamber extending from the desiccant wheel, downstream thereof towards a side wall of the housing for preventing back flow of air leaving the wheel toward the condenser coil or the inlet side of the wheel when the regeneration fan draws air leaving the condenser coil through the wheel to regenerate it.
- 2. A device for selecting heating, cooling and dehumidifying air enclosed space comprising a desiccant wheel based dehumidification system and at least one refrigeration circuit, said desiccant wheel dehumidification system including a desiccant wheel having a process section and a regeneration section, a blower for drawing air from said space through the regeneration section of the wheel; said refrigeration circuit including a first circuit including a condenser coil positioned between the enclosure and the regeneration section of the wheel in the path of regeneration air from the enclosure flowing to said regeneration section, an evaporator coil, blower means for drawing supply air over the evaporator coil, through the process section of the desiccant wheel to the enclosure, and a compressor for moving refrigerant in a circuit between the condenser and evaporation coils; anda second refrigeration circuit including a condenser coil, blower means for drawing ambient air over that condenser coil and exhausting the same to the atmosphere, an evaporator coil located in the supply air stream in the first regeneration system upstream of the desiccant wheel and a compressor for moving refrigerant between its associated coils, whereby operation of only said first refrigeration system produces cooling only; operation of only the desiccant wheel based system and the first refrigeration circuit produces dehumidification only; operation of the desiccant wheel based system and the first and second refrigeration system results in both cooling and dehumidification; operation of the desiccant wheel based system only produces enthalpy exchange between the regeneration air stream and the supply air stream; operation of neither the desiccant wheel systems, nor the refrigerant circuits, and only operation of said blowers, produces only fresh air circulation.
- 3. A device for selecting heating, cooling and dehumidifying air enclosed space comprising a desiccant wheel based dehumidification system and at least two refrigeration circuits, said desiccant wheel dehumidification system including a desiccant wheel having a process section and a regeneration section, a blower for drawing air from said space through the regeneration section of the wheel; said refrigeration circuits including a first circuit including a condenser coil positioned between the enclosure and the regeneration section of the wheel in the path of regeneration air from the enclosure flowing to said regeneration section, an evaporator coil, blower means for drawing supply air over the evaporator coil, through the process section of the desiccant wheel to the enclosure, and a compressor for moving refrigerant in a circuit between the condenser and evaporation coils; andat least a second refrigeration circuit including a condenser coil, blower means for drawing ambient air over that condenser coil and exhausting the same to the atmosphere, an evaporator coil located in the supply air stream in the first regeneration system upstream of the desiccant wheel and a compressor for moving refrigerant between its associated coils, whereby operation of only said first refrigeration system produces cooling only; operation of only the desiccant wheel based system and the first refrigeration circuit produces dehumidification only; operation of the desiccant wheel based system and the first and second refrigeration system results in both cooling and dehumidification; operation of the desiccant wheel based system only produces enthalpy exchange between the regeneration air stream and the supply air stream; operation of neither the desiccant wheel systems, nor the refrigerant circuits, and only operation of said blowers, produces only fresh air circulation.
- 4. A method for conditioning air for an enclosure comprising the steps of cooling a supply air stream with a refrigerant system containing a variable compressor by passing the air over a cooling coil to reduce the temperature thereof, passing the thus cooled supply air stream through a segment of a rotating desiccant wheel under conditions which increase its temperature and reduce its moisture content, and then delivering the thus treated air to said enclosure; regenerating the desiccant wheel by heating a regeneration air stream with the condensing coil of the refrigerant system, and then passing the heated regeneration air stream through another segment of the rotating desiccant wheel to regenerate the desiccant in the wheel; sensing at least one condition of the supply air stream, the regeneration air stream, and/or the refrigerant system; controlling the output of the compressor in response to the sensed condition; and the step of using at least two compressors in the refrigerant system and selectively operating one or both of the compressors in response to the differences in actual humidity in the enclosure and a predetermined humidity set point.
Parent Case Info
This application is a continuation in part of U.S. patent application Ser. No. 09/795,818 filed Feb. 28, 2001, the disclosure of which is incorporated herein by reference.
US Referenced Citations (9)
Foreign Referenced Citations (1)
Number |
Date |
Country |
0191007 |
Aug 1986 |
EP |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09/795818 |
Feb 2001 |
US |
Child |
10/316952 |
|
US |