Augmented reality allows interaction between users and real-world objects and virtual or computer-generated objects and information. These interactions may include verbal, physical, or other input signals made within a scene such as a room. However, in some scenes, monitoring and processing the data from the entire volume of the scene may be impractical where scan resolution is high, the physical environment is large, limited resources are available, and so forth. What is desired is a way to focus scanning and processing resources on particular regions of interest within the scene to reduce resource requirements.
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical components or features.
Augmented reality environments may incorporate scenes or volumes large and small. Maintaining an augmented reality environment within scenes that are volumetrically larger, include many users, have many objects, and so forth may be challenging due to scarcity of resources. These resources may include computational resources, projection resources, scanning resources, and so on. Resources may be allocated to specific volumes or zones of interest which allows for better utilization of those resources, improved accuracy, additional scan detail, and so forth. For example, a particular zone near the user may be scanned at a high resolution to discern finger movements rather than an entire room.
Disclosed herein are devices and techniques for determination and designation of volumes or zones within the augmented reality environment. Some zones may be designated regions of particular interest, or active zones. Within these active zones, the user may issue input commands such as speaking, gesturing, manipulating a physical object, and so forth. These input commands are then acted upon by the augmented reality system. Within these active zones scanning and processing of those gestures may be allocated additional resources necessary to discern input commands. These resources may reside locally or in a cloud of computing resources.
Similarly, some volumes may be designated regions of non-interest, or inactive zones. Within these inactive zones, the augmented reality system does not scan for input commands, but may monitor on a limited basis to ascertain an attention command input. This minimizes the utilization of resources for volumes which are considered unlikely for user input. For example, within a room with cathedral ceilings, the volume starting three meters above the floor may be designated as an inactive zone.
The attention command input may be a sound, gesture, or other signal which triggers the formation of an active zone. The active zone may be proximate to or encompass the source of the attention command input, or appear at a pre-determined location. For example, the attention command input may comprise a user snapping his fingers. Within an otherwise inactive zone, the snapping may be detected, its location determined, and an active zone formed which encompasses the volume in which the snap sound occurred.
Active and inactive zones may be associated with particular locations or objects. The zones may be dynamic in that they track and follow a particular object, or static in that they exist in a particular location or volume within the augmented reality environment. For example, a dynamic active zone may track the upper torso of a user to scan for input such as speech, hand gestures, and so forth. Likewise, a dynamic inactive zone may be designated to surround an object that the user may interact with that, such as a beverage can. While in this inactive zone, the augmented reality system would not expend system resources trying to determine whether the placement of fingers or movement of the hand next to the beverage can is intended as an input rather than simply trying to pick up the can.
As described herein for illustration and not by way of limitation, the augmented reality input and output may be provided at least in part by a combination of an image projector configured to generate structured light patterns and a camera to image those patterns incorporated into a single unit and designated an augmented reality functional node (ARFN). In other implementations, other configurations of one or more projectors and one or more cameras may be used, and other sensors such as microphones, ultrasound transducers, and so forth may be also be present within or coupled to the ARFN.
Illustrative Environment
The ARFN 102 is coupled to the computing device 104. This computing device may be within the ARFN 102, or disposed at another location and coupled to the ARFN 102 via a wired or wireless network. The computing device 104 comprises a processor 106, an input/output interface 108, and a memory 110. The processor 106 may comprise one or more processors configured to execute instructions. The instructions may be stored in memory 110, or in other memory accessible to the processor 106, such as storage in the cloud.
The input/output interface 108 may be configured to couple the computing device 104 to other components, such as projector, cameras, microphones, other ARFNs 102, other computing devices, and so forth. The coupling between the computing device 104 and the components may be via wire, fiber optic cable, wireless, or other connections.
The memory 110 may include computer-readable storage media (“CRSM”). The CRSM may be any available physical media accessible by a computing device to implement the instructions stored thereon. CRSM may include, but is not limited to, random access memory (“RAM”), read-only memory (“ROM”), electrically erasable programmable read-only memory (“EEPROM”), flash memory or other memory technology, compact disk read-only memory (“CD-ROM”), digital versatile disks (“DVD”) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computing device.
Several modules such as instruction, datastores, and so forth may be stored within the memory 110 and configured to execute on a processor, such as the processor 106. An operating system module 112 is configured to manage hardware and services within and coupled to the computing device 104 for the benefit of other modules.
A spatial analysis module 114 is configured to perform several functions which may include analyzing a scene to generate a topology, recognizing objects in the scene, dimensioning the objects, and modeling the scene. Characterization may be facilitated using several technologies including structured light, light detection and ranging (LIDAR), optical time-of-flight, ultrasonic ranging, stereoscopic imaging, radar, and so forth either alone or in combination with one another. For convenience, and not by way of limitation, the examples in this disclosure refer to structured light. The spatial analysis module 114 provides the information used within the augmented reality environment to provide an interface between the physicality of the scene and virtual objects and information.
A system parameters datastore 116 is configured to maintain information about the state of the computing device 104, the input/output devices of the ARFN 102, and so forth. For example, system parameters may include current pan and tilt settings of the cameras and projectors. As used in this disclosure, datastore includes lists, arrays, databases, and other data structures used to provide storage and retrieval of data.
An object parameters datastore 118 in the memory 110 is configured to maintain information about the state of objects within the scene. The object parameters may include the surface contour of the object, overall reflectivity, color, and so forth. This information may be acquired from the ARFN 102, other input devices, or via manual input and stored within the object parameters datastore 118.
An object datastore 120 is configured to maintain a library of pre-loaded reference objects. This information may include assumptions about the object, dimensions, and so forth. For example, the object datastore 120 may include a reference object of a beverage can and include the assumptions that beverage cans are either held by a user or sit on a surface, and are not present on walls or ceilings. The spatial analysis module 114 may use this data maintained in the datastore 120 to test dimensional assumptions when determining the dimensions of objects within the scene. In some implementations the object parameters in the object parameters datastore 118 may be incorporated into the object datastore 120. For example, objects in the scene which are temporally persistent, such as walls, a particular table, particular users, and so forth may be stored within the object datastore 120. The object datastore 120 may be stored on one or more of the memory of the ARFN 102, storage devices accessible on the local network, or cloud storage accessible via a wide area network.
An augmented reality module 122 is configured to generate augmented reality output in concert with the physical environment. The augmented reality module 122 includes a tracking and control module 124 configured to maintain active and inactive zones within the environment. For example, the augmented reality module 122 may be configured to project an image onto a wall. The image may be associated with an active zone maintained by the tracking and control module 124. This active zone may encompass a user's torso. As the user (and corresponding active zone) moves, the virtual image on the wall shifts to maintain a position relative to the active zone, and thus the user. The augmented reality module 122 may access input/output devices within one or more ARFNs 102 to generate output and receive input.
A chassis 204 holds the components of the ARFN 102. Within the chassis 204 may be disposed a projector 206 that generates and projects images into the scene 202. These images may be visible light images perceptible to the user, visible light images imperceptible to the user, images with non-visible light, or a combination thereof. This projector 206 may be implemented with any number of technologies capable of generating an image and projecting that image onto a surface within the environment. Suitable technologies include a digital micromirror device (DMD), liquid crystal on silicon display (LCOS), liquid crystal display, 3LCD, and so forth. The projector 206 has a projector field of view 208 which describes a particular solid angle. The projector field of view 208 may vary according to changes in the configuration of the projector. For example, the projector field of view 208 may narrow upon application of an optical zoom to the projector. In some implementations, a plurality of projectors 206 may be used.
A camera 210 may also be disposed within the chassis 204. The camera 210 is configured to image the scene in visible light wavelengths, non-visible light wavelengths, or both. The camera 210 has a camera field of view 212 which describes a particular solid angle. The camera field of view 212 may vary according to changes in the configuration of the camera 210. For example, an optical zoom of the camera may narrow the camera field of view 212. In some implementations, a plurality of cameras 210 may be used.
The chassis 204 may be mounted with a fixed orientation, or be coupled via an actuator to a fixture such that the chassis 204 may move. Actuators may include piezoelectric actuators, motors, linear actuators, and other devices configured to displace or move the chassis 204 or components therein such as the projector 206 and/or the camera 210. For example, in one implementation the actuator may comprise a pan motor 214, tilt motor 216, and so forth. The pan motor 214 is configured to rotate the chassis 204 in a yawing motion. The tilt motor 216 is configured to change the pitch of the chassis 204. By panning and/or tilting the chassis 204, different views of the scene may be acquired. The spatial analysis module 114 may use the different views to monitor objects within the environment.
One or more microphones 218 may be disposed within the chassis 204, or elsewhere within the scene. These microphones 218 may be used to acquire input from the user, for echolocation, location determination of a sound, or to otherwise aid in the characterization of and receipt of input from the scene. For example, the user may make a particular noise, such as a tap on a wall or snap of the fingers, which are pre-designated as attention command inputs. The user may alternatively use voice commands. Such audio inputs may be located within the scene using time-of-arrival differences among the microphones and used to summon an active zone within the augmented reality environment.
One or more speakers 220 may also be present to provide for audible output. For example, the speakers 220 may be used to provide output from a text-to-speech module or to playback pre-recorded audio.
A transducer 222 may be present within the ARFN 102, or elsewhere within the environment, and configured to detect and/or generate inaudible signals, such as infrasound or ultrasound. These inaudible signals may be used to provide for signaling between accessory devices and the ARFN 102.
A ranging system 224 may also be provided in the ARFN 102. The ranging system 224 is configured to provide distance information from the ARFN 102 to a scanned object or set of objects. The ranging system 224 may comprise radar, light detection and ranging (LIDAR), ultrasonic ranging, stereoscopic ranging, and so forth. In some implementations the transducer 222, the microphones 218, the speaker 220, or a combination thereof may be configured to use echolocation or echo-ranging to determine distance and spatial characteristics.
In this illustration, the computing device 104 is shown within the chassis 204. However, in other implementations all or a portion of the computing device 104 may be disposed in another location and coupled to the ARFN 102. This coupling may occur via wire, fiber optic cable, wirelessly, or a combination thereof. Furthermore, additional resources external to the ARFN 102 may be accessed, such as resources in another ARFN 102 accessible via a local area network, cloud resources accessible via a wide area network connection, or a combination thereof.
Also shown in this illustration is a projector/camera linear offset designated “O”. This is a linear distance between the projector 206 and the camera 210. Placement of the projector 206 and the camera 210 at distance “O” from one another aids in the recovery of structured light data from the scene. The known projector/camera linear offset “O” may also be used to calculate distances, dimensioning, and otherwise aid in the characterization of objects within the scene 202. In other implementations the relative angle and size of the projector field of view 208 and camera field of view 212 may vary. Also, the angle of the projector 206 and the camera 210 relative to the chassis 204 may vary.
In other implementations, the components of the ARFN 102 may be distributed in one or more locations within the environment 100. As mentioned above, microphones 218 and speakers 220 may be distributed throughout the scene. The projector 206 and the camera 210 may also be located in separate chassis 204. The ARFN 102 may also include discrete portable signaling devices used by users to issue command attention inputs. For example, these may be acoustic clickers (audible or ultrasonic), electronic signaling devices such as infrared emitters, radio transmitters, and so forth.
A sphere 304 is shown positioned between the projector 206 and a wall in the scene 202. A shadow 306 from the sphere 304 appears on the wall. Inspection of the sphere 304 shows a deformation effect 308 of the structured light pattern 302 as it interacts with the curved surface of the sphere 304.
This deformation effect 308 is detected by the camera 210. The camera 210 is configured to sense or detect the structured light. In some implementations, the camera 210 may also sense or detect wavelengths other than those used for structured light pattern 302. The image captured by the camera 210 is processed by the spatial analysis module 114 to characterize the scene 202. In some implementations, multiple cameras may be used to acquire the image.
The actual size of the sphere 304 in this example may not be readily determined based upon the geometry of the ARFN 102, diameter of the sphere 304, distance between the ARFN 102 and the sphere 304, and so forth. As a result, the spatial analysis module 114 may be configured to make one or more assumptions about the scene, and test those assumptions to constrain the dimensions of the scene 202.
Positioned adjacent to the doorknob 414 on the wall 404 is a light switch 416. Also on the wall is an electrical outlet 418. Sitting in one corner of the room on the floor is a chair 420 suitable for a single adult person. Disposed on one of the walls 404 is a television 422 or computer display. Sitting in another corner of the room is a table 424. Resting upon the table is a beverage can 426 and a portable projection screen 428.
Within the room the tracking and control module 124 has designated several zones. The boundaries of these zones are shown in this and the following illustrations as broken lines. A static inactive zone 430 is designated for a layer of volume proximate to the ceiling 408. The height of this zone may be determined based at least in part upon the height of the users 402 within the room. For example, when a very tall user enters, the height of a bottom edge of the inactive zone 430 may be increased relative to the floor.
Another static inactive zone 432 is shown for a layer of volume proximate to the floor. As above, the height of this inactive zone 432 may vary according to the users and other objects in the environment. For example, where small animals such as cats or dogs may be in the environment, the height of the inactive zone 432 may be increased such that the movement of these animals is not scanned or processed.
An active zone 434 is associated with a volume above the table 424. Different types of zones may be designated within one another. For example, within the active zone 434 associated with the table 424, a dynamic inactive zone 436 is associated with the beverage can. This dynamic inactive zone 436 prevents the augmented reality system from attempting to interpret the motions of the user's 402 fingers while grasping the can, and so forth. This inactive zone 436 may be overridden depending upon the configuration of the tracking and control module 124. For example, the user 402 may let go of the beverage can 426 but keep their hand within the inactive zone 436 and issue an attention command input such as snapping his fingers to make the area around his hand an active zone. In this case, the inactive zone 436 may be discontinued for the duration of the existence of the newly summoned active zone, or until the newly summoned active zone moves a pre-determined distance away from the beverage can 426.
Active zones may be configured to perform particular pre-assigned functions, known as specific command active zones. For example, a static specific command active zone 438 is shown in the environment which may be configured to act as a virtual trash can. Virtual objects which are “thrown” or otherwise directed into the virtual trash associated with this particular active zone 438 may thus be deleted. In other implementations the active zone 438 of the virtual trash may coincide with the volume of an actual trash receptacle in the scene.
Zones may be configured to track particular objects, or portions of particular objects. In one implementation, a dynamic active zone 440 may be configured to follow a portion of the user 402, such as the upper torso, arms, and head. As the user 402 walks about the room, the active zone 440 follows the user.
The ARFN 102 may be configured to provide an augmented reality experience to users within the room. For example, the user 402 may wish to have a set of notes from a recent meeting projected upon the portable projection screen 428 for reference while viewing a high resolution photograph on the television 422. The ARFN 102 may be configured such that sounds, motions of the user 402, motions of objects, or a combination thereof within the active zones are recognized as input, allowing interaction with virtual or computer generated items.
In some implementations, it may be desired to designate explicit inactive zones and consider the remainder to as an active zone. In this illustration, an inactive zone 702 “shadow” extends behind the user to the limits of the scene. The direction and placement of the inactive zone 702 may be determined at least in part by a direction the user is facing 704, such as determined by the spatial analysis module 114.
In other implementations, the active zone 440 associated with the user 402 may be configured in a pre-determined geometry, such as a cylinder, extending for a pre-determined distance from the user 402. The remaining volume within the environment 100 may then be deemed an inactive zone.
The boundaries of the active and inactive zones do not impede the user 402 from interacting with physical or virtual objects at a distance. For example, the user may “grab” a virtual object such as a graphical window containing text and “throw” that virtual object to another wall well outside the user's 402 active zone.
Active and inactive zones may merge or split. For example, a first active zone around a first portable projection screen 428 may merge with a second active zone around a second portable projection screen 428 when the two are placed in a stack.
The augmented reality module 122 may maintain and access an environment parameters datastore 906 and an attention command datastore 908. The environment parameters datastore 906 contains data about active and inactive zones which is used by the tracking and control module 124 to determine how to allocate system resources to the volumes within the environment 100. These resources may be located within the ARFN 102, other devices on the local area network, or in the cloud accessible via a wide area network. The environment parameters are discussed in more detail below with regards to
The attention command datastore 908 contains data about signals, sounds, gestures, and so forth which are intended to summon the attention of the augmented reality system and initiate an active zone. The attention command datastore 908 are discussed in more detail below with regards to
The active zones 1002 may also have dynamic locations 1008. The dynamic locations 1008 may be anchored to one or more associated objects 1010. For example, the active zone 440 is dynamically associated with the user 402.
The size 1004 of the zone 1002 associated with the one or more associated objects 1010 may be proportionate to the function of the object. For example, the active zone of the portable projection screen 428 may be small when the object is used for reading, but larger when the function has been changed to allow the user to “draw” on the portable projection screen 428.
The active zone 1002 may also have an interaction distance 1012. The interaction distance 1012 specifies a minimum physical separation at which a plurality of zones will interact. This interaction may include activating, merging, separating, or discontinuing one of the interacting zones. For example, as shown above with regards to
The active zone 1002 may also have an associated scrutiny level 1014. The scrutiny level 1014 allows for more specific assignment of system resources to a particular active zone 1002. For example, the specific command active zone 438 may be set at a low scrutiny, calling for minimal scanning as to whether a physical object or token associated with a virtual object has been placed within the volume of the active zone 438. In contrast, the active zone 604 associated with the portable projection screen 428 may be configured to receive high scrutiny using high resolution scanning to detect more subtle movements such as finger motions.
Parameters for an inactive zone 1016 may also be stored within the environment parameters datastore 906. The inactive zone 1016 may also have a size 1018, a static location 1020 or dynamic location 1022, one or more associated objects 1024, and an interaction distance 1026 similar to that described above with regards to the active zone 1002. For example, the inactive zone 1016 may be dynamically associated with a particular object, such as the inactive zone 436 associated with the beverage can 426.
Signals generated electrically, optically, mechanically, or by other means 1102 may be used as attention commands. These signals 1102 may include radio, light including infrared, clicks, and so forth. For example, a device such as the portable projection screen 428 may incorporate several buttons which when activated send an electromagnetic, acoustic or other generated signal 1102 to the ARFN 102. These signals may be generated in a non-electronic fashion. For example, a mechanical clicker may produce a specific sound which is designated as an attention command signal. The sound may be audible or inaudible such as infrasound or ultrasound.
The attention command may also be a user vocally generated 1104 signal. The microphones 218 coupled to the ARFN 102 may then receive these audible signals. By using a plurality of microphones it is possible to acoustically locate the approximate source of the sound within the scene. These user vocally generated 1104 signals may include whistling 1104(1), humming 1104(2), singing 1104(3), or speaking 1104(4). Other user vocally generated 1104 sounds may also be used, such as breathing noises, coughing, and so forth.
Audible gestures 1106 may also be used as attention commands and stored within the datastore 908. Audible gestures include physical actions by the user which result in an audible output. These include tapping 1106(1), clapping 1106(2), fingersnapping 1106(3), footsteps 1106(4), and so forth.
Where at least minimal scanning, such as to detect gross motions, is taking place, inaudible gestures 1108 may also be designated as attention commands. The inaudible gestures 1108 may include a raised hand or wave 1108(1), hand signal or configuration 1108(2), transitioning to a standing posture 1108(3), transitioning to a sitting posture 1108(4), and so forth.
Other signals 1110 may be used as attention commands. Additionally, a combination of signals, specific temporal sequence of signals, and so forth may be designated as the attention command. For example the fingersnap 1106(3) and the raised hand 1108(1) in that sequence may be designated as the attention command.
Illustrative Processes of Maintaining Active Zones
The processes described herein may be implemented by the architectures described herein, or by other architectures. These processes are illustrated as a collection of blocks in a logical flow graph. Some of the blocks represent operations that can be implemented in hardware, software, or a combination thereof. In the context of software, the blocks represent computer-executable instructions stored on one or more computer-readable storage media that, when executed by one or more processors, perform the recited operations. Generally, computer-executable instructions include routines, programs, objects, components, data structures, and the like that perform particular functions or implement particular abstract data types. The order in which the operations are described is not intended to be construed as a limitation, and any number of the described blocks can be combined in any order or in parallel to implement the processes. It is understood that the following processes may be implemented on other architectures as well.
At 1204, a volume is designated as an active zone. This may be a volume at a pre-determined position within the environment, or may be proximate to or encompassing the attention command input source. At 1206, the active zone is monitored for input. For example, the active zone may be scanned for hand gestures which are associated with other commands. As described above, the augmented reality environment may contain a plurality of active zones.
At 1208, an inattention command input is received. For example, a particular inaudible hand configuration 1108(2) or a second audible finger snap 1106(3) is received and processed by the tracking and control module 124.
At 1210, the active zone is discontinued at least partly in response to the inattention command input. This discontinuance prevents inadvertent action by the augmented reality system and also frees up system resources.
At 1304, the zone is designated as an inactive zone. As a result, the tracking and control module 124 disregards inputs other than attention command signals from this zone. Other inputs are disregarded or the volume is not scanned, which reduces system utilization. In some implementations all inputs including attention command inputs may be ignored. For example, in a particularly noise environment such as a convention hall, an inactive zone designated from three meters above ground level to the ceiling may be configured such that audible attention command input located within are disregarded.
At 1306 the inactive zone is monitored for an attention command input. For example, the spatial analysis module 114 may be configured to avoid scanning the inactive zone with structured light. However, microphones would still detect an audible attention command input signal from the inactive zone.
At 1308, the attention command input is accepted from within the inactive zone. However, as mentioned above, within the inactive zone other inputs are either disregarded or not detected. The user was thus able to summon the active zone within a pre-determined inactive zone.
It may be useful in some implementations to designate a particular zone as an active zone.
At 1404, the zone is designated as an active zone. As a result, the tracking and control module 124 allocates more system resources to the zone compared to those resources allocated to the inactive areas.
At 1406, the active zone is monitored for input. At 1408, input from within the active zone is accepted as received and processed by the tracking and control module 124.
At 1410, the volume outside of the active zone is monitored for attention command input. In some implementations, such as where the attention command input is an audible signal and microphones are used, the entire volume of the scene may be monitored.
At 1412, the attention command input from outside the active zone is accepted while other input from outside the active zone is disregarded or not detected. As above, this attention command input may then be used to summon an active zone for additional input.
Non-designated input objects are those which are typically not used to input data to the augmented reality environment. For example, the beverage can 426 may be considered a non-designated input object so that motions of the can are not considered input.
When the object is determined to be a designated input object at 1504 (i.e., the “yes” branch from 1504), a zone is designated proximate to or encompassing the object as an active zone at 1506. For example, in
When the object is not a designated input object at 1504 (i.e., the “no” branch from 1504), a zone proximate to or encompassing the object is designated as an inactive zone at 1512. At 1514, the inactive zone is monitored for attention command input. At 1516, an attention command input may be accepted from within the inactive zone and other input is disregarded or not detected within the inactive zone.
Operation 1606 shows the receipt of other input commands from within the active zone. For example, as shown here the user makes a “telephone” gesture to indicate they want to place a call.
Operation 1608 shows the user configuring their hand to form an inattention command within the active zone. Continuing the example, the user may be doing something else with his hands, such as sorting paperwork, and does not want those actions interpreted as commands.
Operation 1610 shows the deactivation of the active zone. The augmented reality system is no longer looking for specific inputs at the user's hand. However, as with operation 1602, the user may again summon an active zone by initiating another attention command input.
Although the subject matter has been described in language specific to structural features, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features described. Rather, the specific features are disclosed as illustrative forms of implementing the claims.
Number | Name | Date | Kind |
---|---|---|---|
3835245 | Pieters | Sep 1974 | A |
3840699 | Bowerman | Oct 1974 | A |
4112463 | Kamin | Sep 1978 | A |
5704836 | Norton et al. | Jan 1998 | A |
5946209 | Eckel et al. | Aug 1999 | A |
6059576 | Brann | May 2000 | A |
6098091 | Kisor | Aug 2000 | A |
6503195 | Keller et al. | Jan 2003 | B1 |
6618076 | Sukthankar et al. | Sep 2003 | B1 |
6690618 | Tomasi et al. | Feb 2004 | B2 |
6760045 | Quinn et al. | Jul 2004 | B1 |
6789903 | Parker et al. | Sep 2004 | B2 |
6803928 | Bimber et al. | Oct 2004 | B2 |
6811267 | Allen et al. | Nov 2004 | B1 |
7046214 | Ebersole, Jr. et al. | May 2006 | B2 |
7315241 | Daily et al. | Jan 2008 | B1 |
7418392 | Mozer et al. | Aug 2008 | B1 |
7538764 | Salomie | May 2009 | B2 |
7720683 | Vermeulen et al. | May 2010 | B1 |
7743348 | Robbins et al. | Jun 2010 | B2 |
7774204 | Mozer et al. | Aug 2010 | B2 |
7911444 | Yee | Mar 2011 | B2 |
7925996 | Hofmeister et al. | Apr 2011 | B2 |
7949148 | Rhoads et al. | May 2011 | B2 |
8107736 | Brown et al. | Jan 2012 | B2 |
8159739 | Woodgate et al. | Apr 2012 | B2 |
8199966 | Guven et al. | Jun 2012 | B2 |
8253746 | Geisner et al. | Aug 2012 | B2 |
8264536 | McEldowney | Sep 2012 | B2 |
8284205 | Miller et al. | Oct 2012 | B2 |
8285256 | Gupta et al. | Oct 2012 | B2 |
8307388 | Igoe et al. | Nov 2012 | B2 |
8308304 | Jung et al. | Nov 2012 | B2 |
8382295 | Kim et al. | Feb 2013 | B1 |
8408720 | Nishigaki et al. | Apr 2013 | B2 |
8591039 | Morrison et al. | Nov 2013 | B2 |
20010049713 | Arnold et al. | Dec 2001 | A1 |
20020001044 | Villamide | Jan 2002 | A1 |
20020070278 | Hung et al. | Jun 2002 | A1 |
20040046736 | Pryor et al. | Mar 2004 | A1 |
20040190716 | Nelson | Sep 2004 | A1 |
20040201823 | Raskar et al. | Oct 2004 | A1 |
20050081164 | Hama et al. | Apr 2005 | A1 |
20050110964 | Bell et al. | May 2005 | A1 |
20050128196 | Popescu et al. | Jun 2005 | A1 |
20050254683 | Schumann et al. | Nov 2005 | A1 |
20050264555 | Zhou et al. | Dec 2005 | A1 |
20050276444 | Zhou et al. | Dec 2005 | A1 |
20050288078 | Cheok et al. | Dec 2005 | A1 |
20050289590 | Cheok et al. | Dec 2005 | A1 |
20060028400 | Lapstun et al. | Feb 2006 | A1 |
20060041926 | Istvan et al. | Feb 2006 | A1 |
20060080408 | Istvan et al. | Apr 2006 | A1 |
20060152803 | Provitola | Jul 2006 | A1 |
20060170880 | Dambach et al. | Aug 2006 | A1 |
20060262140 | Kujawa et al. | Nov 2006 | A1 |
20070005747 | Batni et al. | Jan 2007 | A1 |
20070024644 | Bailey | Feb 2007 | A1 |
20070239211 | Lorincz et al. | Oct 2007 | A1 |
20070260669 | Neiman et al. | Nov 2007 | A1 |
20080094588 | Cole et al. | Apr 2008 | A1 |
20080151195 | Pacheco et al. | Jun 2008 | A1 |
20080174735 | Quach et al. | Jul 2008 | A1 |
20080180640 | Ito | Jul 2008 | A1 |
20080186255 | Cohen et al. | Aug 2008 | A1 |
20080229318 | Franke | Sep 2008 | A1 |
20080273754 | Hick et al. | Nov 2008 | A1 |
20090066805 | Fujiwara et al. | Mar 2009 | A1 |
20090073034 | Lin | Mar 2009 | A1 |
20100011637 | Zhang | Jan 2010 | A1 |
20100026479 | Tran | Feb 2010 | A1 |
20100060723 | Kimura et al. | Mar 2010 | A1 |
20100066676 | Kramer et al. | Mar 2010 | A1 |
20100164990 | Van Doorn | Jul 2010 | A1 |
20100199232 | Mistry et al. | Aug 2010 | A1 |
20100207872 | Chen et al. | Aug 2010 | A1 |
20100240455 | Gagner et al. | Sep 2010 | A1 |
20100257252 | Dougherty et al. | Oct 2010 | A1 |
20100284055 | Kothari et al. | Nov 2010 | A1 |
20110012925 | Luo | Jan 2011 | A1 |
20110050885 | McEldowney | Mar 2011 | A1 |
20110061100 | Mattila et al. | Mar 2011 | A1 |
20110072047 | Wang et al. | Mar 2011 | A1 |
20110087731 | Wong et al. | Apr 2011 | A1 |
20110093094 | Goyal et al. | Apr 2011 | A1 |
20110096844 | Poupel et al. | Apr 2011 | A1 |
20110134204 | Rodriguez et al. | Jun 2011 | A1 |
20110154350 | Doyle et al. | Jun 2011 | A1 |
20110161912 | Eteminan et al. | Jun 2011 | A1 |
20110164163 | Bilbrey et al. | Jul 2011 | A1 |
20110197147 | Fai | Aug 2011 | A1 |
20110216090 | Woo et al. | Sep 2011 | A1 |
20110238751 | Belimpasakis et al. | Sep 2011 | A1 |
20110249197 | Sprowl et al. | Oct 2011 | A1 |
20120009874 | Kiukkonen et al. | Jan 2012 | A1 |
20120120296 | Roberts et al. | May 2012 | A1 |
20120127320 | Balogh | May 2012 | A1 |
20120130513 | Hao et al. | May 2012 | A1 |
20120223885 | Perez | Sep 2012 | A1 |
20120306878 | Wang et al. | Dec 2012 | A1 |
20130235354 | Kilcher et al. | Sep 2013 | A1 |
20130300637 | Smits et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
WO2009112585 | Sep 2009 | WO |
WO2011088053 | Jul 2011 | WO |
Entry |
---|
FOSCAM, “User Manual, Model:FI9821W”, http://foscam.us/downloads/FI9821W%20user%20manual.pdf, May 2010, pp. 45-46. |
Office Action for U.S. Appl. No. 12/977,949, mailed on Jan. 22, 2014, William Spencer Worley III, “Powered Augmented Reality Projection Accessory Display Device”, 11 pages. |
Office action for U.S. Appl. No. 12/977,924, mailed on Nov. 15, 2013, Coley, et al., “Characterization of a Scene With Structured Light”, 9 pages. |
Office Action for U.S. Appl. No. 13/236,294, mailed on Nov. 7, 2013, Christopher Coley, “Optical Interference Mitigation”, 12 pages. |
Office Action for U.S. Appl. No. 12/982,457, mailed on Dec. 3, 2013, William Spencer Worley III, “Utilizing Content Output Devices in an Augmented Reality Environment”, 56 pages. |
Office action for U.S. Appl. No. 12/982,519, mailed on Feb. 7, 2013, Worley III , “Complementing Operation of Display Devices in an Augmented Reality Environment”, 13 pages. |
Pinhanez, “The Everywhere Displays Projector: A Device to Create Ubiquitous Graphical Interfaces”, IBM Thomas Watson Research Center, Ubicomp 2001, 18 pages. |
Office Action for U.S. Appl. No. 12/978,800, mailed on Oct. 25, 2013, William Spencer Worley III, “Integrated Augmented Reality Environment”, 36 pages. |
Office action for U.S. Appl. No. 12/977,760, mailed on Jun. 4, 2013, Worley III et al., “Generation and Modulation of Non-Visible Structured Light”, 12 pages. |
Office action for U.S. Appl. No. 12/982,519, mailed on Aug. 29, 2013, Worley III, “Complementing Operation of Display Devices in an Augmented Reality Environment”, 12 pages. |
Sneath, “The Bumper List of Windows 7 Secrets”, retrieved on Aug. 21, 2013, at http://blogs.msdn.com/b/tims/archive/2009/01/12/ the bumper-list-of-windows-7-secrets.aspx., 2009, 13 pages. |
Office action for U.S. Appl. No. 12/977,760, mailed on Oct. 15, 2012, Worley III et al., “Generation and Modulation of Non-Visible Structured Light”, 13 pages. |
Office Action for U.S. Appl. No. 12/982,519, mailed on Feb. 12, 2014, William Spencer Worley III, “Complementing Operation of Display Devices in an Augmented Reality Environment”, 12 pages. |
Final Office Action for U.S. Appl. No. 13/236,294, mailed on Mar. 13, 2014, Christopher Coley, “Optical Interference Mitigation”, 14 pages. |
Office Action for U.S. Appl. No. 12/977,992, mailed on Apr. 4, 2014, William Spencer Worley III, “Unpowered Augmented Reality Projection Accessory Display Device”, 6 pages. |
Final Office Action for U.S. Appl. No. 12/982,457, mailed on May 8, 2014, William Spencer Worley III, “Utilizing Content Output Devices in an Augmented Reality Environment”, 58 pages. |
Office action for U.S. Appl. No. 12/978,800, mailed on Jun. 17, 2014, Worley III, “Integrated Augmented Reality Environment”, 40 pages. |
Office Action for U.S. Appl. No. 12/977,760, mailed on Oct. 16, 2014, William Spencer Worley III, “Generation and Modulation of Non-Visible Structured Light”, 11 pages. |
Office Action for U.S. Appl. No. 13/236,294, mailed on Oct. 22, 2014, Christopher Coley, “Optical Interference Mitigation”, 20 pages. |
Office action for U.S. Appl. No. 12/982,457, mailed on Oct. 8, 2014, Worley III et al., “Utilizing Content Output Devices in an Augmented Reality Environment”, 62 pages. |
Office Action for U.S. Appl. No. 12/978,800, mailed on Dec. 2, 2014, William Spencer Worley III, “Integrated Augmented Reality Environment”, 46 pages. |
Office action for U.S. Appl. No. 12/982,519, mailed on Aug. 14, 2014, Worley III, “Complementing Operation of Display Devices in an Augmented Reality Environment”, 12 pages. |
Office Action for U.S. Appl. No. 12/982,519, mailed on Mar. 5, 2015, William Spencer Worley III, “Complementing Operation of Display Devices in an Augmented Reality Environment”, 13 pages. |