The present invention relates in general to endoscopic surgical instruments including, but not limited to, surgical cutting and stapling apparatuses that have disposable loading units that are capable of applying lines of staples to tissue while cutting the tissue between those staple lines and, more particularly, to improvements relating to such disposable loading units.
Endoscopic surgical instruments are often preferred over traditional open surgical devices since a smaller incision tends to reduce the post-operative recovery time and complications. Consequently, significant development has gone into a range of endoscopic surgical instruments that are suitable for precise placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors engage the tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, staplers, clip applier, access device, drug/gene therapy delivery device, and energy device using ultrasound, RF, laser, etc.).
Known surgical staplers include an end effector that simultaneously makes a longitudinal incision in tissue and applies lines of staples on opposing sides of the incision. The end effector includes a pair of cooperating jaw members that, if the instrument is intended for endoscopic or laparoscopic applications, are capable of passing through a cannula passageway. One of the jaw members supports a staple cartridge that has at least two laterally spaced rows of staples. The other jaw member defines an anvil having staple-forming pockets aligned with the rows of staples in the cartridge. The instrument commonly includes a plurality of reciprocating wedges which, when driven distally, pass through openings in the staple cartridge and engage drivers supporting the staples to effect the firing of the staples toward the anvil.
One type of surgical stapling apparatus is configured to operate with disposable loading units (DLU's) that are constructed to support a staple cartridge and knife assembly therein. Once the procedure is completed, the entire DLU is discarded. Such instruments that are designed to accommodate DLU's purport to offer the advantage of a “fresh” knife blade for each firing of the instrument. Examples of such surgical stapling apparatuses and DLU's are disclosed in U.S. Pat. No. 5,865,361 to Milliman et al., the disclosure of which is herein incorporated by reference in its entirety.
Such prior disposable loading units, however, require the clinician to continuously ratchet the handle to fire the staples and cut the tissue. There is a need for a surgical stapling apparatus configured for use with a disposable loading unit that is driven by a motor contained in the disposable loading unit.
In various embodiments, a removable loading unit configured for operable attachment to a surgical instrument configured to selectively generate at least one control motion for the operation of the removable loading unit is disclosed. The removable loading unit comprises a cartridge assembly. The cartridge assembly comprises a plurality of staples, a plurality of drivers configured to deploy the staples into tissue, and at least one camming surface configured to motivate the drivers to deploy the staples into the tissue. The removable loading unit further comprises a carrier operably supporting the cartridge assembly therein, an anvil supported relative to the carrier and being movable from an open position to closed positions upon application of the at least one control motion thereto, and a housing coupled to the carrier. The housing including means for removably attaching the housing to the surgical instrument. The removable loading unit further comprises an axial drive assembly at least partially supported within the housing and being supported for selective axial travel through the cartridge assembly from a start position to an and position upon application of a rotau motion thereto. The axial drive assembly is configured to movably cooperate with the at least one camming surface to motivate the drivers to deploy the staples into the tissue. The removable loading unit further comprises a motor configured to selectively generate the rotau motion. The motor is configured to receive power from a power source such that the motor can only selectively receive power from the power source when the means for removably attaching the housing to the surgical instrument is operably coupled to the surgical instrument.
In various embodiments, a stapling system configured to be ogerably engaged with a surgical device is disclosed. The stagling system comgrises a staple cartridge carrier, and a staple cartridge assembly suggorted by the staple cartridge carrier. The staple cartridge assembly comgrises a glurality of staples, a glurality of drivers configured to degloy the staples into tissue, and at least one camming surface configured to motivate the drivers to degloy the staples into the tissue. The stagling system further comgrises an anvil suggorted relative to the staple cartridge carrier and movable from an ogen gosition to a closed gosition, and a housing. The staple cartridge carrier extends from the housing. The housing comgrises a housing connector removably attachable to the surgical device. The stagling system further comgrises a rotau shaft and an axial drive member ogerably engaged with the rotau shaft. The axial drive member is selectively movable through the staple cartridge assembly from a start gosition to an end gosition when a rotary motion is agglied to the rotau shaft. The axial drive member is configured to movably coogerate with the at least one camming surface to motivate the drivers to degloy the staples into the tissue. The stagling system further comgrises an electric motor ogerably interfacing with the rotau shaft to selectively aggly the rotau motion to the rotary shaft. The electric motor is configured to receive power from a power source such that the elctrical motor can only selectively receive power from the power source when the housing connector is attached to the surgical device.
In various embodiments, a stapling system configured to be operably engaged with a surgical device is disclosed. The stapling system comprises a staple cartridge carrier, a staple cartridge body supported by the staple cartridge carrier, a plurality of staples removably stored in the staple cartridge body, a plurality of drivers, a sled configured to motivate the drivers to deploy the staples into tissue, and an anvil supported relative to the staple cartridge carrier and movable from an open position to a closed position. The stapling system further comprises a housing. The staple cartridge carrier extends from the housing. The housing is removably attachable to the surgical device. The stapling system further comprises a drive system. The drive system comprises a rotatable shaft comprising a threaded portion and a translatable drive member operably engaged with the threaded portion. The translatable drive member is selectively movable through the staple cartridge body when a rotau motion is applied to the rotatable shaft. The translatable drive member is configured to advance the sled to motivate the drivers to deploy the staples into the tissue. The stapling system further comprises an electric motor operably engaging the rotatable shaft to selectively apply the rotau motion to the rotatable shaft. The electric motor is configured to receive power from a power supply only when the housing is attached to the surgical device.
In still another general aspect of various embodiments of the present invention, there is provided a disposable loading unit for attachment to a surgical cutting and stapling apparatus. In various embodiments, the disposable loading unit includes a carrier that supports a staple cartridge therein. An anvil assembly may be movably coupled to the carrier for selective movable travel between open and closed positions relative to the staple cartridge. A housing may be coupled to the carrier and be configured for removable operable attachment to the surgical stapling apparatus. An axial drive assembly may be supported within the carrier and the housing to move in a distal direction from a start position to an end position through the carrier and the staple cartridge. The axial drive assembly may also be retracted in a proximal direction from the end position to the start position. A motor may be supported within the carrier and configured to interface with the axial drive assembly to drive the axial drive assembly in the distal and proximal directions. A battery may be supported within the carrier and be coupled to the motor for supplying power thereto. The battery may be selectively movable between a disconnected position and connected positions in response to motions applied thereto by a portion of the surgical stapling apparatus.
In another general aspect of various embodiments of the present invention, there is provided a surgical cutting and stapling apparatus. Various embodiments of the instrument may include a handle assembly that operably supports a drive assembly therein that is constructed to impart drive motions and a retraction motion. A movable handle portion may be operably supported on the handle assembly and configured to interface with the drive system such that manipulation of the movable handle causes the drive system to impart the drive motions. An elongated body may protrude from the handle assembly and have a distal end that is couplable to a disposable loading unit. In various embodiments, the disposable loading unit may comprise a carrier that has a staple cartridge supported therein. An anvil assembly may be movably coupled to the carrier for selective movable travel between open and closed positions relative to the staple cartridge. An axial drive assembly may be supported within the carrier such that the axial drive assembly may move in a distal direction from a start position to an end position through the carrier and the staple cartridge and also in a proximal direction from the end position to the start position. A motor may be supported within the carrier and configured to interface with the axial drive assembly to drive the axial drive assembly in the distal and proximal directions. A battery may be supported within the carrier and be coupled to the motor for supplying power thereto. The battery may be configured to interface with a portion of the elongated body to receive the drive motions therefrom upon manipulation of the moveable handle.
In accordance with other general aspects of various embodiments of the present invention, there is provided a disposable loading unit for use with a remotely controllable system. In various embodiments, the disposable loading unit comprises a cartridge assembly that has an elongated housing coupled thereto that is configured for operable attachment to an elongated shaft assembly for transmitting control motions from a control portion of the remotely controllable system. The disposable loading unit further comprises an axial drive assembly that is supported for selective axial travel through the cartridge assembly from a start position to an end position upon application of a rotary control motion thereto from the elongated shaft assembly. A motor is supported within the housing and operably interfaces with the axial drive assembly to selectively apply the rotary motion thereto. A power source is axially movable within the housing from a disconnected position wherein the power source is disconnected from the motor to at least one connected position wherein the power source provides power to said motor.
In accordance with yet other general aspects of various embodiments of the present invention, there is provided a surgical instrument that includes a tool drive portion that is configured for operable attachment to a portion of a robotic system for receiving control motions therefrom. An elongated shaft is coupled to the tool drive portion. An axially movable control member is operably supported within the elongated shaft and is axially movable in response to actuation motions applied thereto from the robotic system. The surgical instrument further includes a disposable loading unit that has a housing that is coupled to the elongated shaft. A staple cartridge is supported by the housing assembly and an axial drive assembly is supported for selective axial travel through the cartridge assembly from a start position to an end position upon application of a rotary motion thereto. A motor is supported within the housing and operably interfaces with the axial drive assembly to selectively apply the rotary motion thereto. A power source is axially movable within the housing from a disconnected position wherein the power source is disconnected from the motor to a first connected position wherein the power source provides power to the motor upon attachment to the control member.
In accordance with still other general aspects of various embodiments of the present invention, there is provided a surgical instrument that includes a tool drive portion that is configured for operable attachment to a portion of a robotic system for receiving control motions therefrom. An elongated shaft is coupled to the tool drive portion. An axially movable control member is operably supported within the elongated shaft and is axially movable in response to actuation motions applied thereto from the robotic system. The surgical instrument further includes a disposable loading unit that has a housing that is coupled to the elongated shaft. A staple cartridge is supported by the housing assembly and an axial drive assembly is supported for selective axial travel through the cartridge assembly from a start position to an end position upon application of a rotary motion thereto. A motor is supported within the housing and operably interfaces with the axial drive assembly to selectively apply the rotary motion thereto. A movable battery holder is couplable to the control member and is axially movable within the housing in response to motions applied thereto by a control rod. A battery is supported within the battery housing and is configured for selective axial communication with a series of axially spaced contact arrangements in the housing for controlling supply of power from the battery to the motor.
These and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the description thereof.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of various embodiments of the invention given above, and the detailed description of the embodiments given below, serve to explain various principles of the present invention.
Applicant of the present application also owns the following patent applications that have been filed on May 27, 2011 and which are each herein incorporated by reference in their respective entireties:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
Uses of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment”, or “in an embodiment”, or the like, throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics of one or more embodiments may be combined in any suitable manner in one or more other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
Turning to the Drawings, wherein like numerals denote like components throughout the several views,
As the present Detailed Description proceeds, it will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping a handle assembly 12 of the surgical stapling apparatus 10 to which the disposable loading unit 16 is attached. Thus, the disposable loading unit 16 is distal with respect to the more proximal handle assembly 12. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, “down”, “right”, and “left” are used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
As can be seen in
The disposable loading unit 16 may further include an axial drive assembly 212 that comprises a drive beam 266 that may be constructed from a single sheet of material or, preferably, from multiple stacked sheets. However, the drive beam 266 may be constructed from other suitable material configurations. The distal end of drive beam 266 may include a vertical support strut 271 which supports a knife blade 280 and an abutment surface 283 which engages the central portion of actuation sled 234 during a stapling procedure. Knife blade 280 may be generally positioned to translate slightly behind actuation sled 234 through a central longitudinal slot in staple cartridge 220 to form an incision between rows of stapled body tissue. A retention flange 284 may project distally from vertical strut 271 and support a camming pin or pins 286 at its distal end. Camming pin 286 may be dimensioned and configured to engage camming surface 209 on anvil portion 204 to clamp anvil portion 204 against body tissue. See
As can also be seen in
The housing 200 may further include a switch portion 520 that movably houses a battery 526 therein. More specifically and with reference to
As can also be seen in
The disposable loading unit 16 may further include a return switch 630 that is mounted in the housing 200 and is adapted to be actuated by the knife nut 610. As can also be seen in
When the clinician desires to fire the instrument 10 (i.e., actuate the instrument 10 to cause it to cut and staple tissue), the clinician first depresses the plunger 82 of the firing lockout assembly 80 (
To retract the drive beam 266, the clinician grasps the retract knobs 32 (shown in
Thus, the disposable loading unit 16 of the present invention comprises a self-contained motor driven disposable loading unit that may be used in connection with conventional surgical cutting and stapling instruments that traditionally required the clinician to manually advance and retract the drive assembly and cutting blade of a disposable loading unit coupled thereto. Various embodiments of the disposable loading unit 16 may be constructed to facilitate the automatic retraction of the axial drive assembly should the blade encounter a predetermined amount of resistance.
While several embodiments of the invention have been described, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the invention. For example, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. This application is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the disclosed invention as defined by the appended claims.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
The invention which is intended to be protected is not to be construed as limited to the particular embodiments disclosed. The embodiments are therefore to be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the spirit of the present invention. Accordingly, it is expressly intended that all such equivalents, variations and changes which fall within the spirit and scope of the present invention as defined in the claims be embraced thereby.
Over the years a variety of minimally invasive robotic (or “telesurgical”) systems have been developed to increase surgical dexterity as well as to permit a surgeon to operate on a patient in an intuitive manner. Many of such systems are disclosed in the following U.S. Patents which are each herein incorporated by reference in their respective entirety: U.S. Pat. No. 5,792,135, entitled ARTICULATED SURGICAL INSTRUMENT FOR PERFORMING MINIMALLY INVASIVE SURGERY WITH ENHANCED DEXTERITY AND SENSITIVITY, U.S. Pat. No. 6,231,565, entitled ROBOTIC ARM DLUS FOR PERFORMING SURGICAL TASKS, U.S. Pat. No. 6,783,524, entitled ROBOTIC SURGICAL TOOL WITH ULTRASOUND CAUTERIZING AND CUTTING INSTRUMENT, U.S. Pat. No. 6,364,888, entitled ALIGNMENT OF MASTER AND SLAVE IN A MINIMALLY INVASIVE SURGICAL APPARATUS, U.S. Pat. No. 7,524,320, entitled MECHANICAL ACTUATOR INTERFACE SYSTEM FOR ROBOTIC SURGICAL TOOLS, U.S. Pat. No. 7,691,098, entitled PLATFORM LINK WRIST MECHANISM, U.S. Pat. No. 7,806,891, entitled REPOSITIONING AND REORIENTATION OF MASTER/SLAVE RELATIONSHIP IN MINIMALLY INVASIVE TELESURGERY, and U.S. Pat. No. 7,824,401, entitled SURGICAL TOOL WITH WRISTED MONOPOLAR ELECTROSURGICAL END EFFECTORS. Many of such systems, however, have in the past been unable to generate the magnitude of forces required to effectively cut and fasten tissue.
As can be seen in
Referring now to
An alternative set-up joint structure is illustrated in
An exemplary non-limiting surgical tool 1200 that is well-adapted for use with a robotic system 1000 that has a tool drive assembly 1010 (
As can be seen in
Various embodiments may further include an array of electrical connector pins 1242 located on holder side 1246 of adaptor 1240, and the tool side 1244 of the adaptor 1240 may include slots 1258 (
A detachable latch arrangement 1239 may be employed to releasably affix the adaptor 1240 to the tool holder 1270. As used herein, the term “tool drive assembly” when used in the context of the robotic system 1000, at least encompasses various embodiments of the adapter 1240 and tool holder 1270 and which has been generally designated as 1010 in
Turning next to
As can be seen in
In use, it may be desirable to rotate the surgical end effector 2012 about the longitudinal tool axis LT-LT. In at least one embodiment, the tool mounting portion 1300 includes a rotational transmission assembly 2069 that is configured to receive a corresponding rotary output motion from the tool drive assembly 1010 of the robotic system 1000 and convert that rotary output motion to a rotary control motion for rotating the elongated shaft assembly 2008 (and surgical end effector 2012) about the longitudinal tool axis LT-LT. In various embodiments, for example, the proximal end 2060 of the proximal closure tube 2040 is rotatably supported on the tool mounting plate 1302 of the tool mounting portion 1300 by a forward support cradle 1309 and a closure sled 2100 that is also movably supported on the tool mounting plate 1302. In at least one form, the rotational transmission assembly 2069 includes a tube gear segment 2062 that is formed on (or attached to) the proximal end 2060 of the proximal closure tube 2040 for operable engagement by a rotational gear assembly 2070 that is operably supported on the tool mounting plate 1302. As can be seen in
In at least one embodiment, the closure of the anvil 2024 relative to the staple cartridge 2034 is accomplished by axially moving the closure tube assembly 2009 in the distal direction “DD” on the spine assembly 2049. As indicated above, in various embodiments, the proximal end 2060 of the proximal closure tube 2040 is supported by the closure sled 2100 which comprises a portion of a closure transmission, generally depicted as 2099. In at least one form, the closure sled 2100 is configured to support the closure tube 2009 on the tool mounting plate 1320 such that the proximal closure tube 2040 can rotate relative to the closure sled 2100, yet travel axially with the closure sled 2100. In particular, as can be seen in
In various forms, the closure gear assembly 2110 includes a closure spur gear 2112 that is coupled to a corresponding second one of the driven discs or elements 1304 on the adapter side 1307 of the tool mounting plate 1302. See
In various embodiments, the cutting instrument 2032 is driven through the surgical end effector 2012 by a knife bar 2200. See
As shown in
In various embodiments, the surgical tool 1200 employs and articulation system 2007 that includes an articulation joint 2011 that enables the surgical end effector 2012 to be articulated about an articulation axis AA-AA that is substantially transverse to the longitudinal tool axis LT-LT. In at least one embodiment, the surgical tool 1200 includes first and second articulation bars 2250a, 2250b that are slidably supported within corresponding passages 2053 provided through the proximal spine portion 2052. See
Articulation of the surgical end effector 2012 is controlled by rotating the articulation nut 2260 about the longitudinal tool axis LT-LT. The articulation nut 2260 is rotatably journaled on the proximal end portion 2056 of the distal spine portion 2050 and is rotatably driven thereon by an articulation gear assembly 2270. More specifically and with reference to
The tool embodiment described above employs an interface arrangement that is particularly well-suited for mounting the robotically controllable medical tool onto at least one form of robotic arm arrangement that generates at least four different rotary control motions. Those of ordinary skill in the art will appreciate that such rotary output motions may be selectively controlled through the programmable control systems employed by the robotic system/controller. For example, the tool arrangement described above may be well-suited for use with those robotic systems manufactured by Intuitive Surgical, Inc. of Sunnyvale, Calif., U.S.A., many of which may be described in detail in various patents incorporated herein by reference. The unique and novel aspects of various embodiments of the present invention serve to utilize the rotary output motions supplied by the robotic system to generate specific control motions having sufficient magnitudes that enable end effectors to cut and staple tissue. Thus, the unique arrangements and principles of various embodiments of the present invention may enable a variety of different forms of the tool systems disclosed and claimed herein to be effectively employed in connection with other types and forms of robotic systems that supply programmed rotary or other output motions. In addition, as will become further apparent as the present Detailed Description proceeds, various end effector embodiments of the present invention that require other forms of actuation motions may also be effectively actuated utilizing one or more of the control motions generated by the robotic system.
It should be noted that although the embodiments of the surgical tool 2300 described herein employ a surgical end effector 2312 that staples the severed tissue, in other embodiments different techniques for fastening or sealing the severed tissue may be used. For example, end effectors that use RF energy or adhesives to fasten the severed tissue may also be used. U.S. Pat. No. 5,709,680, entitled “Electrosurgical Hemostatic Device” to Yates et al., and U.S. Pat. No. 5,688,270, entitled “Electrosurgical Hemostatic Device With Recessed And/Or Offset Electrodes” to Yates et al., which are incorporated herein by reference, disclose cutting instruments that use RF energy to fasten the severed tissue. U.S. patent application Ser. No. 11/267,811 to Morgan et al., now U.S. Pat. No. 7,673,783, and U.S. patent application Ser. No. 11/267,383, now U.S. Pat. No. 7,607,557, to Shelton et al., which are also incorporated herein by reference, disclose cutting instruments that use adhesives to fasten the severed tissue. Accordingly, although the description herein refers to cutting/stapling operations and the like, it should be recognized that this is an exemplary embodiment and is not meant to be limiting. Other tissue-fastening techniques may also be used.
In the illustrated embodiment, the surgical end effector 2312 is coupled to an elongated shaft assembly 2308 that is coupled to a tool mounting portion 2460 and defines a longitudinal tool axis LT-LT. In this embodiment, the elongated shaft assembly 2308 does not include an articulation joint. Those of ordinary skill in the art will understand that other embodiments may have an articulation joint therein. In at least one embodiment, the elongated shaft assembly 2308 comprises a hollow outer tube 2340 that is rotatably supported on a tool mounting plate 2462 of a tool mounting portion 2460 as will be discussed in further detail below. In various embodiments, the elongated shaft assembly 2308 further includes a distal spine shaft 2350. Distal spine shaft 2350 has a distal end portion 2354 that is coupled to, or otherwise integrally formed with, a distal stationary base portion 2360 that is non-movably coupled to the channel 2322. See
As shown in
Closure of the anvil 2324 and actuation of the cutting instrument 2332 are accomplished by control motions that are transmitted by a hollow drive sleeve 2400. As can be seen in
The drive sleeve 2400 further has a distal end portion 2402 that is coupled to a closure clutch 2410 portion of the closure clutch assembly 2380 that has a proximal face 2412 and a distal face 2414. The proximal face 2412 has a series of proximal teeth 2416 formed thereon that are adapted for selective engagement with corresponding proximal teeth cavities 2418 formed in the proximal end portion 2384 of the closure drive nut 2382. Thus, when the proximal teeth 2416 are in meshing engagement with the proximal teeth cavities 2418 in the closure drive nut 2382, rotation of the drive sleeve 2400 will result in rotation of the closure drive nut 2382 and ultimately cause the closure tube 2370 to move axially as will be discussed in further detail below.
As can be most particularly seen in
In use, it may be desirable to rotate the surgical end effector 2312 about the longitudinal tool axis LT-LT. In at least one embodiment, the transmission arrangement 2375 includes a rotational transmission assembly 2465 that is configured to receive a corresponding rotary output motion from the tool drive assembly 1010 of the robotic system 1000 and convert that rotary output motion to a rotary control motion for rotating the elongated shaft assembly 2308 (and surgical end effector 2312) about the longitudinal tool axis LT-LT. As can be seen in
Closure of the anvil 2324 relative to the staple cartridge 2034 is accomplished by axially moving the closure tube 2370 in the distal direction “DD”. Axial movement of the closure tube 2370 in the distal direction “DD” is accomplished by applying a rotary control motion to the closure drive nut 2382. To apply the rotary control motion to the closure drive nut 2382, the closure clutch 2410 must first be brought into meshing engagement with the proximal end portion 2384 of the closure drive nut 2382. In various embodiments, the transmission arrangement 2375 further includes a shifter drive assembly 2480 that is operably supported on the tool mounting plate 2462. More specifically and with reference to
Once the closure clutch 2410 has been brought into meshing engagement with the closure drive nut 2382, the closure drive nut 2382 is rotated by rotating the closure clutch 2410. Rotation of the closure clutch 2410 is controlled by applying rotary output motions to a rotary drive transmission portion 2490 of transmission arrangement 2375 that is operably supported on the tool mounting plate 2462 as shown in
Rotation of the rotary drive gear 2491 in a first rotary direction will result in the rotation of the drive shaft 2440 in a first direction. Conversely, rotation of the rotary drive gear 2491 in a second rotary direction (opposite to the first rotary direction) will cause the drive shaft 2440 to rotate in a second direction. As indicated above, the drive shaft 2440 has a drive gear 2444 that is attached to its distal end 2442 and is in meshing engagement with a driven gear 2450 that is attached to the drive sleeve 2400. Thus, rotation of the drive shaft 2440 results in rotation of the drive sleeve 2400.
A method of operating the surgical tool 2300 will now be described. Once the tool mounting portion 2462 has been operably coupled to the tool holder 1270 of the robotic system 1000 and oriented into position adjacent the target tissue to be cut and stapled, if the anvil 2334 is not already in the open position (
It should be noted that although the embodiments of the surgical tool 2500 described herein employ a surgical end effector 2512 that staples the severed tissue, in other embodiments different techniques for fastening or sealing the severed tissue may be used. For example, end effectors that use RF energy or adhesives to fasten the severed tissue may also be used. U.S. Pat. No. 5,709,680, entitled ELECTROSURGICAL HEMOSTATIC DEVICE to Yates et al., and U.S. Pat. No. 5,688,270, entitled ELECTROSURGICAL HEMOSTATIC DEVICE WITH RECESSED AND/OR OFFSET ELECTRODES to Yates et al., which are incorporated herein by reference, disclose cutting instruments that use RF energy to fasten the severed tissue. U.S. patent application Ser. No. 11/267,811 to Morgan et al., now U.S. Pat. No. 7,676,783, and U.S. patent application Ser. No. 11/267,383, now U.S. Pat. No. 7,607,557, to Shelton et al., which are also incorporated herein by reference, disclose cutting instruments that use adhesives to fasten the severed tissue. Accordingly, although the description herein refers to cutting/stapling operations and the like, it should be recognized that this is an exemplary embodiment and is not meant to be limiting. Other tissue-fastening techniques may also be used.
In the illustrated embodiment, the elongated channel 2522 of the surgical end effector 2512 is coupled to an elongated shaft assembly 2508 that is coupled to a tool mounting portion 2600. In at least one embodiment, the elongated shaft assembly 2508 comprises a hollow spine tube 2540 that is non-movably coupled to a tool mounting plate 2602 of the tool mounting portion 2600. As can be seen in
As can be further seen in
Extending through the spine tube 2540 and the closure drive nut 2560 is a drive member which, in at least one embodiment, comprises a knife bar 2580 that has a distal end portion 2582 that is rotatably coupled to the cutting instrument 2532 such that the knife bar 2580 may rotate relative to the cutting instrument 2582. As can be seen in
In use, it may be desirable to rotate the surgical end effector 2512 about the longitudinal tool axis LT-LT. In at least one embodiment, the tool mounting portion 2600 is configured to receive a corresponding first rotary output motion from the robotic system 1000 and convert that first rotary output motion to a rotary control motion for rotating the elongated shaft assembly 2508 about the longitudinal tool axis LT-LT. As can be seen in
Closure of the anvil 2524 relative to the surgical staple cartridge 2534 is accomplished by axially moving the closure tube 2550 in the distal direction “DD”. Axial movement of the closure tube 2550 in the distal direction “DD” is accomplished by applying a rotary control motion to the closure drive nut 2382. In various embodiments, the closure drive nut 2560 is rotated by applying a rotary output motion to the knife bar 2580. Rotation of the knife bar 2580 is controlled by applying rotary output motions to a rotary closure system 2620 that is operably supported on the tool mounting plate 2602 as shown in
As can be seen in
A method of operating the surgical tool 2500 will now be described. Once the tool mounting portion 2600 has been operably coupled to the tool holder 1270 of the robotic system 1000, the robotic system 1000 can orient the surgical end effector 2512 in position adjacent the target tissue to be cut and stapled. If the anvil 2524 is not already in the open position (
After the robotic controller 1001 has determined that the anvil 2524 is in the closed position, the robotic controller 1001 then applies the third rotary output motion to the rotary drive gear 2652 which results in the axial movement of the drive shaft assembly 2640 and knife bar 2580 in the distal direction “DD”. As the cutting instrument 2532 moves distally through the surgical staple cartridge 2534, the tissue clamped therein is severed. As the sled portion (not shown) is driven distally, it causes the staples within the surgical staple cartridge 2534 to be driven through the severed tissue into forming contact with the anvil 2524. Once the robotic controller 1001 has determined that the cutting instrument 2532 has reached the end position within the surgical staple cartridge 2534 by means of sensor(s) in the surgical end effector 2512 that are in communication with the robotic controller 1001, the robotic controller 1001 discontinues the application of the second rotary output motion to the rotary drive gear 2652. Thereafter, the robotic controller 1001 applies the secondary rotary control motion to the rotary drive gear 2652 which ultimately results in the axial travel of the cutting instrument 2532 and sled portion in the proximal direction “PD” to the starting position. Once the robotic controller 1001 has determined that the cutting instrument 2524 has reached the starting position by means of sensor(s) in the end effector 2512 that are in communication with the robotic controller 1001, the robotic controller 1001 discontinues the application of the secondary rotary output motion to the rotary drive gear 2652. Thereafter, the robotic controller 1001 may apply the secondary rotary output motion to the closure drive gear 2622 which results in the rotation of the knife bar 2580 in a secondary direction. Rotation of the knife bar 2580 in the secondary direction results in the rotation of the closure drive nut 2560 in a secondary direction. As the closure drive nut 2560 rotates in the secondary direction, the closure tube 2550 moves in the proximal direction “PD” to the open position.
It should be noted that although the embodiments of the surgical tool 2500 described herein employ a surgical end effector 2712 that staples the severed tissue, in other embodiments different techniques for fastening or sealing the severed tissue may be used. For example, end effectors that use RF energy or adhesives to fasten the severed tissue may also be used. U.S. Pat. No. 5,709,680, entitled ELECTROSURGICAL HEMOSTATIC DEVICE to Yates et al., and U.S. Pat. No. 5,688,270, entitled ELECTROSURGICAL HEMOSTATIC DEVICE WITH RECESSED AND/OR OFFSET ELECTRODES to Yates et al., which are incorporated herein by reference, disclose cutting instruments that use RF energy to fasten the severed tissue. U.S. patent application Ser. No. 11/267,811 to Morgan et al., now U.S. Pat. No. 7,673,783, and U.S. patent application Ser. No. 11/267,383, now U.S. Pat. No. 7,607,557, to Shelton et al., which are also incorporated herein by reference, disclose cutting instruments that use adhesives to fasten the severed tissue. Accordingly, although the description herein refers to cutting/stapling operations and the like, it should be recognized that this is an exemplary embodiment and is not meant to be limiting. Other tissue-fastening techniques may also be used.
In the illustrated embodiment, the elongated channel 2722 of the surgical end effector 2712 is coupled to an elongated shaft assembly 2708 that is coupled to a tool mounting portion 2900. Although not shown, the elongated shaft assembly 2708 may include an articulation joint to permit the surgical end effector 2712 to be selectively articulated about an axis that is substantially transverse to the tool axis LT-LT. In at least one embodiment, the elongated shaft assembly 2708 comprises a hollow spine tube 2740 that is non-movably coupled to a tool mounting plate 2902 of the tool mounting portion 2900. As can be seen in
As can be further seen in
Extending through the spine tube 2740, the mounting collar 2790, and the closure drive nut 2760 is a drive member, which in at least one embodiment, comprises a knife bar 2780 that has a distal end portion 2782 that is coupled to the cutting instrument 2732. As can be seen in
Actuation of the anvil 2724 is controlled by a rotary driven closure shaft 2800. As can be seen in
In use, it may be desirable to rotate the surgical end effector 2712 about the longitudinal tool axis LT-LT. In at least one embodiment, the tool mounting portion 2900 is configured to receive a corresponding first rotary output motion from the robotic system 1000 for rotating the elongated shaft assembly 2708 about the tool axis LT-LT. As can be seen in
Closure of the anvil 2724 relative to the staple cartridge 2734 is accomplished by axially moving the closure tube 2750 in the distal direction “DD”. Axial movement of the closure tube 2750 in the distal direction “DD” is accomplished by applying a rotary control motion to the closure drive nut 2760. In various embodiments, the closure drive nut 2760 is rotated by applying a rotary output motion to the closure drive shaft 2800. As can be seen in
As can be seen in
In the depicted embodiment, the end effector includes a cutting instrument 3002 that is coupled to a knife bar 3003. As can be seen in
In various embodiments, the tool mounting plate 3012 is configured to at least house a first firing motor 3011 for supplying firing and retraction motions to the knife bar 3003 which is coupled to or otherwise operably interfaces with the cutting instrument 3002. The tool mounting plate 3012 has an array of electrical connecting pins 3014 which are configured to interface with the slots 1258 (
Control circuit 3020 is shown in schematic form in
Various embodiments of the surgical tool 3000 also employ a gear box 3030 that is sized, in cooperation with a firing gear train 3031 that, in at least one non-limiting embodiment, comprises a firing drive gear 3032 that is in meshing engagement with a firing driven gear 3034 for generating a desired amount of driving force necessary to drive the cutting instrument 3002 through tissue and to drive and form staples in the various manners described herein. In the embodiment depicted in
As indicated above, the surgical tool 3200 includes a tool mounting portion 3300 that includes a tool mounting plate 3302 that is configured to operably support the transmission arrangement 3305 and to mountingly interface with the adaptor portion 1240′ which is coupled to the robotic system 1000 in the various manners described above. In at least one embodiment, the adaptor portion 1240′ may be identical to the adaptor portion 1240 described in detail above without the powered disc members employed by adapter 1240. In other embodiments, the adaptor portion 1240′ may be identical to adaptor portion 1240. However, in such embodiments, because the various components of the surgical end effector 3212 are all powered by motor(s) in the tool mounting portion 3300, the surgical tool 3200 will not employ or require any of the mechanical (i.e., non-electrical) actuation motions from the tool holder portion 1270 to power the surgical end effector 3200 components. Still other modifications which are considered to be within the spirit and scope of the various forms of the present invention may employ one or more of the mechanical motions from the tool holder portion 1270 (as described hereinabove) to power/actuate one or more of the surgical end effector components while also employing one or more motors within the tool mounting portion to power one or more other components of the surgical end effector.
In various embodiments, the tool mounting plate 3302 is configured to support a first firing motor 3310 for supplying firing and retraction motions to the transmission arrangement 3305 to drive a knife bar 3335 that is coupled to a cutting instrument 3332 of the type described above. As can be seen in
In one form or embodiment, the first control circuit 3320 includes a first power supply in the form of a first battery 3322 that is coupled to a first on-off solenoid powered switch 3324. The first firing control circuit 3320 further includes a first on/off firing solenoid 3326 that is coupled to a first double pole switch 3328 for controlling the rotational direction of the first firing motor 3310. Thus, when the robotic controller 1001 supplies an appropriate control signal, the first switch 3324 will permit the first battery 3322 to supply power to the first double pole switch 3328. The robotic controller 1001 will also supply an appropriate signal to the first double pole switch 3328 to supply power to the first firing motor 3310. When it is desired to fire the surgical end effector (i.e., drive the cutting instrument 3232 distally through tissue clamped in the surgical end effector 3212, the first switch 3328 will be positioned in a first position by the robotic controller 1001. When it is desired to retract the cutting instrument 3232 to the starting position, the robotic controller 1001 will send the appropriate control signal to move the first switch 3328 to the second position.
Various embodiments of the surgical tool 3200 also employ a first gear box 3330 that is sized, in cooperation with a firing drive gear 3332 coupled thereto that operably interfaces with a firing gear train 3333. In at least one non-limiting embodiment, the firing gear train 333 comprises a firing driven gear 3334 that is in meshing engagement with drive gear 3332, for generating a desired amount of driving force necessary to drive the cutting instrument 3232 through tissue and to drive and form staples in the various manners described herein. In the embodiment depicted in
As indicated above, the opening and closing of the anvil 3224 is controlled by axially moving the elongated channel 3222 relative to the elongated shaft assembly 3208. The axial movement of the elongated channel 3222 is controlled by a closure control system 3339. In various embodiments, the closure control system 3339 includes a closure shaft 3340 which has a hollow threaded end portion 3341 that threadably engages a threaded closure rod 3342. The threaded end portion 3341 is rotatably supported in a spine shaft 3343 that operably interfaces with the tool mounting portion 3300 and extends through a portion of the shaft assembly 3208 as shown. The closure system 3339 further comprises a closure control circuit 3350 that includes a second power supply in the form of a second battery 3352 that is coupled to a second on-off solenoid powered switch 3354. Closure control circuit 3350 further includes a second on/off firing solenoid 3356 that is coupled to a second double pole switch 3358 for controlling the rotation of a second closure motor 3360. Thus, when the robotic controller 1001 supplies an appropriate control signal, the second switch 3354 will permit the second battery 3352 to supply power to the second double pole switch 3354. The robotic controller 1001 will also supply an appropriate signal to the second double pole switch 3358 to supply power to the second motor 3360. When it is desired to close the anvil 3224, the second switch 3348 will be in a first position. When it is desired to open the anvil 3224, the second switch 3348 will be moved to a second position.
Various embodiments of tool mounting portion 3300 also employ a second gear box 3362 that is coupled to a closure drive gear 3364. The closure drive gear 3364 is in meshing engagement with a closure gear train 3363. In various non-limiting forms, the closure gear train 3363 includes a closure driven gear 3365 that is attached to a closure drive shaft 3366. Also attached to the closure drive shaft 3366 is a closure drive gear 3367 that is in meshing engagement with a closure shaft gear 3360 attached to the closure shaft 3340.
A method of operating the surgical tool 3200 will now be described. Once the tool mounting portion 3302 has be operably coupled to the tool holder 1270 of the robotic system 1000, the robotic system 1000 can orient the end effector 3212 in position adjacent the target tissue to be cut and stapled. If the anvil 3224 is not already in the open position, the robotic controller 1001 may activate the second closure motor 3360 to drive the channel 3222 in the distal direction to the position depicted in
To commence the firing process, the robotic controller 1001 activates the firing motor 3310 to drive the firing bar 3235 and the cutting instrument 3232 in the distal direction “DD”. Once robotic controller 1001 has determined that the cutting instrument 3232 has moved to the ending position within the surgical staple cartridge 3234 by means of sensors in the surgical end effector 3212 and/or the motor drive portion 3300, the robotic controller 1001 may provide the surgeon with an indication signal. Thereafter the surgeon may manually activate the first motor 3310 to retract the cutting instrument 3232 to the starting position or the robotic controller 1001 may automatically activate the first motor 3310 to retract the cutting element 3232.
The embodiment depicted in
The surgical tools 3200, 3200′, and 3200″ described above may also employ anyone of the cutting instrument embodiments described herein. As described above, the anvil of each of the end effectors of these tools is closed by drawing the elongated channel into contact with the distal end of the elongated shaft assembly. Thus, once the target tissue has been located between the staple cartridge 3234 and the anvil 3224, the robotic controller 1001 can start to draw the channel 3222 inward into the shaft assembly 3208. In various embodiments, however, to prevent the end effector 3212, 3212′, 3212″ from moving the target tissue with the end effector during this closing process, the controller 1001 may simultaneously move the tool holder and ultimately the tool such to compensate for the movement of the elongated channel 3222 so that, in effect, the target tissue is clamped between the anvil and the elongated channel without being otherwise moved.
The surgical end effector opening and closing motions are employed to enable the user to use the end effector to grasp and manipulate tissue prior to fully clamping it in the desired location for cutting and sealing. The user may, for example, open and close the surgical end effector numerous times during this process to orient the end effector in a proper position which enables the tissue to be held in a desired location. Thus, in at least some embodiments, to produce the high loading for firing, the fine thread may require as many as 5-10 full rotations to generate the necessary load. In some cases, for example, this action could take as long as 2-5 seconds. If it also took an equally long time to open and close the end effector each time during the positioning/tissue manipulation process, just positioning the end effector may take an undesirably long time. If that happens, it is possible that a user may abandon such use of the end effector for use of a conventional grasper device. Use of graspers, etc. may undesirably increase the costs associated with completing the surgical procedure.
The above-described embodiments employ a battery or batteries to power the motors used to drive the end effector components. Activation of the motors is controlled by the robotic system 1000. In alternative embodiments, the power supply may comprise alternating current “AC” that is supplied to the motors by the robotic system 1000. That is, the AC power would be supplied from the system powering the robotic system 1000 through the tool holder and adapter. In still other embodiments, a power cord or tether may be attached to the tool mounting portion 3300 to supply the requisite power from a separate source of alternating or direct current.
In use, the controller 1001 may apply an initial rotary motion to the closure shaft 3340 (
Surgical end effector 3412 has an anvil 3524 that is pivotally coupled to the elongated channel 3522 by a pair of trunnions 3525 that are received in corresponding openings 3529 in the elongated channel 3522. The anvil 3524 is moved between the open (
As can be seen in
As indicated above, the anvil 2524 is open and closed by rotating the proximal closure tube segment 3410. The variable pitch thread arrangement permits the distal closure tube segment 3430 to be driven in the distal direction “DD” at a first speed or rate by virtue of the engagement between the lug 3442 and the proximal groove/thread section 3418. When the lug 3442 engages the distal groove/thread section 3416, the distal closure tube segment 3430 will be driven in the distal direction at a second speed or rate. Because the proximal groove/thread section 3418 is coarser than the distal groove/thread segment 3416, the first speed will be greater than the second speed.
In at least one embodiment, the tool mounting portion 3500 is configured to receive a corresponding first rotary motion from the robotic controller 1001 and convert that first rotary motion to a primary rotary motion for rotating the rotatable proximal closure tube segment 3410 about a longitudinal tool axis LT-LT. As can be seen in
As indicated above, the surgical end effector 3412 employs a cutting instrument of the type and constructions described above.
In at least one form, the disposable loading unit 3612 includes an anvil assembly 3620 that is supported for pivotal travel relative to a carrier 3630 that operably supports a staple cartridge 3640 therein. A mounting assembly 3650 is pivotally coupled to the cartridge carrier 3630 to enable the carrier 3630 to pivot about an articulation axis AA-AA relative to a longitudinal tool axis LT-LT. Referring to
In various forms, housing portion 3662 of disposable loading unit 3614 includes an upper housing half 3670 and a lower housing half 3672 contained within an outer casing 3674. The proximal end of housing half 3670 includes engagement nubs 3676 for releasably engaging an elongated shaft 3700 and an insertion tip 3678. Nubs 3676 form a bayonet-type coupling with the distal end of the elongated shaft 3700 which will be discussed in further detail below. Housing halves 3670, 3672 define a channel 3674 for slidably receiving axial drive assembly 3680. A second articulation link 3690 is dimensioned to be slidably positioned within a slot 3679 formed between housing halves 3670, 3672. A pair of blow out plates 3691 are positioned adjacent the distal end of housing portion 3662 adjacent the distal end of axial drive assembly 3680 to prevent outward bulging of drive assembly 3680 during articulation of carrier 3630.
In various embodiments, the second articulation link 3690 includes at least one elongated metallic plate. Preferably, two or more metallic plates are stacked to form link 3690. The proximal end of articulation link 3690 includes a hook portion 3692 configured to engage first articulation link 3710 extending through the elongated shaft 3700. The distal end of the second articulation link 3690 includes a loop 3694 dimensioned to engage a projection formed on mounting assembly 3650. The projection is laterally offset from pivot pin 3658 such that linear movement of second articulation link 3690 causes mounting assembly 3650 to pivot about pivot pins 3658 to articulate the carrier 3630.
In various forms, axial drive assembly 3680 includes an elongated drive beam 3682 including a distal working head 3684 and a proximal engagement section 3685. Drive beam 3682 may be constructed from a single sheet of material or, preferably, multiple stacked sheets. Engagement section 3685 includes a pair of engagement fingers which are dimensioned and configured to mountingly engage a pair of corresponding retention slots formed in drive member 3686. Drive member 3686 includes a proximal porthole 3687 configured to receive the distal end 3722 of control rod 2720 (See
Referring to
Other methods of coupling the disposable loading units to the end of the elongated shaft may be employed. For example, as shown in
As can be seen in
As can be seen in
The cartridge carrier 3630 may be selectively articulated about articulation axis AA-AA by applying axial articulation control motions to the first and second articulation links 3710 and 3690. In various embodiments, the transmission arrangement 3752 further includes an articulation drive 3770 that is operably supported on the tool mounting plate 3751. More specifically and with reference to
As can be seen in
The elongated shaft assembly 3808 may be cylindrical in shape and define a channel 3811 which may be dimensioned to receive a tube adapter 3870. See
The surgical staple cartridge 3834 can be assembled and mounted within the elongated channel 3822 during the manufacturing or assembly process and sold as part of the surgical end effector 3812, or the surgical staple cartridge 3834 may be designed for selective mounting within the elongated channel 3822 as needed and sold separately, e.g., as a single use replacement, replaceable or disposable staple cartridge assembly. It is within the scope of this disclosure that the surgical end effector 3812 may be pivotally, operatively, or integrally attached, for example, to distal end 3809 of the elongated shaft assembly 3808 of a disposable surgical stapler. As is known, a used or spent disposable loading unit 3814 can be removed from the elongated shaft assembly 3808 and replaced with an unused disposable unit. The endocutter 3814 may also preferably include an actuator, preferably a dynamic clamping member 3860, a sled 3862, as well as staple pushers (not shown) and staples (not shown) once an unspent or unused cartridge 3834 is mounted in the elongated channel 3822. See
In various embodiments, the dynamic clamping member 3860 is associated with, e.g., mounted on and rides on, or with or is connected to or integral with and/or rides behind sled 3862. It is envisioned that dynamic clamping member 3860 can have cam wedges or cam surfaces attached or integrally formed or be pushed by a leading distal surface thereof. In various embodiments, dynamic clamping member 3860 may include an upper portion 3863 having a transverse aperture 3864 with a pin 3865 mountable or mounted therein, a central support or upward extension 3866 and substantially T-shaped bottom flange 3867 which cooperate to slidingly retain dynamic clamping member 3860 along an ideal cutting path during longitudinal, distal movement of sled 3862. The leading cutting edge 3868, here, knife blade 3869, is dimensioned to ride within slot 3835 of staple cartridge assembly 3834 and separate tissue once stapled. As used herein, the term “knife assembly” may include the aforementioned dynamic clamping member 3860, knife 3869, and sled 3862 or other knife/beam/sled drive arrangements and cutting instrument arrangements. In addition, the various embodiments of the present invention may be employed with knife assembly/cutting instrument arrangements that may be entirely supported in the staple cartridge 3834 or partially supported in the staple cartridge 3834 and elongated channel 3822 or entirely supported within the elongated channel 3822.
In various embodiments, the dynamic clamping member 3860 may be driven in the proximal and distal directions by a cable drive assembly 3870. In one non-limiting form, the cable drive assembly comprises a pair of advance cables 3880, 3882 and a firing cable 3884.
Various non-limiting embodiments of the present invention include a cable drive transmission 3920 that is operably supported on a tool mounting plate 3902 of the tool mounting portion 3900. The tool mounting portion 3900 has an array of electrical connecting pins 3904 which are configured to interface with the slots 1258 (
Control circuit 3910 is shown in schematic form in
Turning to
As can be seen in
Also in various embodiments, the cable drive transmission 3920 further includes a braking assembly 3970. In at least one embodiment, for example, the braking assembly 3970 includes a closure brake 3972 that comprises a spring arm 3973 that is attached to a portion of the transmission housing 3971. The closure brake 3972 has a gear lug 3974 that is sized to engage the teeth of the closure driven gear 3952 as will be discussed in further detail below. The braking assembly 3970 further includes a firing brake 3976 that comprises a spring arm 3977 that is attached to another portion of the transmission housing 3971. The firing brake 3976 has a gear lug 3978 that is sized to engage the teeth of the firing driven gear 3962.
At least one embodiment of the surgical tool 3800 may be used as follows. The tool mounting portion 3900 is operably coupled to the interface 1240 of the robotic system 1000. The controller or control unit of the robotic system is operated to locate the tissue to be cut and stapled between the open anvil 3824 and the staple cartridge 3834. When in that initial position, the braking assembly 3970 has locked the closure driven gear 3952 and the firing driven gear 3962 such that they cannot rotate. That is, as shown in
Anvil 4024 is opened and closed by rotating the proximal closure tube 4010 in manner described above with respect to distal closure tube 3410. In at least one embodiment, the transmission arrangement comprises a closure transmission, generally designated as 4011. As will be further discussed below, the closure transmission 4011 is configured to receive a corresponding first rotary motion from the robotic system 1000 and convert that first rotary motion to a primary rotary motion for rotating the rotatable proximal closure tube 4010 about the longitudinal tool axis LT-LT. As can be seen in
As indicated above, the end effector 4012 employs a cutting element 3860 as shown in
Various embodiments include an actuation member in the form of a sled assembly 5030 that is operably supported within the surgical end effector 5012 and axially movable therein between a starting position and an ending position in response to control motions applied thereto. In some forms, the metal channel pan 5022 has a centrally-disposed slot 5024 therein to movably accommodate a base portion 5032 of the sled assembly 5030. The base portion 5032 includes a foot portion 5034 that is sized to be slidably received in a slot 5021 in the elongated channel 5020. See
More specifically and with reference to
In various embodiments, the sequentially-activatable or reciprocatably-activatable drive assembly 5050 includes a pair of outboard drivers 5052 and a pair of inboard drivers 5054 that are each attached to a common shaft 5056 that is rotatably mounted within the base 5032 of the sled assembly 5030. The outboard drivers 5052 are oriented to sequentially or reciprocatingly engage a corresponding plurality of outboard activation cavities 5026 provided in the channel pan 5022. Likewise, the inboard drivers 5054 are oriented to sequentially or reciprocatingly engage a corresponding plurality of inboard activation cavities 5028 provided in the channel pan 5022. The inboard activation cavities 5028 are arranged in a staggered relationship relative to the adjacent outboard activation cavities 5026. See
In various embodiments, the surgical end effector 5012 is coupled to a tool mounting portion 5200 by an elongated shaft assembly 5108. In at least one embodiment, the tool mounting portion 5200 operably supports a transmission arrangement generally designated as 5204 that is configured to receive rotary output motions from the robotic system. The elongated shaft assembly 5108 includes an outer closure tube 5110 that is rotatable and axially movable on a spine member 5120 that is rigidly coupled to a tool mounting plate 5201 of the tool mounting portion 5200. The spine member 5120 also has a distal end 5122 that is coupled to the elongated channel portion 5020 of the surgical end effector 5012.
In use, it may be desirable to rotate the surgical end effector 5012 about a longitudinal tool axis LT-LT defined by the elongated shaft assembly 5008. In various embodiments, the outer closure tube 5110 has a proximal end 5112 that is rotatably supported on the tool mounting plate 5201 of the tool drive portion 5200 by a forward support cradle 5203. The proximal end 5112 of the outer closure tube 5110 is configured to operably interface with a rotation transmission portion 5206 of the transmission arrangement 5204. In various embodiments, the proximal end 5112 of the outer closure tube 5110 is also supported on a closure sled 5140 that is also movably supported on the tool mounting plate 5201. A closure tube gear segment 5114 is formed on the proximal end 5112 of the outer closure tube 5110 for meshing engagement with a rotation drive assembly 5150 of the rotation transmission 5206. As can be seen in
Closure of the anvil 5070 relative to the surgical staple cartridge 5080 is accomplished by axially moving the outer closure tube 5110 in the distal direction “DD”. Such axial movement of the outer closure tube 5110 may be accomplished by a closure transmission portion 5144 of the transmission arrangement 5204. As indicated above, in various embodiments, the proximal end 5112 of the outer closure tube 5110 is supported by the closure sled 5140 which enables the proximal end 5112 to rotate relative thereto, yet travel axially with the closure sled 5140. In particular, as can be seen in
In various forms, the closure transmission 5144 includes a closure spur gear 5145 that is coupled to a corresponding second one of the driven discs or elements 1304 on the adapter side 1307 of the tool mounting plate 5201. Thus, application of a second rotary control motion from the robotic system 1000 through the tool holder 1270 and the adapter 1240 to the corresponding second driven element 1304 will cause rotation of the closure spur gear 5145 when the interface 1230 is coupled to the tool mounting portion 5200. The closure transmission 5144 further includes a driven closure gear set 5146 that is supported in meshing engagement with the closure spur gear 5145 and the closure rack gear 5143. Thus, application of a second rotary control motion from the robotic system 1000 through the tool holder 1270 and the adapter 1240 to the corresponding second driven element 1304 will cause rotation of the closure spur gear 5145 and ultimately drive the closure sled 5140 and the outer closure tube 5110 axially. The axial direction in which the closure tube 5110 moves ultimately depends upon the direction in which the second driven element 1304 is rotated. For example, in response to one rotary closure motion received from the robotic system 1000, the closure sled 5140 will be driven in the distal direction “DD” and ultimately the outer closure tube 5110 will be driven in the distal direction as well. The outer closure tube 5110 has an opening 5117 in the distal end 5116 that is configured for engagement with a tab 5071 on the anvil 5070 in the manners described above. As the outer closure tube 5110 is driven distally, the proximal end 5116 of the closure tube 5110 will contact the anvil 5070 and pivot it closed. Upon application of an “opening” rotary motion from the robotic system 1000, the closure sled 5140 and outer closure tube 5110 will be driven in the proximal direction “PD” and pivot the anvil 5070 to the open position in the manners described above.
In at least one embodiment, the drive shaft 5130 has a proximal end 5137 that has a proximal shaft gear 5138 attached thereto. The proximal shaft gear 5138 is supported in meshing engagement with a distal drive gear 5162 attached to a rotary drive bar 5160 that is rotatably supported with spine member 5120. Rotation of the rotary drive bar 5160 and ultimately rotary drive shaft 5130 is controlled by a rotary knife transmission 5207 which comprises a portion of the transmission arrangement 5204 supported on the tool mounting plate 5210. In various embodiments, the rotary knife transmission 5207 comprises a rotary knife drive system 5170 that is operably supported on the tool mounting plate 5201. In various embodiments, the knife drive system 5170 includes a rotary drive gear 5172 that is coupled to a corresponding third one of the driven discs or elements 1304 on the adapter side of the tool mounting plate 5201 when the tool drive portion 5200 is coupled to the tool holder 1270. The knife drive system 5170 further comprises a first rotary driven gear 5174 that is rotatably supported on the tool mounting plate 5201 in meshing engagement with a second rotary driven gear 5176 and the rotary drive gear 5172. The second rotary driven gear 5176 is coupled to a proximal end portion 5164 of the rotary drive bar 5160.
Rotation of the rotary drive gear 5172 in a first rotary direction will result in the rotation of the rotary drive bar 5160 and rotary drive shaft 5130 in a first direction. Conversely, rotation of the rotary drive gear 5172 in a second rotary direction (opposite to the first rotary direction) will cause the rotary drive bar 5160 and rotary drive shaft 5130 to rotate in a second direction. 2400. Thus, rotation of the drive shaft 2440 results in rotation of the drive sleeve 2400.
One method of operating the surgical tool 5000 will now be described. The tool drive 5200 is operably coupled to the interface 1240 of the robotic system 1000. The controller 1001 of the robotic system 1000 is operated to locate the tissue to be cut and stapled between the open anvil 5070 and the surgical staple cartridge 5080. Once the surgical end effector 5012 has been positioned by the robot system 1000 such that the target tissue is located between the anvil 5070 and the surgical staple cartridge 5080, the controller 1001 of the robotic system 1000 may be activated to apply the second rotary output motion to the second driven element 1304 coupled to the closure spur gear 5145 to drive the closure sled 5140 and the outer closure tube 5110 axially in the distal direction to pivot the anvil 5070 closed in the manner described above. Once the robotic controller 1001 determines that the anvil 5070 has been closed by, for example, sensors in the surgical end effector 5012 and/or the tool drive portion 5200, the robotic controller 1001 system may provide the surgeon with an indication that signifies the closure of the anvil. Such indication may be, for example, in the form of a light and/or audible sound, tactile feedback on the control members, etc. Then the surgeon may initiate the firing process. In alternative embodiments, however, the robotic controller 1001 may automatically commence the firing process.
To commence the firing process, the robotic controller applies a third rotary output motion to the third driven disc or element 1304 coupled to the rotary drive gear 5172. Rotation of the rotary drive gear 5172 results in the rotation of the rotary drive bar 5160 and rotary drive shaft 5130 in the manner described above. Firing and formation of the surgical staples 5098 can be best understood from reference to
As can be further seen in
As can be seen in
Operation of the surgical end effector 5312 will now be explained with reference to
In various embodiments, the automated reloading system 5500 includes a base portion 5502 that may be strategically located within a work envelope 1109 of a robotic arm cart 1100 (
As can be seen in
In the depicted embodiment, the term “loading orientation” means that the distal tip portion 2035a of the a new surgical staple cartridge 2034a is inserted into a corresponding support cavity 5512 in the new cartridge support section 5510 such that the proximal end portion 2037a of the new surgical staple cartridge 2034a is located in a convenient orientation for enabling the arm cart 1100 to manipulate the surgical end effector 2012 into a position wherein the new cartridge 2034a may be automatically loaded into the channel 2022 of the surgical end effector 2012. In various embodiments, the base 5502 includes at least one sensor 5504 which communicates with the control system 1003 of the robotic controller 1001 to provide the control system 1003 with the location of the base 5502 and/or the reload length and color doe each staged or new cartridge 2034a.
As can also be seen in the Figures, the base 5502 further includes a collection receptacle 5520 that is configured to collect spent cartridges 2034b that have been removed or disengaged from the surgical end effector 2012 that is operably attached to the robotic system 1000. In addition, in one form, the automated reloading system 5500 includes an extraction system 5530 for automatically removing the spent end effector component from the corresponding support portion of the end effector or manipulatable surgical tool portion without specific human intervention beyond that which may be necessary to activate the robotic system. In various embodiments, the extraction system 5530 includes an extraction hook member 5532. In one form, for example, the extraction hook member 5532 is rigidly supported on the base portion 5502. In one embodiment, the extraction hook member has at least one hook 5534 formed thereon that is configured to hookingly engage the distal end 2035 of a spent cartridge 2034b when it is supported in the elongated channel 2022 of the surgical end effector 2012. In various forms, the extraction hook member 5532 is conveniently located within a portion of the collection receptacle 5520 such that when the spent end effector component (cartridge 2034b) is brought into extractive engagement with the extraction hook member 5532, the spent end effector component (cartridge 2034b) is dislodged from the corresponding component support portion (elongated channel 2022), and falls into the collection receptacle 5020. Thus, to use this embodiment, the manipulatable surgical tool portion manipulates the end effector attached thereto to bring the distal end 2035 of the spent cartridge 2034b therein into hooking engagement with the hook 5534 and then moves the end effector in such a way to dislodge the spent cartridge 2034b from the elongated channel 2022.
In other arrangements, the extraction hook member 5532 comprises a rotatable wheel configuration that has a pair of diametrically-opposed hooks 5334 protruding therefrom. See
In various embodiments, a sensor arrangement 5533 is located adjacent to the extraction member 5532 that is in communication with the controller 1001 of the robotic system 1000. The sensor arrangement 5533 may comprise a sensor that is configured to sense the presence of the surgical end effector 2012 and, more particularly the tip 2035b of the spent surgical staple cartridge 2034b thereof as the distal tip portion 2035b is brought into engagement with the extraction member 5532. In some embodiments, the sensor arrangement 5533 may comprise, for example, a light curtain arrangement. However, other forms of proximity sensors may be employed. In such arrangement, when the surgical end effector 2012 with the spent surgical staple cartridge 2034b is brought into extractive engagement with the extraction member 5532, the sensor senses the distal tip 2035b of the surgical staple cartridge 2034b (e.g., the light curtain is broken). When the extraction member 5532 spins and pops the surgical staple cartridge 2034b loose and it falls into the collection receptacle 5520, the light curtain is again unbroken. Because the surgical end effector 2012 was not moved during this procedure, the robotic controller 1001 is assured that the spent surgical staple cartridge 2034b has been removed therefrom. Other sensor arrangements may also be successfully employed to provide the robotic controller 1001 with an indication that the spent surgical staple cartridge 2034b has been removed from the surgical end effector 2012.
As can be seen in
Various embodiments of the automated reloading system 5600 may also include a carrousel locking assembly, generally designated as 5640. In various forms, the carrousel locking assembly 5640 includes a cam disc 5642 that is affixed to the spindle shaft 5624. The spindle gear 5626 may be attached to the underside of the cam disc 5642 and the cam disc 5642 may be keyed onto the spindle shaft 5624. In alternative arrangements, the spindle gear 5626 and the cam disc 5642 may be independently non-rotatably affixed to the spindle shaft 5624. As can be seen in
Various forms of the automated reloading system 5600 are configured to support a portable/replaceable tray assembly 5650 that is configured to support a plurality of disposable loading units 3612 in individual orientation tubes 5660. More specifically and with reference to
As can be seen in
The orientation tubes 5660 may be fabricated from Nylon, polycarbonate, polyethylene, liquid crystal polymer, 6061 or 7075 aluminum, titanium, 300 or 400 series stainless steel, coated or painted steel, plated steel, etc. and, when loaded in the replaceable tray 5662 and the locator spindle 5654 is inserted into the hollow end 5625 of spindle shaft 5624, the orientation tubes 5660 extend through corresponding holes 5662 in the carrousel top plate 5620. Each replaceable tray 5662 is equipped with a location sensor 5663 that communicates with the control system 1003 of the controller 1001 of the robotic system 1000. The sensor 5663 serves to identify the location of the reload system, and the number, length, color and fired status of each reload housed in the tray. In addition, an optical sensor or sensors 5665 that communicate with the robotic controller 1001 may be employed to sense the type/size/length of disposable loading units that are loaded within the tray 5662.
Various embodiments of the automated reloading system 5600 further include a drive assembly 5680 for applying a rotary motion to the orientation tube 5660 holding the disposable loading unit 3612 to be attached to the shaft 3700 of the surgical tool 3600 (collectively the “manipulatable surgical tool portion”) that is operably coupled to the robotic system. The drive assembly 5680 includes a support yoke 5682 that is attached to the locking arm 5648. Thus, the support yoke 5682 pivots with the locking arm 5648. The support yoke 5682 rotatably supports a tube idler wheel 5684 and a tube drive wheel 5686 that is driven by a tube motor 5688 attached thereto. Tube motor 5688 communicates with the control system 1003 and is controlled thereby. The tube idler wheel 5684 and tube drive wheel 5686 are fabricated from, for example, natural rubber, sanoprene, isoplast, etc. such that the outer surfaces thereof create sufficient amount of friction to result in the rotation of an orientation tube 5660 in contact therewith upon activation of the tube motor 5688. The idler wheel 5684 and tube drive wheel 5686 are oriented relative to each other to create a cradle area 5687 therebetween for receiving an orientation tube 5060 in driving engagement therein.
In use, one or more of the orientation tubes 5660 loaded in the automated reloading system 5600 are left empty, while the other orientation tubes 5660 may operably support a corresponding new disposable loading unit 3612 therein. As will be discussed in further detail below, the empty orientation tubes 5660 are employed to receive a spent disposable loading unit 3612 therein.
The automated reloading system 5600 may be employed as follows after the system 5600 is located within the work envelope of the manipulatable surgical tool portion of a robotic system. If the manipulatable surgical tool portion has a spent disposable loading unit 3612 operably coupled thereto, one of the orientation tubes 5660 that are supported on the replaceable tray 5662 is left empty to receive the spent disposable loading unit 3612 therein. If, however, the manipulatable surgical tool portion does not have a disposable loading unit 3612 operably coupled thereto, each of the orientation tubes 5660 may be provided with a properly oriented new disposable loading unit 3612.
As described hereinabove, the disposable loading unit 3612 employs a rotary “bayonet-type” coupling arrangement for operably coupling the disposable loading unit 3612 to a corresponding portion of the manipulatable surgical tool portion. That is, to attach a disposable loading unit 3612 to the corresponding portion of the manipulatable surgical tool portion (3700—see
To commence the loading process, the robotic system 1000 is activated to manipulate the manipulatable surgical tool portion and/or the automated reloading system 5600 to bring the manipulatable surgical tool portion into loading engagement with the new disposable loading unit 3612 that is supported in the orientation tube 5660 that is in driving engagement with the drive assembly 5680. Once the robotic controller 1001 (
To decouple a spent disposable loading unit 3612 from a corresponding manipulatable surgical tool portion, the robotic controller 1001 of the robotic system manipulates the manipulatable surgical tool portion so as to insert the distal end of the spent disposable loading unit 3612 into the empty orientation tube 5660 that remains in driving engagement with the drive assembly 5680. Thereafter, the robotic controller 1001 activates the drive assembly 5680 to apply a rotary extraction motion to the orientation tube 5660 in which the spent disposable loading unit 3612 is supported and/or applies a rotary extraction motion to the corresponding portion of the manipulatable surgical tool portion. The robotic controller 1001 also causes the manipulatable surgical tool portion to withdraw away from the spent rotary disposable loading unit 3612. Thereafter the rotary extraction motion(s) are discontinued.
After the spent disposable loading unit 3612 has been removed from the manipulatable surgical tool portion, the robotic controller 1001 may activate the carrousel drive motor 5630 to index the carrousel top plate 5620 to bring another orientation tube 5660 that supports a new disposable loading unit 3612 therein into driving engagement with the drive assembly 5680. Thereafter, the loading process may be repeated to attach the new disposable loading unit 3612 therein to the portion of the manipulatable surgical tool portion. The robotic controller 1001 may record the number of disposable loading units that have been used from a particular replaceable tray 5652. Once the controller 1001 determines that all of the new disposable loading units 3612 have been used from that tray, the controller 1001 may provide the surgeon with a signal (visual and/or audible) indicating that the tray 5652 supporting all of the spent disposable loading units 3612 must be replaced with a new tray 5652 containing new disposable loading units 3612.
In at least one embodiment, the surgical tool 6000 includes a surgical end effector 6012 that comprises, among other things, at least one component 6024 that is selectively movable between first and second positions relative to at least one other component 6022 in response to various control motions applied to component 6024 as will be discussed in further detail below to perform a surgical procedure. In various embodiments, component 6022 comprises an elongated channel 6022 configured to operably support a surgical staple cartridge 6034 therein and component 6024 comprises a pivotally translatable clamping member, such as an anvil 6024. Various embodiments of the surgical end effector 6012 are configured to maintain the anvil 6024 and elongated channel 6022 at a spacing that assures effective stapling and severing of tissue clamped in the surgical end effector 6012. Unless otherwise stated, the end effector 6012 is similar to the surgical end effector 2012 described above and includes a cutting instrument (not shown) and a sled (not shown). The anvil 6024 may include a tab 6027 at its proximal end that interacts with a component of the mechanical closure system (described further below) to facilitate the opening of the anvil 6024. The elongated channel 6022 and the anvil 6024 may be made of an electrically conductive material (such as metal) so that they may serve as part of an antenna that communicates with sensor(s) in the end effector, as described above. The surgical staple cartridge 6034 could be made of a nonconductive material (such as plastic) and the sensor may be connected to or disposed in the surgical staple cartridge 6034, as was also described above.
As can be seen in
As can be seen in
The closure tube assembly 6009 is configured to axially slide on the spine assembly 6102 in response to actuation motions applied thereto. The distal closure tube 6042 includes an opening 6045 which interfaces with the tab 6027 on the anvil 6024 to facilitate opening of the anvil 6024 as the distal closure tube 6042 is moved axially in the proximal direction “PD”. The closure tubes 6040, 6042 may be made of electrically conductive material (such as metal) so that they may serve as part of the antenna, as described above. Components of the spine assembly 6102 may be made of a nonconductive material (such as plastic).
As indicated above, the surgical tool 6000 includes a tool mounting portion 6200 that is configured for operable attachment to the tool mounting assembly 1010 of the robotic system 1000 in the various manners described in detail above. As can be seen in
To facilitate selective articulation of the surgical end effector 6012 about the first and second tool articulation axes TA1-TA1, TA2-TA2, the spine assembly 6102 comprises a proximal spine portion 6110 that is pivotally coupled to a distal spine portion 6120 by pivot pins 6122 for selective pivotal travel about TA1-TA1. Similarly, the distal spine portion 6120 is pivotally attached to the elongated channel 6022 of the surgical end effector 6012 by pivot pins 6124 to enable the surgical end effector 6012 to selectively pivot about the second tool axis TA2-TA2 relative to the distal spine portion 6120.
In various embodiments, the articulation system 6140 further includes a plurality of articulation elements that operably interface with the surgical end effector 6012 and an articulation control arrangement 6160 that is operably supported in the tool mounting member 6200 as will described in further detail below. In at least one embodiment, the articulation elements comprise a first pair of first articulation cables 6144 and 6146. The first articulation cables are located on a first or right side of the longitudinal tool axis. Thus, the first articulation cables are referred to herein as a right upper cable 6144 and a right lower cable 6146. The right upper cable 6144 and the right lower cable 6146 extend through corresponding passages 6147, 6148, respectively along the right side of the proximal spine portion 6110. See
As can be seen in
The proximal ends of the articulation cables 6144, 6146, 6150, 6152 are coupled to the articulation control arrangement 6160 which comprises a ball joint assembly that is a part of the articulation transmission 6142. More specifically and with reference to
In various forms, the articulation drive assembly 6170 comprises a horizontal articulation assembly generally designated as 6171. In at least one form, the horizontal articulation assembly 6171 comprises a horizontal push cable 6172 that is attached to a horizontal gear arrangement 6180. The articulation drive assembly 6170 further comprises a vertically articulation assembly generally designated as 6173. In at least one form, the vertical articulation assembly 6173 comprises a vertical push cable 6174 that is attached to a vertical gear arrangement 6190. As can be seen in
The horizontal gear arrangement 6180 includes a horizontal driven gear 6182 that is pivotally mounted on a horizontal shaft 6181 that is attached to a proximal portion of the proximal spine portion 6110. The proximal end of the horizontal push cable 6172 is pivotally attached to the horizontal driven gear 6182 such that, as the horizontal driven gear 6172 is rotated about horizontal pivot axis HA, the horizontal push cable 6172 applies a first pivot motion to the articulation control ring 6164. Likewise, the vertical gear arrangement 6190 includes a vertical driven gear 6192 that is pivotally supported on a vertical shaft 6191 attached to the proximal portion of the proximal spine portion 6110 for pivotal travel about a vertical pivot axis VA. The proximal end of the vertical push cable 6174 is pivotally attached to the vertical driven gear 6192 such that as the vertical driven gear 6192 is rotated about vertical pivot axis VA, the vertical push cable 6174 applies a second pivot motion to the articulation control ring 6164.
The horizontal driven gear 6182 and the vertical driven gear 6192 are driven by an articulation gear train 6300 that operably interfaces with an articulation shifter assembly 6320. In at least one form, the articulation shifter assembly comprises an articulation drive gear 6322 that is coupled to a corresponding one of the driven discs or elements 1304 on the adapter side 1307 of the tool mounting plate 6202. See
In various embodiments, the shifter driven gear assembly 6340 includes a driven shifter gear 6342 that is attached to a shifter plate 6344. The shifter plate 6344 operably interfaces with a shifter solenoid assembly 6350. The shifter solenoid assembly 6350 is coupled to corresponding pins 6352 by conductors 6352. See
Various embodiments of the articulation gear train 6300 further include a vertical gear assembly 6370 that includes a first vertical drive gear 6372 that is mounted on a shaft 6371 that is rotatably supported on the tool mounting plate 6202. The first vertical drive gear 6372 is supported in meshing engagement with a second vertical drive gear 6374 that is concentrically supported with the second horizontal drive gear 6364. The second vertical drive gear 6374 is rotatably supported on the proximal spine portion 6110 for travel therearound. The second horizontal drive gear 6364 is rotatably supported on a portion of said second vertical drive gear 6374 for independent rotatable travel thereon. As can be seen in
In various forms, the first horizontal drive gear 6362 has a first diameter and the first vertical drive gear 6372 has a second diameter. As can be seen in
In use, the robotic controller 1001 of the robotic system 1000 may control the articulation system 6140 as follows. To articulate the end effector 6012 to the left about the first tool articulation axis TA1-TA1, the robotic controller 1001 activates the shifter solenoid assembly 6350 to bring the shifter gear 6342 into meshing engagement with the first horizontal drive gear 6362. Thereafter, the controller 1001 causes a first rotary output motion to be applied to the articulation drive gear 6322 to drive the shifter gear in a first direction to ultimately drive the horizontal driven gear 6182 in another first direction. The horizontal driven gear 6182 is driven to pivot the articulation ring 6164 on the ball-shaped portion 6162 to thereby pull right upper cable 6144 and the right lower cable 6146 in the proximal direction “PD”. To articulate the end effector 6012 to the right about the first tool articulation axis TA1-TA1, the robotic controller 1001 activates the shifter solenoid assembly 6350 to bring the shifter gear 6342 into meshing engagement with the first horizontal drive gear 6362. Thereafter, the controller 1001 causes the first rotary output motion in an opposite direction to be applied to the articulation drive gear 6322 to drive the shifter gear 6342 in a second direction to ultimately drive the horizontal driven gear 6182 in another second direction. Such actions result in the articulation control ring 6164 moving in such a manner as to pull the left upper cable 6150 and the left lower cable 6152 in the proximal direction “PD”. In various embodiments the gear ratios and frictional forces generated between the gears of the vertical gear assembly 6370 serve to prevent rotation of the vertical driven gear 6192 as the horizontal gear assembly 6360 is actuated.
To articulate the end effector 6012 in the upper direction about the second tool articulation axis TA2-TA2, the robotic controller 1001 activates the shifter solenoid assembly 6350 to bring the shifter gear 6342 into meshing engagement with the first vertical drive gear 6372. Thereafter, the controller 1001 causes the first rotary output motion to be applied to the articulation drive gear 6322 to drive the shifter gear 6342 in a first direction to ultimately drive the vertical driven gear 6192 in another first direction. The vertical driven gear 6192 is driven to pivot the articulation ring 6164 on the ball-shaped portion 6162 of the proximal spine portion 6110 to thereby pull right upper cable 6144 and the left upper cable 6150 in the proximal direction “PD”. To articulate the end effector 6012 in the downward direction about the second tool articulation axis TA2-TA2, the robotic controller 1001 activates the shifter solenoid assembly 6350 to bring the shifter gear 6342 into meshing engagement with the first vertical drive gear 6372. Thereafter, the controller 1001 causes the first rotary output motion to be applied in an opposite direction to the articulation drive gear 6322 to drive the shifter gear 6342 in a second direction to ultimately drive the vertical driven gear 6192 in another second direction. Such actions thereby cause the articulation control ring 6164 to pull the right lower cable 6146 and the left lower cable 6152 in the proximal direction “PD”. In various embodiments, the gear ratios and frictional forces generated between the gears of the horizontal gear assembly 6360 serve to prevent rotation of the horizontal driven gear 6182 as the vertical gear assembly 6370 is actuated.
In various embodiments, a variety of sensors may communicate with the robotic controller 1001 to determine the articulated position of the end effector 6012. Such sensors may interface with, for example, the articulation joint 6100 or be located within the tool mounting portion 6200. For example, sensors may be employed to detect the position of the articulation control ring 6164 on the ball-shaped portion 6162 of the proximal spine portion 6110. Such feedback from the sensors to the controller 1001 permits the controller 1001 to adjust the amount of rotation and the direction of the rotary output to the articulation drive gear 6322. Further, as indicated above, when the shifter drive gear 6342 is centrally positioned in meshing engagement with the first horizontal drive gear 6362 and the first vertical drive gear 6372, the end effector 6012 is locked in the articulated position. Thus, after the desired amount of articulation has been attained, the controller 1001 may activate the shifter solenoid assembly 6350 to bring the shifter gear 6342 into meshing engagement with the first horizontal drive gear 6362 and the first vertical drive gear 6372. In alternative embodiments, the shifter solenoid assembly 6350 may be spring activated to the central locked position.
In use, it may be desirable to rotate the surgical end effector 6012 about the longitudinal tool axis LT-LT. In at least one embodiment, the transmission arrangement 6204 on the tool mounting portion includes a rotational transmission assembly 6400 that is configured to receive a corresponding rotary output motion from the tool drive assembly 1010 of the robotic system 1000 and convert that rotary output motion to a rotary control motion for rotating the elongated shaft assembly 6008 (and surgical end effector 6012) about the longitudinal tool axis LT-LT. In various embodiments, for example, a proximal end portion 6041 of the proximal closure tube 6040 is rotatably supported on the tool mounting plate 6202 of the tool mounting portion 6200 by a forward support cradle 6205 and a closure sled 6510 that is also movably supported on the tool mounting plate 6202. In at least one form, the rotational transmission assembly 6400 includes a tube gear segment 6402 that is formed on (or attached to) the proximal end 6041 of the proximal closure tube 6040 for operable engagement by a rotational gear assembly 6410 that is operably supported on the tool mounting plate 6202. As can be seen in
In at least one embodiment, the closure of the anvil 2024 relative to the staple cartridge 2034 is accomplished by axially moving a closure portion of the elongated shaft assembly 2008 in the distal direction “DD” on the spine assembly 2049. As indicated above, in various embodiments, the proximal end portion 6041 of the proximal closure tube 6040 is supported by the closure sled 6510 which comprises a portion of a closure transmission, generally depicted as 6512. As can be seen in
In various forms, the closure gear assembly 6520 includes a closure spur gear 6522 that is coupled to a corresponding second one of the driven discs or elements 1304 on the adapter side 1307 of the tool mounting plate 6202. See
In various embodiments, the cutting instrument is driven through the surgical end effector 6012 by a knife bar 6530. See
In various embodiments, a proximal end 6534 of the knife bar 6530 is rotatably affixed to a knife rack gear 6540 such that the knife bar 6530 is free to rotate relative to the knife rack gear 6540. The distal end of the knife bar 6530 is attached to the cutting instrument in the various manners described above. As can be seen in
As can be appreciated from the foregoing description, the surgical tool 6000 represents a vast improvement over prior robotic tool arrangements. The unique and novel transmission arrangement employed by the surgical tool 6000 enables the tool to be operably coupled to a tool holder portion 1010 of a robotic system that only has four rotary output bodies, yet obtain the rotary output motions therefrom to: (i) articulate the end effector about two different articulation axes that are substantially transverse to each other as well as the longitudinal tool axis; (ii) rotate the end effector 6012 about the longitudinal tool axis; (iii) close the anvil 6024 relative to the surgical staple cartridge 6034 to varying degrees to enable the end effector 6012 to be used to manipulate tissue and then clamp it into position for cutting and stapling; and (iv) firing the cutting instrument to cut through the tissue clamped within the end effector 6012. The unique and novel shifter arrangements of various embodiments of the present invention described above enable two different articulation actions to be powered from a single rotatable body portion of the robotic system.
The various embodiments of the present invention have been described above in connection with cutting-type surgical instruments. It should be noted, however, that in other embodiments, the inventive surgical instrument disclosed herein need not be a cutting-type surgical instrument, but rather could be used in any type of surgical instrument including remote sensor transponders. For example, it could be a non-cutting endoscopic instrument, a grasper, a stapler, a clip applier, an access device, a drug/gene therapy delivery device, an energy device using ultrasound, RF, laser, etc. In addition, the present invention may be in laparoscopic instruments, for example. The present invention also has application in conventional endoscopic and open surgical instrumentation as well as robotic-assisted surgery.
Various sensor embodiments described in U.S. Patent Publication No. 2011/0062212 A1 to Shelton, I V et al., now U.S. Pat. No. 8,167,185, the disclosure of which is herein incorporated by reference in its entirety, may be employed with many of the surgical tool embodiments disclosed herein. As was indicated above, the master controller 1001 generally includes master controllers (generally represented by 1003) which are grasped by the surgeon and manipulated in space while the surgeon views the procedure via a stereo display 1002. See
Such motor powered arrangements may employ various sensor arrangements that are disclosed in the published US patent application cited above to provide the surgeon with a variety of forms of feedback without departing from the spirit and scope of the present invention. For example, those master controller arrangements 1003 that employ a manually actuatable firing trigger can employ run motor sensor(s) to provide the surgeon with feedback relating to the amount of force applied to or being experienced by the cutting member. The run motor sensor(s) may be configured for communication with the firing trigger portion to detect when the firing trigger portion has been actuated to commence the cutting/stapling operation by the end effector. The run motor sensor may be a proportional sensor such as, for example, a rheostat or variable resistor. When the firing trigger is drawn in, the sensor detects the movement, and sends an electrical signal indicative of the voltage (or power) to be supplied to the corresponding motor. When the sensor is a variable resistor or the like, the rotation of the motor may be generally proportional to the amount of movement of the firing trigger. That is, if the operator only draws or closes the firing trigger in a small amount, the rotation of the motor is relatively low. When the firing trigger is fully drawn in (or in the fully closed position), the rotation of the motor is at its maximum. In other words, the harder the surgeon pulls on the firing trigger, the more voltage is applied to the motor causing greater rates of rotation. Other arrangements may provide the surgeon with a feed back meter 1005 that may be viewed through the display 1002 and provide the surgeon with a visual indication of the amount of force being applied to the cutting instrument or dynamic clamping member. Other sensor arrangements may be employed to provide the master controller 1001 with an indication as to whether a staple cartridge has been loaded into the end effector, whether the anvil has been moved to a closed position prior to firing, etc.
In alternative embodiments, a motor-controlled interface may be employed in connection with the controller 1001 that limit the maximum trigger pull based on the amount of loading (e.g., clamping force, cutting force, etc.) experienced by the surgical end effector. For example, the harder it is to drive the cutting instrument through the tissue clamped within the end effector, the harder it would be to pull/actuate the activation trigger. In still other embodiments, the trigger on the controller 1001 is arranged such that the trigger pull location is proportionate to the end effector-location/condition. For example, the trigger is only fully depressed when the end effector is fully fired.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
Although the present invention has been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/755,151, entitled DETACHABLE MOTOR POWERED SURGICAL INSTRUMENT, filed on Jun. 30, 2015, which issued on Nov. 22, 2016 as U.S. Pat. No. 9,498,219, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 13/832,522, entitled DETACHABLE MOTOR POWERED SURGICAL INSTRUMENT, filed on Mar. 15, 2013, which issued on Jul. 21, 2015 as U.S. Pat. No. 9,084,601, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 13/118,210, entitled ROBOTICALLY-CONTROLLED DISPOSABLE MOTOR-DRIVEN LOADING UNIT, filed May 27, 2011, which issued on Jun. 17, 2014 as U.S. Pat. No. 8,752,749, which is a continuation-in-part application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 12/856,099, entitled DISPOSABLE MOTOR-DRIVEN LOADING UNIT FOR USE WITH A SURGICAL CUTTING AND STAPLING APPARATUS, filed Aug. 13, 2010, which issued on Jun. 12, 2012 as U.S. Pat. No. 8,196,795, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 12/031,628, entitled DISPOSABLE MOTOR-DRIVEN LOADING UNIT FOR USE WITH A SURGICAL CUTTING AND STAPLING APPARATUS, filed Feb. 14, 2008, which issued on Sep. 14, 2010 as U.S. Pat. No. 7,793,812, the entire disclosures of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
66052 | Smith | Jun 1867 | A |
662587 | Blake | Nov 1900 | A |
670748 | Weddeler | Mar 1901 | A |
951393 | Hahn | Mar 1910 | A |
1306107 | Elliott | Jun 1919 | A |
1314601 | McCaskey | Sep 1919 | A |
1677337 | Grove | Jul 1928 | A |
1794907 | Kelly | Mar 1931 | A |
2037727 | La Chapelle | Apr 1936 | A |
2132295 | Hawkins | Oct 1938 | A |
2161632 | Nattenheimer | Jun 1939 | A |
2211117 | Hess | Aug 1940 | A |
2214870 | West | Sep 1940 | A |
2318379 | Davis et al. | May 1943 | A |
2329440 | La Place | Sep 1943 | A |
2441096 | Happe | May 1948 | A |
2448741 | Scott et al. | Sep 1948 | A |
2450527 | Smith et al. | Oct 1948 | A |
2526902 | Rublee | Oct 1950 | A |
2527256 | Jackson | Oct 1950 | A |
2578686 | Fish | Dec 1951 | A |
2674149 | Benson | Apr 1954 | A |
2711461 | Happe | Jun 1955 | A |
2804848 | O'Farrell et al. | Sep 1957 | A |
2808482 | Zanichkowsky et al. | Oct 1957 | A |
2853074 | Olson | Sep 1958 | A |
2887004 | Stewart | May 1959 | A |
2959974 | Emrick | Nov 1960 | A |
3032769 | Palmer | May 1962 | A |
3075062 | Iaccarino | Jan 1963 | A |
3078465 | Bobrov | Feb 1963 | A |
3079606 | Bobrov et al. | Mar 1963 | A |
3166072 | Sullivan, Jr. | Jan 1965 | A |
3196869 | Scholl | Jul 1965 | A |
3204731 | Bent et al. | Sep 1965 | A |
3266494 | Brownrigg et al. | Aug 1966 | A |
3269630 | Fleischer | Aug 1966 | A |
3275211 | Hirsch et al. | Sep 1966 | A |
3317103 | Cullen et al. | May 1967 | A |
3317105 | Astafjev et al. | May 1967 | A |
3357296 | Lefever | Dec 1967 | A |
3490675 | Green et al. | Jan 1970 | A |
3494533 | Green et al. | Feb 1970 | A |
3499591 | Green | Mar 1970 | A |
3503396 | Pierie et al. | Mar 1970 | A |
3551987 | Wilkinson | Jan 1971 | A |
3568675 | Harvey | Mar 1971 | A |
3572159 | Tschanz | Mar 1971 | A |
3583393 | Takahashi | Jun 1971 | A |
3598943 | Barrett | Aug 1971 | A |
3608549 | Merrill | Sep 1971 | A |
3640317 | Panfili | Feb 1972 | A |
3643851 | Green et al. | Feb 1972 | A |
3661666 | Foster et al. | May 1972 | A |
3662939 | Bryan | May 1972 | A |
3695646 | Mommsen | Oct 1972 | A |
3709221 | Riely | Jan 1973 | A |
3717294 | Green | Feb 1973 | A |
3734207 | Fishbein | May 1973 | A |
3740994 | DeCarlo, Jr. | Jun 1973 | A |
3744495 | Johnson | Jul 1973 | A |
3746002 | Haller | Jul 1973 | A |
3751902 | Kingsbury et al. | Aug 1973 | A |
3799151 | Fukaumi et al. | Mar 1974 | A |
3819100 | Noiles et al. | Jun 1974 | A |
3821919 | Knohl | Jul 1974 | A |
3841474 | Maier | Oct 1974 | A |
3851196 | Hinds | Nov 1974 | A |
3885491 | Curtis | May 1975 | A |
3892228 | Mitsui | Jul 1975 | A |
3894174 | Cartun | Jul 1975 | A |
3940844 | Colby et al. | Mar 1976 | A |
3950686 | Randall | Apr 1976 | A |
3955581 | Spasiano et al. | May 1976 | A |
RE28932 | Noiles et al. | Aug 1976 | E |
3981051 | Brumlik | Sep 1976 | A |
4054108 | Gill | Oct 1977 | A |
4060089 | Noiles | Nov 1977 | A |
4106446 | Yamada et al. | Aug 1978 | A |
4111206 | Vishnevsky et al. | Sep 1978 | A |
4129059 | Van Eck | Dec 1978 | A |
4169990 | Lerdman | Oct 1979 | A |
4180285 | Reneau | Dec 1979 | A |
4198734 | Brumlik | Apr 1980 | A |
4198982 | Fortner et al. | Apr 1980 | A |
4207898 | Becht | Jun 1980 | A |
4213562 | Garrett et al. | Jul 1980 | A |
4226242 | Jarvik | Oct 1980 | A |
4244372 | Kapitanov et al. | Jan 1981 | A |
4250436 | Weissman | Feb 1981 | A |
4261244 | Becht et al. | Apr 1981 | A |
4272002 | Moshofsky | Jun 1981 | A |
4272662 | Simpson | Jun 1981 | A |
4274304 | Curtiss | Jun 1981 | A |
4275813 | Noiles | Jun 1981 | A |
4289131 | Mueller | Sep 1981 | A |
4289133 | Rothfuss | Sep 1981 | A |
4296654 | Mercer | Oct 1981 | A |
4304236 | Conta et al. | Dec 1981 | A |
4305539 | Korolkov et al. | Dec 1981 | A |
4312685 | Riedl | Jan 1982 | A |
4317451 | Cerwin et al. | Mar 1982 | A |
4321002 | Froehlich | Mar 1982 | A |
4328839 | Lyons et al. | May 1982 | A |
4331277 | Green | May 1982 | A |
4340331 | Savino | Jul 1982 | A |
4347450 | Colligan | Aug 1982 | A |
4349028 | Green | Sep 1982 | A |
4353371 | Cosman | Oct 1982 | A |
4373147 | Carlson, Jr. | Feb 1983 | A |
4379457 | Gravener et al. | Apr 1983 | A |
4380312 | Landrus | Apr 1983 | A |
4382326 | Rabuse | May 1983 | A |
4383634 | Green | May 1983 | A |
4393728 | Larson et al. | Jul 1983 | A |
4396139 | Hall et al. | Aug 1983 | A |
4397311 | Kanshin et al. | Aug 1983 | A |
4402445 | Green | Sep 1983 | A |
4408692 | Siegel et al. | Oct 1983 | A |
4409057 | Molenda et al. | Oct 1983 | A |
4415112 | Green | Nov 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4428376 | Mericle | Jan 1984 | A |
4429695 | Green | Feb 1984 | A |
4434796 | Karapetian et al. | Mar 1984 | A |
4438659 | Desplats | Mar 1984 | A |
4442964 | Becht | Apr 1984 | A |
4448194 | DiGiovanni et al. | May 1984 | A |
4451743 | Suzuki et al. | May 1984 | A |
4454887 | Krüger | Jun 1984 | A |
4467805 | Fukuda | Aug 1984 | A |
4470414 | Imagawa et al. | Sep 1984 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4475679 | Fleury, Jr. | Oct 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4485817 | Swiggett | Dec 1984 | A |
4486928 | Tucker et al. | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4489875 | Crawford et al. | Dec 1984 | A |
4499895 | Takayama | Feb 1985 | A |
4500024 | DiGiovanni et al. | Feb 1985 | A |
4505272 | Utyamyshev et al. | Mar 1985 | A |
4505273 | Braun et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4506671 | Green | Mar 1985 | A |
4512038 | Alexander et al. | Apr 1985 | A |
4520817 | Green | Jun 1985 | A |
4522327 | Korthoff et al. | Jun 1985 | A |
4526174 | Froehlich | Jul 1985 | A |
4527724 | Chow et al. | Jul 1985 | A |
4530453 | Green | Jul 1985 | A |
4531522 | Bedi et al. | Jul 1985 | A |
4532927 | Miksza, Jr. | Aug 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4565109 | Tsay | Jan 1986 | A |
4565189 | Mabuchi | Jan 1986 | A |
4566620 | Green et al. | Jan 1986 | A |
4569469 | Mongeon et al. | Feb 1986 | A |
4571213 | Ishimoto | Feb 1986 | A |
4573468 | Conta et al. | Mar 1986 | A |
4573469 | Golden et al. | Mar 1986 | A |
4573622 | Green et al. | Mar 1986 | A |
4576167 | Noiles et al. | Mar 1986 | A |
4580712 | Green | Apr 1986 | A |
4585153 | Failla et al. | Apr 1986 | A |
4589416 | Green | May 1986 | A |
4591085 | Di Giovanni | May 1986 | A |
4597753 | Turley | Jul 1986 | A |
4600037 | Hatten | Jul 1986 | A |
4604786 | Howie, Jr. | Aug 1986 | A |
4605001 | Rothfuss et al. | Aug 1986 | A |
4605004 | Di Giovanni et al. | Aug 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4607638 | Crainich | Aug 1986 | A |
4608981 | Rothfuss et al. | Sep 1986 | A |
4610250 | Green | Sep 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
4619262 | Taylor | Oct 1986 | A |
4619391 | Sharkany et al. | Oct 1986 | A |
4628459 | Shinohara et al. | Dec 1986 | A |
4629107 | Fedotov et al. | Dec 1986 | A |
4632290 | Green et al. | Dec 1986 | A |
4633874 | Chow et al. | Jan 1987 | A |
4634419 | Kreizman et al. | Jan 1987 | A |
4641076 | Linden | Feb 1987 | A |
4643731 | Eckenhoff | Feb 1987 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4655222 | Florez et al. | Apr 1987 | A |
4662555 | Thornton | May 1987 | A |
4663874 | Sano et al. | May 1987 | A |
4664305 | Blake, III et al. | May 1987 | A |
4665916 | Green | May 1987 | A |
4667674 | Korthoff et al. | May 1987 | A |
4669647 | Storace | Jun 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4676245 | Fukuda | Jun 1987 | A |
4684051 | Akopov et al. | Aug 1987 | A |
4691703 | Auth et al. | Sep 1987 | A |
4693248 | Failla | Sep 1987 | A |
4700703 | Resnick et al. | Oct 1987 | A |
4708141 | Inoue et al. | Nov 1987 | A |
4709120 | Pearson | Nov 1987 | A |
4715520 | Roehr, Jr. et al. | Dec 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4727308 | Huljak et al. | Feb 1988 | A |
4728020 | Green et al. | Mar 1988 | A |
4728876 | Mongeon et al. | Mar 1988 | A |
4729260 | Dudden | Mar 1988 | A |
4730726 | Holzwarth | Mar 1988 | A |
4741336 | Failla et al. | May 1988 | A |
4743214 | Tai-Cheng | May 1988 | A |
4747820 | Hornlein et al. | May 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4767044 | Green | Aug 1988 | A |
4773420 | Green | Sep 1988 | A |
4777780 | Holzwarth | Oct 1988 | A |
4787387 | Burbank, III et al. | Nov 1988 | A |
4790225 | Moody et al. | Dec 1988 | A |
4805617 | Bedi et al. | Feb 1989 | A |
4805823 | Rothfuss | Feb 1989 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4815460 | Porat et al. | Mar 1989 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4819853 | Green | Apr 1989 | A |
4821939 | Green | Apr 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4830855 | Stewart | May 1989 | A |
4834720 | Blinkhorn | May 1989 | A |
4844068 | Arata et al. | Jul 1989 | A |
4848637 | Pruitt | Jul 1989 | A |
4856078 | Konopka | Aug 1989 | A |
4865030 | Polyak | Sep 1989 | A |
4868530 | Ahs | Sep 1989 | A |
4869414 | Green et al. | Sep 1989 | A |
4869415 | Fox | Sep 1989 | A |
4873977 | Avant et al. | Oct 1989 | A |
4875486 | Rapoport et al. | Oct 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4890613 | Golden et al. | Jan 1990 | A |
4892244 | Fox et al. | Jan 1990 | A |
4893622 | Green et al. | Jan 1990 | A |
4896678 | Ogawa | Jan 1990 | A |
4900303 | Lemelson | Feb 1990 | A |
4903697 | Resnick et al. | Feb 1990 | A |
4915100 | Green | Apr 1990 | A |
4930503 | Pruitt | Jun 1990 | A |
4930674 | Barak | Jun 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4932960 | Green et al. | Jun 1990 | A |
4933843 | Scheller et al. | Jun 1990 | A |
4938408 | Bedi et al. | Jul 1990 | A |
4941623 | Pruitt | Jul 1990 | A |
4943182 | Hoblingre | Jul 1990 | A |
4944443 | Oddsen et al. | Jul 1990 | A |
4951860 | Peters et al. | Aug 1990 | A |
4955959 | Tompkins et al. | Sep 1990 | A |
4965709 | Ngo | Oct 1990 | A |
4973274 | Hirukawa | Nov 1990 | A |
4978049 | Green | Dec 1990 | A |
4978333 | Broadwin et al. | Dec 1990 | A |
4986808 | Broadwin et al. | Jan 1991 | A |
4988334 | Hornlein et al. | Jan 1991 | A |
4995877 | Ams | Feb 1991 | A |
5002543 | Bradshaw et al. | Mar 1991 | A |
5002553 | Shiber | Mar 1991 | A |
5005754 | Van Overloop | Apr 1991 | A |
5009661 | Michelson | Apr 1991 | A |
5014899 | Presty et al. | May 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5018515 | Gilman | May 1991 | A |
5018657 | Pedlick et al. | May 1991 | A |
5024671 | Tu et al. | Jun 1991 | A |
5027834 | Pruitt | Jul 1991 | A |
5031814 | Tompkins et al. | Jul 1991 | A |
5035040 | Kerrigan et al. | Jul 1991 | A |
5038109 | Goble et al. | Aug 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5061269 | Muller | Oct 1991 | A |
5062563 | Green et al. | Nov 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5071052 | Rodak et al. | Dec 1991 | A |
5071430 | de Salis et al. | Dec 1991 | A |
5074454 | Peters | Dec 1991 | A |
5079006 | Urquhart | Jan 1992 | A |
5080556 | Carreno | Jan 1992 | A |
5083695 | Foslien et al. | Jan 1992 | A |
5084057 | Green et al. | Jan 1992 | A |
5088979 | Filipi et al. | Feb 1992 | A |
5088997 | Delahuerga et al. | Feb 1992 | A |
5094247 | Hernandez et al. | Mar 1992 | A |
5100420 | Green et al. | Mar 1992 | A |
5104025 | Main et al. | Apr 1992 | A |
5104397 | Vasconcelos et al. | Apr 1992 | A |
5106008 | Tompkins et al. | Apr 1992 | A |
5108368 | Hammerslag et al. | Apr 1992 | A |
5111987 | Moeinzadeh et al. | May 1992 | A |
5116349 | Aranyi | May 1992 | A |
5122156 | Granger et al. | Jun 1992 | A |
5124990 | Williamson | Jun 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5137198 | Nobis et al. | Aug 1992 | A |
5139513 | Segato | Aug 1992 | A |
5141144 | Foslien et al. | Aug 1992 | A |
5142932 | Moya et al. | Sep 1992 | A |
5155941 | Takahashi et al. | Oct 1992 | A |
5156315 | Green et al. | Oct 1992 | A |
5156609 | Nakao et al. | Oct 1992 | A |
5156614 | Green et al. | Oct 1992 | A |
5158567 | Green | Oct 1992 | A |
D330699 | Gill | Nov 1992 | S |
5163598 | Peters et al. | Nov 1992 | A |
5171247 | Hughett et al. | Dec 1992 | A |
5171249 | Stefanchik et al. | Dec 1992 | A |
5171253 | Klieman et al. | Dec 1992 | A |
5188111 | Yates et al. | Feb 1993 | A |
5190517 | Zieve et al. | Mar 1993 | A |
5190544 | Chapman et al. | Mar 1993 | A |
5190560 | Woods et al. | Mar 1993 | A |
5192288 | Thompson et al. | Mar 1993 | A |
5195968 | Lundquist et al. | Mar 1993 | A |
5197648 | Gingold | Mar 1993 | A |
5197649 | Bessler et al. | Mar 1993 | A |
5197966 | Sommerkamp | Mar 1993 | A |
5200280 | Karasa | Apr 1993 | A |
5201750 | Hocherl | Apr 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5207697 | Carusillo et al. | May 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5211649 | Kohler et al. | May 1993 | A |
5211655 | Hasson | May 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217478 | Rexroth | Jun 1993 | A |
5219111 | Bilotti et al. | Jun 1993 | A |
5221036 | Takase | Jun 1993 | A |
5221281 | Klicek | Jun 1993 | A |
5222963 | Brinkerhoff et al. | Jun 1993 | A |
5222975 | Crainich | Jun 1993 | A |
5222976 | Yoon | Jun 1993 | A |
5223675 | Taft | Jun 1993 | A |
5234447 | Kaster et al. | Aug 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5239981 | Anapliotis | Aug 1993 | A |
5240163 | Stein et al. | Aug 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5244462 | Delahuerga et al. | Sep 1993 | A |
5246156 | Rothfuss et al. | Sep 1993 | A |
5246443 | Mai | Sep 1993 | A |
5253793 | Green et al. | Oct 1993 | A |
5258007 | Spetzler | Nov 1993 | A |
5258009 | Conners | Nov 1993 | A |
5258012 | Luscombe et al. | Nov 1993 | A |
5259366 | Reydel et al. | Nov 1993 | A |
5259835 | Clark et al. | Nov 1993 | A |
5260637 | Pizzi | Nov 1993 | A |
5261877 | Fine | Nov 1993 | A |
5263629 | Trumbull et al. | Nov 1993 | A |
5263973 | Cook | Nov 1993 | A |
5264218 | Rogozinski | Nov 1993 | A |
5268622 | Philipp | Dec 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5275323 | Schulze et al. | Jan 1994 | A |
5275608 | Forman et al. | Jan 1994 | A |
5279416 | Malec et al. | Jan 1994 | A |
5281216 | Klicek | Jan 1994 | A |
5282806 | Haber et al. | Feb 1994 | A |
5282829 | Hermes | Feb 1994 | A |
5284128 | Hart | Feb 1994 | A |
5285381 | Iskarous et al. | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5289963 | McGarry et al. | Mar 1994 | A |
5290271 | Jernberg | Mar 1994 | A |
5292053 | Bilotti et al. | Mar 1994 | A |
5297714 | Kramer | Mar 1994 | A |
5304204 | Bregen | Apr 1994 | A |
5307976 | Olson et al. | May 1994 | A |
5309387 | Mori et al. | May 1994 | A |
5309927 | Welch | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312024 | Grant et al. | May 1994 | A |
5312329 | Beaty et al. | May 1994 | A |
5314424 | Nicholas | May 1994 | A |
5314445 | Heidmueller née Degwitz et al. | May 1994 | A |
5314466 | Stern et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5330487 | Thornton et al. | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5333422 | Warren et al. | Aug 1994 | A |
5333772 | Rothfuss et al. | Aug 1994 | A |
5333773 | Main et al. | Aug 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5336232 | Green et al. | Aug 1994 | A |
5339799 | Kami et al. | Aug 1994 | A |
5341724 | Vatel | Aug 1994 | A |
5341810 | Dardel | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342395 | Jarrett et al. | Aug 1994 | A |
5342396 | Cook | Aug 1994 | A |
5343391 | Mushabac | Aug 1994 | A |
5344060 | Gravener et al. | Sep 1994 | A |
5344454 | Clarke et al. | Sep 1994 | A |
5346504 | Ortiz et al. | Sep 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5350388 | Epstein | Sep 1994 | A |
5350391 | Iacovelli | Sep 1994 | A |
5350400 | Esposito et al. | Sep 1994 | A |
5352229 | Goble et al. | Oct 1994 | A |
5352235 | Koros et al. | Oct 1994 | A |
5352238 | Green et al. | Oct 1994 | A |
5354303 | Spaeth et al. | Oct 1994 | A |
5356006 | Alpern et al. | Oct 1994 | A |
5358506 | Green et al. | Oct 1994 | A |
5358510 | Luscombe et al. | Oct 1994 | A |
5359231 | Flowers et al. | Oct 1994 | A |
D352780 | Glaeser et al. | Nov 1994 | S |
5360305 | Kerrigan | Nov 1994 | A |
5360428 | Hutchinson, Jr. | Nov 1994 | A |
5364001 | Bryan | Nov 1994 | A |
5364003 | Williamson, IV | Nov 1994 | A |
5366133 | Geiste | Nov 1994 | A |
5366134 | Green et al. | Nov 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5368015 | Wilk | Nov 1994 | A |
5368592 | Stern et al. | Nov 1994 | A |
5370645 | Klicek et al. | Dec 1994 | A |
5372124 | Takayama et al. | Dec 1994 | A |
5372596 | Klicek et al. | Dec 1994 | A |
5372602 | Burke | Dec 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5376095 | Ortiz | Dec 1994 | A |
5379933 | Green et al. | Jan 1995 | A |
5381649 | Webb | Jan 1995 | A |
5381782 | DeLaRama et al. | Jan 1995 | A |
5382247 | Cimino et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5383881 | Green et al. | Jan 1995 | A |
5383888 | Zvenyatsky et al. | Jan 1995 | A |
5383895 | Holmes et al. | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5391180 | Tovey et al. | Feb 1995 | A |
5392979 | Green et al. | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395034 | Allen et al. | Mar 1995 | A |
5395312 | Desai | Mar 1995 | A |
5395384 | Duthoit | Mar 1995 | A |
5397046 | Savage et al. | Mar 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5405072 | Zlock et al. | Apr 1995 | A |
5405073 | Porter | Apr 1995 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5405360 | Tovey | Apr 1995 | A |
5407293 | Crainich | Apr 1995 | A |
5408409 | Glassman | Apr 1995 | A |
5409498 | Braddock et al. | Apr 1995 | A |
5411481 | Allen et al. | May 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413107 | Oakley et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5413268 | Green et al. | May 1995 | A |
5413272 | Green et al. | May 1995 | A |
5413573 | Koivukangas | May 1995 | A |
5415334 | Williamson, IV et al. | May 1995 | A |
5415335 | Knodell, Jr. | May 1995 | A |
5417203 | Tovey et al. | May 1995 | A |
5417361 | Williamson, IV | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5422567 | Matsunaga | Jun 1995 | A |
5423471 | Mastri et al. | Jun 1995 | A |
5423809 | Klicek | Jun 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5431322 | Green et al. | Jul 1995 | A |
5431654 | Nic | Jul 1995 | A |
5431668 | Burbank, III et al. | Jul 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5439155 | Viola | Aug 1995 | A |
5439156 | Grant et al. | Aug 1995 | A |
5439479 | Schichman et al. | Aug 1995 | A |
5441191 | Linden | Aug 1995 | A |
5441193 | Gravener | Aug 1995 | A |
5441483 | Avitall | Aug 1995 | A |
5441494 | Ortiz | Aug 1995 | A |
5444113 | Sinclair et al. | Aug 1995 | A |
5445155 | Sieben | Aug 1995 | A |
5445304 | Plyley et al. | Aug 1995 | A |
5445644 | Pietrafitta et al. | Aug 1995 | A |
5447265 | Vidal et al. | Sep 1995 | A |
5447417 | Kuhl et al. | Sep 1995 | A |
5447513 | Davison et al. | Sep 1995 | A |
5449355 | Rhum et al. | Sep 1995 | A |
5449365 | Green et al. | Sep 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5452836 | Huitema et al. | Sep 1995 | A |
5452837 | Williamson, IV et al. | Sep 1995 | A |
5454378 | Palmer et al. | Oct 1995 | A |
5454827 | Aust et al. | Oct 1995 | A |
5456401 | Green et al. | Oct 1995 | A |
5458579 | Chodorow et al. | Oct 1995 | A |
5462215 | Viola et al. | Oct 1995 | A |
5464013 | Lemelson | Nov 1995 | A |
5464144 | Guy et al. | Nov 1995 | A |
5464300 | Crainich | Nov 1995 | A |
5465894 | Clark et al. | Nov 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5465896 | Allen et al. | Nov 1995 | A |
5466020 | Page et al. | Nov 1995 | A |
5467911 | Tsuruta | Nov 1995 | A |
5468253 | Bezwada et al. | Nov 1995 | A |
5470006 | Rodak | Nov 1995 | A |
5470007 | Plyley et al. | Nov 1995 | A |
5470009 | Rodak | Nov 1995 | A |
5470010 | Rothfuss et al. | Nov 1995 | A |
5472132 | Savage et al. | Dec 1995 | A |
5472442 | Klicek | Dec 1995 | A |
5473204 | Temple | Dec 1995 | A |
5474057 | Makower et al. | Dec 1995 | A |
5474223 | Viola et al. | Dec 1995 | A |
5474566 | Alesi et al. | Dec 1995 | A |
5476206 | Green et al. | Dec 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5478354 | Tovey et al. | Dec 1995 | A |
5480089 | Blewett | Jan 1996 | A |
5480409 | Riza | Jan 1996 | A |
5482197 | Green et al. | Jan 1996 | A |
5484095 | Green et al. | Jan 1996 | A |
5484398 | Stoddard | Jan 1996 | A |
5484451 | Akopov et al. | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5485952 | Fontayne | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5487500 | Knodel et al. | Jan 1996 | A |
5489058 | Plyley et al. | Feb 1996 | A |
5489256 | Adair | Feb 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5503635 | Sauer et al. | Apr 1996 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5505363 | Green et al. | Apr 1996 | A |
5507426 | Young et al. | Apr 1996 | A |
5509596 | Green et al. | Apr 1996 | A |
5509916 | Taylor | Apr 1996 | A |
5511564 | Wilk | Apr 1996 | A |
5514129 | Smith | May 1996 | A |
5514157 | Nicholas et al. | May 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5520678 | Heckele et al. | May 1996 | A |
5520700 | Beyar et al. | May 1996 | A |
5522817 | Sander et al. | Jun 1996 | A |
5522831 | Sleister et al. | Jun 1996 | A |
5527320 | Carruthers et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
D372086 | Grasso et al. | Jul 1996 | S |
5531305 | Roberts et al. | Jul 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5533521 | Granger | Jul 1996 | A |
5533581 | Barth et al. | Jul 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535935 | Vidal et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5540375 | Bolanos et al. | Jul 1996 | A |
5541376 | Ladtkow et al. | Jul 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5542949 | Yoon | Aug 1996 | A |
5543119 | Sutter et al. | Aug 1996 | A |
5547117 | Hamblin et al. | Aug 1996 | A |
5549583 | Sanford et al. | Aug 1996 | A |
5549621 | Bessler et al. | Aug 1996 | A |
5549627 | Kieturakis | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5551622 | Yoon | Sep 1996 | A |
5553675 | Pitzen et al. | Sep 1996 | A |
5553765 | Knodel et al. | Sep 1996 | A |
5554148 | Aebischer et al. | Sep 1996 | A |
5554169 | Green et al. | Sep 1996 | A |
5556416 | Clark et al. | Sep 1996 | A |
5558665 | Kieturakis | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5560530 | Bolanos et al. | Oct 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5562241 | Knodel et al. | Oct 1996 | A |
5562682 | Oberlin et al. | Oct 1996 | A |
5562690 | Green et al. | Oct 1996 | A |
5562701 | Huitema et al. | Oct 1996 | A |
5562702 | Huitema et al. | Oct 1996 | A |
5563481 | Krause | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5569161 | Ebling et al. | Oct 1996 | A |
5569270 | Weng | Oct 1996 | A |
5569284 | Young et al. | Oct 1996 | A |
5571090 | Sherts | Nov 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5571116 | Bolanos et al. | Nov 1996 | A |
5571285 | Chow et al. | Nov 1996 | A |
5573543 | Akopov et al. | Nov 1996 | A |
5574431 | McKeown et al. | Nov 1996 | A |
5575054 | Klinzing et al. | Nov 1996 | A |
5575789 | Bell et al. | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5575805 | Li | Nov 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5579978 | Green et al. | Dec 1996 | A |
5580067 | Hamblin et al. | Dec 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5584425 | Savage et al. | Dec 1996 | A |
5586711 | Plyley et al. | Dec 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5588580 | Paul et al. | Dec 1996 | A |
5588581 | Conlon et al. | Dec 1996 | A |
5591170 | Spievack et al. | Jan 1997 | A |
5591187 | Dekel | Jan 1997 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5599151 | Daum et al. | Feb 1997 | A |
5599279 | Slotman et al. | Feb 1997 | A |
5599344 | Paterson | Feb 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5599852 | Scopelianos et al. | Feb 1997 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5601573 | Fogelberg et al. | Feb 1997 | A |
5603443 | Clark et al. | Feb 1997 | A |
5605272 | Witt et al. | Feb 1997 | A |
5605273 | Hamblin et al. | Feb 1997 | A |
5607094 | Clark et al. | Mar 1997 | A |
5607095 | Smith et al. | Mar 1997 | A |
5607433 | Polla et al. | Mar 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5609285 | Grant et al. | Mar 1997 | A |
5609601 | Kolesa et al. | Mar 1997 | A |
5611709 | McAnulty | Mar 1997 | A |
5613966 | Makower et al. | Mar 1997 | A |
5615820 | Viola | Apr 1997 | A |
5618294 | Aust et al. | Apr 1997 | A |
5618303 | Marlow et al. | Apr 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5619992 | Guthrie et al. | Apr 1997 | A |
5620289 | Curry | Apr 1997 | A |
5620452 | Yoon | Apr 1997 | A |
5624398 | Smith et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5626595 | Sklar et al. | May 1997 | A |
5628446 | Geiste et al. | May 1997 | A |
5628743 | Cimino | May 1997 | A |
5628745 | Bek | May 1997 | A |
5630539 | Plyley et al. | May 1997 | A |
5630540 | Blewett | May 1997 | A |
5630541 | Williamson, IV et al. | May 1997 | A |
5630782 | Adair | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5634584 | Okorocha et al. | Jun 1997 | A |
5636779 | Palmer | Jun 1997 | A |
5636780 | Green et al. | Jun 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
5643291 | Pier et al. | Jul 1997 | A |
5645209 | Green et al. | Jul 1997 | A |
5647526 | Green et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5649956 | Jensen et al. | Jul 1997 | A |
5651491 | Heaton et al. | Jul 1997 | A |
5653373 | Green et al. | Aug 1997 | A |
5653374 | Young | Aug 1997 | A |
5653677 | Okada et al. | Aug 1997 | A |
5653721 | Knodel et al. | Aug 1997 | A |
5655698 | Yoon | Aug 1997 | A |
5657429 | Wang et al. | Aug 1997 | A |
5657921 | Young et al. | Aug 1997 | A |
5658238 | Suzuki et al. | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5658307 | Exconde | Aug 1997 | A |
5662258 | Knodel et al. | Sep 1997 | A |
5662260 | Yoon | Sep 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5669544 | Schulze et al. | Sep 1997 | A |
5669904 | Platt, Jr. et al. | Sep 1997 | A |
5669907 | Platt, Jr. et al. | Sep 1997 | A |
5669918 | Balazs et al. | Sep 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5673842 | Bittner et al. | Oct 1997 | A |
5674286 | D'Alessio et al. | Oct 1997 | A |
5678748 | Plyley et al. | Oct 1997 | A |
5680981 | Mililli | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5680983 | Plyley et al. | Oct 1997 | A |
5683349 | Makower et al. | Nov 1997 | A |
5685474 | Seeber | Nov 1997 | A |
5686090 | Schilder et al. | Nov 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5693020 | Rauh | Dec 1997 | A |
5693042 | Boiarski et al. | Dec 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5695494 | Becker | Dec 1997 | A |
5695502 | Pier et al. | Dec 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5695524 | Kelley et al. | Dec 1997 | A |
5697542 | Knodel et al. | Dec 1997 | A |
5697543 | Burdorff | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5697943 | Sauer et al. | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5702387 | Arts et al. | Dec 1997 | A |
5702408 | Wales et al. | Dec 1997 | A |
5702409 | Rayburn et al. | Dec 1997 | A |
5704087 | Strub | Jan 1998 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5706997 | Green et al. | Jan 1998 | A |
5706998 | Plyley et al. | Jan 1998 | A |
5707392 | Kortenbach | Jan 1998 | A |
5709334 | Sorrentino et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5709706 | Kienzle et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5712460 | Carr et al. | Jan 1998 | A |
5713128 | Schrenk et al. | Feb 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5713895 | Lontine et al. | Feb 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5713920 | Bezwada et al. | Feb 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5715988 | Palmer | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5718359 | Palmer et al. | Feb 1998 | A |
5718360 | Green et al. | Feb 1998 | A |
5718548 | Costellessa | Feb 1998 | A |
5718714 | Livneh | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
D393067 | Geary et al. | Mar 1998 | S |
5725536 | Oberlin et al. | Mar 1998 | A |
5725554 | Simon et al. | Mar 1998 | A |
5728110 | Vidal et al. | Mar 1998 | A |
5728121 | Bimbo et al. | Mar 1998 | A |
5730758 | Allgeyer | Mar 1998 | A |
5732821 | Stone et al. | Mar 1998 | A |
5732871 | Clark et al. | Mar 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5733308 | Daugherty et al. | Mar 1998 | A |
5735445 | Vidal et al. | Apr 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5735874 | Measamer et al. | Apr 1998 | A |
5738474 | Blewett | Apr 1998 | A |
5738648 | Lands et al. | Apr 1998 | A |
5743456 | Jones et al. | Apr 1998 | A |
5747953 | Philipp | May 1998 | A |
5749889 | Bacich et al. | May 1998 | A |
5749893 | Vidal et al. | May 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5752965 | Francis et al. | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5758814 | Gallagher et al. | Jun 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5766188 | Igaki | Jun 1998 | A |
5766205 | Zvenyatsky et al. | Jun 1998 | A |
5769748 | Eyerly et al. | Jun 1998 | A |
5769892 | Kingwell | Jun 1998 | A |
5772379 | Evensen | Jun 1998 | A |
5772578 | Heimberger et al. | Jun 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5778939 | Hok-Yin | Jul 1998 | A |
5779130 | Alesi | Jul 1998 | A |
5779131 | Knodel et al. | Jul 1998 | A |
5779132 | Knodel et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5782749 | Riza | Jul 1998 | A |
5782859 | Nicholas et al. | Jul 1998 | A |
5784934 | Izumisawa | Jul 1998 | A |
5785232 | Vidal et al. | Jul 1998 | A |
5785647 | Tompkins et al. | Jul 1998 | A |
5787897 | Kieturakis | Aug 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5794834 | Hamblin et al. | Aug 1998 | A |
5796188 | Bays | Aug 1998 | A |
5797536 | Smith et al. | Aug 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5797538 | Heaton et al. | Aug 1998 | A |
5797906 | Rhum et al. | Aug 1998 | A |
5797959 | Castro et al. | Aug 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5800379 | Edwards | Sep 1998 | A |
5800423 | Jensen | Sep 1998 | A |
5806676 | Wasgien | Sep 1998 | A |
5807376 | Viola et al. | Sep 1998 | A |
5807378 | Jensen et al. | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5809441 | McKee | Sep 1998 | A |
5810721 | Mueller et al. | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810846 | Virnich et al. | Sep 1998 | A |
5810855 | Rayburn et al. | Sep 1998 | A |
5813813 | Daum et al. | Sep 1998 | A |
5814055 | Knodel et al. | Sep 1998 | A |
5814057 | Oi et al. | Sep 1998 | A |
5816471 | Plyley et al. | Oct 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817091 | Nardella et al. | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5817109 | McGarry et al. | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5823066 | Huitema et al. | Oct 1998 | A |
5824333 | Scopelianos et al. | Oct 1998 | A |
5826776 | Schulze et al. | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827298 | Hart et al. | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5836960 | Kolesa et al. | Nov 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5843021 | Edwards et al. | Dec 1998 | A |
5843096 | Igaki et al. | Dec 1998 | A |
5843097 | Mayenberger et al. | Dec 1998 | A |
5843122 | Riza | Dec 1998 | A |
5843132 | Ilvento | Dec 1998 | A |
5843169 | Taheri | Dec 1998 | A |
5846254 | Schulze et al. | Dec 1998 | A |
5849011 | Jones et al. | Dec 1998 | A |
5849023 | Mericle | Dec 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5855583 | Wang et al. | Jan 1999 | A |
5860581 | Robertson et al. | Jan 1999 | A |
5860975 | Goble et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5868760 | McGuckin, Jr. | Feb 1999 | A |
5871135 | Williamson, IV et al. | Feb 1999 | A |
5873885 | Weidenbenner | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5878607 | Nunes et al. | Mar 1999 | A |
5878937 | Green et al. | Mar 1999 | A |
5878938 | Bittner et al. | Mar 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5893506 | Powell | Apr 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5893878 | Pierce | Apr 1999 | A |
5894979 | Powell | Apr 1999 | A |
5897552 | Edwards et al. | Apr 1999 | A |
5897562 | Bolanos et al. | Apr 1999 | A |
5899914 | Zirps et al. | May 1999 | A |
5901895 | Heaton et al. | May 1999 | A |
5902312 | Frater et al. | May 1999 | A |
5903117 | Gregory | May 1999 | A |
5904647 | Ouchi | May 1999 | A |
5904693 | Dicesare et al. | May 1999 | A |
5904702 | Ek et al. | May 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5908402 | Blythe | Jun 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5911353 | Bolanos et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5916225 | Kugel | Jun 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5919198 | Graves, Jr. et al. | Jul 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5928256 | Riza | Jul 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5931853 | McEwen et al. | Aug 1999 | A |
5937951 | Izuchukwu et al. | Aug 1999 | A |
5938667 | Peyser et al. | Aug 1999 | A |
5941442 | Geiste et al. | Aug 1999 | A |
5941890 | Voegele et al. | Aug 1999 | A |
5944172 | Hannula | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5947984 | Whipple | Sep 1999 | A |
5948030 | Miller et al. | Sep 1999 | A |
5951516 | Bunyan | Sep 1999 | A |
5951552 | Long et al. | Sep 1999 | A |
5951574 | Stefanchik et al. | Sep 1999 | A |
5951581 | Saadat et al. | Sep 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5964394 | Robertson | Oct 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5971916 | Koren | Oct 1999 | A |
5973221 | Collyer et al. | Oct 1999 | A |
5977746 | Hershberger et al. | Nov 1999 | A |
5984949 | Levin | Nov 1999 | A |
5988479 | Palmer | Nov 1999 | A |
5997528 | Bisch et al. | Dec 1999 | A |
5997552 | Person et al. | Dec 1999 | A |
6001108 | Wang et al. | Dec 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004319 | Goble et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6010513 | Törmälä et al. | Jan 2000 | A |
6012494 | Balazs | Jan 2000 | A |
6013076 | Goble et al. | Jan 2000 | A |
6015406 | Goble et al. | Jan 2000 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6017322 | Snoke et al. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6017356 | Frederick et al. | Jan 2000 | A |
6018227 | Kumar et al. | Jan 2000 | A |
6022352 | Vandewalle | Feb 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024748 | Manzo et al. | Feb 2000 | A |
6024764 | Schroeppel | Feb 2000 | A |
6027501 | Goble et al. | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6033378 | Lundquist et al. | Mar 2000 | A |
6033399 | Gines | Mar 2000 | A |
6033427 | Lee | Mar 2000 | A |
6037724 | Buss et al. | Mar 2000 | A |
6037927 | Rosenberg | Mar 2000 | A |
6039733 | Buysse et al. | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6042601 | Smith | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6047861 | Vidal et al. | Apr 2000 | A |
6049145 | Austin et al. | Apr 2000 | A |
6050472 | Shibata | Apr 2000 | A |
6050990 | Tankovich et al. | Apr 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053390 | Green et al. | Apr 2000 | A |
6053922 | Krause et al. | Apr 2000 | A |
RE36720 | Green et al. | May 2000 | E |
6056735 | Okada et al. | May 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6062360 | Shields | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6063097 | Oi et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6065679 | Levie et al. | May 2000 | A |
6065919 | Peck | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6068627 | Orszulak et al. | May 2000 | A |
6071233 | Ishikawa et al. | Jun 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6077286 | Cuschieri et al. | Jun 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6080181 | Jensen et al. | Jun 2000 | A |
6082577 | Coates et al. | Jul 2000 | A |
6083191 | Rose | Jul 2000 | A |
6083234 | Nicholas et al. | Jul 2000 | A |
6083242 | Cook | Jul 2000 | A |
6086544 | Hibner et al. | Jul 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6090106 | Goble et al. | Jul 2000 | A |
6093186 | Goble | Jul 2000 | A |
6099537 | Sugai et al. | Aug 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6102271 | Longo et al. | Aug 2000 | A |
6104304 | Clark et al. | Aug 2000 | A |
6106511 | Jensen | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6117148 | Ravo et al. | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6120433 | Mizuno et al. | Sep 2000 | A |
6120462 | Hibner et al. | Sep 2000 | A |
6123241 | Walter et al. | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126058 | Adams et al. | Oct 2000 | A |
6126359 | Dittrich et al. | Oct 2000 | A |
6126670 | Walker et al. | Oct 2000 | A |
6131789 | Schulze et al. | Oct 2000 | A |
6131790 | Piraka | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6139546 | Koenig et al. | Oct 2000 | A |
6149660 | Laufer et al. | Nov 2000 | A |
6152935 | Kammerer et al. | Nov 2000 | A |
6155473 | Tompkins et al. | Dec 2000 | A |
6156056 | Kearns et al. | Dec 2000 | A |
6159146 | El Gazayerli | Dec 2000 | A |
6159200 | Verdura et al. | Dec 2000 | A |
6159224 | Yoon | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6162537 | Martin et al. | Dec 2000 | A |
6165175 | Wampler et al. | Dec 2000 | A |
6165184 | Verdura et al. | Dec 2000 | A |
6165188 | Saadat et al. | Dec 2000 | A |
6168605 | Measamer et al. | Jan 2001 | B1 |
6171305 | Sherman | Jan 2001 | B1 |
6171316 | Kovac et al. | Jan 2001 | B1 |
6171330 | Benchetrit | Jan 2001 | B1 |
6174308 | Goble et al. | Jan 2001 | B1 |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6175290 | Forsythe et al. | Jan 2001 | B1 |
6179195 | Adams et al. | Jan 2001 | B1 |
6179776 | Adams et al. | Jan 2001 | B1 |
6181105 | Cutolo et al. | Jan 2001 | B1 |
6182673 | Kindermann et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193129 | Bittner et al. | Feb 2001 | B1 |
6197042 | Ginn et al. | Mar 2001 | B1 |
6200330 | Benderev et al. | Mar 2001 | B1 |
6202914 | Geiste et al. | Mar 2001 | B1 |
6206897 | Jamiolkowski et al. | Mar 2001 | B1 |
6206904 | Ouchi | Mar 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6213999 | Platt, Jr. et al. | Apr 2001 | B1 |
6214028 | Yoon et al. | Apr 2001 | B1 |
6220368 | Ark et al. | Apr 2001 | B1 |
6223100 | Green | Apr 2001 | B1 |
6223835 | Habedank et al. | May 2001 | B1 |
6224617 | Saadat et al. | May 2001 | B1 |
6228081 | Goble | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6228084 | Kirwan, Jr. | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6234178 | Goble et al. | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6241140 | Adams et al. | Jun 2001 | B1 |
6241723 | Heim et al. | Jun 2001 | B1 |
6245084 | Mark | Jun 2001 | B1 |
6248116 | Chevillon et al. | Jun 2001 | B1 |
6248117 | Blatter | Jun 2001 | B1 |
6249076 | Madden et al. | Jun 2001 | B1 |
6249105 | Andrews et al. | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6258107 | Balázs et al. | Jul 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6270508 | Klieman et al. | Aug 2001 | B1 |
6273876 | Klima et al. | Aug 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6277114 | Bullivant et al. | Aug 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6296640 | Wampler et al. | Oct 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6305891 | Burlingame | Oct 2001 | B1 |
6306134 | Goble et al. | Oct 2001 | B1 |
6306149 | Meade | Oct 2001 | B1 |
6309403 | Minor et al. | Oct 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6320123 | Reimers | Nov 2001 | B1 |
6322494 | Bullivant et al. | Nov 2001 | B1 |
6324339 | Hudson et al. | Nov 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6331761 | Kumar et al. | Dec 2001 | B1 |
6333029 | Vyakarnam et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
6336926 | Goble | Jan 2002 | B1 |
6338737 | Toledano | Jan 2002 | B1 |
6343731 | Adams et al. | Feb 2002 | B1 |
6346077 | Taylor et al. | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6355699 | Vyakarnam et al. | Mar 2002 | B1 |
6356072 | Chass | Mar 2002 | B1 |
6358224 | Tims et al. | Mar 2002 | B1 |
6364877 | Goble et al. | Apr 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6370981 | Watarai | Apr 2002 | B2 |
6373152 | Wang et al. | Apr 2002 | B1 |
6383201 | Dong | May 2002 | B1 |
6387113 | Hawkins et al. | May 2002 | B1 |
6387114 | Adams | May 2002 | B2 |
6391038 | Vargas et al. | May 2002 | B2 |
6392854 | O'Gorman | May 2002 | B1 |
6398781 | Goble et al. | Jun 2002 | B1 |
6398797 | Bombard et al. | Jun 2002 | B2 |
6402766 | Bowman et al. | Jun 2002 | B2 |
6406440 | Stefanchik | Jun 2002 | B1 |
6406472 | Jensen | Jun 2002 | B1 |
6409724 | Penny et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6413274 | Pedros | Jul 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6419695 | Gabbay | Jul 2002 | B1 |
6423079 | Blake, III | Jul 2002 | B1 |
RE37814 | Allgeyer | Aug 2002 | E |
6428070 | Takanashi et al. | Aug 2002 | B1 |
6428487 | Burdorff | Aug 2002 | B1 |
6429611 | Li | Aug 2002 | B1 |
6430298 | Kettl et al. | Aug 2002 | B1 |
6432065 | Burdorff et al. | Aug 2002 | B1 |
6436097 | Nardella | Aug 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6436110 | Bowman et al. | Aug 2002 | B2 |
6436122 | Frank et al. | Aug 2002 | B1 |
6439439 | Rickard et al. | Aug 2002 | B1 |
6439446 | Perry et al. | Aug 2002 | B1 |
6440146 | Nicholas et al. | Aug 2002 | B2 |
6441577 | Blumenkranz et al. | Aug 2002 | B2 |
6443973 | Whitman | Sep 2002 | B1 |
6447518 | Krause et al. | Sep 2002 | B1 |
6447864 | Johnson et al. | Sep 2002 | B2 |
6450391 | Kayan et al. | Sep 2002 | B1 |
6450989 | Dubrul et al. | Sep 2002 | B2 |
6454781 | Witt et al. | Sep 2002 | B1 |
6468275 | Wampler et al. | Oct 2002 | B1 |
6471106 | Reining | Oct 2002 | B1 |
6471659 | Eggers et al. | Oct 2002 | B2 |
6478210 | Adams et al. | Nov 2002 | B2 |
6482200 | Shippert | Nov 2002 | B2 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6485667 | Tan | Nov 2002 | B1 |
6488196 | Fenton, Jr. | Dec 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6491690 | Goble et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6492785 | Kasten et al. | Dec 2002 | B1 |
6494896 | D'Alessio et al. | Dec 2002 | B1 |
6498480 | Manara | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500194 | Benderev et al. | Dec 2002 | B2 |
6503257 | Grant et al. | Jan 2003 | B2 |
6503259 | Huxel et al. | Jan 2003 | B2 |
6505768 | Whitman | Jan 2003 | B2 |
6510854 | Goble | Jan 2003 | B2 |
6511468 | Cragg et al. | Jan 2003 | B1 |
6512360 | Goto et al. | Jan 2003 | B1 |
6517528 | Pantages et al. | Feb 2003 | B1 |
6517535 | Edwards | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6522101 | Malackowski | Feb 2003 | B2 |
6527782 | Hogg et al. | Mar 2003 | B2 |
6527785 | Sancoff et al. | Mar 2003 | B2 |
6533157 | Whitman | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6535764 | Imran et al. | Mar 2003 | B2 |
6543456 | Freeman | Apr 2003 | B1 |
6545384 | Pelrine et al. | Apr 2003 | B1 |
6547786 | Goble | Apr 2003 | B1 |
6550546 | Thurler et al. | Apr 2003 | B2 |
6551333 | Kuhns et al. | Apr 2003 | B2 |
6554861 | Knox et al. | Apr 2003 | B2 |
6555770 | Kawase | Apr 2003 | B2 |
6558378 | Sherman et al. | May 2003 | B2 |
6558379 | Batchelor et al. | May 2003 | B1 |
6565560 | Goble et al. | May 2003 | B1 |
6566619 | Gillman et al. | May 2003 | B2 |
6569085 | Kortenbach et al. | May 2003 | B2 |
6569171 | DeGuillebon et al. | May 2003 | B2 |
6578751 | Hartwick | Jun 2003 | B2 |
6582427 | Goble et al. | Jun 2003 | B1 |
6582441 | He et al. | Jun 2003 | B1 |
6583533 | Pelrine et al. | Jun 2003 | B2 |
6585144 | Adams et al. | Jul 2003 | B2 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6588643 | Bolduc et al. | Jul 2003 | B2 |
6588931 | Betzner et al. | Jul 2003 | B2 |
6589164 | Flaherty | Jul 2003 | B1 |
6592538 | Hotchkiss et al. | Jul 2003 | B1 |
6592597 | Grant et al. | Jul 2003 | B2 |
6596296 | Nelson et al. | Jul 2003 | B1 |
6596304 | Bayon et al. | Jul 2003 | B1 |
6596432 | Kawakami et al. | Jul 2003 | B2 |
D478665 | Isaacs et al. | Aug 2003 | S |
D478986 | Johnston et al. | Aug 2003 | S |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6602262 | Griego et al. | Aug 2003 | B2 |
6605078 | Adams | Aug 2003 | B2 |
6605669 | Awokola et al. | Aug 2003 | B2 |
6607475 | Doyle et al. | Aug 2003 | B2 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6613069 | Boyd et al. | Sep 2003 | B2 |
6616686 | Coleman et al. | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6620166 | Wenstrom, Jr. et al. | Sep 2003 | B1 |
6626834 | Dunne et al. | Sep 2003 | B2 |
6629630 | Adams | Oct 2003 | B2 |
6629974 | Penny et al. | Oct 2003 | B2 |
6629988 | Weadock | Oct 2003 | B2 |
6635838 | Kornelson | Oct 2003 | B1 |
6636412 | Smith | Oct 2003 | B2 |
6638108 | Tachi | Oct 2003 | B2 |
6638285 | Gabbay | Oct 2003 | B2 |
6638297 | Huitema | Oct 2003 | B1 |
RE38335 | Aust et al. | Nov 2003 | E |
6641528 | Torii | Nov 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6645201 | Utley et al. | Nov 2003 | B1 |
6646307 | Yu et al. | Nov 2003 | B1 |
6648816 | Irion et al. | Nov 2003 | B2 |
6652595 | Nicolo | Nov 2003 | B1 |
D484243 | Ryan et al. | Dec 2003 | S |
D484595 | Ryan et al. | Dec 2003 | S |
D484596 | Ryan et al. | Dec 2003 | S |
6656177 | Truckai et al. | Dec 2003 | B2 |
6656193 | Grant et al. | Dec 2003 | B2 |
6663623 | Oyama et al. | Dec 2003 | B1 |
6663641 | Kovac et al. | Dec 2003 | B1 |
6666854 | Lange | Dec 2003 | B1 |
6666875 | Sakurai et al. | Dec 2003 | B1 |
6667825 | Lu et al. | Dec 2003 | B2 |
6669073 | Milliman et al. | Dec 2003 | B2 |
6671185 | Duval | Dec 2003 | B2 |
D484977 | Ryan et al. | Jan 2004 | S |
6676660 | Wampler et al. | Jan 2004 | B2 |
6679269 | Swanson | Jan 2004 | B2 |
6679410 | Würsch et al. | Jan 2004 | B2 |
6681978 | Geiste et al. | Jan 2004 | B2 |
6681979 | Whitman | Jan 2004 | B2 |
6682527 | Strul | Jan 2004 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6685727 | Fisher et al. | Feb 2004 | B2 |
6689153 | Skiba | Feb 2004 | B1 |
6692507 | Pugsley et al. | Feb 2004 | B2 |
6695198 | Adams et al. | Feb 2004 | B2 |
6695199 | Whitman | Feb 2004 | B2 |
6695774 | Hale et al. | Feb 2004 | B2 |
6697048 | Rosenberg et al. | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6699235 | Wallace et al. | Mar 2004 | B2 |
6704210 | Myers | Mar 2004 | B1 |
6705503 | Pedicini et al. | Mar 2004 | B1 |
6709445 | Boebel et al. | Mar 2004 | B2 |
6712773 | Viola | Mar 2004 | B1 |
6716223 | Leopold et al. | Apr 2004 | B2 |
6716232 | Vidal et al. | Apr 2004 | B1 |
6716233 | Whitman | Apr 2004 | B1 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6723087 | O'Neill et al. | Apr 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
6726697 | Nicholas et al. | Apr 2004 | B2 |
6726706 | Dominguez | Apr 2004 | B2 |
6729119 | Schnipke et al. | May 2004 | B2 |
6736825 | Blatter et al. | May 2004 | B2 |
6736854 | Vadurro et al. | May 2004 | B2 |
6740030 | Martone et al. | May 2004 | B2 |
6747121 | Gogolewski | Jun 2004 | B2 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6752768 | Burdorff et al. | Jun 2004 | B2 |
6752816 | Culp et al. | Jun 2004 | B2 |
6755195 | Lemke et al. | Jun 2004 | B1 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6758846 | Goble et al. | Jul 2004 | B2 |
6761685 | Adams et al. | Jul 2004 | B2 |
6762339 | Klun et al. | Jul 2004 | B1 |
6764445 | Ramans et al. | Jul 2004 | B2 |
6767352 | Field et al. | Jul 2004 | B2 |
6767356 | Kanner et al. | Jul 2004 | B2 |
6769590 | Vresh et al. | Aug 2004 | B2 |
6769594 | Orban, III | Aug 2004 | B2 |
6770027 | Banik et al. | Aug 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773438 | Knodel et al. | Aug 2004 | B1 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6777838 | Miekka et al. | Aug 2004 | B2 |
6780151 | Grabover et al. | Aug 2004 | B2 |
6780180 | Goble et al. | Aug 2004 | B1 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786864 | Matsuura et al. | Sep 2004 | B2 |
6786896 | Madani et al. | Sep 2004 | B1 |
6788018 | Blumenkranz | Sep 2004 | B1 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6793661 | Hamilton et al. | Sep 2004 | B2 |
6793663 | Kneifel et al. | Sep 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6805273 | Bilotti et al. | Oct 2004 | B2 |
6806808 | Watters et al. | Oct 2004 | B1 |
6808525 | Latterell et al. | Oct 2004 | B2 |
6814741 | Bowman et al. | Nov 2004 | B2 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6817509 | Geiste et al. | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6818018 | Sawhney | Nov 2004 | B1 |
6820791 | Adams | Nov 2004 | B2 |
6821273 | Mollenauer | Nov 2004 | B2 |
6821282 | Perry et al. | Nov 2004 | B2 |
6821284 | Sturtz et al. | Nov 2004 | B2 |
6827246 | Sullivan et al. | Dec 2004 | B2 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6827725 | Batchelor et al. | Dec 2004 | B2 |
6828902 | Casden | Dec 2004 | B2 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6831629 | Nishino et al. | Dec 2004 | B2 |
6832998 | Goble | Dec 2004 | B2 |
6834001 | Myono | Dec 2004 | B2 |
6835173 | Couvillon, Jr. | Dec 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6835336 | Watt | Dec 2004 | B2 |
6837846 | Jaffe et al. | Jan 2005 | B2 |
6837883 | Moll et al. | Jan 2005 | B2 |
6838493 | Williams et al. | Jan 2005 | B2 |
6840423 | Adams et al. | Jan 2005 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6843789 | Goble | Jan 2005 | B2 |
6843793 | Brock et al. | Jan 2005 | B2 |
6846307 | Whitman et al. | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
6850817 | Green | Feb 2005 | B1 |
6853879 | Sunaoshi | Feb 2005 | B2 |
6858005 | Ohline et al. | Feb 2005 | B2 |
RE38708 | Bolanos et al. | Mar 2005 | E |
6861142 | Wilkie et al. | Mar 2005 | B1 |
6863694 | Boyce et al. | Mar 2005 | B1 |
6866178 | Adams et al. | Mar 2005 | B2 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6867248 | Martin et al. | Mar 2005 | B1 |
6869430 | Balbierz et al. | Mar 2005 | B2 |
6869435 | Blake, III | Mar 2005 | B2 |
6872214 | Sonnenschein et al. | Mar 2005 | B2 |
6874669 | Adams et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6878106 | Herrmann | Apr 2005 | B1 |
6889116 | Jinno | May 2005 | B2 |
6893435 | Goble | May 2005 | B2 |
6899538 | Matoba | May 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6905498 | Hooven | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6911033 | de Guillebon et al. | Jun 2005 | B2 |
6911916 | Wang et al. | Jun 2005 | B1 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6913608 | Liddicoat et al. | Jul 2005 | B2 |
6913613 | Schwarz et al. | Jul 2005 | B2 |
6921397 | Corcoran et al. | Jul 2005 | B2 |
6921412 | Black et al. | Jul 2005 | B1 |
6923093 | Ullah | Aug 2005 | B2 |
6923803 | Goble | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929641 | Goble et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6931830 | Liao | Aug 2005 | B2 |
6932218 | Kosann et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6936042 | Wallace et al. | Aug 2005 | B2 |
6936948 | Bell et al. | Aug 2005 | B2 |
6939358 | Palacios et al. | Sep 2005 | B2 |
6942662 | Goble et al. | Sep 2005 | B2 |
6945444 | Gresham et al. | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6958035 | Friedman et al. | Oct 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6960107 | Schaub et al. | Nov 2005 | B1 |
6960163 | Ewers et al. | Nov 2005 | B2 |
6960220 | Marino et al. | Nov 2005 | B2 |
6962587 | Johnson et al. | Nov 2005 | B2 |
6963792 | Green | Nov 2005 | B1 |
6964363 | Wales et al. | Nov 2005 | B2 |
6966907 | Goble | Nov 2005 | B2 |
6966909 | Marshall et al. | Nov 2005 | B2 |
6971988 | Orban, III | Dec 2005 | B2 |
6972199 | Lebouitz et al. | Dec 2005 | B2 |
6974462 | Sater | Dec 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
6978922 | Bilotti et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6981941 | Whitman | Jan 2006 | B2 |
6981978 | Gannoe | Jan 2006 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6984231 | Goble et al. | Jan 2006 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
6988650 | Schwemberger et al. | Jan 2006 | B2 |
6990796 | Schnipke et al. | Jan 2006 | B2 |
6993413 | Sunaoshi | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6995729 | Govari et al. | Feb 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
6998816 | Wieck et al. | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7000819 | Swayze et al. | Feb 2006 | B2 |
7001380 | Goble | Feb 2006 | B2 |
7001408 | Knodel et al. | Feb 2006 | B2 |
7008435 | Cummins | Mar 2006 | B2 |
7009039 | Yayon et al. | Mar 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7018357 | Emmons | Mar 2006 | B2 |
7018390 | Turovskiy et al. | Mar 2006 | B2 |
7021669 | Lindermeir et al. | Apr 2006 | B1 |
7025743 | Mann et al. | Apr 2006 | B2 |
7029435 | Nakao | Apr 2006 | B2 |
7029439 | Roberts et al. | Apr 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7032799 | Viola et al. | Apr 2006 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7036680 | Flannery | May 2006 | B1 |
7037344 | Kagan et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7041868 | Greene et al. | May 2006 | B2 |
7043852 | Hayashida et al. | May 2006 | B2 |
7044350 | Kameyama et al. | May 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044353 | Mastri et al. | May 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7048745 | Tierney et al. | May 2006 | B2 |
7052494 | Goble et al. | May 2006 | B2 |
7052499 | Steger et al. | May 2006 | B2 |
7055730 | Ehrenfels et al. | Jun 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7056284 | Martone et al. | Jun 2006 | B2 |
7056330 | Gayton | Jun 2006 | B2 |
7059331 | Adams et al. | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7063671 | Couvillon, Jr. | Jun 2006 | B2 |
7063712 | Vargas et al. | Jun 2006 | B2 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066944 | Laufer et al. | Jun 2006 | B2 |
7067038 | Trokhan et al. | Jun 2006 | B2 |
7070083 | Jankowski | Jul 2006 | B2 |
7070559 | Adams et al. | Jul 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7071287 | Rhine et al. | Jul 2006 | B2 |
7075770 | Smith | Jul 2006 | B1 |
7077856 | Whitman | Jul 2006 | B2 |
7080769 | Vresh et al. | Jul 2006 | B2 |
7081114 | Rashidi | Jul 2006 | B2 |
7083073 | Yoshie et al. | Aug 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7083571 | Wang et al. | Aug 2006 | B2 |
7083615 | Peterson et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7083620 | Jahns et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7087071 | Nicholas et al. | Aug 2006 | B2 |
7090637 | Danitz et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7090683 | Brock et al. | Aug 2006 | B2 |
7090684 | McGuckin, Jr. et al. | Aug 2006 | B2 |
7094202 | Nobis et al. | Aug 2006 | B2 |
7094247 | Monassevitch et al. | Aug 2006 | B2 |
7097089 | Marczyk | Aug 2006 | B2 |
7097644 | Long | Aug 2006 | B2 |
7097650 | Weller et al. | Aug 2006 | B2 |
7098794 | Lindsay et al. | Aug 2006 | B2 |
7100949 | Williams et al. | Sep 2006 | B2 |
7101394 | Hamm et al. | Sep 2006 | B2 |
7104741 | Krohn | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7108701 | Evens et al. | Sep 2006 | B2 |
7108709 | Cummins | Sep 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7112214 | Peterson et al. | Sep 2006 | B2 |
RE39358 | Goble | Oct 2006 | E |
7114642 | Whitman | Oct 2006 | B2 |
7118582 | Wang et al. | Oct 2006 | B1 |
7121446 | Arad et al. | Oct 2006 | B2 |
7122028 | Looper et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7126303 | Farritor et al. | Oct 2006 | B2 |
7126879 | Snyder | Oct 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7131445 | Amoah | Nov 2006 | B2 |
7133601 | Phillips et al. | Nov 2006 | B2 |
7134587 | Schwemberger et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7137981 | Long | Nov 2006 | B2 |
7139016 | Squilla et al. | Nov 2006 | B2 |
7140527 | Ehrenfels et al. | Nov 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143924 | Scirica et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7147139 | Schwemberger et al. | Dec 2006 | B2 |
7147140 | Wukusick et al. | Dec 2006 | B2 |
7147637 | Goble | Dec 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7150748 | Ebbutt et al. | Dec 2006 | B2 |
7153300 | Goble | Dec 2006 | B2 |
7155316 | Sutherland et al. | Dec 2006 | B2 |
7156863 | Sonnenschein et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7161036 | Oikawa et al. | Jan 2007 | B2 |
7166133 | Evans et al. | Jan 2007 | B2 |
7168604 | Milliman et al. | Jan 2007 | B2 |
7172104 | Scirica et al. | Feb 2007 | B2 |
7172593 | Trieu et al. | Feb 2007 | B2 |
7179223 | Motoki et al. | Feb 2007 | B2 |
7179267 | Nolan et al. | Feb 2007 | B2 |
7182239 | Myers | Feb 2007 | B1 |
7182763 | Nardella | Feb 2007 | B2 |
7183737 | Kitagawa | Feb 2007 | B2 |
7188758 | Viola et al. | Mar 2007 | B2 |
7189207 | Viola | Mar 2007 | B2 |
7195627 | Amoah et al. | Mar 2007 | B2 |
7199537 | Okamura et al. | Apr 2007 | B2 |
7202653 | Pai | Apr 2007 | B2 |
7204835 | Latterell et al. | Apr 2007 | B2 |
7207233 | Wadge | Apr 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7207472 | Wukusick et al. | Apr 2007 | B2 |
7207556 | Saitoh et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7210609 | Leiboff et al. | May 2007 | B2 |
7211081 | Goble | May 2007 | B2 |
7211084 | Goble et al. | May 2007 | B2 |
7211092 | Hughett | May 2007 | B2 |
7211979 | Khatib et al. | May 2007 | B2 |
7213736 | Wales et al. | May 2007 | B2 |
7214224 | Goble | May 2007 | B2 |
7215517 | Takamatsu | May 2007 | B2 |
7217285 | Vargas et al. | May 2007 | B2 |
7220260 | Fleming et al. | May 2007 | B2 |
7220272 | Weadock | May 2007 | B2 |
7225963 | Scirica | Jun 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7234624 | Gresham et al. | Jun 2007 | B2 |
7235089 | McGuckin, Jr. | Jun 2007 | B1 |
7235302 | Jing et al. | Jun 2007 | B2 |
7237708 | Guy et al. | Jul 2007 | B1 |
7238195 | Viola | Jul 2007 | B2 |
7238901 | Kim et al. | Jul 2007 | B2 |
7241288 | Braun | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7247161 | Johnston et al. | Jul 2007 | B2 |
7249267 | Chapius | Jul 2007 | B2 |
7252660 | Kunz | Aug 2007 | B2 |
7255696 | Goble et al. | Aug 2007 | B2 |
7256695 | Hamel et al. | Aug 2007 | B2 |
7258262 | Mastri et al. | Aug 2007 | B2 |
7258546 | Beier et al. | Aug 2007 | B2 |
7260431 | Libbus et al. | Aug 2007 | B2 |
7265374 | Lee et al. | Sep 2007 | B2 |
7267679 | McGuckin, Jr. et al. | Sep 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
7278562 | Mastri et al. | Oct 2007 | B2 |
7278563 | Green | Oct 2007 | B1 |
7278949 | Bader | Oct 2007 | B2 |
7278994 | Goble | Oct 2007 | B2 |
7282048 | Goble et al. | Oct 2007 | B2 |
7286850 | Frielink et al. | Oct 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7293685 | Ehrenfels et al. | Nov 2007 | B2 |
7295893 | Sunaoshi | Nov 2007 | B2 |
7295907 | Lu et al. | Nov 2007 | B2 |
7296722 | Ivanko | Nov 2007 | B2 |
7296724 | Green et al. | Nov 2007 | B2 |
7297149 | Vitali et al. | Nov 2007 | B2 |
7300373 | Jinno et al. | Nov 2007 | B2 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303106 | Milliman et al. | Dec 2007 | B2 |
7303107 | Milliman et al. | Dec 2007 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7303502 | Thompson | Dec 2007 | B2 |
7303556 | Metzger | Dec 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7308998 | Mastri et al. | Dec 2007 | B2 |
7322859 | Evans | Jan 2008 | B2 |
7322975 | Goble et al. | Jan 2008 | B2 |
7322994 | Nicholas et al. | Jan 2008 | B2 |
7324572 | Chang | Jan 2008 | B2 |
7326203 | Papineau et al. | Feb 2008 | B2 |
7326213 | Benderev et al. | Feb 2008 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7328829 | Arad et al. | Feb 2008 | B2 |
7330004 | DeJonge et al. | Feb 2008 | B2 |
7331340 | Barney | Feb 2008 | B2 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7334718 | McAlister et al. | Feb 2008 | B2 |
7335199 | Goble et al. | Feb 2008 | B2 |
7336048 | Lohr | Feb 2008 | B2 |
7336184 | Smith et al. | Feb 2008 | B2 |
7338513 | Lee et al. | Mar 2008 | B2 |
7341591 | Grinberg | Mar 2008 | B2 |
7343920 | Toby et al. | Mar 2008 | B2 |
7344532 | Goble et al. | Mar 2008 | B2 |
7344533 | Pearson et al. | Mar 2008 | B2 |
7346344 | Fontaine | Mar 2008 | B2 |
7348763 | Reinhart et al. | Mar 2008 | B1 |
RE40237 | Bilotti et al. | Apr 2008 | E |
7351258 | Ricotta et al. | Apr 2008 | B2 |
7354447 | Shelton, IV et al. | Apr 2008 | B2 |
7354502 | Polat et al. | Apr 2008 | B2 |
7357287 | Shelton, IV et al. | Apr 2008 | B2 |
7357806 | Rivera et al. | Apr 2008 | B2 |
7361195 | Schwartz et al. | Apr 2008 | B2 |
7364060 | Milliman | Apr 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7377918 | Amoah | May 2008 | B2 |
7377928 | Zubik et al. | May 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7384417 | Cucin | Jun 2008 | B2 |
7386365 | Nixon | Jun 2008 | B2 |
7386730 | Uchikubo | Jun 2008 | B2 |
7388217 | Buschbeck et al. | Jun 2008 | B2 |
7388484 | Hsu | Jun 2008 | B2 |
7391173 | Schena | Jun 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7397364 | Govari | Jul 2008 | B2 |
7398907 | Racenet et al. | Jul 2008 | B2 |
7398908 | Holsten et al. | Jul 2008 | B2 |
7400752 | Zacharias | Jul 2008 | B2 |
7401721 | Holsten et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7404509 | Ortiz et al. | Jul 2008 | B2 |
7404822 | Viart et al. | Jul 2008 | B2 |
7407074 | Ortiz et al. | Aug 2008 | B2 |
7407075 | Holsten et al. | Aug 2008 | B2 |
7407076 | Racenet et al. | Aug 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7410086 | Ortiz et al. | Aug 2008 | B2 |
7413563 | Corcoran et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7418078 | Blanz et al. | Aug 2008 | B2 |
RE40514 | Mastri et al. | Sep 2008 | E |
7419080 | Smith et al. | Sep 2008 | B2 |
7419081 | Ehrenfels et al. | Sep 2008 | B2 |
7419495 | Menn et al. | Sep 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422138 | Bilotti et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7424965 | Racenet et al. | Sep 2008 | B2 |
7427607 | Suzuki | Sep 2008 | B2 |
7431188 | Marczyk | Oct 2008 | B1 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7431694 | Stefanchik et al. | Oct 2008 | B2 |
7431730 | Viola | Oct 2008 | B2 |
7434715 | Shelton, IV et al. | Oct 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7438718 | Milliman et al. | Oct 2008 | B2 |
7439354 | Lenges et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7441685 | Boudreaux | Oct 2008 | B1 |
7442201 | Pugsley et al. | Oct 2008 | B2 |
7443547 | Moreno et al. | Oct 2008 | B2 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7451904 | Shelton, IV | Nov 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7455676 | Holsten et al. | Nov 2008 | B2 |
7455682 | Viola | Nov 2008 | B2 |
7461767 | Viola et al. | Dec 2008 | B2 |
7462187 | Johnston et al. | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7467740 | Shelton, IV et al. | Dec 2008 | B2 |
7467849 | Silverbrook et al. | Dec 2008 | B2 |
7472814 | Mastri et al. | Jan 2009 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7472816 | Holsten et al. | Jan 2009 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7473263 | Johnston et al. | Jan 2009 | B2 |
7476237 | Taniguchi et al. | Jan 2009 | B2 |
7479608 | Smith | Jan 2009 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7481348 | Marczyk | Jan 2009 | B2 |
7481349 | Holsten et al. | Jan 2009 | B2 |
7481824 | Boudreaux et al. | Jan 2009 | B2 |
7485133 | Cannon et al. | Feb 2009 | B2 |
7485142 | Milo | Feb 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7490749 | Schall et al. | Feb 2009 | B2 |
7494039 | Racenet et al. | Feb 2009 | B2 |
7494499 | Nagase et al. | Feb 2009 | B2 |
7494501 | Ahlberg et al. | Feb 2009 | B2 |
7500979 | Hueil et al. | Mar 2009 | B2 |
7501198 | Barley et al. | Mar 2009 | B2 |
7503474 | Hillstead et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7507202 | Schoellhorn | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7510566 | Jacobs et al. | Mar 2009 | B2 |
7513408 | Shelton, IV et al. | Apr 2009 | B2 |
7517356 | Heinrich | Apr 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7530984 | Sonnenschein et al. | May 2009 | B2 |
7530985 | Takemoto et al. | May 2009 | B2 |
7533906 | Luettgen et al. | May 2009 | B2 |
7534259 | Lashinski et al. | May 2009 | B2 |
7540867 | Jinno et al. | Jun 2009 | B2 |
7542807 | Bertolero et al. | Jun 2009 | B2 |
7546939 | Adams et al. | Jun 2009 | B2 |
7546940 | Milliman et al. | Jun 2009 | B2 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7549563 | Mather et al. | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7549998 | Braun | Jun 2009 | B2 |
7552854 | Wixey et al. | Jun 2009 | B2 |
7553173 | Kowalick | Jun 2009 | B2 |
7556185 | Viola | Jul 2009 | B2 |
7556186 | Milliman | Jul 2009 | B2 |
7556647 | Drews et al. | Jul 2009 | B2 |
7559449 | Viola | Jul 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7559937 | de la Torre et al. | Jul 2009 | B2 |
7562910 | Kertesz et al. | Jul 2009 | B2 |
7563862 | Sieg et al. | Jul 2009 | B2 |
7565993 | Milliman et al. | Jul 2009 | B2 |
7566300 | Devierre et al. | Jul 2009 | B2 |
7567045 | Fristedt | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7568604 | Ehrenfels et al. | Aug 2009 | B2 |
7568619 | Todd et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7583063 | Dooley | Sep 2009 | B2 |
7588174 | Holsten et al. | Sep 2009 | B2 |
7588175 | Timm et al. | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7591783 | Boulais et al. | Sep 2009 | B2 |
7591818 | Bertolero et al. | Sep 2009 | B2 |
7597229 | Boudreaux et al. | Oct 2009 | B2 |
7597230 | Racenet et al. | Oct 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7600663 | Green | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7607557 | Shelton, IV et al. | Oct 2009 | B2 |
7611038 | Racenet et al. | Nov 2009 | B2 |
7611474 | Hibner et al. | Nov 2009 | B2 |
7615003 | Stefanchik et al. | Nov 2009 | B2 |
7615067 | Lee et al. | Nov 2009 | B2 |
7617961 | Viola | Nov 2009 | B2 |
7624902 | Marczyk et al. | Dec 2009 | B2 |
7624903 | Green et al. | Dec 2009 | B2 |
7625370 | Hart et al. | Dec 2009 | B2 |
7631793 | Rethy et al. | Dec 2009 | B2 |
7631794 | Rethy et al. | Dec 2009 | B2 |
7635074 | Olson et al. | Dec 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7638958 | Philipp et al. | Dec 2009 | B2 |
7641091 | Olson et al. | Jan 2010 | B2 |
7641092 | Kruszynski et al. | Jan 2010 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7641095 | Viola | Jan 2010 | B2 |
7644783 | Roberts et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645230 | Mikkaichi et al. | Jan 2010 | B2 |
7648519 | Lee et al. | Jan 2010 | B2 |
7650185 | Maile et al. | Jan 2010 | B2 |
7651017 | Ortiz et al. | Jan 2010 | B2 |
7651498 | Shifrin et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7655288 | Bauman et al. | Feb 2010 | B2 |
7656131 | Embrey et al. | Feb 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7658312 | Vidal et al. | Feb 2010 | B2 |
7659219 | Biran et al. | Feb 2010 | B2 |
7662161 | Briganti et al. | Feb 2010 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7669746 | Shelton, IV | Mar 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7673780 | Shelton, IV et al. | Mar 2010 | B2 |
7673781 | Swayze et al. | Mar 2010 | B2 |
7673782 | Hess et al. | Mar 2010 | B2 |
7673783 | Morgan et al. | Mar 2010 | B2 |
7674253 | Fisher et al. | Mar 2010 | B2 |
7674255 | Braun | Mar 2010 | B2 |
7674263 | Ryan | Mar 2010 | B2 |
7674270 | Layer | Mar 2010 | B2 |
7682307 | Danitz et al. | Mar 2010 | B2 |
7682367 | Shah et al. | Mar 2010 | B2 |
7686201 | Csiky | Mar 2010 | B2 |
7686804 | Johnson et al. | Mar 2010 | B2 |
7686826 | Lee et al. | Mar 2010 | B2 |
7688028 | Phillips et al. | Mar 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7691103 | Fernandez et al. | Apr 2010 | B2 |
7691106 | Schenberger et al. | Apr 2010 | B2 |
7694865 | Scirica | Apr 2010 | B2 |
7695485 | Whitman et al. | Apr 2010 | B2 |
7699204 | Viola | Apr 2010 | B2 |
7699835 | Lee et al. | Apr 2010 | B2 |
7699844 | Utley et al. | Apr 2010 | B2 |
7699846 | Ryan | Apr 2010 | B2 |
7699856 | Van Wyk et al. | Apr 2010 | B2 |
7699859 | Bombard et al. | Apr 2010 | B2 |
7699860 | Huitema et al. | Apr 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7708180 | Murray et al. | May 2010 | B2 |
7708181 | Cole et al. | May 2010 | B2 |
7708758 | Lee et al. | May 2010 | B2 |
7712182 | Zeiler et al. | May 2010 | B2 |
7714239 | Smith | May 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7717846 | Zirps et al. | May 2010 | B2 |
7718180 | Karp | May 2010 | B2 |
7718556 | Matsuda et al. | May 2010 | B2 |
7721930 | McKenna et al. | May 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7721933 | Ehrenfels et al. | May 2010 | B2 |
7721934 | Shelton, IV et al. | May 2010 | B2 |
7721936 | Shelton, IV et al. | May 2010 | B2 |
7722527 | Bouchier et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
7722610 | Viola et al. | May 2010 | B2 |
7726537 | Olson et al. | Jun 2010 | B2 |
7726538 | Holsten et al. | Jun 2010 | B2 |
7726539 | Holsten et al. | Jun 2010 | B2 |
7727954 | McKay | Jun 2010 | B2 |
7729742 | Govari | Jun 2010 | B2 |
7731072 | Timm et al. | Jun 2010 | B2 |
7731073 | Wixey et al. | Jun 2010 | B2 |
7731724 | Huitema et al. | Jun 2010 | B2 |
7735703 | Morgan et al. | Jun 2010 | B2 |
7736374 | Vaughan et al. | Jun 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7742036 | Grant et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7744624 | Bettuchi | Jun 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7744628 | Viola | Jun 2010 | B2 |
7748587 | Haramiishi et al. | Jul 2010 | B2 |
7749204 | Dhanaraj et al. | Jul 2010 | B2 |
7751870 | Whitman | Jul 2010 | B2 |
7753245 | Boudreaux et al. | Jul 2010 | B2 |
7753246 | Scirica | Jul 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7758612 | Shipp | Jul 2010 | B2 |
7766207 | Mather et al. | Aug 2010 | B2 |
7766209 | Baxter, III et al. | Aug 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7766821 | Brunnen et al. | Aug 2010 | B2 |
7766894 | Weitzner et al. | Aug 2010 | B2 |
7770773 | Whitman et al. | Aug 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7770776 | Chen et al. | Aug 2010 | B2 |
7771396 | Stefanchik et al. | Aug 2010 | B2 |
7772720 | McGee et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7776060 | Mooradian et al. | Aug 2010 | B2 |
7778004 | Nerheim et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7780055 | Scirica et al. | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7780685 | Hunt et al. | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7787256 | Chan et al. | Aug 2010 | B2 |
7789875 | Brock et al. | Sep 2010 | B2 |
7789883 | Takashino et al. | Sep 2010 | B2 |
7789889 | Zubik et al. | Sep 2010 | B2 |
7793812 | Moore | Sep 2010 | B2 |
7794475 | Hess et al. | Sep 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7799039 | Shelton, IV et al. | Sep 2010 | B2 |
7799044 | Johnston et al. | Sep 2010 | B2 |
7799965 | Patel et al. | Sep 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810690 | Bilotti et al. | Oct 2010 | B2 |
7810691 | Boyden et al. | Oct 2010 | B2 |
7810692 | Hall et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7815092 | Whitman et al. | Oct 2010 | B2 |
7815565 | Stefanchik et al. | Oct 2010 | B2 |
7819296 | Hueil et al. | Oct 2010 | B2 |
7819297 | Doll et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7819884 | Lee et al. | Oct 2010 | B2 |
7819886 | Whitfield et al. | Oct 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7823760 | Zemlok et al. | Nov 2010 | B2 |
7824401 | Manzo et al. | Nov 2010 | B2 |
7824426 | Racenet et al. | Nov 2010 | B2 |
7828189 | Holsten et al. | Nov 2010 | B2 |
7828794 | Sartor | Nov 2010 | B2 |
7828808 | Hinman et al. | Nov 2010 | B2 |
7831292 | Quaid et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832611 | Boyden et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7833234 | Bailly et al. | Nov 2010 | B2 |
7836400 | May et al. | Nov 2010 | B2 |
7837079 | Holsten et al. | Nov 2010 | B2 |
7837080 | Schwemberger | Nov 2010 | B2 |
7837081 | Holsten et al. | Nov 2010 | B2 |
7837694 | Tethrake et al. | Nov 2010 | B2 |
7838789 | Stoffers et al. | Nov 2010 | B2 |
7841503 | Sonnenschein et al. | Nov 2010 | B2 |
7842025 | Coleman et al. | Nov 2010 | B2 |
7842028 | Lee | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7845535 | Scircia | Dec 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7846149 | Jankowski | Dec 2010 | B2 |
7850642 | Moll et al. | Dec 2010 | B2 |
7850982 | Stopek et al. | Dec 2010 | B2 |
7854736 | Ryan | Dec 2010 | B2 |
7857183 | Shelton, IV | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
7857186 | Baxter, III et al. | Dec 2010 | B2 |
7857813 | Schmitz et al. | Dec 2010 | B2 |
7861906 | Doll et al. | Jan 2011 | B2 |
7862579 | Ortiz et al. | Jan 2011 | B2 |
7866525 | Scirica | Jan 2011 | B2 |
7866527 | Hall et al. | Jan 2011 | B2 |
7866528 | Olson et al. | Jan 2011 | B2 |
7870989 | Viola et al. | Jan 2011 | B2 |
7871418 | Thompson et al. | Jan 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7883465 | Donofrio et al. | Feb 2011 | B2 |
7886951 | Hessler | Feb 2011 | B2 |
7886952 | Scirica et al. | Feb 2011 | B2 |
7887530 | Zemlok et al. | Feb 2011 | B2 |
7887535 | Lands et al. | Feb 2011 | B2 |
7891531 | Ward | Feb 2011 | B1 |
7891532 | Mastri et al. | Feb 2011 | B2 |
7892245 | Liddicoat et al. | Feb 2011 | B2 |
7893586 | West et al. | Feb 2011 | B2 |
7896214 | Farascioni | Mar 2011 | B2 |
7896215 | Adams et al. | Mar 2011 | B2 |
7896877 | Hall et al. | Mar 2011 | B2 |
7896895 | Boudreaux et al. | Mar 2011 | B2 |
7900805 | Shelton, IV et al. | Mar 2011 | B2 |
7905380 | Shelton, IV et al. | Mar 2011 | B2 |
7905381 | Baxter, III et al. | Mar 2011 | B2 |
7905889 | Catanese, III et al. | Mar 2011 | B2 |
7905902 | Huitema et al. | Mar 2011 | B2 |
7909191 | Baker et al. | Mar 2011 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7909221 | Viola et al. | Mar 2011 | B2 |
7913891 | Doll et al. | Mar 2011 | B2 |
7913893 | Mastri et al. | Mar 2011 | B2 |
7914543 | Roth et al. | Mar 2011 | B2 |
7914551 | Ortiz et al. | Mar 2011 | B2 |
7918230 | Whitman et al. | Apr 2011 | B2 |
7918376 | Knodel et al. | Apr 2011 | B1 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7918848 | Lau et al. | Apr 2011 | B2 |
7918867 | Dana et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922063 | Zemlok et al. | Apr 2011 | B2 |
7922743 | Heinrich et al. | Apr 2011 | B2 |
7923144 | Kohn et al. | Apr 2011 | B2 |
7926691 | Viola et al. | Apr 2011 | B2 |
7927328 | Orszulak et al. | Apr 2011 | B2 |
7928281 | Augustine | Apr 2011 | B2 |
7930065 | Larkin et al. | Apr 2011 | B2 |
7931660 | Aranyi et al. | Apr 2011 | B2 |
7931695 | Ringeisen | Apr 2011 | B2 |
7934630 | Shelton, IV et al. | May 2011 | B2 |
7934631 | Balbierz et al. | May 2011 | B2 |
7935773 | Hadba et al. | May 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7941865 | Seman, Jr. et al. | May 2011 | B2 |
7942303 | Shah | May 2011 | B2 |
7942890 | D'Agostino et al. | May 2011 | B2 |
7944175 | Mori et al. | May 2011 | B2 |
7945792 | Cherpantier | May 2011 | B2 |
7950560 | Zemlok et al. | May 2011 | B2 |
7950561 | Aranyi | May 2011 | B2 |
7951071 | Whitman et al. | May 2011 | B2 |
7951166 | Orban et al. | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7954684 | Boudreaux | Jun 2011 | B2 |
7954686 | Baxter, III et al. | Jun 2011 | B2 |
7954687 | Zemlok et al. | Jun 2011 | B2 |
7955257 | Frasier et al. | Jun 2011 | B2 |
7955322 | Devengenzo et al. | Jun 2011 | B2 |
7955380 | Chu et al. | Jun 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959051 | Smith et al. | Jun 2011 | B2 |
7959052 | Sonnenschein et al. | Jun 2011 | B2 |
7963432 | Knodel et al. | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7963964 | Santilli et al. | Jun 2011 | B2 |
7964206 | Suokas et al. | Jun 2011 | B2 |
7966799 | Morgan et al. | Jun 2011 | B2 |
7967178 | Scirica et al. | Jun 2011 | B2 |
7967179 | Olson et al. | Jun 2011 | B2 |
7967180 | Scirica | Jun 2011 | B2 |
7967181 | Viola et al. | Jun 2011 | B2 |
7967839 | Flock et al. | Jun 2011 | B2 |
7972298 | Wallace et al. | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7987405 | Turner et al. | Jul 2011 | B2 |
7988026 | Knodel et al. | Aug 2011 | B2 |
7988027 | Olson et al. | Aug 2011 | B2 |
7988028 | Farascioni et al. | Aug 2011 | B2 |
7992757 | Wheeler et al. | Aug 2011 | B2 |
7993360 | Hacker et al. | Aug 2011 | B2 |
7994670 | Ji | Aug 2011 | B2 |
7997468 | Farascioni | Aug 2011 | B2 |
7997469 | Olson et al. | Aug 2011 | B2 |
8002696 | Suzuki | Aug 2011 | B2 |
8002784 | Jinno et al. | Aug 2011 | B2 |
8002785 | Weiss et al. | Aug 2011 | B2 |
8002795 | Beetel | Aug 2011 | B2 |
8006365 | Levin et al. | Aug 2011 | B2 |
8006885 | Marczyk | Aug 2011 | B2 |
8006889 | Adams et al. | Aug 2011 | B2 |
8007511 | Brock et al. | Aug 2011 | B2 |
8011550 | Aranyi et al. | Sep 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8011553 | Mastri et al. | Sep 2011 | B2 |
8011555 | Tarinelli et al. | Sep 2011 | B2 |
8012170 | Whitman et al. | Sep 2011 | B2 |
8016176 | Kasvikis et al. | Sep 2011 | B2 |
8016177 | Bettuchi et al. | Sep 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8016858 | Whitman | Sep 2011 | B2 |
8016881 | Furst | Sep 2011 | B2 |
8020742 | Marczyk | Sep 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8021375 | Aldrich et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8028884 | Sniffin et al. | Oct 2011 | B2 |
8028885 | Smith et al. | Oct 2011 | B2 |
8034077 | Smith et al. | Oct 2011 | B2 |
8034363 | Li et al. | Oct 2011 | B2 |
8037591 | Spivey et al. | Oct 2011 | B2 |
8038045 | Bettuchi et al. | Oct 2011 | B2 |
8038046 | Smith et al. | Oct 2011 | B2 |
8038686 | Huitema et al. | Oct 2011 | B2 |
8043207 | Adams | Oct 2011 | B2 |
8043328 | Hahnen et al. | Oct 2011 | B2 |
8044536 | Nguyen et al. | Oct 2011 | B2 |
8047236 | Perry | Nov 2011 | B2 |
8048503 | Farnsworth et al. | Nov 2011 | B2 |
8056787 | Boudreaux et al. | Nov 2011 | B2 |
8056788 | Mastri et al. | Nov 2011 | B2 |
8057508 | Shelton, IV | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8060250 | Reiland et al. | Nov 2011 | B2 |
8061576 | Cappola | Nov 2011 | B2 |
8062330 | Prommersberger et al. | Nov 2011 | B2 |
8063619 | Zhu et al. | Nov 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8066168 | Vidal et al. | Nov 2011 | B2 |
D650074 | Hunt et al. | Dec 2011 | S |
8070033 | Milliman et al. | Dec 2011 | B2 |
8070035 | Holsten et al. | Dec 2011 | B2 |
8070743 | Kagan et al. | Dec 2011 | B2 |
8075571 | Vitali et al. | Dec 2011 | B2 |
8079950 | Stern et al. | Dec 2011 | B2 |
8080004 | Downey et al. | Dec 2011 | B2 |
8083118 | Milliman et al. | Dec 2011 | B2 |
8083119 | Prommersberger | Dec 2011 | B2 |
8083120 | Shelton, IV et al. | Dec 2011 | B2 |
8084001 | Burns et al. | Dec 2011 | B2 |
8085013 | Wei et al. | Dec 2011 | B2 |
8087563 | Milliman et al. | Jan 2012 | B2 |
8089509 | Chatenever et al. | Jan 2012 | B2 |
8091756 | Viola | Jan 2012 | B2 |
8092443 | Bischoff | Jan 2012 | B2 |
8092932 | Phillips et al. | Jan 2012 | B2 |
8096458 | Hessler | Jan 2012 | B2 |
8097017 | Viola | Jan 2012 | B2 |
8100310 | Zemlok | Jan 2012 | B2 |
8100872 | Patel | Jan 2012 | B2 |
8102278 | Deck et al. | Jan 2012 | B2 |
8105350 | Lee et al. | Jan 2012 | B2 |
8107925 | Natsuno et al. | Jan 2012 | B2 |
8108072 | Zhao et al. | Jan 2012 | B2 |
8109426 | Milliman et al. | Feb 2012 | B2 |
8110208 | Hen | Feb 2012 | B1 |
8113405 | Milliman | Feb 2012 | B2 |
8113410 | Hall et al. | Feb 2012 | B2 |
8114100 | Smith et al. | Feb 2012 | B2 |
8122128 | Burke | Feb 2012 | B2 |
8123103 | Milliman | Feb 2012 | B2 |
8123766 | Bauman et al. | Feb 2012 | B2 |
8123767 | Bauman et al. | Feb 2012 | B2 |
8125168 | Johnson et al. | Feb 2012 | B2 |
8127975 | Olson et al. | Mar 2012 | B2 |
8127976 | Scirica et al. | Mar 2012 | B2 |
8128624 | Couture et al. | Mar 2012 | B2 |
8128643 | Aranyi et al. | Mar 2012 | B2 |
8128645 | Sonnenschein et al. | Mar 2012 | B2 |
8132703 | Milliman et al. | Mar 2012 | B2 |
8132706 | Marczyk et al. | Mar 2012 | B2 |
8134306 | Drader et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8136713 | Hathaway et al. | Mar 2012 | B2 |
8137339 | Jinno et al. | Mar 2012 | B2 |
8140417 | Shibata | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8141763 | Milliman | Mar 2012 | B2 |
8142425 | Eggers | Mar 2012 | B2 |
8146790 | Milliman | Apr 2012 | B2 |
8147485 | Wham et al. | Apr 2012 | B2 |
8152041 | Kostrzewski | Apr 2012 | B2 |
8154239 | Katsuki et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8157148 | Scirica | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8157152 | Holsten et al. | Apr 2012 | B2 |
8157153 | Shelton, IV et al. | Apr 2012 | B2 |
8157793 | Omori et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162138 | Bettenhausen et al. | Apr 2012 | B2 |
8162197 | Mastri et al. | Apr 2012 | B2 |
8167185 | Shelton, IV et al. | May 2012 | B2 |
8167895 | D'Agostino et al. | May 2012 | B2 |
8167898 | Schaller et al. | May 2012 | B1 |
8170241 | Roe et al. | May 2012 | B2 |
8172120 | Boyden et al. | May 2012 | B2 |
8172122 | Kasvikis et al. | May 2012 | B2 |
8172124 | Shelton, IV et al. | May 2012 | B2 |
8177797 | Shimoji et al. | May 2012 | B2 |
8179705 | Chapuis | May 2012 | B2 |
8180458 | Kane et al. | May 2012 | B2 |
8181840 | Milliman | May 2012 | B2 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8186560 | Hess et al. | May 2012 | B2 |
8191752 | Scirica | Jun 2012 | B2 |
8192460 | Orban, III et al. | Jun 2012 | B2 |
8196795 | Moore | Jun 2012 | B2 |
8196796 | Shelton, IV et al. | Jun 2012 | B2 |
8197501 | Shadeck et al. | Jun 2012 | B2 |
8197502 | Smith et al. | Jun 2012 | B2 |
8201720 | Hessler | Jun 2012 | B2 |
8201721 | Zemlok et al. | Jun 2012 | B2 |
8205779 | Ma | Jun 2012 | B2 |
8205780 | Sorrentino et al. | Jun 2012 | B2 |
8205781 | Baxter, III et al. | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8210414 | Bettuchi et al. | Jul 2012 | B2 |
8210415 | Ward | Jul 2012 | B2 |
8210416 | Milliman et al. | Jul 2012 | B2 |
8211125 | Spivey | Jul 2012 | B2 |
8214019 | Govari et al. | Jul 2012 | B2 |
8215531 | Shelton, IV et al. | Jul 2012 | B2 |
8215533 | Viola et al. | Jul 2012 | B2 |
8220468 | Cooper et al. | Jul 2012 | B2 |
8220688 | Laurent et al. | Jul 2012 | B2 |
8220690 | Hess et al. | Jul 2012 | B2 |
8221424 | Cha | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8226715 | Hwang et al. | Jul 2012 | B2 |
8227946 | Kim | Jul 2012 | B2 |
8228048 | Spencer | Jul 2012 | B2 |
8231040 | Zemlok et al. | Jul 2012 | B2 |
8231041 | Marczyk et al. | Jul 2012 | B2 |
8231042 | Hessler et al. | Jul 2012 | B2 |
8231043 | Tarinelli et al. | Jul 2012 | B2 |
8236010 | Ortiz et al. | Aug 2012 | B2 |
8241271 | Millman et al. | Aug 2012 | B2 |
8241308 | Kortenbach et al. | Aug 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8245594 | Rogers et al. | Aug 2012 | B2 |
8245898 | Smith et al. | Aug 2012 | B2 |
8245899 | Swensgard et al. | Aug 2012 | B2 |
8245900 | Scirica | Aug 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8246637 | Viola et al. | Aug 2012 | B2 |
8256654 | Bettuchi et al. | Sep 2012 | B2 |
8256655 | Sniffin et al. | Sep 2012 | B2 |
8256656 | Milliman et al. | Sep 2012 | B2 |
8257251 | Shelton, IV et al. | Sep 2012 | B2 |
8257356 | Bleich et al. | Sep 2012 | B2 |
8257391 | Orban, III et al. | Sep 2012 | B2 |
8262655 | Ghabrial et al. | Sep 2012 | B2 |
8267300 | Boudreaux | Sep 2012 | B2 |
8267924 | Zemlok et al. | Sep 2012 | B2 |
8267946 | Whitfield et al. | Sep 2012 | B2 |
8267951 | Whayne et al. | Sep 2012 | B2 |
8269121 | Smith | Sep 2012 | B2 |
8272553 | Mastri et al. | Sep 2012 | B2 |
8272554 | Whitman et al. | Sep 2012 | B2 |
8273404 | Dave et al. | Sep 2012 | B2 |
8276801 | Zemlok et al. | Oct 2012 | B2 |
8276802 | Kostrzewski | Oct 2012 | B2 |
8277473 | Sunaoshi et al. | Oct 2012 | B2 |
8281973 | Wenchell et al. | Oct 2012 | B2 |
8281974 | Hessler et al. | Oct 2012 | B2 |
8282654 | Ferrari et al. | Oct 2012 | B2 |
8286845 | Perry et al. | Oct 2012 | B2 |
8287561 | Nunez et al. | Oct 2012 | B2 |
8292147 | Viola | Oct 2012 | B2 |
8292150 | Bryant | Oct 2012 | B2 |
8292151 | Viola | Oct 2012 | B2 |
8292152 | Milliman et al. | Oct 2012 | B2 |
8292155 | Shelton, IV et al. | Oct 2012 | B2 |
8292157 | Smith et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8298161 | Vargas | Oct 2012 | B2 |
8298677 | Wiesner et al. | Oct 2012 | B2 |
8302323 | Fortier et al. | Nov 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8308042 | Aranyi | Nov 2012 | B2 |
8308046 | Prommersberger | Nov 2012 | B2 |
8308659 | Scheibe et al. | Nov 2012 | B2 |
8313496 | Sauer et al. | Nov 2012 | B2 |
8313509 | Kostrzewski | Nov 2012 | B2 |
8317070 | Hueil et al. | Nov 2012 | B2 |
8317071 | Knodel | Nov 2012 | B1 |
8317074 | Ortiz et al. | Nov 2012 | B2 |
8317790 | Bell et al. | Nov 2012 | B2 |
8319002 | Daniels et al. | Nov 2012 | B2 |
8322455 | Shelton, IV et al. | Dec 2012 | B2 |
8322589 | Boudreaux | Dec 2012 | B2 |
8322590 | Patel et al. | Dec 2012 | B2 |
8323789 | Rozhin et al. | Dec 2012 | B2 |
8328061 | Kasvikis | Dec 2012 | B2 |
8328062 | Viola | Dec 2012 | B2 |
8328063 | Milliman et al. | Dec 2012 | B2 |
8328064 | Racenet et al. | Dec 2012 | B2 |
8328802 | Deville et al. | Dec 2012 | B2 |
8328823 | Aranyi et al. | Dec 2012 | B2 |
8333313 | Boudreaux et al. | Dec 2012 | B2 |
8333764 | Francischelli et al. | Dec 2012 | B2 |
8336753 | Olson et al. | Dec 2012 | B2 |
8336754 | Cappola et al. | Dec 2012 | B2 |
8342377 | Milliman et al. | Jan 2013 | B2 |
8342378 | Marczyk et al. | Jan 2013 | B2 |
8342379 | Whitman et al. | Jan 2013 | B2 |
8348123 | Scirica et al. | Jan 2013 | B2 |
8348125 | Viola et al. | Jan 2013 | B2 |
8348126 | Olson et al. | Jan 2013 | B2 |
8348127 | Marczyk | Jan 2013 | B2 |
8348129 | Bedi et al. | Jan 2013 | B2 |
8348130 | Shah et al. | Jan 2013 | B2 |
8348131 | Omaits et al. | Jan 2013 | B2 |
8348972 | Soltz et al. | Jan 2013 | B2 |
8353437 | Boudreaux | Jan 2013 | B2 |
8353438 | Baxter, III et al. | Jan 2013 | B2 |
8353439 | Baxter, III et al. | Jan 2013 | B2 |
8356740 | Knodel | Jan 2013 | B1 |
8357144 | Whitman et al. | Jan 2013 | B2 |
8360296 | Zingman | Jan 2013 | B2 |
8360297 | Shelton, IV et al. | Jan 2013 | B2 |
8360298 | Farascioni et al. | Jan 2013 | B2 |
8360299 | Zemlok et al. | Jan 2013 | B2 |
8361501 | DiTizio et al. | Jan 2013 | B2 |
8365973 | White et al. | Feb 2013 | B1 |
8365975 | Manoux et al. | Feb 2013 | B1 |
8365976 | Hess et al. | Feb 2013 | B2 |
8366559 | Papenfuss et al. | Feb 2013 | B2 |
8371491 | Huitema et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8371493 | Aranyi et al. | Feb 2013 | B2 |
8372094 | Bettuchi et al. | Feb 2013 | B2 |
8376865 | Forster et al. | Feb 2013 | B2 |
8377044 | Coe et al. | Feb 2013 | B2 |
8388633 | Rousseau et al. | Mar 2013 | B2 |
8389588 | Ringelsen | Mar 2013 | B2 |
8393513 | Jankowski | Mar 2013 | B2 |
8393514 | Shelton, IV et al. | Mar 2013 | B2 |
8393516 | Kostrzewski | Mar 2013 | B2 |
8397971 | Yates et al. | Mar 2013 | B2 |
8398633 | Mueller | Mar 2013 | B2 |
8398673 | Hinchliffe et al. | Mar 2013 | B2 |
8403138 | Weisshaupt et al. | Mar 2013 | B2 |
8403198 | Sorrentino et al. | Mar 2013 | B2 |
8403832 | Cunningham et al. | Mar 2013 | B2 |
8403945 | Whitfield et al. | Mar 2013 | B2 |
8408439 | Huang et al. | Apr 2013 | B2 |
8408442 | Racenet et al. | Apr 2013 | B2 |
8409079 | Oakamoto et al. | Apr 2013 | B2 |
8409174 | Omori | Apr 2013 | B2 |
8409222 | Whitfield et al. | Apr 2013 | B2 |
8409223 | Sorrentino et al. | Apr 2013 | B2 |
8413870 | Pastorelli et al. | Apr 2013 | B2 |
8413871 | Racenet et al. | Apr 2013 | B2 |
8413872 | Patel | Apr 2013 | B2 |
8414577 | Boudreaux et al. | Apr 2013 | B2 |
8418909 | Kostrzewski | Apr 2013 | B2 |
8424737 | Scirica | Apr 2013 | B2 |
8424739 | Racenet et al. | Apr 2013 | B2 |
8424740 | Shelton, IV et al. | Apr 2013 | B2 |
8424741 | McGuckin, Jr. et al. | Apr 2013 | B2 |
8425600 | Maxwell | Apr 2013 | B2 |
8430292 | Patel et al. | Apr 2013 | B2 |
8430892 | Bindra et al. | Apr 2013 | B2 |
8430898 | Wiener et al. | Apr 2013 | B2 |
8439246 | Knodel et al. | May 2013 | B1 |
8444036 | Shelton, IV | May 2013 | B2 |
8444549 | Viola et al. | May 2013 | B2 |
8453904 | Eskaros et al. | Jun 2013 | B2 |
8453906 | Huang et al. | Jun 2013 | B2 |
8453907 | Laurent et al. | Jun 2013 | B2 |
8453908 | Bedi et al. | Jun 2013 | B2 |
8453912 | Mastri et al. | Jun 2013 | B2 |
8453914 | Laurent et al. | Jun 2013 | B2 |
8454628 | Smith et al. | Jun 2013 | B2 |
8457757 | Cauller et al. | Jun 2013 | B2 |
8459520 | Giordano et al. | Jun 2013 | B2 |
8459525 | Yates et al. | Jun 2013 | B2 |
8464922 | Marczyk | Jun 2013 | B2 |
8464923 | Shelton, IV | Jun 2013 | B2 |
8464924 | Gresham et al. | Jun 2013 | B2 |
8464925 | Hull et al. | Jun 2013 | B2 |
8465502 | Zergiebel | Jun 2013 | B2 |
8469973 | Meade et al. | Jun 2013 | B2 |
8474677 | Woodard, Jr. et al. | Jul 2013 | B2 |
8475453 | Marczyk et al. | Jul 2013 | B2 |
8475474 | Bombard et al. | Jul 2013 | B2 |
8479969 | Shelton, IV | Jul 2013 | B2 |
8480703 | Nicholas et al. | Jul 2013 | B2 |
8485412 | Shelton, IV et al. | Jul 2013 | B2 |
8485413 | Scheib et al. | Jul 2013 | B2 |
8490853 | Criscuolo et al. | Jul 2013 | B2 |
8491581 | Deville et al. | Jul 2013 | B2 |
8496156 | Sniffin et al. | Jul 2013 | B2 |
8496683 | Prommersberger et al. | Jul 2013 | B2 |
8499992 | Whitman et al. | Aug 2013 | B2 |
8499993 | Shelton, IV et al. | Aug 2013 | B2 |
8500762 | Sholev et al. | Aug 2013 | B2 |
8506557 | Zemlok et al. | Aug 2013 | B2 |
8506580 | Zergiebel et al. | Aug 2013 | B2 |
8506581 | Wingardner, III et al. | Aug 2013 | B2 |
8511308 | Hecox et al. | Aug 2013 | B2 |
8512359 | Whitman et al. | Aug 2013 | B2 |
8517239 | Scheib et al. | Aug 2013 | B2 |
8517241 | Nicholas et al. | Aug 2013 | B2 |
8517243 | Giordano et al. | Aug 2013 | B2 |
8517244 | Shelton, IV et al. | Aug 2013 | B2 |
8521273 | Kliman | Aug 2013 | B2 |
8523043 | Ullrich et al. | Sep 2013 | B2 |
8523881 | Cabiri et al. | Sep 2013 | B2 |
8523900 | Jinno et al. | Sep 2013 | B2 |
8529588 | Ahlberg et al. | Sep 2013 | B2 |
8529600 | Woodard, Jr. et al. | Sep 2013 | B2 |
8529819 | Ostapoff et al. | Sep 2013 | B2 |
8534528 | Shelton, IV | Sep 2013 | B2 |
8535304 | Sklar et al. | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8540129 | Baxter, III et al. | Sep 2013 | B2 |
8540130 | Moore et al. | Sep 2013 | B2 |
8540131 | Swayze | Sep 2013 | B2 |
8540133 | Bedi et al. | Sep 2013 | B2 |
8540733 | Whitman et al. | Sep 2013 | B2 |
8540735 | Mitelberg et al. | Sep 2013 | B2 |
8551076 | Duval et al. | Oct 2013 | B2 |
8556151 | Viola | Oct 2013 | B2 |
8556918 | Bauman et al. | Oct 2013 | B2 |
8561870 | Baxter, III et al. | Oct 2013 | B2 |
8561873 | Ingmanson et al. | Oct 2013 | B2 |
8567656 | Shelton, IV et al. | Oct 2013 | B2 |
8573461 | Shelton, IV et al. | Nov 2013 | B2 |
8573465 | Shelton, IV et al. | Nov 2013 | B2 |
8574199 | von Bülow et al. | Nov 2013 | B2 |
8574263 | Mueller | Nov 2013 | B2 |
8575880 | Grantz | Nov 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8579178 | Holsten et al. | Nov 2013 | B2 |
8579897 | Vakharia et al. | Nov 2013 | B2 |
8579937 | Gresham | Nov 2013 | B2 |
8584919 | Hueil et al. | Nov 2013 | B2 |
8585721 | Kirsch | Nov 2013 | B2 |
8590762 | Hess et al. | Nov 2013 | B2 |
8602287 | Yates et al. | Dec 2013 | B2 |
8602288 | Shelton, IV et al. | Dec 2013 | B2 |
8603135 | Mueller | Dec 2013 | B2 |
8608044 | Hueil et al. | Dec 2013 | B2 |
8608045 | Smith et al. | Dec 2013 | B2 |
8608046 | Laurent et al. | Dec 2013 | B2 |
8608745 | Guzman et al. | Dec 2013 | B2 |
8613383 | Beckman et al. | Dec 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8622274 | Yates et al. | Jan 2014 | B2 |
8622275 | Baxter, III et al. | Jan 2014 | B2 |
8628518 | Blumenkranz et al. | Jan 2014 | B2 |
8628545 | Cabrera et al. | Jan 2014 | B2 |
8631987 | Shelton, IV et al. | Jan 2014 | B2 |
8632462 | Yoo et al. | Jan 2014 | B2 |
8632525 | Kerr et al. | Jan 2014 | B2 |
8632535 | Shelton, IV et al. | Jan 2014 | B2 |
8632563 | Nagase et al. | Jan 2014 | B2 |
8636187 | Hueil et al. | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8636766 | Milliman et al. | Jan 2014 | B2 |
8640788 | Dachs, II et al. | Feb 2014 | B2 |
8647258 | Aranyi et al. | Feb 2014 | B2 |
8652120 | Giordano et al. | Feb 2014 | B2 |
8652151 | Lehman et al. | Feb 2014 | B2 |
8657174 | Yates et al. | Feb 2014 | B2 |
8657176 | Shelton, IV et al. | Feb 2014 | B2 |
8657177 | Scirica et al. | Feb 2014 | B2 |
8657178 | Hueil et al. | Feb 2014 | B2 |
8657482 | Malackowski et al. | Feb 2014 | B2 |
8657808 | McPherson et al. | Feb 2014 | B2 |
8662370 | Takei | Mar 2014 | B2 |
8663192 | Hester et al. | Mar 2014 | B2 |
8668129 | Olson | Mar 2014 | B2 |
8668130 | Hess et al. | Mar 2014 | B2 |
8672206 | Aranyi et al. | Mar 2014 | B2 |
8672207 | Shelton, IV et al. | Mar 2014 | B2 |
8672208 | Hess et al. | Mar 2014 | B2 |
8673210 | Deshays | Mar 2014 | B2 |
8678263 | Viola | Mar 2014 | B2 |
8679093 | Farra | Mar 2014 | B2 |
8679098 | Hart | Mar 2014 | B2 |
8679137 | Bauman et al. | Mar 2014 | B2 |
8679454 | Guire et al. | Mar 2014 | B2 |
8684250 | Bettuchi et al. | Apr 2014 | B2 |
8684253 | Giordano et al. | Apr 2014 | B2 |
8685020 | Weizman et al. | Apr 2014 | B2 |
8695866 | Leimbach et al. | Apr 2014 | B2 |
8696665 | Hunt et al. | Apr 2014 | B2 |
8701958 | Shelton, IV et al. | Apr 2014 | B2 |
8701959 | Shah | Apr 2014 | B2 |
8708211 | Zemlok et al. | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8715256 | Greener | May 2014 | B2 |
8720766 | Hess et al. | May 2014 | B2 |
8721630 | Ortiz et al. | May 2014 | B2 |
8721666 | Schroeder et al. | May 2014 | B2 |
8727197 | Hess et al. | May 2014 | B2 |
8727200 | Roy | May 2014 | B2 |
8728119 | Cummins | May 2014 | B2 |
8733613 | Huitema et al. | May 2014 | B2 |
8733614 | Ross et al. | May 2014 | B2 |
8734478 | Widenhouse et al. | May 2014 | B2 |
8739033 | Rosenberg | May 2014 | B2 |
8740034 | Morgan et al. | Jun 2014 | B2 |
8740037 | Shelton, IV et al. | Jun 2014 | B2 |
8740038 | Shelton, IV et al. | Jun 2014 | B2 |
8740987 | Geremakis et al. | Jun 2014 | B2 |
8746529 | Shelton, IV et al. | Jun 2014 | B2 |
8746530 | Giordano et al. | Jun 2014 | B2 |
8746533 | Whitman et al. | Jun 2014 | B2 |
8746535 | Shelton, IV et al. | Jun 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8752264 | Ackley et al. | Jun 2014 | B2 |
8752699 | Morgan et al. | Jun 2014 | B2 |
8752747 | Shelton, IV et al. | Jun 2014 | B2 |
8752749 | Moore | Jun 2014 | B2 |
8757465 | Woodard, Jr. et al. | Jun 2014 | B2 |
8758235 | Jaworek | Jun 2014 | B2 |
8758391 | Swayze et al. | Jun 2014 | B2 |
8758438 | Boyce et al. | Jun 2014 | B2 |
8763875 | Morgan et al. | Jul 2014 | B2 |
8763877 | Schall et al. | Jul 2014 | B2 |
8763879 | Shelton, IV et al. | Jul 2014 | B2 |
8771169 | Whitman et al. | Jul 2014 | B2 |
8777004 | Shelton, IV et al. | Jul 2014 | B2 |
8783541 | Shelton, IV et al. | Jul 2014 | B2 |
8783542 | Riestenberg et al. | Jul 2014 | B2 |
8783543 | Shelton, IV et al. | Jul 2014 | B2 |
8784404 | Doyle et al. | Jul 2014 | B2 |
8784415 | Malackowski et al. | Jul 2014 | B2 |
8789737 | Hodgkinson et al. | Jul 2014 | B2 |
8789739 | Swensgard | Jul 2014 | B2 |
8789740 | Baxter, III et al. | Jul 2014 | B2 |
8789741 | Baxter, III et al. | Jul 2014 | B2 |
8790684 | Dave et al. | Jul 2014 | B2 |
8794496 | Scirica | Aug 2014 | B2 |
8794497 | Zingman | Aug 2014 | B2 |
8795276 | Dietz et al. | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8800839 | Beetel | Aug 2014 | B2 |
8800841 | Ellerhorst et al. | Aug 2014 | B2 |
8801734 | Shelton, IV et al. | Aug 2014 | B2 |
8801735 | Shelton, IV et al. | Aug 2014 | B2 |
8801752 | Fortier et al. | Aug 2014 | B2 |
8806973 | Ross et al. | Aug 2014 | B2 |
8807414 | Ross et al. | Aug 2014 | B2 |
8808294 | Fox et al. | Aug 2014 | B2 |
8808311 | Heinrich et al. | Aug 2014 | B2 |
8813866 | Suzuki | Aug 2014 | B2 |
8814024 | Woodard, Jr. et al. | Aug 2014 | B2 |
8814025 | Miller et al. | Aug 2014 | B2 |
8820603 | Shelton, IV et al. | Sep 2014 | B2 |
8820605 | Shelton, IV | Sep 2014 | B2 |
8820606 | Hodgkinson | Sep 2014 | B2 |
8820607 | Marczyk | Sep 2014 | B2 |
8822934 | Sayeh et al. | Sep 2014 | B2 |
8827133 | Shelton, IV et al. | Sep 2014 | B2 |
8827903 | Shelton, IV et al. | Sep 2014 | B2 |
8833632 | Swensgard | Sep 2014 | B2 |
8840003 | Morgan et al. | Sep 2014 | B2 |
8840603 | Shelton, IV et al. | Sep 2014 | B2 |
8844789 | Shelton, IV et al. | Sep 2014 | B2 |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8852199 | Deslauriers et al. | Oct 2014 | B2 |
8857693 | Schuckmann et al. | Oct 2014 | B2 |
8857694 | Shelton, IV et al. | Oct 2014 | B2 |
8858571 | Shelton, IV et al. | Oct 2014 | B2 |
8858590 | Shelton, IV et al. | Oct 2014 | B2 |
8864007 | Widenhouse et al. | Oct 2014 | B2 |
8864009 | Shelton, IV et al. | Oct 2014 | B2 |
8870050 | Hodgkinson | Oct 2014 | B2 |
8875971 | Hall et al. | Nov 2014 | B2 |
8875972 | Weisenburgh, II et al. | Nov 2014 | B2 |
8876857 | Burbank | Nov 2014 | B2 |
8888688 | Julian et al. | Nov 2014 | B2 |
8893946 | Boudreaux et al. | Nov 2014 | B2 |
8893949 | Shelton, IV et al. | Nov 2014 | B2 |
8894647 | Beardsley et al. | Nov 2014 | B2 |
8894654 | Anderson | Nov 2014 | B2 |
8899463 | Schall et al. | Dec 2014 | B2 |
8899464 | Hueil et al. | Dec 2014 | B2 |
8899465 | Shelton, IV et al. | Dec 2014 | B2 |
8899466 | Baxter, III et al. | Dec 2014 | B2 |
8905977 | Shelton et al. | Dec 2014 | B2 |
8911426 | Coppeta et al. | Dec 2014 | B2 |
8911471 | Spivey et al. | Dec 2014 | B2 |
8920438 | Aranyi et al. | Dec 2014 | B2 |
8925782 | Shelton, IV | Jan 2015 | B2 |
8925783 | Zemlok et al. | Jan 2015 | B2 |
8925788 | Hess et al. | Jan 2015 | B2 |
8926598 | Mollere et al. | Jan 2015 | B2 |
8931682 | Timm et al. | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8939343 | Milliman et al. | Jan 2015 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8955732 | Zemlok et al. | Feb 2015 | B2 |
8956342 | Russo et al. | Feb 2015 | B1 |
8960520 | McCuen | Feb 2015 | B2 |
8960521 | Kostrzewski | Feb 2015 | B2 |
8961504 | Hoarau et al. | Feb 2015 | B2 |
8967443 | McCuen | Mar 2015 | B2 |
8967446 | Beardsley et al. | Mar 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8968312 | Marczyk et al. | Mar 2015 | B2 |
8968337 | Whitfield et al. | Mar 2015 | B2 |
8968340 | Chowaniec et al. | Mar 2015 | B2 |
8970507 | Holbein et al. | Mar 2015 | B2 |
8973803 | Hall et al. | Mar 2015 | B2 |
8973804 | Hess et al. | Mar 2015 | B2 |
8978954 | Shelton, IV et al. | Mar 2015 | B2 |
8978955 | Aronhalt et al. | Mar 2015 | B2 |
8978956 | Schall et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8982195 | Claus et al. | Mar 2015 | B2 |
8991676 | Hess et al. | Mar 2015 | B2 |
8991677 | Moore | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
8992565 | Brisson et al. | Mar 2015 | B2 |
8996165 | Wang et al. | Mar 2015 | B2 |
8998058 | Moore | Apr 2015 | B2 |
9005230 | Yates et al. | Apr 2015 | B2 |
9011471 | Timm et al. | Apr 2015 | B2 |
9016539 | Kostrzewski et al. | Apr 2015 | B2 |
9016540 | Whitman et al. | Apr 2015 | B2 |
9016542 | Shelton, IV et al. | Apr 2015 | B2 |
9017331 | Fox | Apr 2015 | B2 |
9017371 | Whitman et al. | Apr 2015 | B2 |
9023014 | Chowaniec et al. | May 2015 | B2 |
9027817 | Milliman et al. | May 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9028495 | Mueller et al. | May 2015 | B2 |
9028519 | Yates et al. | May 2015 | B2 |
9033203 | Woodard, Jr. et al. | May 2015 | B2 |
9033204 | Shelton, IV et al. | May 2015 | B2 |
9038881 | Schaller et al. | May 2015 | B1 |
9039690 | Kersten et al. | May 2015 | B2 |
9039720 | Madan | May 2015 | B2 |
9043027 | Durant et al. | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9044228 | Woodard, Jr. et al. | Jun 2015 | B2 |
9044230 | Morgan et al. | Jun 2015 | B2 |
9050083 | Yates et al. | Jun 2015 | B2 |
9050084 | Schmid et al. | Jun 2015 | B2 |
9050100 | Yates et al. | Jun 2015 | B2 |
9055941 | Schmid et al. | Jun 2015 | B2 |
9055944 | Hodgkinson et al. | Jun 2015 | B2 |
9055961 | Manzo et al. | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9072515 | Hall et al. | Jul 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9078653 | Leimbach et al. | Jul 2015 | B2 |
9084601 | Moore | Jul 2015 | B2 |
9084602 | Glieman | Jul 2015 | B2 |
9086875 | Harrat et al. | Jul 2015 | B2 |
9089330 | Widenhouse et al. | Jul 2015 | B2 |
9095339 | Moore | Aug 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9096033 | Holop et al. | Aug 2015 | B2 |
9099863 | Smith et al. | Aug 2015 | B2 |
9101358 | Kerr et al. | Aug 2015 | B2 |
9101385 | Shelton, IV et al. | Aug 2015 | B2 |
9107663 | Swensgard | Aug 2015 | B2 |
9113862 | Morgan et al. | Aug 2015 | B2 |
9113864 | Morgan et al. | Aug 2015 | B2 |
9113865 | Shelton, IV et al. | Aug 2015 | B2 |
9113873 | Marczyk et al. | Aug 2015 | B2 |
9113874 | Shelton, IV et al. | Aug 2015 | B2 |
9113880 | Zemlok et al. | Aug 2015 | B2 |
9113883 | Aronhalt et al. | Aug 2015 | B2 |
9113884 | Shelton, IV et al. | Aug 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9123286 | Park | Sep 2015 | B2 |
9125654 | Aronhalt et al. | Sep 2015 | B2 |
9125662 | Shelton, IV | Sep 2015 | B2 |
9131940 | Huitema et al. | Sep 2015 | B2 |
9131957 | Sharbnik et al. | Sep 2015 | B2 |
9138225 | Huang et al. | Sep 2015 | B2 |
9149274 | Spivey et al. | Oct 2015 | B2 |
9149324 | Huang et al. | Oct 2015 | B2 |
9149325 | Worrell et al. | Oct 2015 | B2 |
9161753 | Prior | Oct 2015 | B2 |
9161803 | Yates et al. | Oct 2015 | B2 |
9168038 | Shelton, IV et al. | Oct 2015 | B2 |
9168054 | Turner et al. | Oct 2015 | B2 |
9168144 | Rivin et al. | Oct 2015 | B2 |
9179911 | Morgan et al. | Nov 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9186143 | Timm et al. | Nov 2015 | B2 |
9186148 | Felder et al. | Nov 2015 | B2 |
9192380 | Tarinelli Racenet et al. | Nov 2015 | B2 |
9192384 | Bettuchi | Nov 2015 | B2 |
9193045 | Saur et al. | Nov 2015 | B2 |
9198661 | Swensgard | Dec 2015 | B2 |
9198662 | Barton et al. | Dec 2015 | B2 |
9204877 | Whitman et al. | Dec 2015 | B2 |
9204878 | Hall et al. | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9204880 | Baxter, III et al. | Dec 2015 | B2 |
9211120 | Scheib et al. | Dec 2015 | B2 |
9211121 | Hall et al. | Dec 2015 | B2 |
9211122 | Hagerty et al. | Dec 2015 | B2 |
9216019 | Schmid et al. | Dec 2015 | B2 |
9220500 | Swayze et al. | Dec 2015 | B2 |
9220501 | Baxter, III et al. | Dec 2015 | B2 |
9226750 | Weir et al. | Jan 2016 | B2 |
9226751 | Shelton, IV et al. | Jan 2016 | B2 |
9232941 | Mandakolathur Vasudevan et al. | Jan 2016 | B2 |
9232945 | Zingman | Jan 2016 | B2 |
9232979 | Parihar et al. | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9241714 | Timm et al. | Jan 2016 | B2 |
9259274 | Prisco | Feb 2016 | B2 |
9271799 | Shelton, IV et al. | Mar 2016 | B2 |
9272406 | Aronhalt et al. | Mar 2016 | B2 |
9277919 | Timmer et al. | Mar 2016 | B2 |
9277922 | Carter et al. | Mar 2016 | B2 |
9282962 | Schmid et al. | Mar 2016 | B2 |
9282966 | Shelton, IV et al. | Mar 2016 | B2 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9283045 | Rhee et al. | Mar 2016 | B2 |
9283054 | Morgan et al. | Mar 2016 | B2 |
9289206 | Hess et al. | Mar 2016 | B2 |
9289207 | Shelton, IV | Mar 2016 | B2 |
9289210 | Baxter, III et al. | Mar 2016 | B2 |
9289212 | Shelton, IV et al. | Mar 2016 | B2 |
9289225 | Shelton, IV et al. | Mar 2016 | B2 |
9289256 | Shelton, IV et al. | Mar 2016 | B2 |
9293757 | Chellew | Mar 2016 | B2 |
9295464 | Shelton, IV et al. | Mar 2016 | B2 |
9301752 | Mandakolathur Vasudevan et al. | Apr 2016 | B2 |
9301753 | Aldridge et al. | Apr 2016 | B2 |
9301755 | Shelton, IV et al. | Apr 2016 | B2 |
9301759 | Spivey et al. | Apr 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9307988 | Shelton, IV | Apr 2016 | B2 |
9308011 | Chao et al. | Apr 2016 | B2 |
9314246 | Shelton, IV et al. | Apr 2016 | B2 |
9320518 | Henderson et al. | Apr 2016 | B2 |
9320520 | Shelton, IV et al. | Apr 2016 | B2 |
9320521 | Shelton, IV et al. | Apr 2016 | B2 |
9320523 | Shelton, IV et al. | Apr 2016 | B2 |
9326767 | Koch, Jr. et al. | May 2016 | B2 |
9326768 | Shelton, IV | May 2016 | B2 |
9326769 | Shelton, IV et al. | May 2016 | B2 |
9326770 | Shelton, IV et al. | May 2016 | B2 |
9326771 | Baxter, III et al. | May 2016 | B2 |
9332890 | Ozawa | May 2016 | B2 |
9332974 | Henderson et al. | May 2016 | B2 |
9332984 | Weaner et al. | May 2016 | B2 |
9332987 | Leimbach et al. | May 2016 | B2 |
9345481 | Hall et al. | May 2016 | B2 |
9351726 | Leimbach et al. | May 2016 | B2 |
9351727 | Leimbach et al. | May 2016 | B2 |
9351730 | Schmid et al. | May 2016 | B2 |
9358003 | Hall et al. | Jun 2016 | B2 |
9358005 | Shelton, IV et al. | Jun 2016 | B2 |
9364220 | Williams | Jun 2016 | B2 |
9364230 | Shelton, IV et al. | Jun 2016 | B2 |
9364233 | Alexander, III et al. | Jun 2016 | B2 |
9364279 | Houser et al. | Jun 2016 | B2 |
9370358 | Shelton, IV et al. | Jun 2016 | B2 |
9370364 | Smith et al. | Jun 2016 | B2 |
9386983 | Swensgard et al. | Jul 2016 | B2 |
9386984 | Aronhalt et al. | Jul 2016 | B2 |
9386988 | Baxter, III et al. | Jul 2016 | B2 |
9393015 | Laurent et al. | Jul 2016 | B2 |
9398911 | Auld | Jul 2016 | B2 |
9402626 | Ortiz et al. | Aug 2016 | B2 |
9408604 | Shelton, IV et al. | Aug 2016 | B2 |
9408606 | Shelton, IV | Aug 2016 | B2 |
9414838 | Shelton, IV et al. | Aug 2016 | B2 |
9433419 | Gonzalez et al. | Sep 2016 | B2 |
9445813 | Shelton, IV et al. | Sep 2016 | B2 |
9451958 | Shelton, IV et al. | Sep 2016 | B2 |
9480476 | Aldridge et al. | Nov 2016 | B2 |
9498219 | Moore | Nov 2016 | B2 |
9526564 | Rusin | Dec 2016 | B2 |
9597104 | Nicholas et al. | Mar 2017 | B2 |
20010025183 | Shahidi | Sep 2001 | A1 |
20010044637 | Jacobs et al. | Nov 2001 | A1 |
20020014510 | Richter et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020026126 | Burdorff et al. | Feb 2002 | A1 |
20020029032 | Arkin | Mar 2002 | A1 |
20020029036 | Goble et al. | Mar 2002 | A1 |
20020095175 | Brock et al. | Jul 2002 | A1 |
20020103494 | Pacey | Aug 2002 | A1 |
20020117534 | Green et al. | Aug 2002 | A1 |
20020127265 | Bowman et al. | Sep 2002 | A1 |
20020128552 | Nowlin et al. | Sep 2002 | A1 |
20020134811 | Napier et al. | Sep 2002 | A1 |
20020135474 | Sylliassen | Sep 2002 | A1 |
20020143340 | Kaneko | Oct 2002 | A1 |
20020157481 | Kogiso et al. | Oct 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20020188170 | Santamore et al. | Dec 2002 | A1 |
20020193808 | Belef et al. | Dec 2002 | A1 |
20030023316 | Brown et al. | Jan 2003 | A1 |
20030066858 | Holgersson | Apr 2003 | A1 |
20030078647 | Vallana et al. | Apr 2003 | A1 |
20030084983 | Rangachari et al. | May 2003 | A1 |
20030093103 | Malackowski et al. | May 2003 | A1 |
20030096158 | Takano et al. | May 2003 | A1 |
20030105478 | Whitman et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030130677 | Whitman et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030153908 | Goble et al. | Aug 2003 | A1 |
20030153968 | Geis et al. | Aug 2003 | A1 |
20030163085 | Tanner et al. | Aug 2003 | A1 |
20030181900 | Long | Sep 2003 | A1 |
20030195387 | Kortenbach et al. | Oct 2003 | A1 |
20030205029 | Chapolini et al. | Nov 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030220660 | Kortenbach et al. | Nov 2003 | A1 |
20030236505 | Bonadio et al. | Dec 2003 | A1 |
20040002726 | Nunez et al. | Jan 2004 | A1 |
20040006335 | Garrison | Jan 2004 | A1 |
20040006340 | Latterell et al. | Jan 2004 | A1 |
20040006372 | Racenet et al. | Jan 2004 | A1 |
20040006861 | Haytayan | Jan 2004 | A1 |
20040030333 | Goble | Feb 2004 | A1 |
20040032345 | Kazuya et al. | Feb 2004 | A1 |
20040034357 | Beane et al. | Feb 2004 | A1 |
20040034369 | Sauer et al. | Feb 2004 | A1 |
20040044364 | DeVries et al. | Mar 2004 | A1 |
20040068161 | Couvillon, Jr. | Apr 2004 | A1 |
20040068224 | Couvillon, Jr. et al. | Apr 2004 | A1 |
20040068307 | Goble | Apr 2004 | A1 |
20040070369 | Sakahibara | Apr 2004 | A1 |
20040073222 | Koseki | Apr 2004 | A1 |
20040078037 | Batchelor et al. | Apr 2004 | A1 |
20040093024 | Lousararian et al. | May 2004 | A1 |
20040094597 | Whitman et al. | May 2004 | A1 |
20040097987 | Pugsley et al. | May 2004 | A1 |
20040098040 | Taniguchi et al. | May 2004 | A1 |
20040101822 | Weisner et al. | May 2004 | A1 |
20040102783 | Sutterlin, III et al. | May 2004 | A1 |
20040108357 | Milliman et al. | Jun 2004 | A1 |
20040110439 | Chaikof et al. | Jun 2004 | A1 |
20040111081 | Whitman et al. | Jun 2004 | A1 |
20040115022 | Albertson et al. | Jun 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040133095 | Dunki-Jacobs et al. | Jul 2004 | A1 |
20040143297 | Ramsey | Jul 2004 | A1 |
20040147909 | Johnston et al. | Jul 2004 | A1 |
20040164123 | Racenet et al. | Aug 2004 | A1 |
20040167572 | Roth et al. | Aug 2004 | A1 |
20040173659 | Green et al. | Sep 2004 | A1 |
20040181219 | Goble et al. | Sep 2004 | A1 |
20040186470 | Goble et al. | Sep 2004 | A1 |
20040193189 | Kortenbach et al. | Sep 2004 | A1 |
20040199181 | Knodel et al. | Oct 2004 | A1 |
20040222268 | Bilotti et al. | Nov 2004 | A1 |
20040225186 | Horne, Jr. et al. | Nov 2004 | A1 |
20040230214 | Donofrio et al. | Nov 2004 | A1 |
20040232201 | Wenchell et al. | Nov 2004 | A1 |
20040236352 | Wang et al. | Nov 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040243151 | Demmy et al. | Dec 2004 | A1 |
20040243163 | Casiano et al. | Dec 2004 | A1 |
20040243176 | Hahnen et al. | Dec 2004 | A1 |
20040247415 | Mangone, Jr. | Dec 2004 | A1 |
20040254455 | Iddan | Dec 2004 | A1 |
20040254566 | Plicchi et al. | Dec 2004 | A1 |
20040254590 | Hoffman et al. | Dec 2004 | A1 |
20040254608 | Huitema et al. | Dec 2004 | A1 |
20040260315 | Dell et al. | Dec 2004 | A1 |
20040267297 | Malackowski | Dec 2004 | A1 |
20040267310 | Racenet et al. | Dec 2004 | A1 |
20050010158 | Brugger et al. | Jan 2005 | A1 |
20050010213 | Stad et al. | Jan 2005 | A1 |
20050032511 | Malone et al. | Feb 2005 | A1 |
20050033352 | Zeph et al. | Feb 2005 | A1 |
20050033357 | Braun | Feb 2005 | A1 |
20050054946 | Krzyzanowski | Mar 2005 | A1 |
20050058890 | Brazell et al. | Mar 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050070929 | Dalessandro et al. | Mar 2005 | A1 |
20050075561 | Golden | Apr 2005 | A1 |
20050080454 | Drews et al. | Apr 2005 | A1 |
20050085693 | Belson et al. | Apr 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050096683 | Ellins et al. | May 2005 | A1 |
20050103819 | Racenet et al. | May 2005 | A1 |
20050107814 | Johnston et al. | May 2005 | A1 |
20050107824 | Hillstead et al. | May 2005 | A1 |
20050113820 | Goble et al. | May 2005 | A1 |
20050116673 | Carl et al. | Jun 2005 | A1 |
20050119525 | Takemoto | Jun 2005 | A1 |
20050119669 | Demmy | Jun 2005 | A1 |
20050124855 | Jaffe et al. | Jun 2005 | A1 |
20050125009 | Perry et al. | Jun 2005 | A1 |
20050125897 | Wyslucha et al. | Jun 2005 | A1 |
20050131173 | McDaniel et al. | Jun 2005 | A1 |
20050131211 | Bayley et al. | Jun 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050131436 | Johnston et al. | Jun 2005 | A1 |
20050131437 | Johnston et al. | Jun 2005 | A1 |
20050131457 | Douglas et al. | Jun 2005 | A1 |
20050137454 | Saadat et al. | Jun 2005 | A1 |
20050137455 | Ewers et al. | Jun 2005 | A1 |
20050143759 | Kelly | Jun 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050145675 | Hartwick et al. | Jul 2005 | A1 |
20050150928 | Kameyama et al. | Jul 2005 | A1 |
20050154258 | Tartaglia et al. | Jul 2005 | A1 |
20050154406 | Bombard et al. | Jul 2005 | A1 |
20050159184 | Kerner et al. | Jul 2005 | A1 |
20050165419 | Sauer et al. | Jul 2005 | A1 |
20050165435 | Johnston et al. | Jul 2005 | A1 |
20050169974 | Tenerz et al. | Aug 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050177181 | Kagan et al. | Aug 2005 | A1 |
20050182298 | Ikeda et al. | Aug 2005 | A1 |
20050187545 | Hooven et al. | Aug 2005 | A1 |
20050187572 | Johnston et al. | Aug 2005 | A1 |
20050187576 | Whitman et al. | Aug 2005 | A1 |
20050189397 | Jankowski | Sep 2005 | A1 |
20050192609 | Whitman et al. | Sep 2005 | A1 |
20050192628 | Viola | Sep 2005 | A1 |
20050203550 | Laufer et al. | Sep 2005 | A1 |
20050216055 | Scirica et al. | Sep 2005 | A1 |
20050228224 | Okada et al. | Oct 2005 | A1 |
20050240178 | Morley et al. | Oct 2005 | A1 |
20050240222 | Shipp | Oct 2005 | A1 |
20050245965 | Orban, III et al. | Nov 2005 | A1 |
20050251128 | Amoah | Nov 2005 | A1 |
20050256452 | DeMarchi et al. | Nov 2005 | A1 |
20050256522 | Francischelli et al. | Nov 2005 | A1 |
20050261676 | Hall et al. | Nov 2005 | A1 |
20050261677 | Hall et al. | Nov 2005 | A1 |
20050263563 | Racenet et al. | Dec 2005 | A1 |
20050267455 | Eggers et al. | Dec 2005 | A1 |
20050267530 | Cummins | Dec 2005 | A1 |
20050272973 | Kawano et al. | Dec 2005 | A1 |
20050274768 | Cummins et al. | Dec 2005 | A1 |
20050283188 | Loshakove et al. | Dec 2005 | A1 |
20060004407 | Hiles et al. | Jan 2006 | A1 |
20060008787 | Hayman et al. | Jan 2006 | A1 |
20060011699 | Olson et al. | Jan 2006 | A1 |
20060015009 | Jaffe et al. | Jan 2006 | A1 |
20060020247 | Kagan et al. | Jan 2006 | A1 |
20060020258 | Strauss et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060025811 | Shelton, IV | Feb 2006 | A1 |
20060025812 | Shelton, IV | Feb 2006 | A1 |
20060041188 | Dirusso et al. | Feb 2006 | A1 |
20060047275 | Goble | Mar 2006 | A1 |
20060047303 | Ortiz et al. | Mar 2006 | A1 |
20060047307 | Ortiz et al. | Mar 2006 | A1 |
20060049229 | Milliman et al. | Mar 2006 | A1 |
20060052825 | Ransick et al. | Mar 2006 | A1 |
20060060630 | Shelton, IV et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060079115 | Aranyi et al. | Apr 2006 | A1 |
20060079735 | Martone et al. | Apr 2006 | A1 |
20060085031 | Bettuchi | Apr 2006 | A1 |
20060085033 | Criscuolo et al. | Apr 2006 | A1 |
20060086032 | Valencic et al. | Apr 2006 | A1 |
20060087746 | Lipow | Apr 2006 | A1 |
20060089535 | Raz et al. | Apr 2006 | A1 |
20060100643 | Laufer et al. | May 2006 | A1 |
20060100649 | Hart | May 2006 | A1 |
20060108393 | Heinrich et al. | May 2006 | A1 |
20060111711 | Goble | May 2006 | A1 |
20060111723 | Chapolini et al. | May 2006 | A1 |
20060116634 | Shachar | Jun 2006 | A1 |
20060122636 | Bailly et al. | Jun 2006 | A1 |
20060142772 | Ralph et al. | Jun 2006 | A1 |
20060149163 | Hibner et al. | Jul 2006 | A1 |
20060161185 | Saadat et al. | Jul 2006 | A1 |
20060167471 | Phillips | Jul 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060178556 | Hasser et al. | Aug 2006 | A1 |
20060180634 | Shelton, IV et al. | Aug 2006 | A1 |
20060185682 | Marczyk | Aug 2006 | A1 |
20060200123 | Ryan | Sep 2006 | A1 |
20060201989 | Ojeda | Sep 2006 | A1 |
20060206100 | Eskridge et al. | Sep 2006 | A1 |
20060212069 | Shelton, IV | Sep 2006 | A1 |
20060217729 | Eskridge et al. | Sep 2006 | A1 |
20060226196 | Hueil et al. | Oct 2006 | A1 |
20060235368 | Oz | Oct 2006 | A1 |
20060235469 | Viola | Oct 2006 | A1 |
20060241655 | Viola | Oct 2006 | A1 |
20060241692 | McGuckin, Jr. et al. | Oct 2006 | A1 |
20060244460 | Weaver | Nov 2006 | A1 |
20060252993 | Freed et al. | Nov 2006 | A1 |
20060253069 | Li et al. | Nov 2006 | A1 |
20060258904 | Stefanchik et al. | Nov 2006 | A1 |
20060258910 | Stefanchik et al. | Nov 2006 | A1 |
20060259073 | Miyamoto et al. | Nov 2006 | A1 |
20060264831 | Skwarek et al. | Nov 2006 | A1 |
20060264927 | Ryan | Nov 2006 | A1 |
20060264929 | Goble et al. | Nov 2006 | A1 |
20060271042 | Latterell et al. | Nov 2006 | A1 |
20060271102 | Bosshard et al. | Nov 2006 | A1 |
20060278680 | Viola et al. | Dec 2006 | A1 |
20060278681 | Viola et al. | Dec 2006 | A1 |
20060282064 | Shimizu et al. | Dec 2006 | A1 |
20060284730 | Schmid et al. | Dec 2006 | A1 |
20060287576 | Tsuji et al. | Dec 2006 | A1 |
20060289602 | Wales et al. | Dec 2006 | A1 |
20060291981 | Viola et al. | Dec 2006 | A1 |
20070010702 | Wang et al. | Jan 2007 | A1 |
20070010838 | Shelton, IV et al. | Jan 2007 | A1 |
20070023476 | Whitman et al. | Feb 2007 | A1 |
20070023477 | Whitman et al. | Feb 2007 | A1 |
20070026039 | Drumheller et al. | Feb 2007 | A1 |
20070026040 | Crawley et al. | Feb 2007 | A1 |
20070027468 | Wales et al. | Feb 2007 | A1 |
20070027472 | Hiles et al. | Feb 2007 | A1 |
20070027551 | Farnsworth et al. | Feb 2007 | A1 |
20070027553 | Biran et al. | Feb 2007 | A1 |
20070034668 | Holsten et al. | Feb 2007 | A1 |
20070049951 | Menn | Mar 2007 | A1 |
20070049966 | Bonadio et al. | Mar 2007 | A1 |
20070051375 | Milliman | Mar 2007 | A1 |
20070055219 | Whitman et al. | Mar 2007 | A1 |
20070066981 | Meagher | Mar 2007 | A1 |
20070070574 | Nerheim et al. | Mar 2007 | A1 |
20070073341 | Smith | Mar 2007 | A1 |
20070078328 | Ozaki et al. | Apr 2007 | A1 |
20070078484 | Talarico et al. | Apr 2007 | A1 |
20070083193 | Werneth et al. | Apr 2007 | A1 |
20070084897 | Shelton, IV et al. | Apr 2007 | A1 |
20070090788 | Hansford et al. | Apr 2007 | A1 |
20070093869 | Bloom et al. | Apr 2007 | A1 |
20070102472 | Shelton, IV | May 2007 | A1 |
20070106113 | Ravo | May 2007 | A1 |
20070106317 | Shelton, IV et al. | May 2007 | A1 |
20070118175 | Butler et al. | May 2007 | A1 |
20070129605 | Schaaf | Jun 2007 | A1 |
20070135686 | Pruitt, Jr. et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070155010 | Farnsworth et al. | Jul 2007 | A1 |
20070158358 | Mason, II et al. | Jul 2007 | A1 |
20070170225 | Shelton, IV et al. | Jul 2007 | A1 |
20070173687 | Shima et al. | Jul 2007 | A1 |
20070173806 | Orszulak et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070175950 | Shelton, IV et al. | Aug 2007 | A1 |
20070175951 | Shelton, IV et al. | Aug 2007 | A1 |
20070175955 | Shelton, IV et al. | Aug 2007 | A1 |
20070179528 | Soltz et al. | Aug 2007 | A1 |
20070181632 | Milliman | Aug 2007 | A1 |
20070185545 | Duke | Aug 2007 | A1 |
20070190110 | Pameijer et al. | Aug 2007 | A1 |
20070191868 | Theroux et al. | Aug 2007 | A1 |
20070194079 | Hueil et al. | Aug 2007 | A1 |
20070194082 | Morgan et al. | Aug 2007 | A1 |
20070198039 | Jones et al. | Aug 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070213750 | Weadock | Sep 2007 | A1 |
20070219571 | Balbierz et al. | Sep 2007 | A1 |
20070225562 | Spivey et al. | Sep 2007 | A1 |
20070233163 | Bombard et al. | Oct 2007 | A1 |
20070239028 | Houser et al. | Oct 2007 | A1 |
20070243227 | Gertner | Oct 2007 | A1 |
20070244471 | Malackowski | Oct 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20070249999 | Sklar et al. | Oct 2007 | A1 |
20070250113 | Hegeman et al. | Oct 2007 | A1 |
20070260278 | Wheeler et al. | Nov 2007 | A1 |
20070270784 | Smith et al. | Nov 2007 | A1 |
20070270884 | Smith et al. | Nov 2007 | A1 |
20070275035 | Herman et al. | Nov 2007 | A1 |
20070276409 | Ortiz et al. | Nov 2007 | A1 |
20070279011 | Jones et al. | Dec 2007 | A1 |
20070286892 | Herzberg et al. | Dec 2007 | A1 |
20070287993 | Hinman et al. | Dec 2007 | A1 |
20070288044 | Jinno et al. | Dec 2007 | A1 |
20070299427 | Yeung et al. | Dec 2007 | A1 |
20080003196 | Jonn et al. | Jan 2008 | A1 |
20080015598 | Prommersberger | Jan 2008 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080030170 | Dacquay et al. | Feb 2008 | A1 |
20080035701 | Racenet et al. | Feb 2008 | A1 |
20080041916 | Milliman et al. | Feb 2008 | A1 |
20080041917 | Racenet et al. | Feb 2008 | A1 |
20080051833 | Gramuglia et al. | Feb 2008 | A1 |
20080065153 | Allard et al. | Mar 2008 | A1 |
20080071328 | Haubrich et al. | Mar 2008 | A1 |
20080078802 | Hess et al. | Apr 2008 | A1 |
20080082114 | McKenna et al. | Apr 2008 | A1 |
20080082125 | Murray et al. | Apr 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080083808 | Scirica | Apr 2008 | A1 |
20080083813 | Zemlok et al. | Apr 2008 | A1 |
20080085296 | Powell et al. | Apr 2008 | A1 |
20080086078 | Powell et al. | Apr 2008 | A1 |
20080091072 | Omori et al. | Apr 2008 | A1 |
20080097563 | Petrie et al. | Apr 2008 | A1 |
20080108443 | Jinno et al. | May 2008 | A1 |
20080114250 | Urbano et al. | May 2008 | A1 |
20080114315 | Voegele et al. | May 2008 | A1 |
20080114385 | Byrum et al. | May 2008 | A1 |
20080128469 | Dalessandro et al. | Jun 2008 | A1 |
20080129253 | Shiue et al. | Jun 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080140159 | Bornhoft et al. | Jun 2008 | A1 |
20080154299 | Linvneh | Jun 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080172087 | Fuchs et al. | Jul 2008 | A1 |
20080172088 | Smith et al. | Jul 2008 | A1 |
20080183193 | Omori et al. | Jul 2008 | A1 |
20080185419 | Smith et al. | Aug 2008 | A1 |
20080190989 | Crews et al. | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080200762 | Stokes et al. | Aug 2008 | A1 |
20080200835 | Monson et al. | Aug 2008 | A1 |
20080200933 | Bakos et al. | Aug 2008 | A1 |
20080200949 | Hiles et al. | Aug 2008 | A1 |
20080228029 | Mikkaichi et al. | Sep 2008 | A1 |
20080241667 | Kohn et al. | Oct 2008 | A1 |
20080245841 | Smith et al. | Oct 2008 | A1 |
20080249608 | Dave | Oct 2008 | A1 |
20080251568 | Zemlok et al. | Oct 2008 | A1 |
20080251569 | Smith et al. | Oct 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080255607 | Zemlok | Oct 2008 | A1 |
20080262654 | Omori et al. | Oct 2008 | A1 |
20080281171 | Fennell et al. | Nov 2008 | A1 |
20080281254 | Humayun et al. | Nov 2008 | A1 |
20080283570 | Boyden et al. | Nov 2008 | A1 |
20080287944 | Pearson et al. | Nov 2008 | A1 |
20080287988 | Smith et al. | Nov 2008 | A1 |
20080290134 | Bettuchi et al. | Nov 2008 | A1 |
20080294179 | Balbierz et al. | Nov 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080297287 | Shachar et al. | Dec 2008 | A1 |
20080308602 | Timm et al. | Dec 2008 | A1 |
20080308603 | Shelton, IV et al. | Dec 2008 | A1 |
20080308608 | Prommersberger | Dec 2008 | A1 |
20080314960 | Marczyk et al. | Dec 2008 | A1 |
20080315829 | Jones et al. | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090004455 | Gravagna et al. | Jan 2009 | A1 |
20090005809 | Hess et al. | Jan 2009 | A1 |
20090012534 | Madhani et al. | Jan 2009 | A1 |
20090015195 | Loth-Krausser | Jan 2009 | A1 |
20090018553 | McLean et al. | Jan 2009 | A1 |
20090020958 | Soul | Jan 2009 | A1 |
20090047329 | Stucky et al. | Feb 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090048612 | Farritor et al. | Feb 2009 | A1 |
20090054908 | Zand et al. | Feb 2009 | A1 |
20090069842 | Lee et al. | Mar 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090078736 | Van Lue | Mar 2009 | A1 |
20090082789 | Milliman et al. | Mar 2009 | A1 |
20090088659 | Graham et al. | Apr 2009 | A1 |
20090088774 | Swarup et al. | Apr 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090092651 | Shah et al. | Apr 2009 | A1 |
20090093728 | Hyde et al. | Apr 2009 | A1 |
20090099579 | Nentwick et al. | Apr 2009 | A1 |
20090099876 | Whitman | Apr 2009 | A1 |
20090108048 | Zemlok et al. | Apr 2009 | A1 |
20090112229 | Omori et al. | Apr 2009 | A1 |
20090114701 | Zemlok et al. | May 2009 | A1 |
20090119011 | Kondo et al. | May 2009 | A1 |
20090137952 | Ramamurthy et al. | May 2009 | A1 |
20090143805 | Palmer et al. | Jun 2009 | A1 |
20090143855 | Weber et al. | Jun 2009 | A1 |
20090149871 | Kagan et al. | Jun 2009 | A9 |
20090157067 | Kane et al. | Jun 2009 | A1 |
20090157087 | Wei et al. | Jun 2009 | A1 |
20090171147 | Lee et al. | Jul 2009 | A1 |
20090177226 | Reinprecht et al. | Jul 2009 | A1 |
20090179757 | Cohn et al. | Jul 2009 | A1 |
20090188964 | Orlov | Jul 2009 | A1 |
20090198272 | Kerver et al. | Aug 2009 | A1 |
20090204108 | Steffen | Aug 2009 | A1 |
20090204109 | Grove et al. | Aug 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206131 | Weisenburgh, II et al. | Aug 2009 | A1 |
20090206133 | Morgan et al. | Aug 2009 | A1 |
20090206137 | Hall et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090213685 | Mak et al. | Aug 2009 | A1 |
20090234273 | Intoccia et al. | Sep 2009 | A1 |
20090242610 | Shelton, IV et al. | Oct 2009 | A1 |
20090247368 | Chiang | Oct 2009 | A1 |
20090247901 | Zimmer | Oct 2009 | A1 |
20090248007 | Falkenstein et al. | Oct 2009 | A1 |
20090248038 | Blumenkranz et al. | Oct 2009 | A1 |
20090253959 | Yoshie et al. | Oct 2009 | A1 |
20090255974 | Viola | Oct 2009 | A1 |
20090255975 | Zemlok et al. | Oct 2009 | A1 |
20090255976 | Marczyk et al. | Oct 2009 | A1 |
20090255977 | Zemlok | Oct 2009 | A1 |
20090255978 | Viola et al. | Oct 2009 | A1 |
20090262078 | Pizzi | Oct 2009 | A1 |
20090270895 | Churchill et al. | Oct 2009 | A1 |
20090277949 | Viola et al. | Nov 2009 | A1 |
20090290016 | Suda | Nov 2009 | A1 |
20090292283 | Odom | Nov 2009 | A1 |
20090306639 | Nevo et al. | Dec 2009 | A1 |
20090308907 | Nalagatla et al. | Dec 2009 | A1 |
20100010511 | Harris et al. | Jan 2010 | A1 |
20100012704 | Tarinelli Racenet et al. | Jan 2010 | A1 |
20100016852 | Manzo et al. | Jan 2010 | A1 |
20100016888 | Calabrese et al. | Jan 2010 | A1 |
20100023024 | Zeiner et al. | Jan 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100041945 | Isbell, Jr. | Feb 2010 | A1 |
20100049084 | Nock et al. | Feb 2010 | A1 |
20100057087 | Cha | Mar 2010 | A1 |
20100057107 | Sorrentino et al. | Mar 2010 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100072254 | Aranyi et al. | Mar 2010 | A1 |
20100076483 | Imuta | Mar 2010 | A1 |
20100076489 | Stopek et al. | Mar 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100087840 | Ebersole et al. | Apr 2010 | A1 |
20100094289 | Taylor et al. | Apr 2010 | A1 |
20100096431 | Smith et al. | Apr 2010 | A1 |
20100100124 | Calabrese et al. | Apr 2010 | A1 |
20100108740 | Pastorelli et al. | May 2010 | A1 |
20100108741 | Hessler et al. | May 2010 | A1 |
20100122339 | Boccacci | May 2010 | A1 |
20100133317 | Shelton, IV et al. | Jun 2010 | A1 |
20100145146 | Melder | Jun 2010 | A1 |
20100147921 | Olson | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100147923 | D'Agostino et al. | Jun 2010 | A1 |
20100163598 | Belzer | Jul 2010 | A1 |
20100179022 | Shirokoshi | Jul 2010 | A1 |
20100179540 | Marczyk et al. | Jul 2010 | A1 |
20100180711 | Kilibarda et al. | Jul 2010 | A1 |
20100186219 | Smith | Jul 2010 | A1 |
20100191292 | DeMeo et al. | Jul 2010 | A1 |
20100193566 | Schieb et al. | Aug 2010 | A1 |
20100200637 | Beetel | Aug 2010 | A1 |
20100204717 | Knodel | Aug 2010 | A1 |
20100222901 | Swayze et al. | Sep 2010 | A1 |
20100230465 | Smith et al. | Sep 2010 | A1 |
20100243707 | Olson et al. | Sep 2010 | A1 |
20100243708 | Aranyi et al. | Sep 2010 | A1 |
20100249497 | Peine et al. | Sep 2010 | A1 |
20100249519 | Park et al. | Sep 2010 | A1 |
20100249759 | Hinman et al. | Sep 2010 | A1 |
20100258611 | Smith et al. | Oct 2010 | A1 |
20100267662 | Fielder et al. | Oct 2010 | A1 |
20100268030 | Viola et al. | Oct 2010 | A1 |
20100274160 | Yachi et al. | Oct 2010 | A1 |
20100276471 | Whitman | Nov 2010 | A1 |
20100292540 | Hess et al. | Nov 2010 | A1 |
20100294827 | Boyden et al. | Nov 2010 | A1 |
20100298636 | Casto et al. | Nov 2010 | A1 |
20100312261 | Suzuki et al. | Dec 2010 | A1 |
20100320252 | Viola et al. | Dec 2010 | A1 |
20100331856 | Carlson et al. | Dec 2010 | A1 |
20100331880 | Stopek | Dec 2010 | A1 |
20110003528 | Lam | Jan 2011 | A1 |
20110006101 | Hall et al. | Jan 2011 | A1 |
20110009890 | Palmer et al. | Jan 2011 | A1 |
20110011916 | Levine | Jan 2011 | A1 |
20110016960 | Debrailly | Jan 2011 | A1 |
20110017799 | Whitman et al. | Jan 2011 | A1 |
20110021871 | Berkelaar | Jan 2011 | A1 |
20110022032 | Zemlok et al. | Jan 2011 | A1 |
20110024477 | Hall et al. | Feb 2011 | A1 |
20110024478 | Shelton, IV | Feb 2011 | A1 |
20110025311 | Chauvin et al. | Feb 2011 | A1 |
20110034910 | Ross et al. | Feb 2011 | A1 |
20110034918 | Reschke | Feb 2011 | A1 |
20110036887 | Zemlok et al. | Feb 2011 | A1 |
20110036890 | Ma | Feb 2011 | A1 |
20110036891 | Zemlok et al. | Feb 2011 | A1 |
20110045047 | Bennett et al. | Feb 2011 | A1 |
20110046666 | Sorrentino et al. | Feb 2011 | A1 |
20110046667 | Culligan et al. | Feb 2011 | A1 |
20110060356 | Reschke et al. | Mar 2011 | A1 |
20110060363 | Hess et al. | Mar 2011 | A1 |
20110082538 | Dahlgren et al. | Apr 2011 | A1 |
20110084112 | Kostrzewski | Apr 2011 | A1 |
20110087276 | Bedi et al. | Apr 2011 | A1 |
20110087279 | Shah et al. | Apr 2011 | A1 |
20110088921 | Forgues et al. | Apr 2011 | A1 |
20110095068 | Patel | Apr 2011 | A1 |
20110101065 | Milliman | May 2011 | A1 |
20110101069 | Bombard et al. | May 2011 | A1 |
20110112517 | Peine et al. | May 2011 | A1 |
20110114697 | Baxter, III et al. | May 2011 | A1 |
20110118778 | Burbank | May 2011 | A1 |
20110121049 | Malinouskas et al. | May 2011 | A1 |
20110125138 | Malinouskas et al. | May 2011 | A1 |
20110125176 | Yates et al. | May 2011 | A1 |
20110144640 | Heinrich et al. | Jun 2011 | A1 |
20110147433 | Shelton, IV et al. | Jun 2011 | A1 |
20110155786 | Shelton, IV | Jun 2011 | A1 |
20110163146 | Ortiz et al. | Jul 2011 | A1 |
20110167619 | Smith et al. | Jul 2011 | A1 |
20110174099 | Ross et al. | Jul 2011 | A1 |
20110174861 | Shelton, IV et al. | Jul 2011 | A1 |
20110178536 | Kostrzewski | Jul 2011 | A1 |
20110184459 | Malkowski et al. | Jul 2011 | A1 |
20110192882 | Hess et al. | Aug 2011 | A1 |
20110199225 | Touchberry et al. | Aug 2011 | A1 |
20110208093 | Gross et al. | Aug 2011 | A1 |
20110210156 | Smith et al. | Sep 2011 | A1 |
20110218550 | Ma | Sep 2011 | A1 |
20110241597 | Zhu et al. | Oct 2011 | A1 |
20110253765 | Nicholas et al. | Oct 2011 | A1 |
20110257650 | Deville et al. | Oct 2011 | A1 |
20110264119 | Bayon et al. | Oct 2011 | A1 |
20110275901 | Shelton, IV | Nov 2011 | A1 |
20110276083 | Shelton, IV et al. | Nov 2011 | A1 |
20110278343 | Knodel et al. | Nov 2011 | A1 |
20110279268 | Konishi et al. | Nov 2011 | A1 |
20110282446 | Schulte et al. | Nov 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110293690 | Griffin et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20110307023 | Tweden et al. | Dec 2011 | A1 |
20110313894 | Dye et al. | Dec 2011 | A1 |
20110315413 | Fisher et al. | Dec 2011 | A1 |
20120004636 | Lo | Jan 2012 | A1 |
20120016239 | Barthe et al. | Jan 2012 | A1 |
20120016413 | Timm et al. | Jan 2012 | A1 |
20120018326 | Racenet et al. | Jan 2012 | A1 |
20120022523 | Smith et al. | Jan 2012 | A1 |
20120022630 | Wübbeling | Jan 2012 | A1 |
20120029272 | Shelton, IV et al. | Feb 2012 | A1 |
20120033360 | Hsu | Feb 2012 | A1 |
20120045303 | Macdonald | Feb 2012 | A1 |
20120046692 | Smith et al. | Feb 2012 | A1 |
20120064483 | Lint et al. | Mar 2012 | A1 |
20120074200 | Schmid et al. | Mar 2012 | A1 |
20120078071 | Bohm et al. | Mar 2012 | A1 |
20120078244 | Worrell et al. | Mar 2012 | A1 |
20120078278 | Bales, Jr. et al. | Mar 2012 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120080340 | Shelton, IV et al. | Apr 2012 | A1 |
20120080344 | Shelton, IV | Apr 2012 | A1 |
20120080475 | Smith et al. | Apr 2012 | A1 |
20120080478 | Morgan et al. | Apr 2012 | A1 |
20120080498 | Shelton, IV et al. | Apr 2012 | A1 |
20120089131 | Zemlok et al. | Apr 2012 | A1 |
20120110810 | Houser et al. | May 2012 | A1 |
20120116265 | Houser et al. | May 2012 | A1 |
20120116367 | Houser et al. | May 2012 | A1 |
20120116388 | Houser et al. | May 2012 | A1 |
20120116391 | Houser et al. | May 2012 | A1 |
20120116395 | Madan et al. | May 2012 | A1 |
20120123203 | Riva | May 2012 | A1 |
20120125792 | Cassivi | May 2012 | A1 |
20120138658 | Ullrich et al. | Jun 2012 | A1 |
20120171539 | Rejman et al. | Jul 2012 | A1 |
20120175398 | Sandborn et al. | Jul 2012 | A1 |
20120187179 | Gleiman | Jul 2012 | A1 |
20120209289 | Duque et al. | Aug 2012 | A1 |
20120223121 | Viola et al. | Sep 2012 | A1 |
20120228355 | Combrowski et al. | Sep 2012 | A1 |
20120234895 | O'Connor et al. | Sep 2012 | A1 |
20120234897 | Shelton, IV et al. | Sep 2012 | A1 |
20120234899 | Scheib et al. | Sep 2012 | A1 |
20120241492 | Shelton, IV et al. | Sep 2012 | A1 |
20120241493 | Baxter, III et al. | Sep 2012 | A1 |
20120248167 | Flanagan et al. | Oct 2012 | A1 |
20120248169 | Widenhouse et al. | Oct 2012 | A1 |
20120251861 | Liang et al. | Oct 2012 | A1 |
20120253329 | Zemlok et al. | Oct 2012 | A1 |
20120265176 | Braun | Oct 2012 | A1 |
20120271285 | Sholev et al. | Oct 2012 | A1 |
20120273550 | Scirica | Nov 2012 | A1 |
20120277780 | Smith et al. | Nov 2012 | A1 |
20120283707 | Giordano et al. | Nov 2012 | A1 |
20120286021 | Kostrzewski et al. | Nov 2012 | A1 |
20120289979 | Eskaros et al. | Nov 2012 | A1 |
20120292367 | Morgan et al. | Nov 2012 | A1 |
20120296333 | Twomey | Nov 2012 | A1 |
20120298722 | Hess et al. | Nov 2012 | A1 |
20120310255 | Brisson et al. | Dec 2012 | A1 |
20120310256 | Brisson | Dec 2012 | A1 |
20120312860 | Ming et al. | Dec 2012 | A1 |
20120318842 | Anim et al. | Dec 2012 | A1 |
20120325892 | Kostrzewski | Dec 2012 | A1 |
20130012983 | Kleyman | Jan 2013 | A1 |
20130018361 | Bryant | Jan 2013 | A1 |
20130020375 | Shelton, IV et al. | Jan 2013 | A1 |
20130020376 | Shelton, IV et al. | Jan 2013 | A1 |
20130023861 | Shelton, IV et al. | Jan 2013 | A1 |
20130026208 | Shelton, IV et al. | Jan 2013 | A1 |
20130026210 | Shelton, IV et al. | Jan 2013 | A1 |
20130026973 | Luke et al. | Jan 2013 | A1 |
20130030608 | Taylor et al. | Jan 2013 | A1 |
20130032626 | Smith et al. | Feb 2013 | A1 |
20130037596 | Bear et al. | Feb 2013 | A1 |
20130046290 | Palmer et al. | Feb 2013 | A1 |
20130060278 | Bozung et al. | Mar 2013 | A1 |
20130062391 | Boudreaux et al. | Mar 2013 | A1 |
20130068816 | Mandakolathur Vasudevan et al. | Mar 2013 | A1 |
20130075446 | Wang et al. | Mar 2013 | A1 |
20130079814 | Hess et al. | Mar 2013 | A1 |
20130087597 | Shelton, IV et al. | Apr 2013 | A1 |
20130087599 | Krumanaker et al. | Apr 2013 | A1 |
20130087602 | Olson et al. | Apr 2013 | A1 |
20130090534 | Burns et al. | Apr 2013 | A1 |
20130098970 | Racenet et al. | Apr 2013 | A1 |
20130103023 | Monson et al. | Apr 2013 | A1 |
20130103024 | Monson et al. | Apr 2013 | A1 |
20130105548 | Hodgkinson et al. | May 2013 | A1 |
20130116668 | Shelton, IV et al. | May 2013 | A1 |
20130116669 | Shelton, IV et al. | May 2013 | A1 |
20130119108 | Altman et al. | May 2013 | A1 |
20130123822 | Wellman et al. | May 2013 | A1 |
20130126379 | Medhal et al. | May 2013 | A1 |
20130131651 | Strobl et al. | May 2013 | A1 |
20130146641 | Shelton, IV et al. | Jun 2013 | A1 |
20130146642 | Shelton, IV et al. | Jun 2013 | A1 |
20130150832 | Belson et al. | Jun 2013 | A1 |
20130153633 | Casasanta, Jr. et al. | Jun 2013 | A1 |
20130153634 | Carter et al. | Jun 2013 | A1 |
20130153635 | Hodgkinson | Jun 2013 | A1 |
20130153636 | Shelton, IV et al. | Jun 2013 | A1 |
20130153638 | Carter et al. | Jun 2013 | A1 |
20130153641 | Shelton, IV et al. | Jun 2013 | A1 |
20130161374 | Swayze et al. | Jun 2013 | A1 |
20130168431 | Zemlok et al. | Jul 2013 | A1 |
20130172929 | Hess et al. | Jul 2013 | A1 |
20130175317 | Yates et al. | Jul 2013 | A1 |
20130175322 | Yates et al. | Jul 2013 | A1 |
20130181033 | Shelton, IV et al. | Jul 2013 | A1 |
20130181034 | Shelton, IV et al. | Jul 2013 | A1 |
20130186933 | Shelton, IV et al. | Jul 2013 | A1 |
20130186934 | Shelton, IV et al. | Jul 2013 | A1 |
20130190733 | Giordano et al. | Jul 2013 | A1 |
20130190757 | Yates et al. | Jul 2013 | A1 |
20130193188 | Shelton, IV et al. | Aug 2013 | A1 |
20130193189 | Swensgard et al. | Aug 2013 | A1 |
20130197556 | Shelton, IV et al. | Aug 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130214030 | Aronhalt et al. | Aug 2013 | A1 |
20130221059 | Racenet et al. | Aug 2013 | A1 |
20130221063 | Aronhalt et al. | Aug 2013 | A1 |
20130221064 | Aronhalt et al. | Aug 2013 | A1 |
20130221065 | Aronhalt et al. | Aug 2013 | A1 |
20130233905 | Sorrentino et al. | Sep 2013 | A1 |
20130233906 | Hess et al. | Sep 2013 | A1 |
20130233908 | Knodel et al. | Sep 2013 | A1 |
20130238021 | Gross et al. | Sep 2013 | A1 |
20130256371 | Shelton, IV et al. | Oct 2013 | A1 |
20130256373 | Schmid et al. | Oct 2013 | A1 |
20130256374 | Shelton, IV et al. | Oct 2013 | A1 |
20130256375 | Shelton, IV et al. | Oct 2013 | A1 |
20130256377 | Schmid et al. | Oct 2013 | A1 |
20130256378 | Schmid et al. | Oct 2013 | A1 |
20130256379 | Schmid et al. | Oct 2013 | A1 |
20130256380 | Schmid et al. | Oct 2013 | A1 |
20130256382 | Swayze et al. | Oct 2013 | A1 |
20130256383 | Aronhalt et al. | Oct 2013 | A1 |
20130261648 | Laurent et al. | Oct 2013 | A1 |
20130267945 | Behnke et al. | Oct 2013 | A1 |
20130270322 | Scheib et al. | Oct 2013 | A1 |
20130277412 | Gresham et al. | Oct 2013 | A1 |
20130282052 | Aranyi et al. | Oct 2013 | A1 |
20130310873 | Stopek nee Prommersberger et al. | Nov 2013 | A1 |
20130313304 | Shelton, IV et al. | Nov 2013 | A1 |
20130313306 | Shelton, IV et al. | Nov 2013 | A1 |
20130319706 | Nicholas et al. | Dec 2013 | A1 |
20130324981 | Smith et al. | Dec 2013 | A1 |
20130324982 | Smith et al. | Dec 2013 | A1 |
20130327809 | Shelton, IV et al. | Dec 2013 | A1 |
20130327810 | Swayze et al. | Dec 2013 | A1 |
20130334283 | Swayze et al. | Dec 2013 | A1 |
20130334284 | Swayze et al. | Dec 2013 | A1 |
20130334285 | Swayze et al. | Dec 2013 | A1 |
20130334286 | Swayze et al. | Dec 2013 | A1 |
20130334287 | Shelton, IV | Dec 2013 | A1 |
20130334288 | Shelton, IV | Dec 2013 | A1 |
20130341374 | Shelton, IV et al. | Dec 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140001237 | Shelton, IV et al. | Jan 2014 | A1 |
20140001238 | Shelton, IV et al. | Jan 2014 | A1 |
20140001239 | Shelton, IV et al. | Jan 2014 | A1 |
20140001240 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005678 | Shelton, IV et al. | Jan 2014 | A1 |
20140005681 | Gee et al. | Jan 2014 | A1 |
20140005693 | Shelton, IV et al. | Jan 2014 | A1 |
20140005694 | Shelton, IV et al. | Jan 2014 | A1 |
20140005702 | Timm et al. | Jan 2014 | A1 |
20140005703 | Stulen et al. | Jan 2014 | A1 |
20140005718 | Shelton, IV et al. | Jan 2014 | A1 |
20140008414 | Shelton, IV et al. | Jan 2014 | A1 |
20140012237 | Pribanic et al. | Jan 2014 | A1 |
20140012238 | Chen et al. | Jan 2014 | A1 |
20140012289 | Snow et al. | Jan 2014 | A1 |
20140014705 | Baxter, III | Jan 2014 | A1 |
20140015782 | Kim et al. | Jan 2014 | A1 |
20140018832 | Shelton, IV | Jan 2014 | A1 |
20140025046 | Williams et al. | Jan 2014 | A1 |
20140042205 | Baxter, III et al. | Feb 2014 | A1 |
20140048580 | Merchant et al. | Feb 2014 | A1 |
20140061279 | Laurent et al. | Mar 2014 | A1 |
20140061280 | Ingmanson et al. | Mar 2014 | A1 |
20140081176 | Hassan | Mar 2014 | A1 |
20140100558 | Schmitz et al. | Apr 2014 | A1 |
20140103093 | Koch, Jr. et al. | Apr 2014 | A1 |
20140107640 | Yates et al. | Apr 2014 | A1 |
20140110455 | Ingmanson et al. | Apr 2014 | A1 |
20140128850 | Kerr et al. | May 2014 | A1 |
20140138423 | Whitfield et al. | May 2014 | A1 |
20140151431 | Hodgkinson et al. | Jun 2014 | A1 |
20140151433 | Shelton, IV et al. | Jun 2014 | A1 |
20140166722 | Hess et al. | Jun 2014 | A1 |
20140166724 | Schellin et al. | Jun 2014 | A1 |
20140166725 | Schellin et al. | Jun 2014 | A1 |
20140166726 | Schellin et al. | Jun 2014 | A1 |
20140171966 | Giordano et al. | Jun 2014 | A1 |
20140175152 | Hess et al. | Jun 2014 | A1 |
20140175154 | Shelton, IV et al. | Jun 2014 | A1 |
20140191014 | Shelton, IV | Jul 2014 | A1 |
20140191015 | Shelton, IV | Jul 2014 | A1 |
20140203061 | Hodgkinson | Jul 2014 | A1 |
20140205637 | Widenhouse et al. | Jul 2014 | A1 |
20140207125 | Applegate et al. | Jul 2014 | A1 |
20140207166 | Shelton, IV et al. | Jul 2014 | A1 |
20140224857 | Schmid | Aug 2014 | A1 |
20140230595 | Butt et al. | Aug 2014 | A1 |
20140232316 | Philipp | Aug 2014 | A1 |
20140236184 | Leimbach et al. | Aug 2014 | A1 |
20140239036 | Zerkle et al. | Aug 2014 | A1 |
20140239038 | Leimbach et al. | Aug 2014 | A1 |
20140243865 | Swayze et al. | Aug 2014 | A1 |
20140246471 | Jaworek et al. | Sep 2014 | A1 |
20140246472 | Kimsey et al. | Sep 2014 | A1 |
20140246475 | Hall et al. | Sep 2014 | A1 |
20140246478 | Baber et al. | Sep 2014 | A1 |
20140246479 | Baber et al. | Sep 2014 | A1 |
20140249557 | Koch, Jr. et al. | Sep 2014 | A1 |
20140252066 | Shelton, IV et al. | Sep 2014 | A1 |
20140252068 | Shelton, IV et al. | Sep 2014 | A1 |
20140259591 | Shelton, IV et al. | Sep 2014 | A1 |
20140263538 | Leimbach et al. | Sep 2014 | A1 |
20140263539 | Leimbach et al. | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263542 | Leimbach et al. | Sep 2014 | A1 |
20140263552 | Hall et al. | Sep 2014 | A1 |
20140263554 | Leimbach et al. | Sep 2014 | A1 |
20140263558 | Hausen et al. | Sep 2014 | A1 |
20140263562 | Patel et al. | Sep 2014 | A1 |
20140263564 | Leimbach et al. | Sep 2014 | A1 |
20140263565 | Lytle, IV et al. | Sep 2014 | A1 |
20140263572 | Shelton, IV et al. | Sep 2014 | A1 |
20140276730 | Boudreaux et al. | Sep 2014 | A1 |
20140277017 | Leimbach et al. | Sep 2014 | A1 |
20140284371 | Morgan et al. | Sep 2014 | A1 |
20140284373 | Shelton, IV et al. | Sep 2014 | A1 |
20140291378 | Shelton, IV et al. | Oct 2014 | A1 |
20140291379 | Schellin et al. | Oct 2014 | A1 |
20140291380 | Weaner et al. | Oct 2014 | A1 |
20140291382 | Lloyd et al. | Oct 2014 | A1 |
20140291383 | Spivey et al. | Oct 2014 | A1 |
20140296873 | Morgan et al. | Oct 2014 | A1 |
20140296874 | Morgan et al. | Oct 2014 | A1 |
20140299648 | Shelton, IV et al. | Oct 2014 | A1 |
20140303645 | Morgan et al. | Oct 2014 | A1 |
20140303646 | Morgan et al. | Oct 2014 | A1 |
20140305987 | Parihar et al. | Oct 2014 | A1 |
20140305988 | Boudreaux et al. | Oct 2014 | A1 |
20140305989 | Parihar et al. | Oct 2014 | A1 |
20140305990 | Shelton, IV et al. | Oct 2014 | A1 |
20140305991 | Parihar et al. | Oct 2014 | A1 |
20140305992 | Kimsey et al. | Oct 2014 | A1 |
20140305994 | Parihar et al. | Oct 2014 | A1 |
20140309665 | Parihar et al. | Oct 2014 | A1 |
20140309666 | Shelton, IV et al. | Oct 2014 | A1 |
20140330161 | Swayze et al. | Nov 2014 | A1 |
20140339286 | Motooka et al. | Nov 2014 | A1 |
20140352463 | Parihar | Dec 2014 | A1 |
20140353358 | Shelton, IV et al. | Dec 2014 | A1 |
20140367447 | Woodard, Jr. et al. | Dec 2014 | A1 |
20140378950 | Chiu | Dec 2014 | A1 |
20150008248 | Giordano et al. | Jan 2015 | A1 |
20150034696 | Shelton, IV et al. | Feb 2015 | A1 |
20150038986 | Swensgard et al. | Feb 2015 | A1 |
20150041518 | Shelton, IV et al. | Feb 2015 | A1 |
20150053737 | Leimbach et al. | Feb 2015 | A1 |
20150053738 | Morgan et al. | Feb 2015 | A1 |
20150053739 | Morgan et al. | Feb 2015 | A1 |
20150053740 | Shelton, IV | Feb 2015 | A1 |
20150053741 | Shelton, IV et al. | Feb 2015 | A1 |
20150053742 | Shelton, IV et al. | Feb 2015 | A1 |
20150053743 | Yates et al. | Feb 2015 | A1 |
20150053744 | Swayze et al. | Feb 2015 | A1 |
20150053745 | Yates et al. | Feb 2015 | A1 |
20150053746 | Shelton, IV et al. | Feb 2015 | A1 |
20150053748 | Yates et al. | Feb 2015 | A1 |
20150060518 | Shelton, IV et al. | Mar 2015 | A1 |
20150060519 | Shelton, IV et al. | Mar 2015 | A1 |
20150060520 | Shelton, IV et al. | Mar 2015 | A1 |
20150060521 | Weisenburgh, II et al. | Mar 2015 | A1 |
20150076207 | Boudreaux et al. | Mar 2015 | A1 |
20150076208 | Shelton, IV | Mar 2015 | A1 |
20150076209 | Shelton, IV et al. | Mar 2015 | A1 |
20150076210 | Shelton, IV et al. | Mar 2015 | A1 |
20150076212 | Shelton, IV | Mar 2015 | A1 |
20150080868 | Kerr | Mar 2015 | A1 |
20150083780 | Shelton, IV et al. | Mar 2015 | A1 |
20150083781 | Giordano et al. | Mar 2015 | A1 |
20150083782 | Scheib et al. | Mar 2015 | A1 |
20150083783 | Shelton, IV et al. | Mar 2015 | A1 |
20150090759 | Spivey et al. | Apr 2015 | A1 |
20150090760 | Giordano et al. | Apr 2015 | A1 |
20150090761 | Giordano et al. | Apr 2015 | A1 |
20150090762 | Giordano et al. | Apr 2015 | A1 |
20150090763 | Murray et al. | Apr 2015 | A1 |
20150108199 | Shelton, IV et al. | Apr 2015 | A1 |
20150122869 | Aronhalt et al. | May 2015 | A1 |
20150136830 | Baxter, III et al. | May 2015 | A1 |
20150136831 | Baxter, III et al. | May 2015 | A1 |
20150136832 | Baxter, III et al. | May 2015 | A1 |
20150136833 | Shelton, IV et al. | May 2015 | A1 |
20150136835 | Shelton, IV et al. | May 2015 | A1 |
20150157354 | Bales, Jr. et al. | Jun 2015 | A1 |
20150173744 | Shelton, IV et al. | Jun 2015 | A1 |
20150173745 | Baxter, III et al. | Jun 2015 | A1 |
20150173746 | Baxter, III et al. | Jun 2015 | A1 |
20150173747 | Baxter, III et al. | Jun 2015 | A1 |
20150173749 | Shelton, IV et al. | Jun 2015 | A1 |
20150173750 | Shelton, IV et al. | Jun 2015 | A1 |
20150173751 | Shelton, IV et al. | Jun 2015 | A1 |
20150173755 | Baxter, III et al. | Jun 2015 | A1 |
20150173756 | Baxter, III et al. | Jun 2015 | A1 |
20150173760 | Shelton, IV et al. | Jun 2015 | A1 |
20150173761 | Shelton, IV et al. | Jun 2015 | A1 |
20150173762 | Shelton, IV et al. | Jun 2015 | A1 |
20150173789 | Baxter, III et al. | Jun 2015 | A1 |
20150182220 | Yates et al. | Jul 2015 | A1 |
20150182222 | Swayze et al. | Jul 2015 | A1 |
20150196295 | Shelton, IV et al. | Jul 2015 | A1 |
20150196296 | Swayze et al. | Jul 2015 | A1 |
20150196299 | Swayze et al. | Jul 2015 | A1 |
20150196347 | Yates et al. | Jul 2015 | A1 |
20150196348 | Yates et al. | Jul 2015 | A1 |
20150201932 | Swayze et al. | Jul 2015 | A1 |
20150201935 | Weisenburgh, II et al. | Jul 2015 | A1 |
20150201936 | Swayze et al. | Jul 2015 | A1 |
20150201937 | Swayze et al. | Jul 2015 | A1 |
20150201938 | Swayze et al. | Jul 2015 | A1 |
20150201939 | Swayze et al. | Jul 2015 | A1 |
20150201940 | Swayze et al. | Jul 2015 | A1 |
20150201941 | Swayze et al. | Jul 2015 | A1 |
20150209031 | Shelton, IV et al. | Jul 2015 | A1 |
20150209038 | Shelton, IV et al. | Jul 2015 | A1 |
20150209039 | Shelton, IV et al. | Jul 2015 | A1 |
20150209041 | Milliman et al. | Jul 2015 | A1 |
20150223809 | Scheib et al. | Aug 2015 | A1 |
20150223816 | Morgan et al. | Aug 2015 | A1 |
20150230783 | Shelton, IV et al. | Aug 2015 | A1 |
20150230784 | Shelton, IV et al. | Aug 2015 | A1 |
20150231409 | Racenet et al. | Aug 2015 | A1 |
20150238185 | Schellin et al. | Aug 2015 | A1 |
20150238186 | Aronhalt et al. | Aug 2015 | A1 |
20150238187 | Schellin et al. | Aug 2015 | A1 |
20150238188 | Vendely et al. | Aug 2015 | A1 |
20150238191 | Schellin et al. | Aug 2015 | A1 |
20150239180 | Schellin et al. | Aug 2015 | A1 |
20150265276 | Huitema et al. | Sep 2015 | A1 |
20150265357 | Shelton, IV et al. | Sep 2015 | A1 |
20150272557 | Overmyer et al. | Oct 2015 | A1 |
20150272569 | Leimbach et al. | Oct 2015 | A1 |
20150272570 | Lytle, IV et al. | Oct 2015 | A1 |
20150272571 | Leimbach et al. | Oct 2015 | A1 |
20150272572 | Overmyer et al. | Oct 2015 | A1 |
20150272574 | Leimbach et al. | Oct 2015 | A1 |
20150272575 | Leimbach et al. | Oct 2015 | A1 |
20150272578 | Leimbach et al. | Oct 2015 | A1 |
20150272579 | Leimbach et al. | Oct 2015 | A1 |
20150272580 | Leimbach et al. | Oct 2015 | A1 |
20150272581 | Leimbach et al. | Oct 2015 | A1 |
20150272582 | Leimbach et al. | Oct 2015 | A1 |
20150272583 | Leimbach et al. | Oct 2015 | A1 |
20150277471 | Leimbach et al. | Oct 2015 | A1 |
20150280384 | Leimbach et al. | Oct 2015 | A1 |
20150280424 | Leimbach et al. | Oct 2015 | A1 |
20150282809 | Shelton, IV et al. | Oct 2015 | A1 |
20150282810 | Shelton, IV et al. | Oct 2015 | A1 |
20150289873 | Shelton, IV et al. | Oct 2015 | A1 |
20150289874 | Leimbach et al. | Oct 2015 | A1 |
20150297210 | Widenhouse et al. | Oct 2015 | A1 |
20150297217 | Huitema et al. | Oct 2015 | A1 |
20150297218 | Shelton, IV et al. | Oct 2015 | A1 |
20150297219 | Shelton, IV et al. | Oct 2015 | A1 |
20150297221 | Kerr et al. | Oct 2015 | A1 |
20150297222 | Huitema et al. | Oct 2015 | A1 |
20150297223 | Huitema et al. | Oct 2015 | A1 |
20150297224 | Hall et al. | Oct 2015 | A1 |
20150297225 | Huitema et al. | Oct 2015 | A1 |
20150297226 | Hall et al. | Oct 2015 | A1 |
20150297227 | Huitema et al. | Oct 2015 | A1 |
20150297228 | Huitema et al. | Oct 2015 | A1 |
20150297229 | Schellin et al. | Oct 2015 | A1 |
20150297230 | Schellin et al. | Oct 2015 | A1 |
20150297231 | Huitema et al. | Oct 2015 | A1 |
20150297232 | Huitema et al. | Oct 2015 | A1 |
20150297233 | Huitema et al. | Oct 2015 | A1 |
20150297234 | Schellin et al. | Oct 2015 | A1 |
20150297235 | Harris et al. | Oct 2015 | A1 |
20150297236 | Harris et al. | Oct 2015 | A1 |
20150305744 | Moore et al. | Oct 2015 | A1 |
20150305745 | Baxter, III et al. | Oct 2015 | A1 |
20150313591 | Baxter, III et al. | Nov 2015 | A1 |
20150313594 | Shelton, IV et al. | Nov 2015 | A1 |
20150327853 | Aronhalt et al. | Nov 2015 | A1 |
20150327864 | Hodgkinson et al. | Nov 2015 | A1 |
20150335328 | Shelton, IV et al. | Nov 2015 | A1 |
20150335329 | Shelton, IV et al. | Nov 2015 | A1 |
20150342606 | Schmid et al. | Dec 2015 | A1 |
20150342607 | Shelton, IV et al. | Dec 2015 | A1 |
20150359536 | Cropper et al. | Dec 2015 | A1 |
20150374367 | Hall et al. | Dec 2015 | A1 |
20150374368 | Swayze et al. | Dec 2015 | A1 |
20150374369 | Yates et al. | Dec 2015 | A1 |
20150374374 | Shelton, IV et al. | Dec 2015 | A1 |
20150374375 | Shelton, IV et al. | Dec 2015 | A1 |
20150374376 | Shelton, IV | Dec 2015 | A1 |
20150374377 | Shelton, IV | Dec 2015 | A1 |
20150374378 | Giordano et al. | Dec 2015 | A1 |
20150374379 | Shelton, IV | Dec 2015 | A1 |
20160000430 | Ming et al. | Jan 2016 | A1 |
20160000431 | Giordano et al. | Jan 2016 | A1 |
20160000432 | Huang et al. | Jan 2016 | A1 |
20160000437 | Giordano et al. | Jan 2016 | A1 |
20160000438 | Swayze et al. | Jan 2016 | A1 |
20160000439 | Weisenburgh, II et al. | Jan 2016 | A1 |
20160000440 | Weisenburgh, II et al. | Jan 2016 | A1 |
20160000441 | Shelton, IV et al. | Jan 2016 | A1 |
20160000442 | Shelton, IV | Jan 2016 | A1 |
20160000452 | Yates et al. | Jan 2016 | A1 |
20160000453 | Yates et al. | Jan 2016 | A1 |
20160000513 | Shelton, IV et al. | Jan 2016 | A1 |
20160007992 | Yates et al. | Jan 2016 | A1 |
20160008023 | Yates et al. | Jan 2016 | A1 |
20160015390 | Timm et al. | Jan 2016 | A1 |
20160015391 | Shelton, IV et al. | Jan 2016 | A1 |
20160051257 | Shelton, IV et al. | Feb 2016 | A1 |
20160058443 | Yates et al. | Mar 2016 | A1 |
20160066909 | Baber et al. | Mar 2016 | A1 |
20160066910 | Baber et al. | Mar 2016 | A1 |
20160066911 | Baber et al. | Mar 2016 | A1 |
20160066912 | Baber et al. | Mar 2016 | A1 |
20160066913 | Swayze et al. | Mar 2016 | A1 |
20160066914 | Baber et al. | Mar 2016 | A1 |
20160066915 | Baber et al. | Mar 2016 | A1 |
20160066916 | Overmyer et al. | Mar 2016 | A1 |
20160069449 | Kanai et al. | Mar 2016 | A1 |
20160074038 | Leimbach et al. | Mar 2016 | A1 |
20160074040 | Widenhouse et al. | Mar 2016 | A1 |
20160089137 | Hess et al. | Mar 2016 | A1 |
20160089141 | Harris et al. | Mar 2016 | A1 |
20160089142 | Harris et al. | Mar 2016 | A1 |
20160089143 | Harris et al. | Mar 2016 | A1 |
20160089146 | Harris et al. | Mar 2016 | A1 |
20160089147 | Harris et al. | Mar 2016 | A1 |
20160089148 | Harris et al. | Mar 2016 | A1 |
20160089149 | Harris et al. | Mar 2016 | A1 |
20160100837 | Huang et al. | Apr 2016 | A1 |
20160106426 | Shelton, IV et al. | Apr 2016 | A1 |
20160106427 | Shelton, IV et al. | Apr 2016 | A1 |
20160106431 | Shelton, IV et al. | Apr 2016 | A1 |
20160113653 | Zingman | Apr 2016 | A1 |
20160120544 | Shelton, IV et al. | May 2016 | A1 |
20160120545 | Shelton, IV et al. | May 2016 | A1 |
20160120547 | Schmid et al. | May 2016 | A1 |
20160128694 | Baxter, III et al. | May 2016 | A1 |
20160135812 | Shelton, IV et al. | May 2016 | A1 |
20160166256 | Baxter, III et al. | Jun 2016 | A1 |
20160174969 | Kerr et al. | Jun 2016 | A1 |
20160174970 | Shelton, IV et al. | Jun 2016 | A1 |
20160174971 | Baxter, III et al. | Jun 2016 | A1 |
20160174972 | Shelton, IV et al. | Jun 2016 | A1 |
20160174973 | Shelton, IV et al. | Jun 2016 | A1 |
20160174974 | Schmid et al. | Jun 2016 | A1 |
20160174975 | Shelton, IV et al. | Jun 2016 | A1 |
20160174976 | Morgan et al. | Jun 2016 | A1 |
20160174977 | Lytle, IV et al. | Jun 2016 | A1 |
20160174978 | Overmyer et al. | Jun 2016 | A1 |
20160174983 | Shelton, IV et al. | Jun 2016 | A1 |
20160174984 | Smith et al. | Jun 2016 | A1 |
20160174985 | Baxter, III et al. | Jun 2016 | A1 |
20160183939 | Shelton, IV et al. | Jun 2016 | A1 |
20160183943 | Shelton, IV | Jun 2016 | A1 |
20160183944 | Swensgard et al. | Jun 2016 | A1 |
20160183945 | Shelton, IV et al. | Jun 2016 | A1 |
20160183947 | Shelton, IV et al. | Jun 2016 | A1 |
20160183948 | Shelton, IV et al. | Jun 2016 | A1 |
20160183950 | Shelton, IV et al. | Jun 2016 | A1 |
20160184039 | Shelton, IV et al. | Jun 2016 | A1 |
20160192916 | Shelton, IV et al. | Jul 2016 | A1 |
20160192917 | Shelton, IV et al. | Jul 2016 | A1 |
20160192918 | Shelton, IV et al. | Jul 2016 | A1 |
20160192929 | Schmid et al. | Jul 2016 | A1 |
20160192933 | Shelton, IV | Jul 2016 | A1 |
20160192936 | Leimbach et al. | Jul 2016 | A1 |
20160192996 | Spivey et al. | Jul 2016 | A1 |
20160192997 | Spivey et al. | Jul 2016 | A1 |
20160199059 | Shelton, IV et al. | Jul 2016 | A1 |
20160199061 | Shelton, IV et al. | Jul 2016 | A1 |
20160199063 | Mandakolathur Vasudevan et al. | Jul 2016 | A1 |
20160199064 | Shelton, IV et al. | Jul 2016 | A1 |
20160199088 | Shelton, IV et al. | Jul 2016 | A1 |
20160199089 | Hess et al. | Jul 2016 | A1 |
20160199956 | Shelton, IV et al. | Jul 2016 | A1 |
20160206309 | Hess et al. | Jul 2016 | A1 |
20160206310 | Shelton, IV | Jul 2016 | A1 |
20160206314 | Scheib et al. | Jul 2016 | A1 |
20160220246 | Timm et al. | Aug 2016 | A1 |
20160220247 | Timm et al. | Aug 2016 | A1 |
20160220248 | Timm et al. | Aug 2016 | A1 |
20160220249 | Shelton, IV et al. | Aug 2016 | A1 |
20160220254 | Baxter, III et al. | Aug 2016 | A1 |
20160220266 | Shelton, IV et al. | Aug 2016 | A1 |
20160220268 | Shelton, IV et al. | Aug 2016 | A1 |
20160235403 | Shelton, IV et al. | Aug 2016 | A1 |
20160235404 | Shelton, IV | Aug 2016 | A1 |
20160235405 | Shelton, IV et al. | Aug 2016 | A1 |
20160235406 | Shelton, IV et al. | Aug 2016 | A1 |
20160235408 | Shelton, IV et al. | Aug 2016 | A1 |
20160235409 | Shelton, IV et al. | Aug 2016 | A1 |
20160235494 | Shelton, IV et al. | Aug 2016 | A1 |
20160238108 | Kanai et al. | Aug 2016 | A1 |
20160242768 | Moore et al. | Aug 2016 | A1 |
20160242770 | Moore et al. | Aug 2016 | A1 |
20160242775 | Shelton, IV et al. | Aug 2016 | A1 |
20160242776 | Shelton, IV et al. | Aug 2016 | A1 |
20160242777 | Shelton, IV et al. | Aug 2016 | A1 |
20160242780 | Shelton, IV et al. | Aug 2016 | A1 |
20160242781 | Shelton, IV et al. | Aug 2016 | A1 |
20160242782 | Shelton, IV et al. | Aug 2016 | A1 |
20160242783 | Shelton, IV et al. | Aug 2016 | A1 |
20160249908 | Shelton, IV et al. | Sep 2016 | A1 |
20160249909 | Shelton, IV et al. | Sep 2016 | A1 |
20160249910 | Shelton, IV et al. | Sep 2016 | A1 |
20160249911 | Timm et al. | Sep 2016 | A1 |
20160249915 | Beckman et al. | Sep 2016 | A1 |
20160249916 | Shelton, IV et al. | Sep 2016 | A1 |
20160249917 | Beckman et al. | Sep 2016 | A1 |
20160249918 | Shelton, IV et al. | Sep 2016 | A1 |
20160249919 | Savage et al. | Sep 2016 | A1 |
20160249922 | Morgan et al. | Sep 2016 | A1 |
20160249927 | Beckman et al. | Sep 2016 | A1 |
20160249930 | Hall et al. | Sep 2016 | A1 |
20160249945 | Shelton, IV et al. | Sep 2016 | A1 |
20160256071 | Shelton, IV et al. | Sep 2016 | A1 |
20160256153 | Shelton, IV et al. | Sep 2016 | A1 |
20160256154 | Shelton, IV et al. | Sep 2016 | A1 |
20160256155 | Shelton, IV et al. | Sep 2016 | A1 |
20160256156 | Shelton, IV et al. | Sep 2016 | A1 |
20160256160 | Shelton, IV et al. | Sep 2016 | A1 |
20160256161 | Overmyer et al. | Sep 2016 | A1 |
20160256162 | Shelton, IV et al. | Sep 2016 | A1 |
20160256163 | Shelton, IV et al. | Sep 2016 | A1 |
20160256184 | Shelton, IV et al. | Sep 2016 | A1 |
20160256185 | Shelton, IV et al. | Sep 2016 | A1 |
20160256186 | Shelton, IV et al. | Sep 2016 | A1 |
20160256187 | Shelton, IV et al. | Sep 2016 | A1 |
20160256229 | Morgan et al. | Sep 2016 | A1 |
20160262745 | Morgan et al. | Sep 2016 | A1 |
20160262746 | Shelton, IV et al. | Sep 2016 | A1 |
20160262760 | Shelton, IV et al. | Sep 2016 | A1 |
20160270780 | Hall et al. | Sep 2016 | A1 |
20160287249 | Alexander, III et al. | Oct 2016 | A1 |
20160287250 | Shelton, IV et al. | Oct 2016 | A1 |
20160287251 | Shelton, IV et al. | Oct 2016 | A1 |
20160287253 | Shelton, IV et al. | Oct 2016 | A1 |
20160287254 | Baxter, III et al. | Oct 2016 | A1 |
20160331375 | Shelton, IV et al. | Nov 2016 | A1 |
20170014129 | Shelton, IV et al. | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
2008207624 | Mar 2009 | AU |
2010214687 | Sep 2010 | AU |
2012200178 | Jul 2013 | AU |
2458946 | Mar 2003 | CA |
2477181 | Apr 2004 | CA |
2512960 | Jan 2006 | CA |
2514274 | Jan 2006 | CA |
2639177 | Feb 2009 | CA |
2576347 | Aug 2015 | CA |
86100996 | Sep 1986 | CN |
1163558 | Oct 1997 | CN |
2488482 | May 2002 | CN |
1424891 | Jun 2003 | CN |
1523725 | Aug 2004 | CN |
1545154 | Nov 2004 | CN |
1634601 | Jul 2005 | CN |
1636526 | Jul 2005 | CN |
2716900 | Aug 2005 | CN |
2738962 | Nov 2005 | CN |
1726874 | Feb 2006 | CN |
1726878 | Feb 2006 | CN |
1868411 | Nov 2006 | CN |
1915180 | Feb 2007 | CN |
2868212 | Feb 2007 | CN |
1960679 | May 2007 | CN |
101011286 | Aug 2007 | CN |
101073509 | Nov 2007 | CN |
101095621 | Jan 2008 | CN |
101111196 | Jan 2008 | CN |
101137402 | Mar 2008 | CN |
101224122 | Jul 2008 | CN |
101224124 | Jul 2008 | CN |
101254126 | Sep 2008 | CN |
101507620 | Aug 2009 | CN |
101507622 | Aug 2009 | CN |
101507623 | Aug 2009 | CN |
101507625 | Aug 2009 | CN |
101507628 | Aug 2009 | CN |
101534724 | Sep 2009 | CN |
101541251 | Sep 2009 | CN |
101626731 | Jan 2010 | CN |
101675898 | Mar 2010 | CN |
101683280 | Mar 2010 | CN |
101801284 | Aug 2010 | CN |
101868203 | Oct 2010 | CN |
101873834 | Oct 2010 | CN |
101912285 | Dec 2010 | CN |
101028205 | Jan 2011 | CN |
101933824 | Jan 2011 | CN |
101934098 | May 2011 | CN |
102038531 | May 2011 | CN |
102038532 | May 2011 | CN |
101534722 | Jun 2011 | CN |
201949071 | Aug 2011 | CN |
101336835 | Sep 2011 | CN |
102188270 | Sep 2011 | CN |
101779977 | Dec 2011 | CN |
101534723 | Jan 2012 | CN |
101310680 | Apr 2012 | CN |
101912284 | Jul 2012 | CN |
202397539 | Aug 2012 | CN |
101317782 | Oct 2012 | CN |
101507639 | Nov 2012 | CN |
102835977 | Dec 2012 | CN |
101507633 | Feb 2013 | CN |
101023879 | Mar 2013 | CN |
101507624 | Mar 2013 | CN |
101327137 | Jun 2013 | CN |
101401736 | Jun 2013 | CN |
101332110 | Jul 2013 | CN |
101683281 | Jan 2014 | CN |
103648408 | Mar 2014 | CN |
103908313 | Jul 2014 | CN |
102783741 | Oct 2014 | CN |
102973300 | Oct 2014 | CN |
102793571 | Dec 2014 | CN |
102166129 | Mar 2015 | CN |
102113902 | Apr 2015 | CN |
102247177 | Feb 2016 | CN |
273689 | May 1914 | DE |
1775926 | Jan 1972 | DE |
3036217 | Apr 1982 | DE |
3212828 | Nov 1982 | DE |
3210466 | Sep 1983 | DE |
3709067 | Sep 1988 | DE |
4228909 | Mar 1994 | DE |
9412228 | Sep 1994 | DE |
19509116 | Sep 1996 | DE |
19534043 | Mar 1997 | DE |
19707373 | Feb 1998 | DE |
19851291 | Jan 2000 | DE |
19924311 | Nov 2000 | DE |
69328576 | Jan 2001 | DE |
20016423 | Feb 2001 | DE |
10052679 | May 2001 | DE |
20112837 | Oct 2001 | DE |
20121753 | Apr 2003 | DE |
10314827 | Apr 2004 | DE |
10314072 | Oct 2004 | DE |
202004012389 | Nov 2004 | DE |
202007003114 | Jun 2007 | DE |
102010013150 | Sep 2011 | DE |
0000756 | Feb 1979 | EP |
0122046 | Oct 1984 | EP |
0070230 | Oct 1985 | EP |
0156774 | Oct 1985 | EP |
0033548 | May 1986 | EP |
0077262 | Aug 1986 | EP |
0189807 | Aug 1986 | EP |
0212278 | Mar 1987 | EP |
0129442 | Nov 1987 | EP |
0255631 | Feb 1988 | EP |
0276104 | Jul 1988 | EP |
0379721 | Aug 1990 | EP |
0178940 | Jan 1991 | EP |
0178941 | Jan 1991 | EP |
0169044 | Jun 1991 | EP |
0248844 | Jan 1993 | EP |
0539762 | May 1993 | EP |
0545029 | Jun 1993 | EP |
0548998 | Jun 1993 | EP |
0277959 | Oct 1993 | EP |
0591946 | Oct 1993 | EP |
0233940 | Nov 1993 | EP |
0261230 | Nov 1993 | EP |
0639349 | Feb 1994 | EP |
0324636 | Mar 1994 | EP |
0593920 | Apr 1994 | EP |
0594148 | Apr 1994 | EP |
0427949 | Jun 1994 | EP |
0523174 | Jun 1994 | EP |
0600182 | Jun 1994 | EP |
0310431 | Nov 1994 | EP |
0375302 | Nov 1994 | EP |
0376562 | Nov 1994 | EP |
0623311 | Nov 1994 | EP |
0630612 | Dec 1994 | EP |
0630614 | Dec 1994 | EP |
0634144 | Jan 1995 | EP |
0646356 | Apr 1995 | EP |
0646357 | Apr 1995 | EP |
0505036 | May 1995 | EP |
0653189 | May 1995 | EP |
0669104 | Aug 1995 | EP |
0387980 | Oct 1995 | EP |
0511470 | Oct 1995 | EP |
0674876 | Oct 1995 | EP |
0679367 | Nov 1995 | EP |
0392547 | Dec 1995 | EP |
0685204 | Dec 1995 | EP |
0686374 | Dec 1995 | EP |
0364216 | Jan 1996 | EP |
0699418 | Mar 1996 | EP |
0702937 | Mar 1996 | EP |
0488768 | Apr 1996 | EP |
0705571 | Apr 1996 | EP |
0528478 | May 1996 | EP |
0711611 | May 1996 | EP |
0484677 | Jun 1996 | EP |
0541987 | Jul 1996 | EP |
0667119 | Jul 1996 | EP |
0737446 | Oct 1996 | EP |
0748614 | Dec 1996 | EP |
0708618 | Mar 1997 | EP |
0770355 | May 1997 | EP |
0503662 | Jun 1997 | EP |
0447121 | Jul 1997 | EP |
0621009 | Jul 1997 | EP |
0625077 | Jul 1997 | EP |
0633749 | Aug 1997 | EP |
0710090 | Aug 1997 | EP |
0578425 | Sep 1997 | EP |
0623312 | Sep 1997 | EP |
0621006 | Oct 1997 | EP |
0625335 | Nov 1997 | EP |
0552423 | Jan 1998 | EP |
0592244 | Jan 1998 | EP |
0648476 | Jan 1998 | EP |
0649290 | Mar 1998 | EP |
0598618 | Sep 1998 | EP |
0676173 | Sep 1998 | EP |
0678007 | Sep 1998 | EP |
0869104 | Oct 1998 | EP |
0603472 | Nov 1998 | EP |
0605351 | Nov 1998 | EP |
0878169 | Nov 1998 | EP |
0879742 | Nov 1998 | EP |
0695144 | Dec 1998 | EP |
0722296 | Dec 1998 | EP |
0760230 | Feb 1999 | EP |
0623316 | Mar 1999 | EP |
0650701 | Mar 1999 | EP |
0537572 | Jun 1999 | EP |
0923907 | Jun 1999 | EP |
0640317 | Sep 1999 | EP |
0843906 | Mar 2000 | EP |
0552050 | May 2000 | EP |
0833592 | May 2000 | EP |
0832605 | Jun 2000 | EP |
0830094 | Sep 2000 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
0694290 | Nov 2000 | EP |
1050278 | Nov 2000 | EP |
1053719 | Nov 2000 | EP |
1053720 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1058177 | Dec 2000 | EP |
1080694 | Mar 2001 | EP |
1090592 | Apr 2001 | EP |
1095627 | May 2001 | EP |
0806914 | Sep 2001 | EP |
0768840 | Dec 2001 | EP |
0908152 | Jan 2002 | EP |
0717959 | Feb 2002 | EP |
0872213 | May 2002 | EP |
0862386 | Jun 2002 | EP |
0949886 | Sep 2002 | EP |
1238634 | Sep 2002 | EP |
0858295 | Dec 2002 | EP |
0656188 | Jan 2003 | EP |
0717960 | Feb 2003 | EP |
1284120 | Feb 2003 | EP |
1287788 | Mar 2003 | EP |
0717966 | Apr 2003 | EP |
0869742 | May 2003 | EP |
0829235 | Jun 2003 | EP |
0887046 | Jul 2003 | EP |
1323384 | Jul 2003 | EP |
0852480 | Aug 2003 | EP |
0891154 | Sep 2003 | EP |
0813843 | Oct 2003 | EP |
0873089 | Oct 2003 | EP |
0856326 | Nov 2003 | EP |
1374788 | Jan 2004 | EP |
0741996 | Feb 2004 | EP |
0814712 | Feb 2004 | EP |
1402837 | Mar 2004 | EP |
0705570 | Apr 2004 | EP |
0959784 | Apr 2004 | EP |
1407719 | Apr 2004 | EP |
1411626 | Apr 2004 | EP |
1086713 | May 2004 | EP |
0996378 | Jun 2004 | EP |
1426012 | Jun 2004 | EP |
0833593 | Jul 2004 | EP |
1442694 | Aug 2004 | EP |
0888749 | Sep 2004 | EP |
0959786 | Sep 2004 | EP |
1453432 | Sep 2004 | EP |
1459695 | Sep 2004 | EP |
1254636 | Oct 2004 | EP |
1473819 | Nov 2004 | EP |
1477119 | Nov 2004 | EP |
1479345 | Nov 2004 | EP |
1479347 | Nov 2004 | EP |
1479348 | Nov 2004 | EP |
0754437 | Dec 2004 | EP |
1025807 | Dec 2004 | EP |
1001710 | Jan 2005 | EP |
1496805 | Jan 2005 | EP |
1256318 | Feb 2005 | EP |
1520521 | Apr 2005 | EP |
1520522 | Apr 2005 | EP |
1520523 | Apr 2005 | EP |
1520525 | Apr 2005 | EP |
1522264 | Apr 2005 | EP |
1523942 | Apr 2005 | EP |
1550408 | Jul 2005 | EP |
1557129 | Jul 2005 | EP |
1064883 | Aug 2005 | EP |
1067876 | Aug 2005 | EP |
0870473 | Sep 2005 | EP |
1157666 | Sep 2005 | EP |
0880338 | Oct 2005 | EP |
1158917 | Nov 2005 | EP |
1344498 | Nov 2005 | EP |
0906764 | Dec 2005 | EP |
1330989 | Dec 2005 | EP |
0771176 | Jan 2006 | EP |
1621138 | Feb 2006 | EP |
1621139 | Feb 2006 | EP |
1621141 | Feb 2006 | EP |
1621143 | Feb 2006 | EP |
1621145 | Feb 2006 | EP |
1621151 | Feb 2006 | EP |
1034746 | Mar 2006 | EP |
1201196 | Mar 2006 | EP |
1632191 | Mar 2006 | EP |
1647231 | Apr 2006 | EP |
1065981 | May 2006 | EP |
1082944 | May 2006 | EP |
1230899 | May 2006 | EP |
1652481 | May 2006 | EP |
1382303 | Jun 2006 | EP |
1253866 | Jul 2006 | EP |
1676539 | Jul 2006 | EP |
1032318 | Aug 2006 | EP |
1045672 | Aug 2006 | EP |
1617768 | Aug 2006 | EP |
1693015 | Aug 2006 | EP |
1400214 | Sep 2006 | EP |
1702567 | Sep 2006 | EP |
1129665 | Nov 2006 | EP |
1400206 | Nov 2006 | EP |
1721568 | Nov 2006 | EP |
1256317 | Dec 2006 | EP |
1285633 | Dec 2006 | EP |
1728473 | Dec 2006 | EP |
1728475 | Dec 2006 | EP |
1736105 | Dec 2006 | EP |
1011494 | Jan 2007 | EP |
1479346 | Jan 2007 | EP |
1484024 | Jan 2007 | EP |
1749485 | Feb 2007 | EP |
1754445 | Feb 2007 | EP |
1759812 | Mar 2007 | EP |
1767157 | Mar 2007 | EP |
1767163 | Mar 2007 | EP |
1563792 | Apr 2007 | EP |
1769756 | Apr 2007 | EP |
1769758 | Apr 2007 | EP |
1581128 | May 2007 | EP |
1780825 | May 2007 | EP |
1785097 | May 2007 | EP |
1790293 | May 2007 | EP |
1790294 | May 2007 | EP |
1563793 | Jun 2007 | EP |
1791473 | Jun 2007 | EP |
1800610 | Jun 2007 | EP |
1300117 | Aug 2007 | EP |
1813199 | Aug 2007 | EP |
1813200 | Aug 2007 | EP |
1813201 | Aug 2007 | EP |
1813202 | Aug 2007 | EP |
1813203 | Aug 2007 | EP |
1813207 | Aug 2007 | EP |
1813209 | Aug 2007 | EP |
1815950 | Aug 2007 | EP |
1330991 | Sep 2007 | EP |
1806103 | Sep 2007 | EP |
1837041 | Sep 2007 | EP |
0922435 | Oct 2007 | EP |
1487359 | Oct 2007 | EP |
1599146 | Oct 2007 | EP |
1839596 | Oct 2007 | EP |
2110083 | Oct 2007 | EP |
1679096 | Nov 2007 | EP |
1857057 | Nov 2007 | EP |
1402821 | Dec 2007 | EP |
1872727 | Jan 2008 | EP |
1550410 | Feb 2008 | EP |
1671593 | Feb 2008 | EP |
1897502 | Mar 2008 | EP |
1611856 | Apr 2008 | EP |
1908417 | Apr 2008 | EP |
1917929 | May 2008 | EP |
1330201 | Jun 2008 | EP |
1702568 | Jul 2008 | EP |
1943955 | Jul 2008 | EP |
1943957 | Jul 2008 | EP |
1943959 | Jul 2008 | EP |
1943962 | Jul 2008 | EP |
1943964 | Jul 2008 | EP |
1943976 | Jul 2008 | EP |
1593337 | Aug 2008 | EP |
1970014 | Sep 2008 | EP |
1974678 | Oct 2008 | EP |
1980213 | Oct 2008 | EP |
1980214 | Oct 2008 | EP |
1759645 | Nov 2008 | EP |
1987780 | Nov 2008 | EP |
1990014 | Nov 2008 | EP |
1992296 | Nov 2008 | EP |
1552795 | Dec 2008 | EP |
1693008 | Dec 2008 | EP |
1759640 | Dec 2008 | EP |
1997439 | Dec 2008 | EP |
2000101 | Dec 2008 | EP |
2000102 | Dec 2008 | EP |
2005894 | Dec 2008 | EP |
2005897 | Dec 2008 | EP |
2005901 | Dec 2008 | EP |
2008595 | Dec 2008 | EP |
2025293 | Feb 2009 | EP |
1736104 | Mar 2009 | EP |
1749486 | Mar 2009 | EP |
1782743 | Mar 2009 | EP |
2039302 | Mar 2009 | EP |
2039308 | Mar 2009 | EP |
2039316 | Mar 2009 | EP |
1721576 | Apr 2009 | EP |
1733686 | Apr 2009 | EP |
2044890 | Apr 2009 | EP |
2055243 | May 2009 | EP |
1550409 | Jun 2009 | EP |
1550413 | Jun 2009 | EP |
1719461 | Jun 2009 | EP |
1834594 | Jun 2009 | EP |
1709911 | Jul 2009 | EP |
2077093 | Jul 2009 | EP |
1745748 | Aug 2009 | EP |
2090231 | Aug 2009 | EP |
2090237 | Aug 2009 | EP |
2090241 | Aug 2009 | EP |
2090244 | Aug 2009 | EP |
2090245 | Aug 2009 | EP |
2090254 | Aug 2009 | EP |
2090256 | Aug 2009 | EP |
2095777 | Sep 2009 | EP |
2098170 | Sep 2009 | EP |
2110082 | Oct 2009 | EP |
2110084 | Oct 2009 | EP |
2111803 | Oct 2009 | EP |
1762190 | Nov 2009 | EP |
1813208 | Nov 2009 | EP |
1908426 | Nov 2009 | EP |
2116195 | Nov 2009 | EP |
2116197 | Nov 2009 | EP |
1607050 | Dec 2009 | EP |
1815804 | Dec 2009 | EP |
1875870 | Dec 2009 | EP |
1878395 | Jan 2010 | EP |
2151204 | Feb 2010 | EP |
1813211 | Mar 2010 | EP |
2165656 | Mar 2010 | EP |
2165660 | Mar 2010 | EP |
2165664 | Mar 2010 | EP |
1566150 | Apr 2010 | EP |
1813206 | Apr 2010 | EP |
2184014 | May 2010 | EP |
1769754 | Jun 2010 | EP |
1854416 | Jun 2010 | EP |
1911408 | Jun 2010 | EP |
2198787 | Jun 2010 | EP |
2214610 | Aug 2010 | EP |
2218409 | Aug 2010 | EP |
1647286 | Sep 2010 | EP |
1825821 | Sep 2010 | EP |
1535565 | Oct 2010 | EP |
1702570 | Oct 2010 | EP |
1785098 | Oct 2010 | EP |
2005896 | Oct 2010 | EP |
2030578 | Nov 2010 | EP |
2036505 | Nov 2010 | EP |
2245993 | Nov 2010 | EP |
2245994 | Nov 2010 | EP |
2253280 | Nov 2010 | EP |
1627605 | Dec 2010 | EP |
2027811 | Dec 2010 | EP |
2130498 | Dec 2010 | EP |
2258282 | Dec 2010 | EP |
2263568 | Dec 2010 | EP |
1994890 | Jan 2011 | EP |
2005900 | Jan 2011 | EP |
2277667 | Jan 2011 | EP |
2283780 | Feb 2011 | EP |
2286738 | Feb 2011 | EP |
1494595 | Mar 2011 | EP |
1690502 | Mar 2011 | EP |
1884201 | Mar 2011 | EP |
2292153 | Mar 2011 | EP |
1769755 | Apr 2011 | EP |
2090240 | Apr 2011 | EP |
2305135 | Apr 2011 | EP |
2308388 | Apr 2011 | EP |
2314254 | Apr 2011 | EP |
2316345 | May 2011 | EP |
2316366 | May 2011 | EP |
2319443 | May 2011 | EP |
2324776 | May 2011 | EP |
1813205 | Jun 2011 | EP |
2042107 | Jun 2011 | EP |
2090243 | Jun 2011 | EP |
2329773 | Jun 2011 | EP |
2090239 | Jul 2011 | EP |
2340771 | Jul 2011 | EP |
2353545 | Aug 2011 | EP |
2361562 | Aug 2011 | EP |
2377472 | Oct 2011 | EP |
1836986 | Nov 2011 | EP |
1908414 | Nov 2011 | EP |
2153781 | Nov 2011 | EP |
2389928 | Nov 2011 | EP |
1847225 | Dec 2011 | EP |
2397079 | Dec 2011 | EP |
2399538 | Dec 2011 | EP |
1785102 | Jan 2012 | EP |
1316290 | Feb 2012 | EP |
2415416 | Feb 2012 | EP |
2090253 | Mar 2012 | EP |
2430986 | Mar 2012 | EP |
1347638 | May 2012 | EP |
1943956 | May 2012 | EP |
2446834 | May 2012 | EP |
2455007 | May 2012 | EP |
2457519 | May 2012 | EP |
2462878 | Jun 2012 | EP |
2462880 | Jun 2012 | EP |
1813204 | Jul 2012 | EP |
2189121 | Jul 2012 | EP |
2248475 | Jul 2012 | EP |
2478845 | Jul 2012 | EP |
2005895 | Aug 2012 | EP |
2090248 | Aug 2012 | EP |
2481359 | Aug 2012 | EP |
2486860 | Aug 2012 | EP |
2486862 | Aug 2012 | EP |
2486868 | Aug 2012 | EP |
1908412 | Sep 2012 | EP |
1935351 | Sep 2012 | EP |
2497431 | Sep 2012 | EP |
1550412 | Oct 2012 | EP |
1616549 | Oct 2012 | EP |
2030579 | Oct 2012 | EP |
2090252 | Oct 2012 | EP |
2517637 | Oct 2012 | EP |
2517638 | Oct 2012 | EP |
2517642 | Oct 2012 | EP |
2517645 | Oct 2012 | EP |
2517649 | Oct 2012 | EP |
2517651 | Oct 2012 | EP |
2526877 | Nov 2012 | EP |
2526883 | Nov 2012 | EP |
1884206 | Mar 2013 | EP |
2090238 | Apr 2013 | EP |
2586380 | May 2013 | EP |
2586383 | May 2013 | EP |
2606812 | Jun 2013 | EP |
2606834 | Jun 2013 | EP |
1982657 | Jul 2013 | EP |
2614782 | Jul 2013 | EP |
2617369 | Jul 2013 | EP |
2090234 | Sep 2013 | EP |
2633830 | Sep 2013 | EP |
2644124 | Oct 2013 | EP |
2644209 | Oct 2013 | EP |
2649948 | Oct 2013 | EP |
2649949 | Oct 2013 | EP |
1997438 | Nov 2013 | EP |
2684529 | Jan 2014 | EP |
2700367 | Feb 2014 | EP |
2713902 | Apr 2014 | EP |
1772105 | May 2014 | EP |
2759267 | Jul 2014 | EP |
2764826 | Aug 2014 | EP |
2764827 | Aug 2014 | EP |
2772206 | Sep 2014 | EP |
2772209 | Sep 2014 | EP |
2777520 | Sep 2014 | EP |
2777528 | Sep 2014 | EP |
2777537 | Sep 2014 | EP |
2777538 | Sep 2014 | EP |
2786714 | Oct 2014 | EP |
2803324 | Nov 2014 | EP |
2446835 | Jan 2015 | EP |
2845545 | Mar 2015 | EP |
1943960 | Apr 2015 | EP |
2090255 | Apr 2015 | EP |
2923660 | Sep 2015 | EP |
1774914 | Dec 2015 | EP |
2090235 | Apr 2016 | EP |
2823773 | Apr 2016 | EP |
2131750 | May 2016 | EP |
2510891 | Jun 2016 | EP |
1915957 | Aug 2016 | EP |
2586379 | Aug 2016 | EP |
2777533 | Oct 2016 | EP |
2364651 | Nov 2016 | EP |
2116192 | Mar 2017 | EP |
2311386 | Jun 2017 | EP |
2839787 | Jun 2017 | EP |
2396594 | Feb 2013 | ES |
459743 | Nov 1913 | FR |
999646 | Feb 1952 | FR |
1112936 | Mar 1956 | FR |
2598905 | Nov 1987 | FR |
2689749 | Jul 1994 | FR |
2765794 | Jan 1999 | FR |
2815842 | Oct 2000 | FR |
939929 | Oct 1963 | GB |
1210522 | Oct 1970 | GB |
1217159 | Dec 1970 | GB |
1339394 | Dec 1973 | GB |
2024012 | Jan 1980 | GB |
2109241 | Jun 1983 | GB |
2272159 | May 1994 | GB |
2284242 | May 1995 | GB |
2286435 | Aug 1995 | GB |
2336214 | Oct 1999 | GB |
2425903 | Nov 2006 | GB |
2423199 | May 2009 | GB |
930100110 | Nov 1993 | GR |
S 47-11908 | May 1972 | JP |
S 50-33988 | Apr 1975 | JP |
S 56-112235 | Sep 1981 | JP |
S 58500053 | Jan 1983 | JP |
S 58-501360 | Aug 1983 | JP |
S 59-174920 | Mar 1984 | JP |
S 60-100955 | Jun 1985 | JP |
S 60-212152 | Oct 1985 | JP |
S 61-98249 | May 1986 | JP |
S 61502036 | Sep 1986 | JP |
S 62-170011 | Oct 1987 | JP |
S 63-59764 | Mar 1988 | JP |
S 63-147449 | Jun 1988 | JP |
S 63-203149 | Aug 1988 | JP |
H 02-279149 | Nov 1990 | JP |
H 03-12126 | Jan 1991 | JP |
H 03-18354 | Jan 1991 | JP |
H 03-78514 | Aug 1991 | JP |
H 03-85009 | Aug 1991 | JP |
H 04-215747 | Aug 1992 | JP |
H 04-131860 | Dec 1992 | JP |
H 05-84252 | Apr 1993 | JP |
H 05-123325 | May 1993 | JP |
H 06-30945 | Feb 1994 | JP |
H 06-54857 | Mar 1994 | JP |
H 06-63054 | Mar 1994 | JP |
H 06-26812 | Apr 1994 | JP |
H 06-121798 | May 1994 | JP |
H 06-125913 | May 1994 | JP |
H 06-197901 | Jul 1994 | JP |
H 06-237937 | Aug 1994 | JP |
H 06-327684 | Nov 1994 | JP |
H 07-31623 | Feb 1995 | JP |
H 07-47070 | Feb 1995 | JP |
H 07-51273 | Feb 1995 | JP |
H 07-124166 | May 1995 | JP |
H 07-163573 | Jun 1995 | JP |
H 07-163574 | Jun 1995 | JP |
H 07-171163 | Jul 1995 | JP |
H 07-255735 | Oct 1995 | JP |
H 07-285089 | Oct 1995 | JP |
H 07-299074 | Nov 1995 | JP |
H 08-33641 | Feb 1996 | JP |
H 08-33642 | Feb 1996 | JP |
H 08-164141 | Jun 1996 | JP |
H 08-173437 | Jul 1996 | JP |
H 08-182684 | Jul 1996 | JP |
H 08-215201 | Aug 1996 | JP |
H 08-507708 | Aug 1996 | JP |
H 8-229050 | Sep 1996 | JP |
H 08-289895 | Nov 1996 | JP |
H 08-336540 | Dec 1996 | JP |
H 08-336544 | Dec 1996 | JP |
H 09-501081 | Feb 1997 | JP |
H 09-501577 | Feb 1997 | JP |
H 09-164144 | Jun 1997 | JP |
H 10-113352 | May 1998 | JP |
H 10-118090 | May 1998 | JP |
H 10-296660 | Nov 1998 | JP |
H 10-512465 | Dec 1998 | JP |
H 10-512469 | Dec 1998 | JP |
2000-014632 | Jan 2000 | JP |
2000-033071 | Feb 2000 | JP |
2000-112002 | Apr 2000 | JP |
2000-166932 | Jun 2000 | JP |
2000-171730 | Jun 2000 | JP |
3056672 | Jun 2000 | JP |
2000-287987 | Oct 2000 | JP |
2000-325303 | Nov 2000 | JP |
2001-037763 | Feb 2001 | JP |
2001-046384 | Feb 2001 | JP |
2001-087272 | Apr 2001 | JP |
2001-514541 | Sep 2001 | JP |
2001-276091 | Oct 2001 | JP |
2001-286477 | Oct 2001 | JP |
2001-517473 | Oct 2001 | JP |
2002-051974 | Feb 2002 | JP |
2002-085415 | Mar 2002 | JP |
2002-143078 | May 2002 | JP |
2002-204801 | Jul 2002 | JP |
2002-528161 | Sep 2002 | JP |
2002-314298 | Oct 2002 | JP |
2002-369820 | Dec 2002 | JP |
2002-542186 | Dec 2002 | JP |
2003-000603 | Jan 2003 | JP |
2003-500153 | Jan 2003 | JP |
2003-504104 | Feb 2003 | JP |
2003-135473 | May 2003 | JP |
2003-148903 | May 2003 | JP |
2003-164066 | Jun 2003 | JP |
2003-521301 | Jul 2003 | JP |
2003-521304 | Jul 2003 | JP |
2003-523251 | Aug 2003 | JP |
2003-523254 | Aug 2003 | JP |
2003-524431 | Aug 2003 | JP |
3442423 | Sep 2003 | JP |
2003-300416 | Oct 2003 | JP |
2004-147701 | May 2004 | JP |
2004-162035 | Jun 2004 | JP |
2004-229976 | Aug 2004 | JP |
2004-524076 | Aug 2004 | JP |
2004-531280 | Oct 2004 | JP |
2004-532084 | Oct 2004 | JP |
2004-532676 | Oct 2004 | JP |
2004-329624 | Nov 2004 | JP |
2004-337617 | Dec 2004 | JP |
2004-344662 | Dec 2004 | JP |
2004-344663 | Dec 2004 | JP |
2005-013573 | Jan 2005 | JP |
2005-028147 | Feb 2005 | JP |
2005-028148 | Feb 2005 | JP |
2005-028149 | Feb 2005 | JP |
2005-505309 | Feb 2005 | JP |
2005-505322 | Feb 2005 | JP |
2005-505334 | Feb 2005 | JP |
2005-080702 | Mar 2005 | JP |
2005-103280 | Apr 2005 | JP |
2005-103281 | Apr 2005 | JP |
2005-103293 | Apr 2005 | JP |
2005-511131 | Apr 2005 | JP |
2005-511137 | Apr 2005 | JP |
2005-131163 | May 2005 | JP |
2005-131164 | May 2005 | JP |
2005-131173 | May 2005 | JP |
2005-131211 | May 2005 | JP |
2005-131212 | May 2005 | JP |
2005-137423 | Jun 2005 | JP |
2005-137919 | Jun 2005 | JP |
2005-144183 | Jun 2005 | JP |
2005-152416 | Jun 2005 | JP |
2005-516714 | Jun 2005 | JP |
2005-187954 | Jul 2005 | JP |
2005-521109 | Jul 2005 | JP |
2005-523105 | Aug 2005 | JP |
2005-524474 | Aug 2005 | JP |
4461008 | Aug 2005 | JP |
2005-296412 | Oct 2005 | JP |
2005-529675 | Oct 2005 | JP |
2005-529677 | Nov 2005 | JP |
2005-328882 | Dec 2005 | JP |
2005-335432 | Dec 2005 | JP |
2005-342267 | Dec 2005 | JP |
2006-034975 | Feb 2006 | JP |
2006-034977 | Feb 2006 | JP |
2006-034978 | Feb 2006 | JP |
2006-034980 | Feb 2006 | JP |
2006-043451 | Feb 2006 | JP |
2006-506106 | Feb 2006 | JP |
2006-510879 | Mar 2006 | JP |
3791856 | Jun 2006 | JP |
2006-187649 | Jul 2006 | JP |
2006-218228 | Aug 2006 | JP |
2006-218297 | Aug 2006 | JP |
2006-223872 | Aug 2006 | JP |
2006-281405 | Oct 2006 | JP |
2006-289064 | Oct 2006 | JP |
2006-334412 | Dec 2006 | JP |
2006-334417 | Dec 2006 | JP |
2006-346445 | Dec 2006 | JP |
2007-000634 | Jan 2007 | JP |
2007-050253 | Mar 2007 | JP |
2007-061628 | Mar 2007 | JP |
2007-083051 | Apr 2007 | JP |
2007-098130 | Apr 2007 | JP |
2007-105481 | Apr 2007 | JP |
3906843 | Apr 2007 | JP |
2007-117725 | May 2007 | JP |
2007-130471 | May 2007 | JP |
2007-130479 | May 2007 | JP |
2007-222615 | Jun 2007 | JP |
3934161 | Jun 2007 | JP |
2007-203047 | Aug 2007 | JP |
2007-203049 | Aug 2007 | JP |
2007-203051 | Aug 2007 | JP |
2007-203055 | Aug 2007 | JP |
2007-203057 | Aug 2007 | JP |
2007-524435 | Aug 2007 | JP |
2007-229448 | Sep 2007 | JP |
2007-526026 | Sep 2007 | JP |
2007-252916 | Oct 2007 | JP |
4001860 | Oct 2007 | JP |
2007-307373 | Nov 2007 | JP |
2007-325922 | Dec 2007 | JP |
2008-068073 | Mar 2008 | JP |
2008-510515 | Apr 2008 | JP |
2008-516669 | May 2008 | JP |
2008-528203 | Jul 2008 | JP |
2008-206967 | Sep 2008 | JP |
2008-212637 | Sep 2008 | JP |
2008-212638 | Sep 2008 | JP |
2008-212640 | Sep 2008 | JP |
2008-220956 | Sep 2008 | JP |
2008-237881 | Oct 2008 | JP |
2008-259860 | Oct 2008 | JP |
2008-264535 | Nov 2008 | JP |
2008-283459 | Nov 2008 | JP |
2008-307393 | Dec 2008 | JP |
2009-000531 | Jan 2009 | JP |
2009-006137 | Jan 2009 | JP |
2009-502351 | Jan 2009 | JP |
2009-502352 | Jan 2009 | JP |
2009-022742 | Feb 2009 | JP |
2009-506799 | Feb 2009 | JP |
2009-507526 | Feb 2009 | JP |
2009-072595 | Apr 2009 | JP |
2009-072599 | Apr 2009 | JP |
2009-090113 | Apr 2009 | JP |
2009-106752 | May 2009 | JP |
2009-189821 | Aug 2009 | JP |
2009-189823 | Aug 2009 | JP |
2009-189836 | Aug 2009 | JP |
2009-189837 | Aug 2009 | JP |
2009-189838 | Aug 2009 | JP |
2009-189846 | Aug 2009 | JP |
2009-189847 | Aug 2009 | JP |
2009-201998 | Sep 2009 | JP |
2009-536082 | Oct 2009 | JP |
2009-261944 | Nov 2009 | JP |
2009-268908 | Nov 2009 | JP |
2009-538684 | Nov 2009 | JP |
2009-539420 | Nov 2009 | JP |
2009-291604 | Dec 2009 | JP |
2010-504808 | Feb 2010 | JP |
2010-504809 | Feb 2010 | JP |
2010-504813 | Feb 2010 | JP |
2010-504846 | Feb 2010 | JP |
2010-505524 | Feb 2010 | JP |
2010-069307 | Apr 2010 | JP |
2010-069310 | Apr 2010 | JP |
2010-075694 | Apr 2010 | JP |
2010-075695 | Apr 2010 | JP |
2010-088876 | Apr 2010 | JP |
2010-094514 | Apr 2010 | JP |
2010-098844 | Apr 2010 | JP |
2010-520025 | Jun 2010 | JP |
2010-142636 | Jul 2010 | JP |
2010-148879 | Jul 2010 | JP |
2010-214166 | Sep 2010 | JP |
4549018 | Sep 2010 | JP |
2010-240411 | Oct 2010 | JP |
2010-240429 | Oct 2010 | JP |
2010-246948 | Nov 2010 | JP |
2010-279690 | Dec 2010 | JP |
2010-540192 | Dec 2010 | JP |
2011-005260 | Jan 2011 | JP |
2011-504391 | Feb 2011 | JP |
2011-509786 | Mar 2011 | JP |
2011-072797 | Apr 2011 | JP |
2011-078763 | Apr 2011 | JP |
2011-524199 | Sep 2011 | JP |
4783373 | Sep 2011 | JP |
2011-251156 | Dec 2011 | JP |
2012-040398 | Mar 2012 | JP |
2012-507356 | Mar 2012 | JP |
2012-517289 | Aug 2012 | JP |
5140421 | Feb 2013 | JP |
5162595 | Mar 2013 | JP |
2013-517891 | May 2013 | JP |
2013-526342 | Jun 2013 | JP |
2013-128791 | Jul 2013 | JP |
5212039 | Jul 2013 | JP |
5333899 | Nov 2013 | JP |
6007357 | Oct 2016 | JP |
20110003229 | Jan 2011 | KR |
2008830 | Mar 1994 | RU |
2052979 | Jan 1996 | RU |
2098025 | Dec 1997 | RU |
2141279 | Nov 1999 | RU |
2144791 | Jan 2000 | RU |
2181566 | Apr 2002 | RU |
2187249 | Aug 2002 | RU |
2189091 | Sep 2002 | RU |
32984 | Oct 2003 | RU |
2225170 | Mar 2004 | RU |
42750 | Dec 2004 | RU |
61114 | Feb 2007 | RU |
2007-103563 | Aug 2008 | RU |
189517 | Jan 1967 | SU |
328636 | Sep 1972 | SU |
511939 | Apr 1976 | SU |
674747 | Jul 1979 | SU |
886900 | Dec 1981 | SU |
1009439 | Apr 1983 | SU |
1022703 | Jun 1983 | SU |
1271497 | Nov 1986 | SU |
1443874 | Nov 1986 | SU |
1333319 | Aug 1987 | SU |
1377053 | Feb 1988 | SU |
1443874 | Dec 1988 | SU |
1509051 | Sep 1989 | SU |
1561964 | May 1990 | SU |
1708312 | Jan 1992 | SU |
1722476 | Mar 1992 | SU |
1752361 | Aug 1992 | SU |
1814161 | May 1993 | SU |
WO 8202824 | Sep 1982 | WO |
WO 8602254 | Apr 1986 | WO |
WO 9115157 | Oct 1991 | WO |
WO 9220295 | Nov 1992 | WO |
WO 9221300 | Dec 1992 | WO |
WO 9308755 | May 1993 | WO |
WO 9313718 | Jul 1993 | WO |
WO 9314690 | Aug 1993 | WO |
WO 9315648 | Aug 1993 | WO |
WO 9315850 | Aug 1993 | WO |
WO 9319681 | Oct 1993 | WO |
WO 9400060 | Jan 1994 | WO |
WO 9411057 | May 1994 | WO |
WO 9412108 | Jun 1994 | WO |
WO 9417737 | Aug 1994 | WO |
WO 9418893 | Sep 1994 | WO |
WO 9420030 | Sep 1994 | WO |
WO 9422378 | Oct 1994 | WO |
WO 9423659 | Oct 1994 | WO |
WO 9424943 | Nov 1994 | WO |
WO 9424947 | Nov 1994 | WO |
WO 9502369 | Jan 1995 | WO |
WO 9503743 | Feb 1995 | WO |
WO 9506817 | Mar 1995 | WO |
WO 9509576 | Apr 1995 | WO |
WO 9509577 | Apr 1995 | WO |
WO 9514436 | Jun 1995 | WO |
WO 9517855 | Jul 1995 | WO |
WO 9518383 | Jul 1995 | WO |
WO 9518572 | Jul 1995 | WO |
WO 9519739 | Jul 1995 | WO |
WO 9520360 | Aug 1995 | WO |
WO 9523557 | Sep 1995 | WO |
WO 9524865 | Sep 1995 | WO |
WO 9525471 | Sep 1995 | WO |
WO 9526562 | Oct 1995 | WO |
WO 9529639 | Nov 1995 | WO |
WO 9604858 | Feb 1996 | WO |
WO 9618344 | Jun 1996 | WO |
WO 9619151 | Jun 1996 | WO |
WO 9619152 | Jun 1996 | WO |
WO 9620652 | Jul 1996 | WO |
WO 9621119 | Jul 1996 | WO |
WO 9622055 | Jul 1996 | WO |
WO 9623448 | Aug 1996 | WO |
WO 9624301 | Aug 1996 | WO |
WO 9627337 | Sep 1996 | WO |
WO 9631155 | Oct 1996 | WO |
WO 9635464 | Nov 1996 | WO |
WO 9639085 | Dec 1996 | WO |
WO 9639086 | Dec 1996 | WO |
WO 9639087 | Dec 1996 | WO |
WO 9639088 | Dec 1996 | WO |
WO 9639089 | Dec 1996 | WO |
WO 9700646 | Jan 1997 | WO |
WO 9700647 | Jan 1997 | WO |
WO 9701989 | Jan 1997 | WO |
WO 9706582 | Feb 1997 | WO |
WO 9710763 | Mar 1997 | WO |
WO 9710764 | Mar 1997 | WO |
WO 9711648 | Apr 1997 | WO |
WO 9711649 | Apr 1997 | WO |
WO 9715237 | May 1997 | WO |
WO 9724073 | Jul 1997 | WO |
WO 9724993 | Jul 1997 | WO |
WO 9730644 | Aug 1997 | WO |
WO 9730659 | Aug 1997 | WO |
WO 9734533 | Sep 1997 | WO |
WO 9737598 | Oct 1997 | WO |
WO 9739688 | Oct 1997 | WO |
WO 9741767 | Nov 1997 | WO |
WO 9801080 | Jan 1998 | WO |
WO 9817180 | Apr 1998 | WO |
WO 9822154 | May 1998 | WO |
WO 9827880 | Jul 1998 | WO |
WO 9830153 | Jul 1998 | WO |
WO 9847436 | Oct 1998 | WO |
WO 9858589 | Dec 1998 | WO |
WO 9902090 | Jan 1999 | WO |
WO 9903407 | Jan 1999 | WO |
WO 9903408 | Jan 1999 | WO |
WO 9903409 | Jan 1999 | WO |
WO 9912483 | Mar 1999 | WO |
WO 9912487 | Mar 1999 | WO |
WO 9912488 | Mar 1999 | WO |
WO 9915086 | Apr 1999 | WO |
WO 9915091 | Apr 1999 | WO |
WO 9923933 | May 1999 | WO |
WO 9923959 | May 1999 | WO |
WO 9925261 | May 1999 | WO |
WO 9929244 | Jun 1999 | WO |
WO 9934744 | Jul 1999 | WO |
WO 9945849 | Sep 1999 | WO |
WO 9948430 | Sep 1999 | WO |
WO 9951158 | Oct 1999 | WO |
WO 0024322 | May 2000 | WO |
WO 0024330 | May 2000 | WO |
WO 0033755 | Jun 2000 | WO |
WO 0041638 | Jul 2000 | WO |
WO 0048506 | Aug 2000 | WO |
WO 0053112 | Sep 2000 | WO |
WO 0054653 | Sep 2000 | WO |
WO 00057796 | Oct 2000 | WO |
WO 0064365 | Nov 2000 | WO |
WO 0072762 | Dec 2000 | WO |
WO 0072765 | Dec 2000 | WO |
WO 0078222 | Dec 2000 | WO |
WO 0103587 | Jan 2001 | WO |
WO 0105702 | Jan 2001 | WO |
WO 01010482 | Feb 2001 | WO |
WO 0135845 | May 2001 | WO |
WO 0154594 | Aug 2001 | WO |
WO 0158371 | Aug 2001 | WO |
WO 0162158 | Aug 2001 | WO |
WO 0162161 | Aug 2001 | WO |
WO 0162162 | Aug 2001 | WO |
WO 0162163 | Aug 2001 | WO |
WO 0162164 | Aug 2001 | WO |
WO 0162169 | Aug 2001 | WO |
WO 0178605 | Oct 2001 | WO |
WO 0180757 | Nov 2001 | WO |
WO 0191646 | Dec 2001 | WO |
WO 0200121 | Jan 2002 | WO |
WO 0207608 | Jan 2002 | WO |
WO 0207618 | Jan 2002 | WO |
WO 0217799 | Mar 2002 | WO |
WO 0219920 | Mar 2002 | WO |
WO 0219932 | Mar 2002 | WO |
WO 0226143 | Apr 2002 | WO |
WO 0230297 | Apr 2002 | WO |
WO 0232322 | Apr 2002 | WO |
WO 0236028 | May 2002 | WO |
WO 0243571 | Jun 2002 | WO |
WO 02058568 | Aug 2002 | WO |
WO 02060328 | Aug 2002 | WO |
WO 02065933 | Aug 2002 | WO |
WO 02067785 | Sep 2002 | WO |
WO 02080781 | Oct 2002 | WO |
WO 02085218 | Oct 2002 | WO |
WO 02087586 | Nov 2002 | WO |
WO 02098302 | Dec 2002 | WO |
WO 03000138 | Jan 2003 | WO |
WO 03001329 | Jan 2003 | WO |
WO 03001986 | Jan 2003 | WO |
WO 03013363 | Feb 2003 | WO |
WO 03013372 | Feb 2003 | WO |
WO 03015604 | Feb 2003 | WO |
WO 03020106 | Mar 2003 | WO |
WO 03020139 | Mar 2003 | WO |
WO 03024339 | Mar 2003 | WO |
WO 2003079909 | Mar 2003 | WO |
WO 03030743 | Apr 2003 | WO |
WO 03037193 | May 2003 | WO |
WO 2003047436 | Jun 2003 | WO |
WO 03055402 | Jul 2003 | WO |
WO 03057048 | Jul 2003 | WO |
WO 03057058 | Jul 2003 | WO |
WO 2003063694 | Aug 2003 | WO |
WO 03077769 | Sep 2003 | WO |
WO 03079911 | Oct 2003 | WO |
WO 03082126 | Oct 2003 | WO |
WO 03086206 | Oct 2003 | WO |
WO 03088845 | Oct 2003 | WO |
WO 03090630 | Nov 2003 | WO |
WO 03094743 | Nov 2003 | WO |
WO 03094745 | Nov 2003 | WO |
WO 2003094746 | Nov 2003 | WO |
WO 2003094747 | Nov 2003 | WO |
WO 03101313 | Dec 2003 | WO |
WO 03105698 | Dec 2003 | WO |
WO 03105702 | Dec 2003 | WO |
WO 2004004578 | Jan 2004 | WO |
WO 2004006980 | Jan 2004 | WO |
WO 2004011037 | Feb 2004 | WO |
WO 2004014238 | Feb 2004 | WO |
WO 2004019769 | Mar 2004 | WO |
WO 2004019803 | Mar 2004 | WO |
WO 2004021868 | Mar 2004 | WO |
WO 2004028585 | Apr 2004 | WO |
WO 2004030554 | Apr 2004 | WO |
WO 2004032754 | Apr 2004 | WO |
WO 2004032760 | Apr 2004 | WO |
WO 2004032762 | Apr 2004 | WO |
WO 2004032763 | Apr 2004 | WO |
WO 2004032783 | Apr 2004 | WO |
WO 2004034875 | Apr 2004 | WO |
WO 2004047626 | Jun 2004 | WO |
WO 2004047653 | Jun 2004 | WO |
WO 2004049956 | Jun 2004 | WO |
WO 2004050971 | Jun 2004 | WO |
WO 2004052426 | Jun 2004 | WO |
WO 2004056276 | Jul 2004 | WO |
WO 2004056277 | Jul 2004 | WO |
WO 2004062516 | Jul 2004 | WO |
WO 2004064600 | Aug 2004 | WO |
WO 2004078050 | Sep 2004 | WO |
WO 2004078051 | Sep 2004 | WO |
WO 2004078236 | Sep 2004 | WO |
WO 2004086987 | Oct 2004 | WO |
WO 2004096015 | Nov 2004 | WO |
WO 2004096057 | Nov 2004 | WO |
WO 2004103157 | Dec 2004 | WO |
WO 2004105593 | Dec 2004 | WO |
WO 2004105621 | Dec 2004 | WO |
WO 2004112618 | Dec 2004 | WO |
WO 2004112652 | Dec 2004 | WO |
WO 2005027983 | Mar 2005 | WO |
WO 2005037329 | Apr 2005 | WO |
WO 2005042041 | May 2005 | WO |
WO 2005044078 | May 2005 | WO |
WO 2005048809 | Jun 2005 | WO |
WO 2005055846 | Jun 2005 | WO |
WO 2005072634 | Aug 2005 | WO |
WO 2005078892 | Aug 2005 | WO |
WO 2005079675 | Sep 2005 | WO |
WO 2005087128 | Sep 2005 | WO |
WO 2005096954 | Oct 2005 | WO |
WO 2005110243 | Nov 2005 | WO |
WO 2005112806 | Dec 2005 | WO |
WO 2005112808 | Dec 2005 | WO |
WO 2005115251 | Dec 2005 | WO |
WO 2005115253 | Dec 2005 | WO |
WO 2005117735 | Dec 2005 | WO |
WO 2005122936 | Dec 2005 | WO |
WO 2006023486 | Mar 2006 | WO |
WO 2006023578 | Mar 2006 | WO |
WO 2006027014 | Mar 2006 | WO |
WO 2006028314 | Mar 2006 | WO |
WO 2006044490 | Apr 2006 | WO |
WO 2006044581 | Apr 2006 | WO |
WO 2006044810 | Apr 2006 | WO |
WO 2006049852 | May 2006 | WO |
WO 2006050360 | May 2006 | WO |
WO 2006051252 | May 2006 | WO |
WO 2006059067 | Jun 2006 | WO |
WO 2006073581 | Jul 2006 | WO |
WO 2006083748 | Aug 2006 | WO |
WO 2006085389 | Aug 2006 | WO |
WO 2006092563 | Sep 2006 | WO |
WO 2006092565 | Sep 2006 | WO |
WO 2006115958 | Nov 2006 | WO |
WO 2006125940 | Nov 2006 | WO |
WO 2006132992 | Dec 2006 | WO |
WO 2007002180 | Jan 2007 | WO |
WO 2007016290 | Feb 2007 | WO |
WO 2007018898 | Feb 2007 | WO |
WO 2007034161 | Mar 2007 | WO |
WO 2007051000 | May 2007 | WO |
WO 2007059233 | May 2007 | WO |
WO 2007074430 | Jul 2007 | WO |
WO 2007089603 | Aug 2007 | WO |
WO 2007098220 | Aug 2007 | WO |
WO 2007121579 | Nov 2007 | WO |
WO 2007129121 | Nov 2007 | WO |
WO 2007131110 | Nov 2007 | WO |
WO 2007137304 | Nov 2007 | WO |
WO 2007139734 | Dec 2007 | WO |
WO 2007142625 | Dec 2007 | WO |
WO 2007145825 | Dec 2007 | WO |
WO 2007146987 | Dec 2007 | WO |
WO 2007147439 | Dec 2007 | WO |
WO 2008020964 | Feb 2008 | WO |
WO 2008021687 | Feb 2008 | WO |
WO 2008021969 | Feb 2008 | WO |
WO 2008027972 | Mar 2008 | WO |
WO 2008039237 | Apr 2008 | WO |
WO 2008039249 | Apr 2008 | WO |
WO 2008039270 | Apr 2008 | WO |
WO 2008045383 | Apr 2008 | WO |
WO 2008057281 | May 2008 | WO |
WO 2008070763 | Jun 2008 | WO |
WO 2008080148 | Jul 2008 | WO |
WO 2008089404 | Jul 2008 | WO |
WO 2008101080 | Aug 2008 | WO |
WO 2008101228 | Aug 2008 | WO |
WO 2008103797 | Aug 2008 | WO |
WO 2008109123 | Sep 2008 | WO |
WO 2008109125 | Sep 2008 | WO |
WO 2008112912 | Sep 2008 | WO |
WO 2008118728 | Oct 2008 | WO |
WO 2008118928 | Oct 2008 | WO |
WO 2008124748 | Oct 2008 | WO |
WO 2008131357 | Oct 2008 | WO |
WO 2009005969 | Jan 2009 | WO |
WO 2009022614 | Feb 2009 | WO |
WO 2009023851 | Feb 2009 | WO |
WO 2009033057 | Mar 2009 | WO |
WO 2009039506 | Mar 2009 | WO |
WO 2009046394 | Apr 2009 | WO |
WO 2009066105 | May 2009 | WO |
WO 2009067649 | May 2009 | WO |
WO 2009091497 | Jul 2009 | WO |
WO 2009120944 | Oct 2009 | WO |
WO 2009137761 | Nov 2009 | WO |
WO 2009143092 | Nov 2009 | WO |
WO 2009143331 | Nov 2009 | WO |
WO 2009150650 | Dec 2009 | WO |
WO 2009152307 | Dec 2009 | WO |
WO 2010028332 | Mar 2010 | WO |
WO 2010030434 | Mar 2010 | WO |
WO 2010045425 | Apr 2010 | WO |
WO 2010050771 | May 2010 | WO |
WO 2010054404 | May 2010 | WO |
WO 2010056714 | May 2010 | WO |
WO 2010063795 | Jun 2010 | WO |
WO 2010090940 | Aug 2010 | WO |
WO 2010093333 | Aug 2010 | WO |
WO 2010098871 | Sep 2010 | WO |
WO 2011008672 | Jan 2011 | WO |
WO 2011013103 | Feb 2011 | WO |
WO 2011044343 | Apr 2011 | WO |
WO 2011060311 | May 2011 | WO |
WO 2011084969 | Jul 2011 | WO |
WO 2011127137 | Oct 2011 | WO |
WO 2012006306 | Jan 2012 | WO |
WO 2012009431 | Jan 2012 | WO |
WO 2012021671 | Feb 2012 | WO |
WO 2012040438 | Mar 2012 | WO |
WO 2012044551 | Apr 2012 | WO |
WO 2012044554 | Apr 2012 | WO |
WO 2012044597 | Apr 2012 | WO |
WO 2012044606 | Apr 2012 | WO |
WO 2012044820 | Apr 2012 | WO |
WO 2012044844 | Apr 2012 | WO |
WO 2012044853 | Apr 2012 | WO |
WO 2012044854 | Apr 2012 | WO |
WO 2012058213 | May 2012 | WO |
WO 2012068156 | May 2012 | WO |
WO 2012109760 | Aug 2012 | WO |
WO 2012127462 | Sep 2012 | WO |
WO 2012135705 | Oct 2012 | WO |
WO 2012143913 | Oct 2012 | WO |
WO 2012148667 | Nov 2012 | WO |
WO 2012148668 | Nov 2012 | WO |
WO 2012148703 | Nov 2012 | WO |
WO 2012160163 | Nov 2012 | WO |
WO 2012166503 | Dec 2012 | WO |
WO 2013009252 | Jan 2013 | WO |
WO 2013009699 | Jan 2013 | WO |
WO 2013023114 | Feb 2013 | WO |
WO 2013036409 | Mar 2013 | WO |
WO 2013043707 | Mar 2013 | WO |
WO 2013043717 | Mar 2013 | WO |
WO 2013043721 | Mar 2013 | WO |
WO 2013062978 | May 2013 | WO |
WO 2013116869 | Aug 2013 | WO |
WO 2013148762 | Oct 2013 | WO |
WO 2013167427 | Nov 2013 | WO |
WO 2013188130 | Dec 2013 | WO |
WO 2014004199 | Jan 2014 | WO |
WO 2014004294 | Jan 2014 | WO |
WO 2015153642 | Oct 2015 | WO |
WO 2007014355 | Feb 2017 | WO |
Entry |
---|
European Examination Report, Application No. 09250367.1, dated Mar. 4, 2010 (8 pages). |
European Search Report, Application No. 09250367.1, dated Apr. 14, 2009 (7 pages). |
International Preliminary Report on Patentability for PCT/US2012/039302, dated Dec. 2, 2013 (5 pages). |
International Search Report for PCT/US2012/039302, dated Sep. 4, 2012 (5 pages). |
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008. |
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20, pp. 1744-1748. |
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages). |
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, (2000), 3 pages. |
“Biomedical Coatings,” Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page). |
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005). |
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005). |
D. Tuite, Ed., “Get the Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages). |
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages. |
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000). |
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010). |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page. |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages. |
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages. |
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages. |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 2 pages. |
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages. |
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98. |
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51. |
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161. |
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339. |
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12. |
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12. |
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246. |
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345. |
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986. |
Matsuda, “Thermodynamics of Formation of Porous Polymeric Membrane from Solutions,” Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991). |
Young, “Microcellular foams via phase separation,” Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986). |
Chen et al., “Elastomeric Biomaterials for Tissue Engineering,” Progress in Polymer Science 38 (2013), pp. 584-671. |
Pitt et al., “Attachment of Hyaluronan to Metallic Surfaces,” J. Biomed. Mater. Res. 68A: pp. 95-106, 2004. |
Schellhammer et al., “Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae,” Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001). |
Solorio et al., “Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors,” J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523. |
http://ninpgan.net/publications/51-100/89.pdf; 2004, Ning Pan, On Uniqueness of Fibrous Materials, Design & Nature II. Eds: Colins, M. and Brebbia, C. WIT Press, Boston, 493-504. |
Covidien iDrive™ Ultra in Service Reference Card, “iDrive™ Ultra Powered Stapling Device,” (4 pages). |
Covidien iDrive™ Ultra Powered Stapling System ibrochure, “The Power of iDrive™ Ultra Powered Stapling System and Tri-Staple™ Technology,” (23 pages). |
Seils et al., Covidien Summary: Clinical Study “UCONN Biodynamics: Final Report on Results,” (2 pages). |
Covidien “iDrive™ Ultra Powered Stapling System, A Guide for Surgeons,” (6 pages). |
Covidien “iDrive™ Ultra Powered Stapling System, Cleaning and Sterilization Guide,” (2 pages). |
Covidien brochure “iDrive™ Ultra Powered Stapling System,” (6 pages). |
“Indian Standard: Automotive Vehicles—Brakes and Braking Systems (IS 11852-1:2001)”, Mar. 1, 2001. |
Fast, Versatile Blackfin Processors Handle Advanced RFID Reader Applications; Analog Dialogue: vol. 40—Sep. 2006; http://www.analog.com/library/analogDialogue/archives/40-09/rfid.pdf: Wayback Machine to Feb. 15, 2012. |
Serial Communication Protocol; Michael Lemmon Feb. 1, 2009; http://www3.nd.edu/˜lemmon/courses/ee224/web-manual/web-manual/lab12/node2.html; Wayback Machine to Apr. 29, 2012. |
Allegro MicroSystems, LLC, Automotive Full Bridge MOSFET Driver, A3941-DS, Rev. 5, 21 pages, http://www.allegromicro.com/˜/media/Files/Datasheets/A3941-Datasheet.ashx?la=en. |
Patrick J. Sweeney: “RFID for Dummies”, Mar. 11, 2010, pp. 365-365, XP055150775, ISBN: 978-1-11-805447-5, Retrieved from the Internet: URL: books.google.de/books?isbn=1118054474 [retrieved on Nov. 4, 2014]—book not attached. |
Data Sheet of LM4F230H5QR, 2007. |
U.S. Appl. No. 12/031,573, filed Feb. 14, 2008. |
Number | Date | Country | |
---|---|---|---|
20160242769 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14755151 | Jun 2015 | US |
Child | 15146486 | US | |
Parent | 13832522 | Mar 2013 | US |
Child | 14755151 | US | |
Parent | 13118210 | May 2011 | US |
Child | 13832522 | US | |
Parent | 12031628 | Feb 2008 | US |
Child | 12856099 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12856099 | Aug 2010 | US |
Child | 13118210 | US |